Join the discussion @ p2p.wrox.com Wrox Programmer to Programmer™

Beginning

PHP 5.3

n.com: The Digital Library

Programmer to Programmer™

Get more out of

WROX.com

Interact Chapters on Demand

Take an active role online by participating in Purchase individual book chapters in pdf
our P2P forums format

Wrox Online Library Join the Community
Hundreds of our books are available online Sign up for our free monthly newsletter at
through Books24x7.com newsletter.wrox.com

Wrox Blox Browse

Download short informational pieces and Ready for more Wrox? We have books and
code to keep you up to date and out of e-books available on .NET, SQL Server, Java,
trouble! XML, Visual Basic, C#/ C++, and much more!

Contact Us.

We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

(c) ketabton.com: The Digital Library

Beginning PHP 5.3

Introductionc. ¢t it i eerensnnsnnsnnsnnsnnnnss XXVii

Part I: Getting Up and Running with PHP

ChapterL:Introducing PHPttt i ittt ettt nnnns 3
Chapter 2: Your First PHP Script ittt innnn 11

Part lI: Learning the Language

Chapter 3: PHP Language BasicS.t s st it it nnnnnnns 33
Chapter4: Decisionsand Loops ittt ittt i e s s s nnnnnns 51
Chapter 5: Strings it ittt sttt nnnn s nnns 73
Chapter 6: Arrayscciiivunnnnnnnesssnnnnnnnnnnsssnnns 101
Chapter 7:Functions ittt ittt n s nnnsnns 141
Chapter8:0Objectsttt tnnnnnnnnnnssnnns 165

Part lllI: Using PHP in Practice

Chapter 9: Handling HTML Forms withPHP 221
Chapter 10: Preserving State With Query Strings, Cookies, and Sessions . . 267
Chapter 11: Working with Files and Directories 297
Chapter 12: Introducing Databasesand SQL. 337
Chapter 13: Retrieving Data from MySQL with PHP. 367
Chapter 14: Manipulating MySQL DatawithPHP 403
Chapter 15: Making Your Job Easier withPEAR 441
Chapter 16: PHP and the OQutsideWorld 471
Chapter 17: Generating Images withPHP. 507
Chapter 18: String Matching with Regular Expressions. 539
Chapter 19: Working with XML e tnnns 573
Chapter 20: Writing High-QualityCode ittt e i nn 619
Appendix A: Solutionsto Exercisesciiiiiieennnnnnnnns 673
Appendix B: Configuring PHP ittt s i n s 719
Appendix C: Alternativesto MySQL i eennnnn 757
Appendix D: Using PHP from the CommandLine..................... 765

1 L = 775

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Beginning
PHP 5.3

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Beginning
PHP 5.3

Matt Doyle

WILEY
Wiley Publishing, Inc.

(c) ketabton.com: The Digital Library

Beginning PHP 5.3
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
ISBN: 978-0-470-41396-8

Manufactured in the United States of America

10987654321

Library of Congress Control Number: 2009017149

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: / /www

.wiley.com/go/permissions.

Limit of Liability /Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

(c) ketabton.com: The Digital Library

This book is dedicated to Cat, my rock in stormy seas, and Zack, my sunshine on a cloudy day.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

About the Author

Matt Doyle, born and bred in England, discovered the joys of computing from an early age, thanks to his
mom’s prudent decision to invest in a rusty old build-it-yourself computer with a whopping 4K of RAM.
Since then, he’s never looked back, gaining a B.Sc. in Computer Science and moving into the IT industry.

After working at various companies in such disparate roles as IT manager, C programmer, software
tester, Web designer, and Web developer, Matt decided it was time to start his own business. In 1997 he
co-founded ELATED (www.elated.com)— a company dedicated to helping people build great

Web sites.

Cutting his Web development teeth on C, Perl, and JavaScript, Matt has worked with a few other Web
programming languages over the years, including Java, ASP, and Python. PHP is his current language of
choice when building dynamic Web sites.

In 2002, deciding he’d had enough of the freezing English weather, he retreated to the sunny shores
of Sydney’s Northern Beaches in Australia with his wife, Cat. They now live in the New South Wales
Southern Highlands (which, ironically, has rather English weather) with their son, Isaac.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Executive Editor
Carol Long

Development Editor
Ed Connor

Technical Editor
Ben Schupak

Production Editor
Rebecca Anderson

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nate Pritts, Word One

Indexer
J & J Indexing

Cover Image
© Purestock/Punchstock

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library
Acknowledgments

This book would not have been possible without the help and support of my wife Cat and my ELATED
partner-in-crime Simon. Thank you both so very much for all that you have done. Thanks also go to the
editors and managers at Wiley — particularly Ed Connor and Jenny Watson — for all their hard work
helping to knock this book into shape.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Contents

Introduction XXvii

Part I: Getting Up and Running with PHP

Chapter 1: Introducing PHP 3
What Is PHP? 3
Why Use PHP? 5
The Evolution of PHP 7
What’s New in PHP 5.3 7

Namespaces 7
The goto Operator 8
Nowdoc Syntax 8
Shorthand Form of the Ternary Operator 8
Advanced Changes 9
Summary 9

Chapter 2: Your First PHP Script 11

Installing PHP 12
Installing on Ubuntu Linux 12
Installing on Windows 15
Installing on Mac 0S X 17
Testing Your Installation 19
Setting Your Time Zone 21

Other Ways to Run PHP 22
Running PHP with other Web Servers 23
Compiling PHP Yourself 23
Running PHP Remotely 24

Creating Your First Script 24
Embedding PHP within HTML 25
Enhancing the Script Further 28
Using Comments to Make Code More Readable 29

Summary 30

Exercise 30

(c) ketabton.com: The Digital Library

Contents

Part lI: Learning the Language

Chapter 3: PHP Language Basics 33
Using Variables in PHP 33
Naming Variables 34
Creating Variables 34
Understanding Data Types 35
About Loose Typing 36
Testing the Type of a Variable 36
Changing a Variable’'s Data Type 38
Changing Type by Casting 38
Operators and Expressions 40
Operator Types 40
Understanding Operator Precedence 47
Constants 48
Summary 50
Exercises 50
Chapter 4: Decisions and Loops 51
Making Decisions 52
Simple Decisions with the if Statement 52
Providing an Alternative Choice with the else Statement 54
Testing One Expression Many Times with the switch Statement 55
Compact Coding with the Ternary Operator 56
Doing Repetitive Tasks with Looping 59
Simple Looping with the while Statement 59
Testing at the End: The do . . . while Loop 60
Neater Looping with the for Statement 61
Escaping from Loops with the break Statement 64
Skipping Loop Iterations with the continue Statement 64
Creating Nested Loops 65
Mixing Decisions and Looping with HTML 70
Summary 72
Exercises 72
Chapter 5: Strings 73
Creating and Accessing Strings 74
Including More Complex Expressions within Strings 75
Using Your Own Delimiters 76

Xvi

(c) ketabton.com: The Digital Library

Contents

Other Ways to Create Strings 77
Finding the Length of a String 77
Accessing Characters within a String 78
Searching Strings 78
Searching Strings with strstr() 79
Locating Text with strpos() and strrpos() 79
Finding the Number of Occurrences with substr_count() 80
Searching for a Set of Characters with strpbrk() 81
Replacing Text within Strings 81
Replacing All Occurrences using str_replace() 81
Replacing a Portion of a String with substr_replace() 82
Translating Characters with strtr() 87
Dealing with Upper- and Lowercase 87
Formatting Strings 89
General-Purpose Formatting with printf() and sprintf() 89
Trimming Strings with trim(), Itrim(), and rtrim() 95
Padding Strings with str_pad() 96
Wrapping Lines of Text with wordwrap() 96
Formatting Numbers with number_format() 98
Summary 99
Exercises 100
Chapter 6: Arrays 101
The Anatomy of an Array 102
Creating Arrays 102
Accessing Array Elements 103
Changing Elements 104
Outputting an Entire Array with print_r() 105
Extracting a Range of Elements with array_slice() 107
Counting Elements in an Array 108
Stepping Through an Array 109
Looping Through Arrays with foreach 113
Using foreach to Loop Through Values 114
Using foreach to Loop Through Keys and Values 114
Altering Array Values with foreach 115
Working with Multidimensional Arrays 116
Creating a Multidimensional Array 117
Accessing Elements of Multidimensional Arrays 118
Looping Through Multidimensional Arrays 119

xvii

(c) ketabton.com: The Digital Library

Contents
Manipulating Arrays 121
Sorting Arrays 121
Adding and Removing Array Elements 128
Merging Arrays Together 134
Converting Between Arrays and Strings 136
Converting an Array to a List of Variables 137
Summary 138
Exercises 139
Chapter 7: Functions 141
What Is a Function? 141
Why Functions Are Useful 142
Calling Functions 142
Working with Variable Functions 144
Writing Your Own Functions 145
Defining Parameters 145
Optional Parameters and Default Values 147
Returning Values from Your Functions 148
Understanding Variable Scope 150
Creating Anonymous Functions 154
Working with References 158
Passing References to Your Own Functions 159
Returning References from Your Own Functions 160
Writing Recursive Functions 160
Summary 163
Exercises 164
Chapter 8: Objects 165
What Is Object-Oriented Programming? 166
Advantages of OOP 166
Understanding Basic OOP Concepts 167
Classes 167
Objects 167
Properties 168
Methods 168
Creating Classes and Objects in PHP 168
Creating and Using Properties 169
Understanding Property Visibility 169
Declaring Properties 170
Accessing Properties 170

xviii

(c) ketabton.com: The Digital Library

Contents
Static Properties 172
Class Constants 173
Working with Methods 174
Method Visibility 174
Creating a Method 174
Calling Methods 175
Adding Parameters and Returning Values 175
Accessing Object Properties from Methods 175
Static Methods 179
Using Hints to Check Method Arguments 180
Making Your Classes Self-Contained with Encapsulation 182
Object Overloading with get(), set(), and call() 183
Overloading Property Accesses with__get() and __set() 184
Overloading Method Calls with __call() 187
Other Overloading Methods 191
Using Inheritance to Extend the Power of Objects 192
Overriding Methods in the Parent Class 196
Preserving the Functionality of the Parent Class 198
Blocking Inheritance and Overrides with Final Classes and Methods 199
Using Abstract Classes and Methods 200
Working with Interfaces 204
Constructors and Destructors 209
Setting Up New Objects with Constructors 209
Cleaning Up Objects with Destructors 210
Automatically Loading Class Files 212
Storing Objects as Strings 213
Determining an Object’s Class 215
Summary 217
Exercises 218
Part llI: Using PHP in Practice
Chapter 9: Handling HTML Forms with PHP 221
How HTML Forms Work 222
Capturing Form Data with PHP 230
Dealing Securely with Form Data 234
Handling Empty Form Fields 234
Dealing with Multi-Value Fields 236
Generating Web Forms with PHP 242
Storing PHP Variables in Forms 249
Creating File Upload Forms 257

Xix

(c) ketabton.com: The Digital Library

Contents
Accessing Information on Uploaded Files 257
Limiting the Size of File Uploads 258
Storing and Using an Uploaded File 259
Redirecting after a Form Submission 264
Summary 266
Exercises 266
Chapter 10: Preserving State With Query Strings, Cookies, and Sessions 267
Saving State with Query Strings 268
Building Query Strings 268
Accessing Data in Query Strings 270
Working with Cookies 274
Cookie Components 274
Setting a Cookie in PHP 276
Accessing Cookies in Your Scripts 277
Removing Cookies 277
Using PHP Sessions to Store Data 282
Creating a Session 282
Reading and Writing Session Data 283
Destroying a Session 289
Passing Session IDs in Query Strings 289
Changing Session Behavior 290
Summary 296
Exercises 296
Chapter 11: Working with Files and Directories 297
Understanding Files and Directories 298
Getting Information on Files 298
Time-Related Properties 299
Retrieving a Filename from a Path 299
Opening and Closing Files 300
Opening a File with fopen() 300
Closing a File with fclose() 302
Reading and Writing to Files 302
Reading and Writing Strings of Characters 303
Testing for the End of a File 306
Reading One Line at a Time 307
Reading CSV Files 308
Reading and Writing Entire Files 309

XX

(c) ketabton.com: The Digital Library

Contents

Random Access to File Data 311
Working with File Permissions 312
Changing Permissions 313
Checking File Permissions 314
Copying, Renaming, and Deleting Files 315
Working with Directories 316
Other Directory Functions 318
Working with Directory Objects 320
Telling a File from a Directory 321
Building a Text Editor 325
The Text Editor Script 325
Testing the Editor 328
Examining the Editor Code 329
Summary 334
Exercise 335
Chapter 12: Introducing Databases and SQL 337
Deciding How to Store Data 338
Database Architectures 338
Database Models 339
Choosing a Database 340
Understanding Relational Databases 341
Normalization 341
Talking to Databases with SQL 343
Setting Up MySQL 349
Starting the MySQL Server 349
Setting Up the MySQL root Password 350

A Quick Play with MySQL 353
Creating a New Database 353
Creating a Table 354
Adding Data to a Table 356
Reading Data from a Table 356
Updating Data in a Table 357
Deleting Data from a Table 358
Deleting Tables and Databases 358
Connecting to MySQL from PHP 359
Making a Connection 360
Handling Errors 360
Reading Data 361
Summary 365
Exercises 365

XXi

(c) ketabton.com: The Digital Library

Contents
Chapter 13: Retrieving Data from MySQL with PHP 367
Setting Up the Book Club Database 367
The BINARY Attribute and Collations 369
The UNIQUE Constraint 370
The ENUM Data Type 370
The TIMESTAMP Data Type 371
Retrieving Data with SELECT 371
Limiting the Number of Rows Returned 372
Sorting Results 373
Using Pattern Matching for Flexible Queries 374
Summarizing Data 376
Eliminating Duplicate Results 377
Grouping Results 378
Pulling Data from Multiple Tables 379
Using Aliases 381
Other Useful MySQL Operators and Functions 382
Creating a Member Record Viewer 385
Creating the config.php File 386
Creating the common.inc.php File 387
Creating the DataObject Class File 388
Building the Member Class 390
Building the LogEntry Class 394
Creating the view_members.php Script 395
Creating the view_member.php Script 399
Testing the Application 400
Summary 401
Exercises 402
Chapter 14: Manipulating MySQL Data with PHP 403
Inserting Records 403
Updating Records 406
Deleting Records 407
Building a Member Registration Application 408
Adding More Common Code 408
Enhancing the Member Class 409
Creating the Registration Script 411
Testing the Application 417
Creating a Members’ Area 417
Adding an Authentication Method to the Member Class 418
Enhancing the LogEntry Class to Record Page Views 419

xXii

(c) ketabton.com: The Digital Library

Contents

Adding More Common Code 420
Writing the Login Page Script 421
Creating a Logout Function 424
Creating the Pages for the Members’ Area 424
Testing the Members’ Area 426
Creating a Member Manager Application 428
Adding Update and Delete Methods to the Member Class 428
Adding a Deletion Method to the LogEntry Class 430
Tweaking the view_members.php Script 431
Creating the view_member.php Script 431
Testing the Member Manager 437
Summary 438
Exercises 439
Chapter 15: Making Your Job Easier with PEAR 441
Installing PEAR Packages 442
Testing the PEAR Package Manager on Ubuntu 442
Testing PEAR using Mac OS X and MAMP 443
Installing and Testing PEAR with WampServer on Windows 444
Installing a Package 446
Installing Dependencies 447
Uninstalling Packages 447
Using a PEAR Package 448
Creating HTML Tables with the HTML_Table Package 450
Web Forms the Easy Way with HTML_QuickForm 455
Installing HTML_QuickForm 455
Working with HTML_QuickForm 455
Using Validation Rules 460
Summary 470
Exercises 470
Chapter 16: PHP and the Outside World 471
Working with Dates and Times 472
Understanding Timestamps 472
Getting the Current Date and Time 472
Creating Your Own Timestamps 473
Extracting Date and Time Values from a Timestamp 475
Formatting Date Strings 478
Checking Date Values 481

xxiii

(c) ketabton.com: The Digital Library

Contents
Working with Microseconds 481
DateTime: The Future of PHP Date/Time Handling 487
Working with HTTP 488
Understanding HTTP Requests 489
Exploring HTTP Responses 490
Modifying an HTTP Response 493
Getting Information from the Web Server 494
Sending Email 497
Specifying the Sender Address and Adding Headers 498
Controlling the Return Path Email Address 499
Sending HTML Emails 500
Summary 505
Exercises 506
Chapter 17: Generating Images with PHP 507
Basics of Computer Graphics 507
Color Theory 508
Coordinate Systems 508
Image Types 509
Creating Images 510
Creating a New Image 510
Allocating Colors 510
Outputting Images 511
Drawing in an Image 512
Manipulating Images 520
Opening an Existing Image 521
Applying a Watermark 523
Creating Thumbnails 528
Using Text in Images 531
Adding Standard Text 531
Using TrueType Fonts 533
Summary 536
Exercises 537
Chapter 18: String Matching with Regular Expressions 539
What Is a Regular Expression? 540
Pattern Matching in PHP 541
Exploring Regular Expression Syntax 542

XXiv

(c) ketabton.com: The Digital Library

Contents

Matching Literal Characters 542
Matching Types of Characters using Character Classes 544
Matching Multiple Characters 545
Greedy and Non-Greedy Matching 546
Using Subpatterns to Group Patterns 546
Referring to Previous Subpattern Matches 547
Matching Alternative Patterns 548
Using Anchors to Match at Specified Positions 548
Finding Multiple Matches with preg_match_all() 550
Searching Arrays with preg_grep() 556
Replacing Text 557
Replacing Text with preg_replace() 557
Replacing Text using a Callback Function 560
Altering Matching Behavior with Pattern Modifiers 560
Splitting a String with a Regular Expression 562
Summary 571
Exercises 571
Chapter 19: Working with XML 573
What Is XML? 574
XML Document Structure 575
Major Parts of an XML Document 576
XML Syntax Rules 577
Using XML Elements and Attributes 578
Valid XML Documents: DTDs and XSDs 578
Reading XML Documents with PHP 582
How XML Parser Works 582
Creating a New Parser 582
Creating Event Handlers 583
Parsing the XML Document 584
Dealing with Parse Errors 584
Writing and Manipulating XML Documents with PHP 589
DOM Basics 590
Creating an XML Document using the DOM 595
Manipulating XML Documents using the DOM 599
Doing XML the Easy Way with SimpleXML 606
Reading an XML Document 608
Creating an XML Document 610
Converting Between SimpleXML and DOM Objects 612
Working with XSL and XSLT 613
Summary 615
Exercises 616

XXV

(c) ketabton.com: The Digital Library

Contents
Chapter 20: Writing High-Quality Code 619
Writing Modular Code 620
Including Files 621
Including a File Only Once 622
Working with Include Paths 623
Dynamic Includes 625
Using Namespaces to Avoid Clashes 625
Using Coding Standards for Consistency 630
Documenting Your Code 631
Writing Good Comments 632
Using phpDocumentor to Generate External Documentation 633
Checking Input and Encoding Output 641
Checking Input 642
Encoding Output 643
Handling Errors 644
Understanding Error Levels 644
Triggering Errors 646
Controlling Where Error Messages Are Sent 647
Logging Your Own Error Messages 647
Letting Your Script Handle Errors 648
Fine-Tuning Error Reporting 651
Using Exception Objects to Handle Errors 652
Separating Application Logic from Presentation Logic 660
Automated Code Testing with PHPUnit 666
Summary 671
Exercises 672
Appendix A: Solutions to Exercises 673
Appendix B: Configuring PHP 719
Appendix C: Alternatives to MySQL 757
Appendix D: Using PHP from the Command Line 765
Index 775

XXVi

(c) ketabton.com: The Digital Library

Introduction

Welcome to Beginning PHP 5.3! This book teaches you how to build interactive Web sites and
applications using PHP, one of the most popular Web programming languages in use today. Using PHP
you can create anything from a simple form-to-email script all the way up to a Web forum application, a
blogging platform, a content management system, or the next big Web 2.0 sensation. The sky is the limit!

As programming languages go, PHP is easy to learn. However, it’s also a very extensive language, with
hundreds of built-in functions and thousands more available through add-ons to the PHP engine. This
book doesn’t attempt to guide you through every nook and cranny of PHP’s capabilities. Instead, it aims
to give you a good grounding in the most useful aspects of the language — the stuff you'll use 99 percent
of the time — and to teach you how to create solid, high-quality PHP applications.

Who This Book Is For

This book is intended for anyone starting out with PHP programming. If you've previously worked in
another programming language such as Java, C#, or Perl, you'll probably pick up the concepts in the
earlier chapters quickly; however, the book assumes no prior experience of programming or of building
Web applications.

That said, because PHP is primarily a Web technology, it will help if you have at least some knowledge
of other Web technologies, particularly HTML and CSS. Fortunately, these two technologies are easy to
pick up. You can find many useful HTML and CSS tutorials at:

Q http://www.elated.com/articles/cat/authoring/ — HTML, XHTML, and CSS tutorials
(many are written by the author of this book)

Q http://www.w3schools.com/html/html_intro.asp — Walks you through the basics of
HTML, with lots of “try it out” examples along the way

QO http://www.w3schools.com/css/css_intro.asp — Brings you up to speed with CSS
(Cascading Style Sheets)

Many Web applications make use of a database to store data, and this book contains three chapters on
working with MySQL databases. Once again, if you're already familiar with databases in general — and
MySQL in particular — you’ll be able to fly through these chapters. However, even if you've never
touched a database before in your life, you should still be able to pick up a working knowledge by
reading through these chapters.

What This Book Covers

This book gives you a broad understanding of the PHP language and its associated technologies. You
explore a wide range of topics, including:

XXVii

(c) ketabton.com: The Digital Library

Introduction

How to install and configure the PHP engine

Language fundamentals, such as variables, loops, strings, and arrays
Functions, and the concept of modular code

How to develop object-oriented applications

Creating Web forms, and PHP scripts to handle them

Interacting with browser cookies and creating sessions to store visitor data
File and directory handling

Writing database-driven applications

Dealing with dates and times, the Web server environment, and email messages
Creating graphics with PHP

The ins and outs of regular expressions

How to read, write, and create XML documents with PHP

OO0 0D 0D0 00U DU 00O

Good programming practices, including coding standards, documentation, security issues, error
handling, code separation, and code testing

QO How to write PHP scripts that can run from the command line

Also, as you'd imagine, this book covers the new features added to PHP in version 5.3. However, if
you're still using an older version of PHP, don't panic -- the vast majority of the book applies to all
versions of PHP.

How This Book Is Structured

The chapters in this book are laid out in a logical order, explaining basic programming concepts first,
then building on those concepts in later chapters when covering more advanced topics. As a general
rule, each chapter builds on the knowledge gained in previous chapters, so you shouldn’t need to jump
around the book too much. However, if you're already familiar with some of the basic ideas of PHP,
you'll find you can easily dip into later chapters if you're looking for specific information.

Each chapter contains a couple of exercises at the end to test your knowledge and expand on some of the
ideas presented in the chapter. You can find solutions to the exercises in Appendix A.

This book is split into three main parts. Part I, “Getting Up and Running with PHP,” introduces PHP in
more detail, and walks you through installing PHP and writing a simple PHP script. Part II, “Learning
the Language,” teaches you the fundamentals of the PHP language — essential reading for building PHP
scripts. Finally, Part III, “Using PHP in Practice,” shows you how to create real-world PHP applications,
covering a wide range of concepts and including lots of useful example scripts.

Here’s a chapter-by-chapter breakdown of the book to help you decide how best to approach it.

Chapter 1 introduces you to PHP. You see how PHP compares to other Web programming languages,
look at how PHP has evolved over the years, and briefly explore the new features in PHP version 5.3.

XXViii

(c) ketabton.com: The Digital Library

Introduction

Chapter 2 walks you through installing a copy of the PHP engine on Ubuntu Linux, Windows, and Mac
OS X; looks at other ways you can install or use PHP; and shows you how to write a simple PHP script.

Chapter 3 looks at some basic PHP language concepts. You look at variables, data types, operators,
expressions, and constants.

Chapter 4 shows you how to change the flow of your scripts by creating decisions and loops. You
explore the if, else, and switch statements; the ternary operator; and the do, while, for, break, and
continue statements. You also learn how to nest loops, and how to mix decisions and looping with
blocks of HTML.

Chapter 5 explores PHP’s handling of strings, or sequences of characters. You learn how to create strings;
how to retrieve characters from a string; and how to manipulate strings with functions such as
strlen(), substr(),strstr(),strpos(),str_replace(),and printf (), to name but a few.

Chapter 6 covers arrays — variables that can hold multiple values. You learn the difference between
indexed and associative arrays, and find out how to create arrays and access their individual elements.
The rest of the chapter focuses on array manipulation, including functions such as print_r (), array_
slice(), count (), sort (), array_merge(),and list (). You also learn how to create foreach loops,
as well as how to work with multidimensional arrays.

Chapter 7 looks at the concept of functions — blocks of code that you can use again and again. You look
at how to call built-in functions, and how to work with variable functions. You also study how to create
your own functions, including defining parameters, returning values, understanding scope, and using
anonymous functions. Other function-related topics such as references and recursion are also explored.

Chapter 8 delves into the world of object-oriented programming. You look at the advantages of an
object-oriented approach, and learn how to build classes, properties, and methods, and how to create
and use objects. You also explore more advanced topics such as overloading, inheritance, interfaces,
constructors and destructors, autoloading, and namespaces.

Chapter 9 shows you how to use PHP to create interactive Web forms. You learn how to create HTML
forms, how to capture form data in PHP, and how to use PHP to generate dynamic forms. You also
explore file upload forms and page redirection.

Chapter 10 looks at how to preserve an application’s state between page views. You explore three
different strategies: query strings, cookies, and PHP sessions. The chapter includes an example user
login system.

Chapter 11 takes a look at PHP’s file and directory handling functions. You learn how to open and close
files; how to find out more information about a file; how to read from and write to files; how to work
with file permissions; how to copy, rename, and delete files; and how to manipulate directories. The
chapter includes a simple text editor as an example.

Chapters 12-14 explore databases in general and MySQL in particular, and show how to work with

MySQL databases using PHP. You learn some database and SQL theory; look at how to connect to
MySQL from PHP; and study how to retrieve, insert, update, and delete data in a MySQL database.

XXiX

(c) ketabton.com: The Digital Library

Introduction

Chapter 15 introduces PEAR, the PHP Extension and Application Repository. It’s a large collection of
reusable code modules that can really help to speed up your application development. You look at
how to install and use PEAR packages, and explore three useful packages: Net_UserAgent_Detect,
HTML_Table, and HTML_QuickForm.

Chapter 16 looks at various ways that your PHP applications can interact with the outside world. You
take a detailed look at date and time handling, including various useful built-in date functions, as well
as the DateTime and DateTimeZone classes. You also look at how to work closely with HTTP request
and response headers, how to retrieve Web server information, and how to send email from within
your scripts.

Chapter 17 shows how you can use PHP to generate graphics on the fly. You study some computer
graphics fundamentals, then look at how to create new images, as well as modify existing images. Along
the way you explore colors, drawing functions, image formats, transparency, opacity, and generating text
within images.

Chapter 18 looks at the power of regular expressions. These clever pattern-matching tools let you search
for very specific patterns of text within strings. The chapter introduces regular expression syntax, and
shows how to use PHP’s regular expression functions to search for and replace patterns of text. Lots of
examples are included to make the concepts clear.

Chapter 19 explores XML — eXtensible Markup Language — and shows you how to manipulate XML
from within your PHP scripts. You learn about XML and its uses, and look at various ways to read and
write XML with PHP, including XML Parser, the XML DOM extension, and SimpleXML. You also take a
brief look at XML stylesheets, including XSL and XSLT.

Chapter 20 wraps up the book with a discussion on good programming practices. You look at strategies
for writing modular code; how to design and implement coding standards for consistency; ways to
document your code; how to harden your applications against attack; how to handle errors gracefully;
why it’s important to separate application from presentation logic; and ways to test your application
code for robustness.

Appendix A contains answers to the exercises found throughout the book.

Appendix B looks at how to configure PHP, and lists all the configuration directives available.

Appendix C explores some alternative databases to MySQL that are supported by PHP.

Appendix D shows you how to use PHP to write command-line scripts, further enhancing the power
and flexibility of your applications.

XXX

(c) ketabton.com: The Digital Library

Introduction

What You Need to Use This Book

To work through the examples in this book you'll find it helpful to install, or have access to, a Web server
running PHP. Because PHP runs happily on most operating systems, including Windows, Linux, and
Mac OS X, you should have no trouble installing a Web server with the PHP engine on your setup.
Chapter 2 contains easy instructions on how to install PHP and the Apache Web server on Windows,
Linux, and the Mac. You can also use a remote Web server — for example, at your Web hosting

provider — to run the example scripts.

Although this book covers PHP 5.3, the production version available at the time of writing was 5.2.
Therefore some sections of the book — particularly Chapter 2 — contain references to version 5.2.
However, as long as you install a version of PHP greater than 5.1 — whether that’s 5.2, 5.3, or

later — you'll be fine.

You'll need a text editor to create and edit your PHP scripts, and many decent free editors are available.
Windows has the Notepad editor built in, which is fine for small projects. On the Mac you can use
TextEdit, or one of the command-line editors such as vi or Emacs. Again, on Linux you can use vi,
Emacs, or another command-line editor, or install one of the graphical text editors available for Linux,
such as Bluefish (http://bluefish.openoffice.nl/).

Using the Command Line

Some parts of the book — notably the chapters on databases, as well as Appendix D — make use of the
command-line interface, or “shell,” to enter commands and run programs. This is a powerful tool for
communicating with your system.

Before rich graphical environments came into common use, the only way to interact with computers was
to type commands, one line at a time. You wanted to run a program? There was no icon to click — you
typed the program’s name.

Many programs still make use of the command-line interface. For one thing, it’s a lot simpler to write
them that way. What’s more, many people still find it easier to interact with the command prompt than
with a mouse-driven windowed environment.

In order to access the command line, you need to do one of the following;:

Q On Windows, bring up the Start menu and choose All Programs => Accessories = Command
Prompt. Alternatively, press Windows+R to call up the Run dialog, type cmd, and click OK.

Q On Ubuntu Linux, choose Applications = Accessories = Terminal. (On other Linux distros or
flavors of UNIX, look for a program with a name such as console, terminal, konsole, xterm,
eterm, or kterm. These are all widely used shell programs that can be found on a broad range of
UNIX-based systems.)

QO On Mac OS X, double-click the Applications = Utilities = Terminal app in the Finder.

XXXi

(c) ketabton.com: The Digital Library

Introduction

After you've called up the interface, you'll probably be confronted by a nearly blank window, with just a
snippet of text such as one of these:

o0

C:/>

#

bash$

This is a command prompt or shell prompt, which is simply there to let you know that the interface is ready
to receive instructions — prompting you for commands, in effect. It doesn’t really matter what the
prompt looks like, just that you recognize it when it appears. In this book, the prompt is designated

this way:

$

The book shows you any commands that you need to type after the prompt ($). The computer-generated
output follows. For example:

$./hello.php
Hello, world!
$

Sometimes a different prompt is shown. For example, if you're working with the MySQL command-line
program, the following prompt will be shown:

mysqgl>

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

The Try It Out section contains an exercise you should work through, following the text in the book.

The section includes one or more code listings, instructions on how to run the script and, often, a
screen shot showing the script in action.

How It Works
After each Try It Out, the code you've typed will be explained in detail.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q Ihighlight new terms and important words when I introduce them.

XXXii

(c) ketabton.com: The Digital Library

Introduction

U Ishow keyboard strokes like this: Ctrl+A.

O

I show file names, URLSs, and code within the text like so: hello.php.
O Ipresent code in two different ways:
I use gray highlighting to highlight new and important code.

I use a monofont type with no highlighting for code that's less important, or
that has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-41396-8.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist
.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

XXXiii

(c) ketabton.com: The Digital Library

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox. com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Gotop2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXiV

(c) ketabton.com: The Digital Library

Beginning
PHP 5.3

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Part |

Getting Up and Running
with PHP

Chapter 1: Introducing PHP

Chapter 2: Your First PHP Script

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Introducing PHP

Welcome to the world of PHP, one of the Web’s most popular programming languages. According
to Netcraft (www.netcraft.com), PHP was running on more than 20 million Web servers in July
2007 (http://www.php.net/usage.php). At the time of writing, it’s the fourth most popular
programming language in the world according to TIOBE (http: //www. tiobe.com/index.php/
content/paperinfo/tpci/), beaten only by Java, C, and C++. With the introduction of

version 5.3, there’s never been a better time to learn PHP.

In this chapter you:

0 Get a gentle introduction to PHP in general, and the new features of PHP 5.3 in particular

Q Learn what PHP is, what it can be used for, and how it stacks up against other dynamic
Web technologies

Q Take a look at the history of PHP, so you can see how it has evolved over the years, from
its humble beginnings to the rich Web development framework it is today

What Is PHP?

PHP is a programming language for building dynamic, interactive Web sites. As a general rule, PHP
programs run on a Web server, and serve Web pages to visitors on request. One of the key features
of PHP is that you can embed PHP code within HTML Web pages, making it very easy for you to
create dynamic content quickly.

What exactly does the phrase “dynamic, interactive Web sites” mean? A dynamic Web page is a
page whose contents can change automatically each time the page is viewed. Contrast this with a
static Web page, such as a simple HTML file, which looks the same each time it’s displayed (at least
until the page is next edited). Meanwhile, an interactive Web site is a site that responds to input
from its visitors. A Web forum is a good example — users can post new messages to the forum,
which are then displayed on the site for all to see. Another simple example is a “contact us” form,

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

where visitors interact with the page by filling out and sending a form, which is then emailed to the
Webmaster.

PHP stands for PHP: Hypertext Preprocessor, which gives you a good idea of its core purpose: to
process information and produce hypertext (HTML) as a result. (Developers love recursive acronyms,
and PHP: Hypertext Preprocessor is a good example of one.)

PHP is a server-side scripting language, which means that PHP scripts, or programs, usually run on a Web
server. (A good example of a client-side scripting language is JavaScript, which commonly runs within a
Web browser.) Furthermore, PHP is an interpreted language — a PHP script is processed by the PHP
engine each time it’s run.

The process of running a PHP script on a Web server looks like this:

1. Avisitor requests a Web page by clicking a link, or typing the page’s URL into the browser’s
address bar. The visitor might also send data to the Web server at the same time, either using a
form embedded in a Web page, or via AJAX (Asynchronous JavaScript And XML).

2. The Web server recognizes that the requested URL is a PHP script, and instructs the PHP engine
to process and run the script.

3. The script runs, and when it’s finished it usually sends an HTML page to the Web browser,
which the visitor then sees on their screen.

The interesting stuff happens when a PHP script runs. Because PHP is so flexible, a PHP script can carry
out any number of interesting tasks, such as:

0 Reading and processing the contents of a Web form sent by the visitor
0 Reading, writing, and creating files on the Web server

QO Working with data in a database stored on the Web server

0O Grabbing and processing data from other Web sites and feeds

0 Generating dynamic graphics, such as charts and manipulated photos
And finally, once it’s finished processing, it can send a customized HTML Web page back to the visitor.
In this book you learn how to write scripts to do all of these, and more.

All these great features mean that you can use PHP to create practically any type of dynamic Web
application you can dream of. Common examples of PHP scripts include:

QO Web forums that allow visitors to post messages and discuss topics

Q Search engines that let people search the contents of a Web site or database
Q Straw poll scripts that enable visitors to vote in polls and surveys
Q

Content management systems and blogs, which enable Webmasters to create sites easily with
minimal technical knowledge

(]

Webmail applications, allowing people to send and receive email using their Web browser

O

Online stores, allowing shoppers to purchase products and services over the Internet

(c) ketabton.com: The Digital Library

Chapter 1: Introducing PHP

Web scripting is certainly the mainstay of PHP’s success, but it's not the only way to use the language.
Command-line scripting — which was introduced in PHP 4 — is another popular application of PHP.
(This topic is covered in Appendix D at the end of this book.) Client-side graphical user interface
application development using GTK (the GNOME ToolKit) is another.

Why Use PHP?

One of the best things about PHP is the large number of Internet service providers (ISPs) and Web
hosting companies that support it. Today hundreds of thousands of developers are using PHP, and it’s
not surprising that there are so many, considering that several million sites are reported to have PHP
installed.

Another great feature of PHP is that it’s cross-platform — you can run PHP programs on Windows, Linux,
FreeBSD, Mac OS X, and Solaris, among others. What’s more, the PHP engine can integrate with all
common Web servers, including Apache, Internet Information Server (IIS), Zeus, and lighttpd. This
means that you can develop and test your PHP Web site on one setup, then deploy it on a different type
of system without having to change much of your code. Furthermore, it’s easy to move your PHP Web
site onto another server platform, if you ever need to.

How does PHP compare with other common Web programming technologies? At the time of writing,
the following technologies are prevalent:

Q ASP (Active Server Pages): This venerable Microsoft technology has been around since 1997,
and was one of the first Web application technologies to integrate closely with the Web server,
resulting in fast performance. ASP scripts are usually written in VBScript, a language derived
from BASIC. This contrasts with PHP’s more C-like syntax. Although both languages have their
fans, I personally find that it’s easier to write structured, modular code in PHP than in VBScript.

Q ASP.NET: This is the latest incarnation of ASP, though in fact it’s been rebuilt from the ground
up. It's actually a framework of libraries that you can use to build Web sites, and you have a
choice of languages to use, including C#, VB.NET (Visual Basic), and J# (Java). Because ASP.NET
gives you a large library of code for doing things like creating HTML forms and accessing
database tables, you can get a Web application up and running very quickly. PHP, although it
has a very rich standard library of functions, doesn’t give you a structured framework to the
extent that ASP.NET does. On the other hand, plenty of free application frameworks and
libraries are available for PHP, such PEAR (discussed later in this book) and the Zend
Framework. Many would argue that C# is a nicer, better-organized language to program in than
PHP, although C# is arguably harder to learn. Another advantage of ASPNET is that C#is a
compiled language, which generally means it runs faster than PHP’s interpreted scripts
(although PHP compilers are available).

ASP and ASP.NET have a couple of other disadvantages compared to PHP. First of all, they have a
commercial license, which can mean spending additional money on server software, and hosting is often
more expensive as a result. Secondly, ASP and ASP.NET are fairly heavily tied to the Windows
platform, whereas the other technologies in this list are much more cross-platform.

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

a

Perl: Perl was one of the first languages used for creating dynamic Web pages, initially through
the use of CGI scripting and, later, integrating tightly into Web servers with technologies like the
Apache mod_perl module and ActivePerl for IIS. Though Perl is a powerful scripting language,
it’s harder to learn than PHP. It’s also more of a general-purpose language than PHP, although
Perl’s CPAN library includes some excellent modules for Web development.

Java: Like Perl, Java is another general-purpose language that is commonly used for Web
application development. Thanks to technologies like JSP (JavaServer Pages) and servlets, Java
is a great platform for building large-scale, robust Web applications. With software such as
Apache Tomcat, you can easily build and deploy Java-based Web sites on virtually any server
platform, including Windows, Linux, and FreeBSD. The main downside of Java compared to
PHP is that it has quite a steep learning curve, and you have to write a fair bit of code to get
even a simple Web site going (though JSP helps a lot in this regard). In contrast, PHP is a simpler
language to learn, and it’s quicker to get a basic Web site up and running with PHP. Another
drawback of Java is that it’s harder to find a Web hosting company that will support JSP,
whereas nearly all hosting companies offer PHP hosting.

Python: Conceived in the late 1980s, Python is another general-purpose programming language
that is now commonly used to build dynamic Web sites. Although it doesn’t have much in the
way of Web-specific features built into the language, many useful modules and frameworks,
such as Zope and Django, are available that make building Web applications relatively painless.
Many popular sites such as Google and YouTube are built using Python, and Python Web
hosting is starting to become much more common (though it’s nowhere near as common as
PHP hosting). You can even build and host your Python apps on Google’s server with the
Google App Engine. Overall, Python is a very nice language, but PHP is currently a lot more
popular, and has a lot more built-in functionality to help with building Web sites.

Ruby: Like Python, Ruby is another general-purpose language that has gained a lot of traction
with Web developers in recent years. This is largely due to the excellent Ruby on Rails
application framework, which uses the Model-View-Controller (MVC) pattern, along with
Ruby’s extensive object-oriented programming features, to make it easy to build a complete

Web application very quickly. As with Python, Ruby is fast becoming a popular choice among Web
developers, but for now, PHP is much more popular.

ColdFusion: Along with ASP, Adobe ColdFusion was one of the first Web application
frameworks available, initially released back in 1995. ColdFusion’s main selling points are that
it’s easy to learn, it lets you build Web applications very quickly, and it’s really easy to create
database-driven sites. An additional plus point is its tight integration with Flex, another Adobe
technology that allows you to build complex Flash-based Web applications. ColdFusion’s main
disadvantages compared to PHP include the fact that it’s not as popular (so it’s harder to find
hosting and developers), it’s not as flexible as PHP for certain tasks, and the server software to
run your apps can be expensive. (PHP and Apache are, of course, free and open source.)

In summary, PHP occupies something of a middle ground when it comes to Web programming
languages. On the one hand, it’s not a general-purpose language like Python or Ruby (although it can be
used as one). This makes PHP highly suited to its main job: building Web sites. On the other hand, PHP
doesn’t have a complete Web application framework like ASP.NET or Ruby on Rails, meaning that
you're left to build your Web sites “from the ground up” (or use add-on extensions, libraries, and
frameworks).

(c) ketabton.com: The Digital Library

Chapter 1: Introducing PHP

However, this middle ground partly explains the popularity of PHP. The fact that you don’t need to learn
a framework or import tons of libraries to do basic Web tasks makes the language easy to learn and use.
On the other hand, if you need the extra functionality of libraries and frameworks, they’re there for you.

Another reason for PHP’s popularity is the excellent — and thorough — online documentation available
through www . php . net and its mirror sites.

In the past, PHP has been criticized for the way it handled a number of things — for example, one of its
main stumbling blocks was the way in which it implemented object support. However, since version 5,
PHP has taken stock of the downfalls of its predecessors and, where necessary, has completely rewritten
the way in which it implements its functionality. Now more than ever, PHP is a serious contender for
large-scale enterprise developments as well as having a large, consolidated base of small- to medium-
sized applications.

The Evolution of PHP

Although PHP only started gaining popularity with Web developers around 1998, it was created by
Rasmus Lerdorf way back in 1994. PHP started out as a set of simple tools coded in the C language to
replace the Perl scripts that Rasmus was using on his personal home page (hence the original meaning of
the “PHP” acronym). He released PHP to the general public in 1995, and called it PHP version 2.

In 1997, two more developers, Zeev Suraski and Andi Gutmans, rewrote most of PHP and, along with
Rasmus, released PHP version 3.0 in June 1998. By the end of that year, PHP had already amassed tens of
thousands of developers, and was being used on hundreds of thousands of Web sites.

For the next version of PHP, Zeev and Andi set about rewriting the PHP core yet again, calling it the
“Zend Engine” (basing the name “Zend” on their two names). The new version, PHP 4, was launched in
May 2000. This version further improved on PHP 3, and included session handling features, output
buffering, a richer core language, and support for a wider variety of Web server platforms.

Although PHP 4 was a marked improvement over version 3, it still suffered from a relatively poor object-
oriented programming (OOP) implementation. PHP 5, released in July 2004, addressed this issue, with
private and protected class members; final, private, protected, and static methods; abstract classes;
interfaces; and a standardized constructor/destructor syntax.

What’s New in PHP 5.3

Most of the changes introduced in version 5.3 are relatively minor, or concern advanced topics outside of
the scope of this beginner-level book. In the following sections you take a brief look at some of the more
significant changes that might concern you, particularly if you're moving up from PHP 5.2 or earlier.

Namespaces

The biggest new feature in PHP 5.3 is support for namespaces. This handy feature lets you avoid naming
clashes across different parts of an application, or between application libraries.

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

Namespaces bear some resemblance to folders on a hard disk, in that they let you keep one set of
function, class and constant names separate from another. The same name can appear in many
namespaces without the names clashing.

PHP 5.3’s namespace features are fairly comprehensive, and include support for sub-namespaces, as well
as namespace aliases. You'll learn more about using namespaces in Chapter 20.

The goto Operator

PHP 5.3 also introduces a goto operator that you can use to jump directly to a line of code within the
same file. (You can only jump around within the current function or method.) For example:

goto jumpToHere;
echo 'Hello';

jumpToHere:
echo 'World';

Use goto sparingly — if at all — as it can make your code hard to read, as well as introduce thorny

programming errors if you're not careful. However, it can be useful in some situations, such as breaking
out of deeply nested loops.

Nowdoc Syntax

In PHP 5.3 you can quote strings using nowdoc syntax, which complements the existing heredoc syntax.
Whereas heredoc-quoted strings are parsed — replacing variable names with values and so on —
nowdoc-quoted strings are untouched. The nowdoc syntax is useful if you want to embed a block of
PHP code within your script, without the code being processed at all.

Find out more about nowdoc and heredoc syntax in Chapter 5.

Shorthand Form of the Ternary Operator

The ternary operator — introduced in Chapter 4 — lets your code use the value of one expression or
another, based on whether a third expression is true or false:

(expressionl) ? expression2 : expression3;
In PHP 5.3 you can now omit the second expression in the list:
(expressionl) ?: expression3;

This code evaluates to the value of expressionl if expressionl is true; otherwise it evaluates to the
value of expression3.

(c) ketabton.com: The Digital Library

Chapter 1: Introducing PHP

Advanced Changes

If you're familiar with earlier versions of PHP, or with other programming languages, then you might be
interested in some of the new advanced features in PHP 5.3. As well as the simpler changes just
described, PHP 5.3 includes support for powerful programming constructs such as late static bindings,
which add a lot of flexibility to static inheritance when working with classes, and closures, which allow
for true anonymous functions. It also introduces an optional garbage collector for cleaning up circular
references. (Since these are advanced topics, they won’t be covered any further in this book.)

Some of the nastier aspects of earlier PHP versions — namely Register Globals, Magic Quotes and Safe
Mode — are deprecated as of version 5.3, and will be removed in PHP 6. Attempting to use these
features results in an E_DEPRECATED error (the E_DEPRECATED error level is also new to 5.3).

You can view a complete list of the changes in PHP 5.3 at http: //docs.php.net/migration53.

Summary

In this chapter you gleaned an overview of PHP, one of the most popular Web programming languages in
use today. You learned what PHP is, and looked at some of the types of Web applications you can build
using it. You also explored some of the alternatives to PHP, including;:

Q ASPand ASPNET

Q Perl

d Java

Q Python

Q Ruby and Ruby on Rails
Q ColdFusion

With each alternative, you looked at how it compares to PHP, and learned that some technologies are
better suited to certain types of dynamic Web sites than others.

In the last sections of the chapter, you studied the history of PHP and explored some of the more
significant new features in version 5.3, such as namespaces and the goto operator. Armed with this
overview of the PHP language, you're ready to move on to Chapter 2 and write your first PHP script!

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Your First PHP Script

Now that you have a feel for what PHP is, it’s time to dive in and start writing PHP programs.
To do this, you'll first need access to a Web server running PHP. This chapter kicks off by showing
you, in simple terms, how to install the following programs on your computer:

Q The Apache Web server

Q The PHP engine
Q The MySQL database server

You also learn a bit about troubleshooting Web servers as you go.

The installation process is fairly straightforward; however if you're put off by the idea of having
to install these programs on your computer, you can instead run your PHP scripts on a remote
Web server that's already set up for the job (see the section “Running PHP Remotely” later in the
chapter).

Once you have PHP up and running, you get to create your first PHP script. Along the way, you
learn how you can embed PHP code within an HTML Web page, which is one of the fundamental
concepts of PHP.

You then extend your script to display some dynamic information in the page — in this case, the
current time — and you also learn about comments: how to write them, and why they’re useful.

Once you've followed this chapter, you'll have a basic understanding of how to install PHP, and
you'll have learned how PHP scripts are put together. This is all useful knowledge that you'll build
on in later chapters. So let’s get going!

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

Installing PHP

To create and run PHP scripts, you need to have a few things in place:

QO A computer running Web server software, such as Apache or Internet Information Server (IIS)

QO The PHP server module installed on the same computer. This module talks to the Web server
software; this is the PHP engine that actually does the work of running your PHP scripts

Q If you want to build database-driven Web applications — and you probably will — you also
need a database server installed. Options include MySQL, PostgreSQL, and SQL Server. This
book mostly refers to using MySQL, so that’s the database server that you'll install here

Many combinations of operating system and Web server software (not to mention versions of PHP) are
available. For example, operating systems that can run PHP include Linux, Windows, and Mac OS X,
and Web server software includes Apache, IIS, and Zeus. To keep things simple, this chapter
concentrates on installing PHP and Apache on Ubuntu Linux, Microsoft Windows, and Mac OS X.

Installing on Ubuntu Linux

12

Linux is a popular choice among PHP Web developers, because both technologies are open source.
Furthermore, PHP tends to work well with Linux, Apache, and the MySQL database server; in fact, the
acronym LAMP (Linux, Apache, MySQL, and PHP) is often used to refer to this winning software
combo.

Ubuntu (www . ubuntu. com) is a popular Linux distribution that is easy to install. You can download it
from www . ubuntu. com/getubuntu/download; the Desktop Edition is fine for developing PHP
applications. It comes in the form of a CD image, so you can just burn a CD from it, then pop your CD in
your computer’s drive and reboot to install it.

The Ubuntu Desktop Edition comes with a graphical package manager called Synaptic that you can use
to easily install the Apache Web server as well as the PHP module and the MySQL server. To do this,
follow these steps:

1. Run Synaptic by choosing System = Administration => Synaptic Package Manager. (You'll prob-
ably be prompted to enter your root (admin) password that you created when you installed
Ubuntu.)

2. Click the Reload button in Synaptic’s toolbar to make sure it knows about the latest Ubuntu
packages.

3. Click the World Wide Web option in the list of package groups on the left side of the window,
shown in Figure 2-1. Then, in the top-right window, click the checkboxes next to the following
packages: apache2, php5, php5-curl, php5-gd, php5-mysgl, php5-sglite, php5-xsl,
and php-pear. You'll see a pop-up menu appear each time you click a checkbox; choose Mark for
Installation from this menu, as shown in Figure 2-1. Now click the Miscellaneous - Text Based
option in the package groups list on the left, then click the checkboxes next to mysgl-client and
mysqgl-server.

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

If you don't see these packages in the list, choose Settings = Repositories from Synaptic’s menu bar, then
make sure you have at least the top two options (main and universe) selected in the Ubuntu Software

tab of the Software Sources dialog box. Then click Reload in Synaptic’s toolbar.

CHge MEnager

File Edit Package Settings Help

> [eY

Reload Mark All Uparades A pf Froperties Search
Utilities s Package Installed Versian | atest Version Det 4
Utilities (multiverse) ID <3 analng 2:6.0-13 wek
Utilities (universe) il:l_j apachez : 228 lbuntu0.3 Ney I
Ward Pracessing | 1 2.2.8-1ubuntu0.3 Ney
Ward Pracessing (mul‘LI mark for Installation t} 2.2.8-1ubunluc.3 Eve
:wnrrl Processing (un'r\.rI ik f tallat 6.7.dlsg-1 pov
| world wide web i i Lot 0.5-5 Sirr
world wide web (multi| || = e 7.18.0-lubuntu2 Get ||
R >l] [»]

il »i
Sections ;Next generation, scalable, extendable web server @

| Apache vz is the next generation of the omnipresent Apache web server. This

Status |version - a total rewrite - introduces many new improvements, such as

\threading, a new API, IPvé support, request/responsa filtering, and more.

Custom Filters

il

Secarch Results

73 packages listed. 1104 installed. 0 broken. 0 to install/lupgrade. 0 to remove
= .

Figure 2-1

4. Often you'll see a “Mark additional required changes?” dialog — shown in Figure 2-2 — appear

each time you mark one of the packages for installation. Click the Mark button to ensure that

Synaptic installs any additional required packages.

Q Marik additional required changes?

The chosen action also affects other packages.
The following changes are required in order to
proceed.

< To be installed —
apache2-mpm-warker
apache2-utils
apache2.2 commen
libaprl
libaprutill

lihnns

[°§anccl J W

Figure 2-2

13

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

14

5. Click the Apply button in Synaptic’s toolbar, then in the Summary dialog box that appears, click
Apply. Synaptic grabs all the needed packages from the Web and installs them for you. Along
the way, you'll probably be prompted to enter a password for the MySQL “root” user; simply
enter a password, then enter it again when prompted. If all goes well you'll eventually see a
Changes Applied dialog box appear; click the Close button in this dialog box to finish the
installation.

6. At this point, you need to start the Apache Web server. To do this, choose System => Administra-
tion = Services, then click the Unlock button at the bottom of the Services Settings dialog box
and enter your password. Now scroll down to the “Web server (apache2)” option, and select its
checkbox to start it, as shown in Figure 2-3. (If it’s already started, it’s a good idea to click the
checkbox once to stop it, then click it again to restart it.)

Select the services that you wish to activate:
@ /'? MUITICAasT UNS Service aiscovery (-

W @ Power management (acpid)
g?} Power management (apmd)

Ly Printer service (cupsys)
il | Allows applications to use printers
u pp P

@ @ System communication bus (dbu
Web server (apache2)
% @ Shares your web pages over the Internst

!. Help | | Close .
| @tee _

Figure 2-3

That'’s it! You should now have a working Apache Web server with PHP and MySQL installed. Skip to
the “Testing Your Installation” section to make sure everything’s working OK.

The packages you ve installed give you a basic PHP installation with the functionality needed to follow
the contents of this book. However, you can use Synaptic to install extra PHP packages (or remove pack-
ages) just as easily at any time.

In fact, as of Ubuntu 7.04, there’s an even easier way to install Apache, PHP and MySQL in one go.
Simply open up a terminal window (Applications => Accessories = Terminal), then type:

sudo tasksel install lamp-server

and press Enter. This installs all the packages needed to have a fully functioning LAMP (Linux, Apache,
MySQL, PHP) Web server. You'll be prompted to choose a root password for MySQL during the
installation, but apart from that, the process is fully automated. Again, you'll probably need to restart the
Web server after installation, as shown in Step 6 in the preceding list. And who said Linux was hard!

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

Installing on Windows

PHP on Windows can work with Apache or IIS. For the sake of simplicity, this chapter looks at a very
easy way to install Apache and PHP: WampServer. This handy piece of software gives you Apache,
MySQL, and PHP all in one handy, easy-to-install package.

WampServer comes from the acronym WAMP — Windows, Apache, MySQL, and PHP — which is
used to describe any Windows-based Web server setup that uses these three open-source technologies.

To install WampServer, follow these steps:

1. Download the latest version of WampServer from http: //www.wampserver.com/en/. At the
time of writing, the latest version was PHP 5.2.6; however, by the time you read this it’s likely
that a PHP 5.3 version is available.

2. Open the WampServer . exe file that you downloaded, and follow the instructions on the screen
to install the application.

3. Unblock Apache. As you run the installer, you may be asked if you want to allow Apache
through the Windows Firewall, as shown in Figure 2-4. If you want to allow other computers on
your network to access the Web server, click Unblock. If you're only going to access the Web
server from a browser on the same computer, you can click Keep Blocking to improve security.

™ Windows Security Alert X

) To help protect your computer, Windows Firewall has blocked
come feahues of thi= program._

Do you want to keep blocking thie program?

\ Name. Apache HTTP Server
Puhlisher Anache Soffware Foundation

|_ Keep Blocking J l Unblock] l Ask Me Later

Windows Firewall has blocked this program from accepting connections from the
Intemet or a retwark. ¥ you recognize the program or lrust the publisher, you can
unblock it. When shoedd | unblock a program?

Figure 2-4

4. Enter default mail settings. During the configuration process you'll also be asked to enter a
default mail server and email address for PHP to use (Figure 2-5); you can accept the defaults
for now.

15

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

Setup - WampServer 2

PHF mall parameters

Plaase spacify the SMTP server and the adresse mail to be used by PHP when using
the function mail{). F you are not sure, just leave the default values.

SMTP:

Email
youEyourdomain

Figure 2-5

5. Oncethe setup wizard has completed, you should see a WampServer icon in your taskbar; click
this icon to display the WampServer menu (Figure 2-6). Choose the Start All Services option to
fire up the Apache and MySQL servers.

Powered by Anaska
] Locatiost

Star L Al Services

Stop Al Services

a) phphtyAdmin

*] sQLiteManager

[P o directory

= B Aache »
EI [oo ¥
& D MySQL »
E Quick Adimin

=

2

Rectart All Services

I Pul Oriire I

Figure 2-6

6. To test that the Web server is running correctly, choose the Localhost option from the
WampServer menu. If all has gone according to plan, you should see the page shown in
Figure 2-7 appear; this means that WampServer was successfully installed. Congratulations!
Move on to the “Testing Your Installation” section of this chapter to make sure everything is
working OK.

16

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

) WAMPS |lomepage - Mozilla Firefox

File Edit View

&-9-@

Higtory Bookmarke Tools Help

o /(hitp:fflocathost/

5

Server Configuration
Apache Version: 2.2.8
PHP Version : 5.2.6

& bcmath
P session
e iconv

3 Reflection
tokenizer
o SPL

P xmlvriter
#* mysal

& SQLite

1oaded Fxtensions :

[-[] [IG-

¥ calendar B com_dotnet R ctype

e filter = p & hash

& json & ndbe e pere

& date o libsaml & standard
& ziib 2 simplexmL i dom

W viddx P xmi W xmireader
opachezhandgliy od #* mbstring
& mysqli & FOU 2 pdo_mysql

hto:/flocalhost/Hang=fr

Figure 2-7

Installing on Mac 0S X

Mac OS X comes with a version of Apache and PHP already installed. However, it’s likely that the
installed version is somewhat out of date. Furthermore, Mac OS X doesn’t come with a MySQL package
installed by default, although it’s perfectly possible to install it. (You'll need MySQL or a similar database
system to build database-driven Web sites, as described later in this book.)

As luck would have it, just as Windows has WAMP, Mac OS X has MAMP — an all-in-one, easy-
to-install package that gives you an Apache, MySQL, and PHP setup on your Mac. The great thing about
MAMP (and its Windows WAMP equivalents, for that matter) is that it’s self-contained. This means that
it won’t mess up any existing server software already installed; all its files are stored under a single
folder; and it’s very easy to uninstall later if you want to.

To install MAMP on your Mac, follow these steps:

1. Download the latest MAMP version from www.mamp . info/en/. (At the time of writing, two
versions are available: MAMP and MAMP PRO. The regular MAMP is fine for the purpose of
developing PHP applications on your Mac.)

2. Open the MAMP .dnyg file that you downloaded.

w

In the window that pops up, drag the MAMP folder on top of the Applications folder to install it.

4. Open the MAMP folder inside your Applications folder in Finder, then double-click the MAMP

icon to launch the application.

17

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

5. Ifnecessary, click the Start Servers button to start up the Apache and MySQL servers. Once they’re
running, you should see green lights next to them in the dialog box, as shown in Figure 2-8.

MAMP

manage your website locally

Status

(Stop Servers)
@ Apache Server
@9 MySQL Server —

Figure 2-8

6. To test that the Web server is running correctly, click the Open Start Page button. If you see a
page like the one in Figure 2-9 appear, congratulations — you now have a working Apache,
PHP, and MySQL installation on your Mac!

Welcome to MAMP
L http:/ /localhost: 8888 /MAMP/

©start Qphpinfa QphpMyAdmin QSQL ger QFAQ livinged

manage your website locally

Welcome to MAMP

If you can see this page, MAMP is installed on your Mac and everything is working!
To see the PHP configuration, you can watch the output of phpinfo.

Here you can manage eAccelerator.

The MySQL Database can be administrated with phpMyAdmin.
—— LI

Figure 2-9

18

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

By default, MAMP’s Apache server runs on port 8888, and its MySQL server runs on port 8889. This
is to avoid conflicts with any other Apache or MySQL server that might be running on your Mac, but it
does mean that you need to specify the Apache port (8888) in the URL in your browser’s address bar, as
shown in Figure 2-9. If you prefer, you can click the Preferences button in the MAMP application to
change the ports that the MAMP Apache and MySQL servers use. For example, provided you ve
stopped any other Web servers on your Mac that might use the standard HTTP port of 80, you can set
the MAMP Apache port to 80 to avoid having to type the port number into your browser’s address bar.

As with the Linux and Windows install options previously discussed, MAMP installs PHP 5.2 at the
time of writing, not PHP 5.3. However, by the time you read this book there’s a good chance that a
PHP 5.3 version of MAMP will be available.

Testing Your Installation

Now that you've installed Apache, PHP, and MySQL on your computer, you're ready to test the
installation to make sure everything’s working OK. Along the way, you'll create your very first PHP
script (albeit an extremely simple one!).

Testing the Web Server

The first thing to do is to create a simple HTML Web page for testing. In a text editor such as Notepad for
Windows, TextEdit on the Mac, or vi/emacs/pico on Linux, create the following simple Web page:

<html>
<head>
<title>Testing</title>
</head>
<body>
<hl>Testing, testing, 1-2-3</hl>
</body>
</html>

Call the Web page testing.html and save it in your Web server’s document root folder on your hard
drive. What's the document root folder, you ask? When you install Apache, it comes with a default Web
site. This Web site has a document root folder, which is the top-level folder into which you put the

Web site’s files. You want to save your testing.html Web page in this folder so you can browse it via
your Web browser.

So where is the document root folder? That depends on your setup, as follows:

Q If you've installed Apache on Ubuntu Linux, the document root folder is probably /var /www.
Q With WampServer on Windows, the document root folder is usually in C:\wamp \www .

Q If you installed MAMP into the /Applications folder on the Mac, the document root folder is
likely to be /Applications/MAMP/htdocs. (Note that you can check this, and even change it,
by opening the MAMP application and clicking Preferences, then clicking the Apache tab.)

So save your testing.html file to the appropriate folder, and then open a Web browser and type the
following into its address bar:

http://localhost/testing.html

19

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

Now press Enter. If all has gone according to plan, you should see something like Figure 2-10.

ol Sz e)a e L E e e =

Fle Edil View Hislory Bookmarks Tools Help

[- a % | [8l httpyfocalhosttesting.html | =| [[Gl= 3|

Testing, testing, 1-2-3

Done

Figure 2-10

If your Apache server is not running on the standard HI'TP port (80) — for example, if you installed
MAMP and used its default port of 8888 — modify your URL appropriately; for example: http: //
localhost:8888/testing.html.

This means that Apache is up and running, and you’ve successfully located the Web server’s document

root. If you don’t get this page, it’s likely that one of two things is happening;:

Q Ifyougeta404 Not Found error, this means that the testing.html file is not in the Web
server’s document root. Double-check the location of the document root folder — take a look at
the documentation if necessary — and make sure your testing.html file is inside the folder.

QO Ifyougeta Connection Refused error, the Apache Web server is not running (or it’s running
on a different port). Check that you've started the Web server, and that it’s configured correctly
(again, the documentation that came with the package should help here).

Testing PHP

Now that you know Apache is working correctly, it’s time to make sure PHP is installed and working.

This is where you get to write your very first PHP script!
Open your text editor again, and create a new file with the following contents:

<?php
phpinfo () ;

20

?>

Save this file as testing.php in the same folder as your testing.html file — that is to say, the
document root folder. Now type the following into your Web browser’s address bar (adjusting the HTTP
port number if necessary):

http://localhost/testing.php

Press Enter, and you should see a page similar to Figure 2-11 appear. (If you've installed PHP 5.3 you will,
of course, see references to version 5.3 in your page, rather than version 5.2.) This is the result of running
the phpinfo () function, a built-in PHP function that displays information about the version of PHP
that’s installed. This means that you have successfully installed both Apache and PHP. Congratulations!

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

file Edit View History Bookmarks Tools Help

«s-608

[@ | httpiflocalhostitesting.php | v] lr(jv B a

System Linux ubuntu-matt 2.6.24-19-generic #1 SMP Frijul 11 23:41:49 UTC
2008 iGBG

Build Date Jul 3 2008 16:25:36

Server API Apache 2,0 Handler

Virtual Directory |dicabled

Support

Configuration File |/etc/phpS/apache2

(php.ini) Path

Loaded fetciphpSfapacheziphp.ini

Configuration File

Scan this dir for | fete/phpS/apache2/conf.d
additional .ini

files
additional .ini Jete/phpS/apache2/conf.d/curlini, /ete/phpS/apache2/conf.d/gd.ini,
files parsed Jetciphpsiapache2iconf.d/imysgl.ini, fetc/phpsiapache2iconf, dimysqll.ini.

felefphpSfapache 2fconl.dfpdu.ini, felc/phpSfapache2/conl.d

Jpdo_mysql.ini, fetc/phpS/apache2/conf.dipdo_sgqlite.ini, fetc/phpS
Japache2/conf.d/sqlite.ini -
e — P I DI

Done

Figure 2-11

If you see a 404 or a Connection Refused error, check your document root folder location and server
configuration as described in “Testing the Web Server.” On the other hand, if you get a Save As dialog;, it
means that either PHP isn’t installed properly, or the Apache Web server doesn’t know about the
installed PHP module. Check the documentation that came with your package.

Setting Your Time Zone

Before leaving the topic of installation and testing, there’s one more thing you need to do, and that’s
configure your PHP installation to use the correct time zone.

For older versions of PHP, setting the time zone was less important; if you didn’t specify the time zone,
the PHP engine would attempt to work it out by querying the server it was running on. However, this
process was somewhat unreliable and is no longer recommended. Therefore, as of PHP 5.3, the engine
complains with a warning message if you try to use any of the date-related features of PHP without
having first configured your time zone.

Fortunately, setting your time zone in PHP is relatively straightforward. To do it, follow these steps:

1. Firstlook to see if the time zone is already set. Look at the page produced by the testing.php
script you just created, and find the date. timezone entry (it will probably be around halfway
down the page). If the Master Value column contains no value or an incorrect time zone, you
need to set your time zone, so proceed to Step 2. However, if the column contains the correct
time zone for your server (such as America/Los_Angeles), PHP’s time zone is already set cor-
rectly and you can skip the remainder of these steps.

21

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

2. Look for the Loaded Configuration File entry toward the top of the testing.php page.
This is the path to the php. ini file that is used to configure your PHP engine.

3. Open this file in a text editor, such as Notepad (Windows), TextEdit (Mac), or Text Editor (Ubuntu).

You may need root (administrator) access to edit this file. If you don’t have administrator access, ask
your server administrator to set the time zone for you.

4. Search for the following line in the file:

;date.timezone =
If for some reason this line isn’t in your php . ini file, simply add it yourself.

B. Remove the semicolon from the start of the line, and add your server’s time zone after the
equals sign at the end of the line. You can find your time zone in the list at http: / /www. php
.net/timezones. For example, if your server resides in Los Angeles, you’d change the line to:

date.timezone = America/Los_Angeles

6. Save the file and quit your text editor.

7. Restart Apache using the method appropriate for your installation. For example, on Ubuntu use
the System => Administration = Services application as described earlier in the chapter; on
Windows choose Restart All Services from the WampServer icon menu; and on the Mac run the
/Applications/MAMP/MAMP application and click Stop Servers, followed by Start Servers.

8. Totestif the setting worked, reload the testing.php script in your browser and look for the
date.timezone entry. It should now show the time zone that you set in Step 5, as should the
Default timezone entry further up the page. All done!

If you can’t (or don’t want to) edit your php. ini file, you have other ways to set your time zone:

Q Create an .htaccess file in the document root folder of your Web site(s) and add a directive to
the file to set your time zone:

php_value date.timezone America/Los_Angeles
Q Alternatively, toward the start of each PHP script that you create, add a line similar to this:
date_default_timezone_set("America/Los_Angeles");

You can find out more about configuring PHP, including the php . ini file and .htaccess files, in
Appendix B.

Other Ways to Run PHP

This chapter has concentrated on the easiest way to get PHP up and running on your computer. You've
looked at installing the Apache, PHP, and MySQL packages on Ubuntu, installing a complete Apache/
PHP/MySQL setup on Windows using WampServer, and doing the same on the Mac using MAMP.

You can run PHP in a few other ways. The following sections take a quick look at them.

22

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

Running PHP with other Web Servers

As mentioned earlier in the chapter, you're not limited to running PHP with Apache. It’s also possible to
run it with Microsoft’s Internet Information Server (IIS) on Windows, as well as with other Web servers
such as Zeus.

A common setup is to use PHP with IIS running on Windows. This gives you the advantage of not
having to install Apache, and also means that you can run other Microsoft technologies such as ASPNET
on the same Web server. You can install PHP as either an ISAPI module, which means it can integrate
directly with IIS, or as a stand-alone CGI binary. The ISAPI approach is recommended for tighter
security.

This book doesn’t go into the details of the installation process, but you can find out how to get PHP
working with IIS on the www . php . net Web site:

http://www.php.net/manual/en/install.windows.iis.php

Compiling PHP Yourself

The installation techniques you looked at earlier in this chapter all work with precompiled binaries of
PHP. This helps to keep things simple, because it’s easier to work with binaries — especially on a
Windows computer — than it is to compile PHP from the source code.

However, compiling PHP from source is useful if:

Q You want to really get under the hood and tweak PHP to your heart’s content

0 You want to try out the latest and greatest version of PHP (known as a snapshot) before it’s
released as a binary package. For example, if PHP 5.3 still isn’t available as a package for your
operating system at the time you read this, you can download the PHP 5.3 source code and
compile it yourself

Windows binaries of various development versions of PHP are available, which saves you having to
compile from scratch. See http: //windows .php.net/snapshots/ for details.

The basic steps for compiling PHP are:
1. Install a C compiler on your computer if it doesn’t already have one (on Ubuntu install gcc and
related packages; on Windows install Visual C++; and on the Mac install Xcode).

2. Download the PHP source code from http: //www.php.net/downloads.php or the latest
snapshot from http://snaps.php.net/ and unzip/untar the file.

3. Runthe configure script inside the distribution folder to set various compile-time options.
This allows you to specify things such as compiling PHP as an Apache module, and including or
excluding specific libraries such as the GD or MySQL library.

4. Runmake to compile PHP.

5. Runmake install to install the compiled binary files.

23

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

This is a very simplified overview, and in practice you often need to install other libraries and
applications — particularly on Windows — to successfully compile PHP. You can find detailed
information on how to compile PHP for UNIX, Windows, and Mac OS X systems at http: //www.php
.net/manual/en/install.php.

Running PHP Remotely

C

24

If the idea of installing PHP on your own computer is a bit daunting, you can always create and test PHP
scripts using the Web hosting account where your Web site is hosted (assuming the account supports
PHP). This is easier if your account runs on a UNIX-type server such as Linux or BSD and supports ssh
access; this way, you can connect to the server using ssh and develop and test your PHP scripts right on
the server via the command line.

To access the Web server via ssh, youneed an ssh client. On Ubuntu install the ssh package if it’s not
already installed; on Windows try putty (http://www.putty.org/). Mac OS X comes with an ssh client
preinstalled.

If your Web hosting account supports PHP but doesn’t support ssh, you can write your PHP scripts on
your computer using a text editor, then use FTP to upload them to the Web server for testing. It can be a
tedious process, because you have to wait for the script to upload every time you want to test your
changes, but it’s better than nothing!

reating Your First Script

Now that you have successfully installed PHP on your computer, or gained access to another computer
running PHP, it’s time to start writing your first proper PHP script. This script will do one very simple
thing: display the text “Hello, world!” in the browser window. Once you have this script working, you'll
learn how to enhance it in various ways.

To create this very simple script, open your text editor once more and enter the following:
<?php
echo "Hello, world!";

?>

Save this file as hello.php in your document root folder, and view the results in your browser by
visiting http://localhost/hello.php. You should see something like Figure 2-12.

3 MIDAITE AT IO (Sl
File Edit Vview History Bookmarks Tools Help
» - e o | (el httpyfocalhost/hello.php |5 ! 1G]~ a|

Hello, world!

Done

Figure 2-12

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

This script is very simple, but let’s break it down line-by-line to explore a few features of PHP.
The first line tells the PHP engine to expect some PHP code to follow:
<?php

Why do you need this line? This is due to the fact that PHP can be embedded within HTML Web pages.
When the PHP engine first starts processing the page, it assumes it’s dealing with plain old HTML until
told otherwise. By using the PHP delimiter, <?php, you're telling the PHP engine to treat anything
following the <?php as PHP code, rather than as HTML.

177,

The next line displays the message “Hello, world
echo "Hello, world!";

PHP’s echo () statement takes a string of text — in this case, "Hello, world!" — and sends it as part
of the Web page to the browser. The browser then displays the “Hello, world!” text to the visitor. Notice
the semicolon (;) at the end of the line; this tells PHP that you've reached the end of the current
statement, and it should look for a new statement (or the end of the PHP code) to follow.

echo () doesn’t have to be given a string of text; it can display anything that can be displayed, such as num-
bers or the results of expressions. You find out more about data types and expressions in the next chapter.

An alternative to echo () is the print () statement, which works in exactly the same way except that
it also returns a value (true) . Generally speaking, you can use print () instead of echo () in your
code if you prefer.

The final line of your simple script tells the PHP engine that it’s reached the end of the current section of
PHP code, and that the following lines (if any) contain plain HTML again:

?>

Embedding PHP within HTML

As you've gathered by now, one of the nice things about PHP is that you can embed PHP code within
HTML. In fact, each .php script that you write is essentially treated as an HTML page by default. If the
page contains no <?php ... 2> tags, the PHP engine just sends the contents of the file as-is to the browser.

_ Creating a Stylish Page

You can use this feature to make your “Hello, world!” example prettier by adding a proper HTML
header and footer and including a CSS style sheet. Enter the following code and save it as hello_
pretty.php in your document root folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Hello</title>

<link rel="stylesheet" type="text/css" href="common.css" />
</head>

25

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

<body>
<hl><?php echo "Hello, world!"; ?></hl>

</body>

</html>

Next, enter the following CSS code and save it as common . css in the same folder:

/* Page body */
body { font-family: Arial, Helvetica, sans-serif; }

/* Definition lists */

dl { width: 100%; margin: 2em 0; padding: 0; clear: both; overflow: auto; }
dt { width: 30%; float: left; margin: 0; padding: 5px 9.9% 5px 0;
border-top: 1lpx solid #DDDDB7; font-weight: bold; overflow: auto;

clear: left; }

dd { width: 60%; float: left; margin: 0; padding: 6px 0 5px 0; border-top:
lpx solid #DDDDB7; overflow: auto; }

/* Headings */

hl { font-weight: bold; margin: 35px 0 1l4px; color: #666; font-size: 1.5em;
h2 { font-weight: bold; margin: 30px 0 12px; color: #666; font-size: 1.3em;
h3 { font-weight: normal; margin: 30px 0 12px; color: #666; font-size:
1.2em; }

h4 { font-weight: bold; margin: 25px 0 12px; color: #666; font-size: 1.0em;
h5 { font-weight: bold; margin: 25px 0 12px; color: #666; font-size: 0.9em;

/* Forms */

label { display: block; float: left; clear: both; text-align: right;
margin: 0.6em 5px 0 0; width: 40%; }

input, select, textarea { float: right; margin: lem 0 0 0; width: 57%; }
input { border: 1lpx solid #666; }

input [type=radio], input[type=checkbox], input[type=submit],

input [type=reset], input[type=button], input[type=image] { width: auto; }

Run your new PHP script by typing http://localhost/hello_pretty.php into your browser’s
address bar. You should see a more stylish page, such as the one shown in Figure 2-13.

3 H B = M 07 S ref 0% [l lisi)
File Edit view History Bookmarks Tools Help

& - a & | el httpyflocalhost/hello prettyphp | 'i |G|+ 2|

Hello, world!

Done

Figure 2-13

26

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

How It Works

This example shows how you can embed PHP within an HTML page. The PHP code itself is exactly
the same — echo "Hello, world!" — butby surrounding the PHP with HTML markup, you've
created a well-formed HTML page styled with CSS.

First, a DOCTYPE and the opening html tag are used to declare that the page is an XHTML 1.0 Strict
Web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

Next, the head element of the Web page gives the page a title — “Hello” — and links to a style sheet file,
common.css:

<head>

<title>Hello</title>

<link rel="stylesheet" type="text/css" href="common.css" />
</head>

Finally, the body element includes an h1 (top-level heading) element containing the output from the PHP
code — echo "Hello, world!"; — and the page is then finished with a closing html tag:

<body>
<hl><?php echo "Hello, world!"; ?></hl>
</body>
</html>

Note that you don’t need to have the <?php and ?> tags on separate lines. In this case, the tags and
enclosed PHP code are all part of a single line.

Meanwhile, the common . css style sheet file contains selectors to style some common HTML
elements — including the h1 heading used in the page — to produce the nicer-looking result.

Keep this common . css file in your document root folder, because it's used
throughout other examples in this book.

If you view the source of the resulting Web page in your browser, you can see that the final page is
identical to the original HTML markup, except that the PHP code — <?php echo "Hello, world!";
2> — has been replaced with the code’s output (“Hello, world!”). The PHP engine only touches the parts
of the page that are enclosed by the <?php ... ?> tags.

27

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

Enhancing the Script Further

The “Hello, world!” example shows how you can write a simple PHP script, but the code does nothing
useful — you could just as easily achieve the same effect with a simple HTML page. In this section you
enhance the script to display the current time. In doing so, you move from creating a static Web page to a
dynamic page; a page that changes each time you view it.

Here’s the modified “Hello, world!” script:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Hello</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>
<?php
ScurrentTime = date("g:i:s a");
echo "Hello, world! The current time is ScurrentTime";
?>
</hl>
</body>
</html>

Save the script as hello_with_time.php and open its URL in your browser to run it. You'll see
something along the lines of Figure 2-14.

R HENO =M OA T TET0%s (=
File Edit view History Bookmarks Tools Help

&= - a o | e httpiflocalhosthello with time. | = | IIGl= -

Hello, world! The current time is 3:37:13 pm

Done

Figure 2-14

If, when running this script, you see a lengthy warning message telling you that it is not safe to rely on
the system’s time zone settings, you need to configure PHP's time zone. See the “Setting Your Time
Zone” section earlier in the chapter for instructions.

28

(c) ketabton.com: The Digital Library

Chapter 2: Your First PHP Script

The majority of the code is exactly the same as before. The only difference is the PHP code itself:

<?php

ScurrentTime = date("g:i:s a");

echo "Hello, world! The current time is ScurrentTime";
?>

The first line of PHP code takes the current time and formats it as a readable string of text, then stores
this string of text in a variable called $currentTime. (Variables are containers that store data. You learn
all about them in the next chapter.) To format the time, the script uses the built-in date () function. The
string of characters between the quotation marks tells PHP how to format the time, as follows:

g, i, and s tell PHP to output the current hour, minute, and second, respectively
a tells PHP to display either “am” or ‘pm” as appropriate
Q The colons () and the space character are not processed by the date () function, so they’re
displayed as-is
You learn all the ins and outs of PHP's date () function in Chapter 16.

Then the second line of code displays the “Hello, world!” message, including the current time. Reload
the page in your browser and you'll see the time change.

Notice how PHP lets you include variable names within text strings, as is the case with the
$currentTime variable. This makes it easy for you to create text messages containing dynamic
information.

This simple example is the essence of a dynamic Web page — a page whose content is potentially
different each time the page is viewed. In this book you learn how to use PHP to add all sorts of dynamic
content to your sites.

Using Comments to Make Code More Readable

To round off this chapter, you learn about another basic feature of PHP: comments. A comment is simply
text that is ignored by the PHP engine. The purpose of comments is to let you add messages to yourself
(and other programmers) that explain what your code does. It’s always a good idea to add comments to
your code, even if you're the only programmer working on it. Sometimes code that makes sense when
you write it can seem as clear as mud in three months’ time, so comments can really help!

PHP supports single-line comments and multi-line comments. To write a single-line comment, start the
line with either two slashes (//) or a hash symbol (#). For example:

// This code displays the current time
This code displays the current time

29

(c) ketabton.com: The Digital Library

Part |: Getting Up and Running with PHP

To write multi-line comments, start the comment with a slash followed by an asterisk (/*) and end the
comment with an asterisk followed by a slash (*/), as follows:

/*
This code displays the
current time in a nice,
easy-to-read format.

*/

So you might comment the PHP code in the hello_with_time.php script like this:

<?php
// Get the current time in a readable format
ScurrentTime = date("g:i:s a");

// Display greeting and time to the visitor
echo "Hello, world! The current time is ScurrentTime";

?>

Summary

After reading this chapter you’ve moved from PHP theory to practice. To start with, you studied how to
set up a PHP Web server on your own computer — whether it’s a Linux, Windows, or Mac machine —
and to write a few simple PHP scripts. Along the way, you learned:

QO How to install the Apache, PHP, and MySQL packages on Ubuntu Linux

Q The easy way to install Apache, PHP, and MySQL on Windows and Mac OS X: Use WampServer
and MAMP

Q Techniques for testing that your Web server and PHP engine are installed correctly

0 Some alternative ways to run PHP, including using PHP with IIS, compiling PHP from scratch,
and running PHP scripts on your Web hosting account

Q Writing a simple PHP script, and extending the script by embedding PHP within HTML and
adding dynamic elements

Q Improving the readability of your PHP scripts by adding comments to your code

You're now ready to take the next step and explore the PHP language from the ground up. You'll be
doing this in the next chapter. Meanwhile, try the following simple exercise to test your knowledge so far.

You can find the solutions to all the exercises in this book in Appendix A.

Exercise

1. Enhance the hello_with_time.php script to display the current date as well as the time.
Comment your code for readability. (Hint: With the date () function, you can use M to display
the month name, j to display the day of the month, and Y to display the year.)

30

(c) ketabton.com: The Digital Library

Part II
Learning the Language

Chapter 3: PHP Language Basics
Chapter 4: Decisions and Loops
Chapter 5: Strings

Chapter 6: Arrays

Chapter 7: Functions

Chapter 8: Objects

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

PHP Language Basics

So far you've looked at what PHP is, and what you can use it for. You’ve also written and tested a
simple PHP script to give you a feel for how the language works. Now, in these next few chapters,
you'll build a solid foundation of knowledge that you can use to create more complex applications
and Web sites in PHP.

This chapter gets the ball rolling. In it you explore some of the fundamental concepts of PHP — its
building blocks, if you will. You learn about:
Q Variables, which let you store and manipulate data in your scripts

Q Data types, including which types are available in PHP, and how to test for and
change type

Q PHP’s available operators, which you can use to manipulate information

Q Constants, which are useful for storing data that doesn’t change in your script

These are all important concepts, both in PHP and in other programming languages. Once you've
read and digested this chapter, you'll be ready to move on and tackle the other features of the PHP
language.

Using Variables in PHP

Variables are a fundamental part of any programming language. A variable is simply a container
that holds a certain value. Variables get their name because that certain value can change
throughout the execution of the script. It’s this ability to contain changing values that make
variables so useful.

For example, consider the following simple PHP script:

echo 2 + 2;

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

As you might imagine, this code outputs the number 4 when it’s run. This is all well and good; however,
if you wanted to print the value of, say, 5 + 6 instead, you’d have to write another PHP script, as follows:

echo 5 + 6;

This is where variables come into play. By using variables instead of numbers in your script, you make
the script much more useful and flexible:

echo $x + $y;

You now have a general-purpose script. You can set the variables $x and $y to any two values you want,
either at some other place in your code, or as a result of input from the user. Then, when you run the
preceding line of code, the script outputs the sum of those two values. Re-run the script with different
values for $x and $y, and you get a different result.

Naming Variables

A variable consists of two parts: the variable’s name and the variable’s value. Because you'll be using
variables in your code frequently, it’s best to give your variables names you can understand and
remember. Like other programming languages, PHP has certain rules you must follow when naming
your variables:

0 Variable names begin with a dollar sign ($)
Q The first character after the dollar sign must be a letter or an underscore
Q The remaining characters in the name may be letters, numbers, or underscores without a

fixed limit

Variable names are case-sensitive ($Variable and $variable are two distinct variables), so it’s worth
sticking to one variable naming method — for example, always using lowercase — to avoid mistakes.
It’s also worth pointing out that variable names longer than 30 characters are somewhat impractical.

Here are some examples of PHP variable names:

smy_first_variable
SanotherVariable
Sx

$_123

Creating Variables

Creating a variable in PHP is known as declaring it. Declaring a variable is as simple as using its name in
your script:

smy_first_variable;

When PHP first sees a variable’s name in a script, it automatically creates the variable at that point.

34

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

Many programming languages prevent you from using a variable without first explicitly declaring
(creating) it. But PHP lets you use variables at any point just by naming them. This is not always the
blessing you might think; if you happen to use a nonexistent variable name by mistake, no error message
is generated, and you may end up with a hard-to-find bug. In most cases, though, it works just fine and
is a helpful feature.

When you declare a variable in PHP, it’s good practice to assign a value to it at the same time. This is
known as initializing a variable. By doing this, anyone reading your code knows exactly what value the
variable holds at the time it’s created. (If you don’t initialize a variable in PHP, it’s given the default
value of nul1l.)

Here’s an example of declaring and initializing a variable:
Smy_ first_variable = 3;

This creates the variable called $my_first_variable, and uses the = operator to assign it a value of 3.
(You look at = and other operators later in this chapter.)

Looking back at the addition example earlier, the following script creates two variables, initializes them
with the values 5 and 6, then outputs their sum (11):

$x = 5;
Sy = 6;
echo $x + S$Sy;

Understanding Data Types

All data stored in PHP variables fall into one of eight basic categories, known as data types. A variable’s
data type determines what operations can be carried out on the variable’s data, as well as the amount of
memory needed to hold the data.

PHP supports four scalar data types. Scalar data means data that contains only a single value. Here’s a
list of them, including examples:

Scalar Data Type Description Example

Integer A whole number 15

Float A floating-point number 8.23

String A series of characters "Hello, world!"
Boolean Represents either true or false true

35

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

As well as the four scalar types, PHP supports two compound types. Compound data is data that can
contain more than one value. The following table describes PHP’s compound types:

Compound Data Type Description
Array An ordered map (contains names or numbers mapped to values)

Object A type that may contain properties and methods

You look at arrays in Chapter 6, and objects in Chapter 8.

Finally, PHP supports two special data types, so called because they don’t contain scalar or compound
data as such, but have a specific meaning;:

Special Data Type Description
Resource Contains a reference to an external resource, such as a file or database

Null May only contain null as a value, meaning the variable explicitly
does not contain any value

About Loose Typing

PHP is known as a loosely-typed language. This means that it’s not particularly fussy about the type of
data stored in a variable. It converts a variable’s data type automatically, depending on the context in
which the variable is used. For example, you can initialize a variable with an integer value; add a float
value to it, thereby turning it into a float; then join it onto a string value to produce a longer string.

In contrast, many other languages, such as Java, are strongly-typed; once you set the type of a variable in
Java, it must always contain data of that type.

PHP’s loose typing is both good and bad. On the plus side, it makes variables very flexible; the same
variable can easily be used in different situations. It also means that you don’t need to worry about
specifying the type of a variable when you declare it. However, PHP won't tell you if you accidentally

pass around data of the wrong type. For example, PHP will happily let you pass a floating-point value to

a piece of code that expects to be working on an integer value. You probably won't see an error
message, but you may discover that the output of your script isn’t quite what you expected! These types
of errors can be hard to track down. (Fortunately, there is a way to test the type of a variable, as you see
in a moment.)

Testing the Type of a Variable

You can determine the type of a variable at any time by using PHP’s gettype () function. To use
gettype (), pass in the variable whose type you want to test. The function then returns the variable’s
type as a string.

36

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

To pass a variable to a function, place the variable between parentheses after the function name — for
example, gettype ($x). If you need to pass more than one variable, separate them by commas. (You
learn more about how functions work, and how to use them, in Chapter 7.)

The following example shows gettype () in action. A variable is declared, and its type is tested with
gettype (). Then, four different types of data are assigned to the variable, and the variable’s type is
retested with gettype () each time:

Stest_var; // Declares the Stest_var variable without initializing it

echo gettype($test_var) . "
"; // Displays "NULL"
Stest_var = 15;

echo gettype(Stest_var) . "
"; // Displays "integer"
Stest_var = 8.23;

echo gettype(Stest_var) . "
"; // Displays "double"
Stest_var = "Hello, world!";

echo gettype(Stest_var) . "
"; // Displays "string"

The $test_var variable initially has a type of null, because it has been created but not initialized
(assigned a value). After setting $test_var’s value to 15, its type changes to integer. Setting
$test_var to 8.23 changes its type to double (which in PHP means the same as £1oat, because all
PHP floating-point numbers are double-precision). Finally, setting $test_var to “Hello, world!”
alters its type to string.

In PHP, a floating-point value is simply a value with a decimal point. So if 15.0 was used instead of 15 in
the preceding example, $test_var would become a double, rather than an integer.

You can also test a variable for a specific data type using PHP’s type testing functions:

Function Description

is_int(value) Returns true if value is an integer
is_float(value) Returns true if value is a float
is_string(value) Returns true if valueis a string
is_bool(value) Returns true if valueis a Boolean
is_array(value) Returns true if value is an array
is_object(value) Returns true if value is an object
is_resource(value) Returns true if valueis a resource
is_null(value) Returns true if valueis null

37

(c) ketabto

n.com: The Digital Library

Part Il: Learning the Language

(You learn how to test things, and alter the flow of your script, in Chapter 4.)

It’s best to use gettype () only when you want to debug a script to pinpoint a bug that might be related
to data types. Use the specific type testing functions if you simply want to ensure a variable is of the
right type; for example, it’s a good idea to test that an argument passed to a function is of the expected
type before you use it within the function. This helps to make your code more robust and secure. (You
learn all about functions and arguments in Chapter 7.)

Changing a Variable’s Data Type

Earlier, you learned how to change a variable’s type by assigning different values to the variable.
However, you can use PHP’s settype () function to change the type of a variable while preserving the
variable’s value as much as possible. To use settype (), pass in the name of the variable you want to
alter, followed by the type to change the variable to (in quotation marks).

Here’s some example code that converts a variable to various different types using settype ():

Stest_var = 8.23;

echo Stest_var . "
"; // Displays "8.23"
settype($test_var, "string");

echo Stest_var . "
"; // Displays "8.23"
settype(Stest_var, "integer");

echo S$test_var . "
"; // Displays "8"
settype(Stest_var, "float");

echo Stest_var . "
"; // Displays "8"
settype(Stest_var, "boolean");

echo Stest_var . "
"; // Displays "1"

To start with, the $test_var variable contains 8.23, a floating-point value. Next, $test_var is converted
to a string, which means that the number 8. 23 is now stored using the characters 8, . (period), 2, and 3.
After converting $test_var to an integer type, it contains the value 8; in other words, the fractional part
of the number has been lost permanently. You can see this in the next two lines, which convert $test_var
back to a float and display its contents. Even though $test_var is a floating-point variable again, it now
contains the whole number 8. Finally, after converting $test_var to a Boolean, it contains the value true
(which PHP displays as 1). This is because PHP converts a non-zero number to the Boolean value true.

Find out more about what PHP considers to be true and f£alse in the “Logical Operators” section
later in this chapter.

Changing Type by Casting

38

You can also cause a variable’s value to be treated as a specific type using a technique known as type
casting. This involves placing the name of the desired data type in parentheses before the variable’s
name. Note that the variable itself remains unaffected; this is in contrast to settype (), which changes
the variable’s type.

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

In the following example, a variable’s value is cast to various different types at the time that the

value is displayed:
Stest_var = 8.23;
echo Stest_var . "
"; // Displays "8.23"
echo (string) S$test_var . "
"; // Displays "8.23"
echo (int) S$Stest_var . "
"; // Displays "8"
echo (float) S$test_var . "
"; // Displays "8.23"
echo (boolean) S$test_var . "
"; // Displays "1"

Note that $test_var’s type isn’t changed at any point; it remains a floating-point variable, containing
the value 8.23, at all times. All that changes is the type of the data that’s passed to the echo statement.

Here’s the full list of casts that you can use in PHP:

Function Description

(int) wvalue or (integer) value Returns value cast to an integer
(float) value Returns value cast to a float
(string) value Returns value cast to a string
(bool) value or (boolean) value Returns value cast to a Boolean
(array) value Returns value cast to an array
(object) value Returns value cast to an object

You can also cast a value to an integer, floating-point, or string value using three PHP functions:

Function Description

intval (value) Returns value cast to an integer
floatval (value) Returns value cast to a float
strval(value) Returns value cast to a string

By the way, intval () has another use: converting from a non—base-10 integer to a base-10 integer. To
use this feature, pass intval () a string representation of the non—base-10 integer, followed by the base
of the integer. For example, intval ("11", 5) returns a value of 6 (the base-5 number 11
converted to a decimal number).

39

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Why would you want to change a variable’s type with settype (), or change a value’s type with
casting? Most of the time, PHP’s loose typing handles type conversion for you automatically, depending
on the context in which you use variables and values. However, forcing a variable to be of a certain type
is useful for security reasons; if you're expecting to pass a user-entered integer value to a database, it’s a
good idea to cast the value to an integer, just to make sure the user really did enter an integer. Likewise,
if you're passing data to another program, and that program expects the data to be in string format, you
can cast the value to a string before you pass it.

Essentially, use explicit casting or settype () whenever you want to be absolutely sure that a variable
contains data of a certain type.

Operators and Expressions

So far you've learned what variables are, and how to set a variable to a particular value, as well as how
to retrieve a variable’s value and type. However, life would be pretty dull if this was all you could do
with variables. This is where operators come into play. Using an operator, you can manipulate the
contents of one or more variables to produce a new value. For example, this code uses the addition
operator (+) to add the values of $x and $y together to produce a new value:

echo $x + Sy;

So an operator is a symbol that manipulates one or more values, usually producing a new value in the
process. Meanwhile, an expression in PHP is anything that evaluates to a value; this can be any
combination of values, variables, operators, and functions. In the preceding example, $x + $yisan
expression. Here are some more examples of expressions:

Sx + Sy + Sz
$x - Sy

Sx

5

true

gettype(Stest_var)

The values and variables that are used with an operator are known as operands.

Operator Types

Operators in PHP can be grouped into ten types, as follows:

Type Description

Arithmetic Perform common arithmetical operations, such as addition and
subtraction

Assignment Assign values to variables

Bitwise Perform operations on individual bits in an integer

40

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

Type Description

Comparison Compare values in a Boolean fashion (true or falseis
returned)

Error Control Affect error handling

Execution Cause execution of commands as though they were shell
commands

Incrementing /Decrementing Increment or decrement a variable’s value

Logical Boolean operators such as and, or, and not that can be used to

include or exclude

String Concatenates (joins together) strings (there’s only one string
operator)
Array Perform operations on arrays (covered in Chapter 6)

In the remainder of this section, you explore the most frequently used PHP operators.

Arithmetic Operators

In PHP, the arithmetic operators (plus, minus, and so on) work much as you would expect, enabling you
to write expressions as though they were simple equations. For example, $c = $a + $badds $a and $b
and assigns the result to $c. Here’s a full list of PHP’s arithmetic operators:

Operator Example Equation

+ (addition) 6 + 3 =09

- (subtraction) 6 -3 =3

* (multiplication) 6 * 3 = 18

/ (division) 6 /3 =2

% (modulus) 6 % 3 = 0 (the remainder of 6/3)

Assignment Operators
You've already seen how the basic assignment operator (=) can be used to assign a value to a variable:
Stest_var = 8.23;
It’s also worth noting that the preceding expression evaluates to the value of the assignment: 8.23. This is
because the assignment operator, like most operators in PHP, produces a value as well as carrying out

the assignment operation. This means that you can write code such as:

Sanother_var = $test_var = 8.23;

41

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

which means: “Assign the value 8.23 to $test_var, then assign the result of that expression (8.23) to
$another_var.” So both $test_var and $another_var now contain the value 8.23.

The equals sign (=) can be combined with other operators to give you a combined assignment operator that
makes it easier to write certain expressions. The combined assignment operators (such as +=, —=, and so
on) simply give you a shorthand method for performing typical arithmetic operations, so that you don’t
have to write out the variable name multiple times. For example, you can write:

Sfirst_number += $second_number;
rather than:

Sfirst_number = $first_number + S$second_number;
This also works for other kinds of operators. For example, the concatenation operator (described later

in this chapter) can be combined with the equals sign (as . =), causing the value on the right side to be
appended to the existing value on the left, like this:

Sa = "Start a sentence ";
$b = "and finish it.";
Sa .= S$b; // $a now contains "Start a sentence and finish it."

The main arithmetic, string, and bitwise operators support combination in this fashion; find out more at
http://www.php.net/manual/en/language.operators.assignment.php.

Bitwise Operators

42

PHP’s bitwise operators let you work on the individual bits within integer variables. Consider the
integer value 1234. For a 16-bit integer, this value is stored as two bytes: 4 (the most significant byte) and
210 (the least significant). 4 * 256 + 210 = 1234.

Here’s how those two bytes look as a string of bits:

00000100 11010010
A bit with a value of 1 is said to be set, whereas a bit with a value of 0 is unset (or not set).
PHP’s bitwise operators let you manipulate these bits directly, as shown in the following table.

Each example includes both decimal values and their binary equivalents, so you can see how the bits
are altered:

Operator Description Example
& (And) Only bits set in both values 14 & 3 = 2

are set in the result 00001110 & 00000011 = 00000010
| (Or) Bits set in either value are set 14 | 3 = 15

in the result 00001110 | 00000011 = 00001111

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

Operator Description

~ (Xor) Bits set in either value (but
not both) are set in the result

~ (Not) Bits set in the value are not set
in the result, and vice versa

<< (Shift left) Shifts all bits in the first value
a number of places to the left
(specified by the second value)

>> (Shift right) Shifts all bits in the first value
a number of places to the right
(specified by the second value)

Example

14 ~ 3 = 13
00001110 | 00000011 = 00001101

~14 = -15
~00000000000000000000000000001110

111111111111111111112111111110001

3 << 2 =12
00000011 << 2 = 00001100

8 > 2 =2
00001000 >> 2 = 00000010

You can see that ~ (Not) inverts all the bits in the number. Notice that there are 32 bits in each value,
because PHP uses 32-bit integers. (The other examples show only the last 8 bits of each value, for
brevity.) The resulting bit values (11111111111111111111111111110001) represent =15, because
PHP uses the two’s complement system to represent negative numbers (see http: //en.wikipedia
.org/wiki/Two%27s_complement for an explanation of two’s complement).

A common usage of bitwise operators is to combine values together to make a bit mask. For example,
consider the constants representing PHP’s error levels (described in detail in Chapter 20). The E_NOTICE
constant has an integer value of 8 (00001000 in binary), and the E_PARSE constant has an integer value of
4 (00000100 in binary). To combine these two constants so that both E_NOTICE and E_PARSE levels are

reported, you’d use the | (bitwise Or) operator:

E_NOTICE | E_PARSE

This combines the bits of the two integer constants together to create a new integer (12) whose bit values

represent both E_NOTICE (8) and E_PARSE (4):

00001000 (8) | 00000100 (4) = 00001100

Comparison Operators

(12)

As you might imagine from the name, comparison operators let you compare one operand with the other
in various ways. If the comparison test is successful, the expression evaluates to true; otherwise, it
evaluates to false. You often use comparison operators with decision and looping statements such as

if and while (these are covered in Chapter 4).

43

(c) ketabto

n.com: The Digital Library

Part Il: Learning the Language

Here’s a list of the comparison operators in PHP:

Operator Example
== (equal) $x == Sy
= or <> (not equal) $x 1= Sy
=== (identical) $x === Sy
1== (not identical) $x l== Sy
< (less than) $xX < Sy
> (greater than) $xX > Sy
<= (less than or equal to) $x <= Sy
>= (greater than or equal to) $x >= Sy

Result
true if $x equals $y; false otherwise

true if $x does not equal $y; false
otherwise

true if $x equals $y and they are of the
same type; false otherwise

true if $x does not equal $y or they are not
of the same type; false otherwise

true if $xis less than $y; false otherwise

true if $x is greater than $y; false
otherwise

true if $x is less than or equal to $y; false
otherwise

true if $x is greater than or equal to $y;
false otherwise

The following examples show comparison operators in action:

Sx = 23;
echo ($x < 24) "
"; //
echo ($x < "24") "
"; //
//
echo ($x == 23) "
"; /7
echo ($x === 23) "
"; //
echo ($x === "23") "
"; //
//
echo ($x >= 23) "
"; //
echo ($x >= 24) "
"; //

Displays 1 (true)

Displays 1 (true) because

PHP converts the string to an integer
Displays 1 (true)

Displays 1 (true)

Displays "" (false) because

$x and "23" are not the same data type
Displays 1 (true)

Displays "" (false)

As you can see, comparison operators are commonly used to compare two numbers (or strings
converted to numbers). The == operator is also frequently used to check that two strings are the same.

Incrementing /Decrementing Operators

Oftentimes it’s useful to add or subtract the value 1 (one) over and over. This situation occurs so

44

frequently — for example, when creating loops —

that special operators are used to perform this task:

the increment and decrement operators. They are written as two plus signs or two minus signs,
respectively, preceding or following a variable name, like so:

++$x; // Adds one to $x and then returns the result

Sx++; // Returns $x and then adds one to it

--$x; // Subtracts one from $x and then returns the result
$x--; // Returns $x and then subtracts one from it

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

The location of the operators makes a difference. Placing the operator before the variable name causes the
variable’s value to be incremented or decremented before the value is returned; placing the operator after
the variable name returns the current value of the variable first, then adds or subtracts one from the
variable. For example:

$x = 5;
echo ++$x; // Displays "6" (and $x now contains 6)
$x = 5;
echo $x++; // Displays "5" (and $x now contains 6)

Interestingly, you can use the increment operator with characters as well. For example, you can “add”
one to the character B and the returned value is C. However, you cannot subtract from (decrement)
character values.

Logical Operators

PHP’s logical operators work on Boolean values. Before looking at how logical operators work, it’s
worth taking a bit of time to explore Boolean values more thoroughly.

As you've already seen, a Boolean value is either true or false. PHP automatically evaluates
expressions as either true or false when needed, although as you've already seen, you can use
settype () or casting to explicitly convert a value to a Boolean value if necessary.

For example, the following expressions all evaluate to true:
=1

2
"hello" != "goodbye"

1
1
3

Vol

The following expressions all evaluate to false:

3 <2
gettype(3) == "array"
"hello" == "goodbye"

In addition, PHP considers the following values to be false:

Q The literal value false
The integer zero (0)
The float zero (0. 0)
An empty string (" ")
The string zero ("0")

An array with zero elements

U 00 UJu o

The special type null (including any unset variables)
Q ASimpleXML object that is created from an empty XML tag (more on SimpleXML in Chapter 19)

All other values are considered true in a Boolean context.

45

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Now that you know how Boolean values work you can start combining Boolean values with logical
operators. PHP features six logical operators, and they all work in combination with true or false
Boolean values to produce a result of either true or false:

Operator Example Result

&& (and) $x && Sy true if both $x and $y evaluate to true; false otherwise

and $x and Sy true if both $x and $y evaluate to true; false otherwise

|| (or) $x || Sy true if either $x or $y evaluates to true; false otherwise

or $x or Sy true if either $x or $y evaluates to true; false otherwise

xor $x xor Sy true if $x or $y (but not both) evaluates to true; false
otherwise

! (not) 1$x true if $x is false; false if $xis true

Here are some simple examples of logical operators in action:

$x = 2;

Sy = 3;

echo (($x > 1) && (Sx < 5)) "
"; // Displays 1 (true)

echo (($x == 2) or ($y == 0)) . "
"; // Displays 1 (true)

echo (($x == 2) xor (Sy == 3)) . "
"; // Displays "" (false) because both
// expressions are true

echo (!($x ==5)) . "
"; // Displays 1 (true) because

// $x does not equal 5

The main use of logical operators and Boolean logic is when making decisions and creating loops, which
you explore in Chapter 4.

You're probably wondering why the and and or operators can also be written as && and | |. The reason is
that and and or have a different precedence to && and | |. Operator precedence is explained in a moment.

String Operators

46

There’s really only one string operator, and that’s the concatenation operator, . (dot). This operator simply
takes two string values, and joins the right-hand string onto the left-hand one to make a longer string.

For example:
echo "Shaken, " . "not stirred"; // Displays "Shaken, not stirred"

You can also concatenate more than two strings at once. Furthermore, the values you concatenate don’t
have to be strings; thanks to PHP’s automatic type conversion, non-string values, such as integers and
floats, are converted to strings at the time they’re concatenated:

StempF = 451;

// Displays "Books catch fire at 232.777777778 degrees C."
echo "Books catch fire at " . ((5/9) * (StempF-32)) . " degrees C.";

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

In fact, there is one other string operator — the combined assignment operator . = — which was
mentioned earlier in the chapter. It's useful when you want to join a new string onto the end of an
existing string variable. For example, the following two lines of code both do the same thing — they
change the string variable $x by adding the string variable $y to the end of it:

Sx = $x .

Sy

$x .= Sy;

Understanding Operator Precedence

With simple expressions, such as 3 + 4, it’s clear what needs to be done (in this case, “add 3 and 4 to
produce 7”). Once you start using more than one operator in an expression, however, things aren’t so
clear-cut. Consider the following example:

3 +4 * 5

Is PHP supposed to add 3 to 4 to produce 7, then multiply the result by 5 to produce a final figure of 35?
Or should it multiply 4 by 5 first to get 20, then add 3 to make 23?

This is where operator precedence comes into play. All PHP operators are ordered according to
precedence. An operator with a higher precedence is executed before an operator with lower precedence.
In the case of the example, * has a higher precedence than +, so PHP multiplies 4 by 5 first, then adds 3
to the result to get 23.

Here’s a list of all the operators you’ve encountered so far, in order of precedence (highest first):

Precedence of Some PHP Operators (Highest First)

++ -- (increment/decrement)

(int) (float) (string) (array)

! (not)

* / % (arithmetic)

b

- . (arithmetic)

A

<= > >= <> (comparison)

== |= === |== (comparison)

&& (and)

|| (or)

= += -= *= /= .= %= (assignment)
and

Xor

or

(object)

(bool) (casting)

47

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

PHP has many more operators than the ones listed here. For a full list, consult http: / /www.php
.net/operators.

You can affect the order of execution of operators in an expression by using parentheses. Placing
parentheses around an operator and its operands forces that operator to take highest precedence. So, for
example, the following expression evaluates to 35:

(3 +4) *5

As mentioned earlier, PHP has two logical “and” operators (&&, and) and two logical “or” operators (| |,
or). You can see in the previous table that && and | | have a higher precedence than and and or. In fact,
and and or are below even the assignment operators. This means that you have to be careful when
using and and or. For example:

Sx false || true; // $x is true
$x = false or true; // $x is false

In the first line, false || true evaluates to true, so $x ends up with the value true, as you'd expect.
However, in the second line, $x = false is evaluated first, because = has a higher precedence than or.
By the time false or true isevaluated, $x has already been set to false.

Because of the low precedence of the and and or operators, it’s generally a good idea to stick with &&
and | | unless you specifically need that low precedence.

Constants

48

You can also define value-containers called constants in PHP. The values of constants, as their name
implies, can never be changed. Constants can be defined only once in a PHP program.

Constants differ from variables in that their names do not start with the dollar sign, but other than that
they can be named in the same way variables are. However, it’s good practice to use all-uppercase names
for constants. In addition, because constants don’t start with a dollar sign, you should avoid naming
your constants using any of PHP’s reserved words, such as statements or function names. For example,
don’t create a constant called ECHO or SETTYPE. If you do name any constants this way, PHP will get
very confused!

Constants may only contain scalar values such as Boolean, integer, float, and string (not values such as
arrays and objects), can be used from anywhere in your PHP program without regard to variable scope,
and are case-sensitive.

Variable scope is explained in Chapter 7.

To define a constant, use the define () function, and include inside the parentheses the name you've
chosen for the constant, followed by the value for the constant, as shown here:

define("MY_CONSTANT", "19"); // MY_CONSTANT always has the string value "19"
echo MY_ CONSTANT; // Displays "19" (note this is a string, not an integer)

(c) ketabton.com: The Digital Library

Chapter 3: PHP Language Basics

Constants are useful for any situation where you want to make sure a value does not change throughout
the running of your script. Common uses for constants include configuration files and storing text to
display to the user.

_ Calculate the Properties of a Circle

Save this simple script as circle_properties.php in your Web server’s document root folder, then
open its URL (for example, http://localhost/circle_properties.php) in your Web browser
to run it:

<?php
Sradius = 4;

$diameter = Sradius * 2;
Scircumference = M_PI * S$diameter;
Sarea = M_PI * pow(Sradius, 2);

echo "This circle has...
";

echo "A radius of " . Sradius . "
";

echo "A diameter of " . S$diameter . "
";

echo "A circumference of " . S$Scircumference . "
";
echo "An area of " . Sarea . "
";

?>

When you run the script, you should see something like Figure 3-1.

Fle Edit View History Bookmarks Tools Help

{?J -y - @l et ,IJ}I ||_J http:/flocalhost/circle | = | B | @—| l\,l

This circle has...

Aradiusof 4

A diamster of 8

A circumference of 25.1327412287
An area of 50.2654824574

Done

& =

Figure 3-1

How It Works

First, the script stores the radius of the circle to test in a $radius variable. Then it calculates the
diameter — twice the radius — and stores it in a $diameter variable. Next it works out the circle’s
circumference, which is & (pi) times the diameter, and stores the result in a $circumference variable.
It uses the built-in PHP constant, M_PI, which stores the value of «.

49

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Then the script calculates the circle’s area, which is © times the radius squared, and stores it in an $area
variable. To get the value of the radius squared, the script uses the built-in pow () function, which takes
a base number, base, followed by an exponent, exp, and returns base to the power of exp.

Finally, the script outputs the results of its calculations, using the string concatenation operator (.) to
join strings together.

Summary

This chapter took you through some fundamental building blocks of the PHP language. You learned the
following concepts:

Q Variables: What they are, how you create them, and how to name them
The concept of data types, including the types available in PHP

Loose typing in PHP; a feature that gives you a lot of flexibility with variables and values

U 0 O

How to test the type of a variable with gettype (), and how to change types with settype ()
and casting

The concepts of operators, operands, and expressions
The most common operators used in PHP

Operator precedence — all operators are not created equal

U 0 0 O

How to create constants that contain non-changing values

Armed with this knowledge, you're ready to move on and explore the next important concepts of PHP:
decisions, loops, and control flow. You learn about these in the next chapter. Before you read it, though,
try the two exercises that follow to ensure that you understand variables and operators. You can find the
solutions to these exercises in Appendix A.

Exercises

1. Write a script that creates a variable and assigns an integer value to it, then adds 1 to the variable’s
value three times, using a different operator each time. Display the final result to the user.

2. Writea script that creates two variables and assigns a different integer value to each variable.
Now make your script test whether the first value is

a. equal to the second value

b. greater than the second value

C. less than or equal to the second value
d. notequal to the second value

and output the result of each test to the user.

50

(c) ketabton.com: The Digital Library

Decisions and Loops

So far, you've learned that PHP lets you create dynamic Web pages, and you've explored some
fundamental language concepts such as variables, data types, operators, expressions, and
constants.

However, all the scripts you've written have worked in a linear fashion: the PHP engine starts at
the first line of the script, and works its way down until it reaches the end. Things get a lot more
interesting when you start introducing decisions and loops.

A decision lets you run either one section of code or another, based on the results of a specific test.
Meanwhile, a loop lets you run the same section of code over and over again until a specific
condition is met.

By using decisions and loops, you add a lot of power to your scripts, and you can make them truly
dynamic. Now you can display different page content to your visitors based on where they live, or
what buttons they’ve clicked on your form, or whether or not they're logged in to your site.

In this chapter you explore the various ways that you can write decision-making and looping code
in PHP. You learn about:

Q Making decisions with the 1 £, else, and switch statements
Writing compact decision code with the ternary operator
Looping with the do, while, and for statements

Altering loops with the break and continue statements

Nesting loops inside each other

U 000U

Using decisions and looping to display HTML

Once you've learned the concepts in this chapter, you'll be well on your way to building useful,
adaptable PHP scripts.

(c) ketabton.com: The Digital Library

Part Il Learning the Language

Making Decisions

Like most programming languages, PHP lets you write code that can make decisions based on the result
of an expression. This allows you to do things like test if a variable matches a particular value, or if a
string of text is of a certain length. In essence, if you can create a test in the form of an expression that
evaluates to either true or false, you can use that test to make decisions in your code.

You studied expressions in Chapter 3, but you might like to quickly review the “Operators and
Expressions” section in that chapter to give yourself an idea of the kinds of expressions you can create.
You can see that, thanks to the wide range of operators available in PHP, you can construct some pretty
complex expressions. This means that you can use almost any test as the basis for decision-making in
your code.

PHP gives you a number of statements that you can use to make decisions:

Q The if statement
O The else and elseif statements

O The switch statement

You explore each of these statements in the coming sections.

Simple Decisions with the if Statement

52

The easiest decision-making statement to understand is the i f statement. The basic form of an i f
construct is as follows:

if (expression) {
// Run this code
}

// More code here

If the expression inside the parentheses evaluates to true, the code between the braces is run. If the
expression evaluates to false, the code between the braces is skipped. That’s really all there is to it.

It's worth pointing out that any code following the closing brace is always run, regardless of the result of
the test. So in the preceding example, if expression evaluates to true, both the Run this code and More
code here lines are executed; if expression evaluates to false, Run this code is skipped but

More code here isstill run.

Here’s a simple real-world example:
$widgets = 23;

if (Swidgets == 23) {
echo "We have exactly 23 widgets in stock!";

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

The first line of the script creates a variable, $widgets, and sets its value to 23. Then an if statement
uses the == operator to check if the value stored in $widgets does indeed equal 23. If it does — and it
should! — the expression evaluates to true and the script displays the message: “We have exactly 23
widgets in stock!” If $widgets doesn’t hold the value 23, the code between the parentheses — that is,
the echo () statement — is skipped. (You can test this for yourself by changing the value in the first line
of code and re-running the example.)

Here’s another example that uses the >= (greater than or equal) and <= (less than or equal) comparison
operators, as well as the && (and) logical operator:

Swidgets = 23;

if (Swidgets >= 10 && Swidgets <= 20) {
echo "We have between 10 and 20 widgets in stock.";

This example is similar to the previous one, but the test expression inside the parentheses is slightly
more complex. If the value stored in $widgets is greater than or equal to 10, and it’s also less than or
equal to 20, the expression evaluates to true and the message “We have between 10 and 20 widgets in
stock.” is displayed. If either of the comparison operations evaluates to false, the overall expression
also evaluates to false, the echo () statement is skipped, and nothing is displayed.

The key point to remember is that, no matter how complex your test expression is, if the whole
expression evaluates to true the code inside the braces is run; otherwise the code inside the braces is
skipped and execution continues with the first line of code after the closing brace.

You can have as many lines of code between the braces as you like, and the code can do anything, such
as display something in the browser, call a function, or even exit the script. In fact, here’s the previous
example rewritten to use an if statement inside another if statement:

Swidgets = 23;
if (Swidgets >= 10) {
if (Swidgets <= 20) {
echo "We have between 10 and 20 widgets in stock.";

}

The code block between the braces of the first i f statement is itself another i f statement. The first i £
statement runs its code block if $widgets >= 10, whereas the inner if statement runs its code block —
the echo () statement — if $widgets <= 20. Because both if expressions need to evaluate to true for
the echo () statement to run, the end result is the same as the previous example.

If you only have one line of code between the braces you can, in fact, omit the braces altogether:
Swidgets = 23;
if (Swidgets == 23)

echo "We have exactly 23 widgets in stock!";

However, if you do this, take care to add braces if you later add additional lines of code to the code
block. Otherwise, your code will not run as expected!

53

(c) ketabton.com: The Digital Library

Part Il Learning the Language

Providing an Alternative Choice with the else Statement

As you've seen, the if statement allows you to run a block of code if an expression evaluates to true. If
the expression evaluates to false, the code is skipped.

You can enhance this decision-making process by adding an else statement to an if construction. This
lets you run one block of code if an expression is true, and a different block of code if the expression is
false. For example:

if (Swidgets >= 10) {
echo "We have plenty of widgets in stock.";
} else {
echo "Less than 10 widgets left. Time to order some more!";

}

If swidgets is greater than or equal to 10, the first code block is run, and the message “We have plenty
of widgets in stock.” is displayed. However, if $widgets is less than 10, the second code block is run,
and the visitor sees the message: “Less than 10 widgets left. Time to order some more!”

You can even combine the else statement with another i f statement to make as many alternative
choices as you like:

if (Swidgets >= 10) {
echo "We have plenty of widgets in stock.";
} else if (Swidgets >= 5) {
echo "Less than 10 widgets left. Time to order some more!";
} else {
echo "Panic stations: Less than 5 widgets left! Order more now!";

If there are 10 or more widgets in stock, the first code block is run, displaying the message: “We have
plenty of widgets in stock.” However, if $widgets is less than 10, control passes to the first else
statement, which in turn runs the second i f statement: if ($widgets >= 5).If thisis true the
second message — “Less than 10 widgets left. Time to order some more!” — is displayed. However, if
the result of this second 1if expression is false, execution passes to the final else code block, and the
message “Panic stations: Less than 5 widgets left! Order more now!” is displayed.

PHP even gives you a special statement — elseif — that you can use to combine an else and an i f
statement. So the preceding example can be rewritten as follows:

if (Swidgets >= 10) {
echo "We have plenty of widgets in stock.";
} elseif (Swidgets >= 5) {
echo "Less than 10 widgets left. Time to order some more!";
} else {
echo "Panic stations: Less than 5 widgets left! Order more now!";

54

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

Testing One Expression Many Times with the
switch Statement

Sometimes you want to test an expression against a range of different values, carrying out a different
task depending on the value that is matched. Here’s an example, using the i £, elseif, and else

statements:

if (SuserAction == "open") {
// Open the file

} elseif (SuserAction == "save") {
// Save the file

} elseif (SuserAction == "close") {
// Close the file

} elseif (SuserAction == "logout") {
// Log the user out

} else {

print "Please choose an option";

As you can see, this script compares the same variable, over and over again, with different values. This
can get quite cumbersome, especially if you later want to change the expression used in all of the tests.

PHP provides a more elegant way to run these types of tests: the switch statement. With this statement,
you include the expression to test only once, then provide a range of values to test it against, with
corresponding code blocks to run if the values match. Here’s the preceding example rewritten

using switch:

switch (SuserAction) {

case "open":
// Open the file
break;

case "save":
// Save the file
break;

case "close":
// Close the file
break;

case "logout":
// Log the user out
break;

default:
print "Please choose an option";

As you can see, although the second example has more lines of code, it’s a cleaner approach and
easier to maintain.

Here’s how it works. The first line features the switch statement, and includes the condition to test — in
this case, the value of the $useraAction variable — in parentheses. Then, a series of case statements

test the expression against various values: "open", "save", and so on. If a value matches the expression,
the code following the case line is executed. If no values match, the default statement is reached, and
the line of code following it is executed.

55

(c) ketabto

n.com: The Digital Library

Part Il Learning the Language

Note that each case construct has a break statement at the end of it. Why are these break statements
necessary? Well, when the PHP engine finds a case value that matches the expression, it not only
executes the code block for that case statement, but it then also continues through each of the case
statements that follow, as well as the final default statement, executing all of their code blocks in turn.
What's more, it does this regardless of whether the expression matches the values in those case
statements! Most of the time, you don’t want this to happen, so you insert a break statement at the end
of each code block. break exits the entire switch construct, ensuring that no more code blocks within
the switch construct are run.

For example, if you didn’t include break statements in this example script, and $useraAction was equal
to "open", the script would open the file, save the file, close the file, log the user out and, finally, display
“Please choose an option”, all at the same time!

Sometimes, however, this feature of switch statements is useful, particularly if you want to carry out an
action when the expression matches one of several different values. For example, the following script
asks the users to confirm their action only when they’re closing a file or logging out:

switch (SuserAction) {

case "open":
// Open the file
break;

case "save'":
// Save the file
break;

case "close":

case "logout":
print "Are you sure?";
break;

default:
print "Please choose an option";

If SuserAction equals "open" or "save", the script behaves like the previous example. However, if
$userAction equals "close", both the (empty) "close" code block and the following "logout" code
block are executed, resulting in the “Are you sure?” message. And, of course, if $userAction equals
"logout", the “Are you sure?” code is also executed. After displaying “Are you sure?” the script uses a
break statement to ensure that the default code block isn’t run.

Compact Coding with the Ternary Operator

56

Although you looked at the most common PHP operators in the previous chapter, there is another
operator, called the ternary operator, that is worth knowing about. The symbol for the ternary operator is 2.

Unlike other PHP operators, which work on either a single expression (for example, ! $x) or two
expressions (for example, $x == $y), the ternary operator uses three expressions:

(expressionl) ? expression2 : expression3;

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

The ternary operator can be thought of as a compact version of the i f. . . else construct. The preceding
code reads as follows: If expressionl evaluates to true, the overall expression equals expression2;
otherwise, the overall expression equals expression3.

Here’s a “real world” example to make this concept clearer:

Swidgets = 23;

Splenty = "We have plenty of widgets in stock.";

Sfew = "Less than 10 widgets left. Time to order some more!";
echo (Swidgets >= 10) ? S$plenty : Sfew;

This code is functionally equivalent to the example in the else statement section earlier in this chapter.
Here’s how it works.

Three variables are created: the $widgets variable, with a value of 23, and two variables, $plenty and
$few, to hold text strings to display to the user. Finally, the ternary operator is used to display the
appropriate message. The expression $widgets >= 10 is tested; if it’s true (as it will be in this case),
the overall expression evaluates to the value of $plenty. If the test expression happens to be false, the
overall expression will take on the value of ¢ few instead. Finally, the overall expression — the result of
the ternary operator — is displayed to the user using echo ().

Code that uses the ternary operator can be hard to read, especially if you're not used to seeing the
operator. However, it’s a great way to write compact code if you just need to make a simple if. . .else
type of decision.

_ Use Decisions to Display a Greeting

Here’s a simple example that demonstrates the i £, elseif, and else statements, as well as the ?
(ternary) operator. Save the script as greeting. php in your document root folder.

This script (and most of the other scripts in this book) link to the common . css style sheet file listed in
Chapter 2, so make sure you have common . css in your document root folder too.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Greetings</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<?php

Shour = date("G");
Syear = date("Y");

if (Shour >= 5 && Shour < 12) {
echo "<hl>Good morning!</hl>";

} elseif (S$hour >= 12 && Shour < 18) {
echo "<hl>Good afternoon!</hl>";

} elseif (Shour >= 18 && Shour < 22) {

57

(c) ketabton.com: The Digital Library

Part Il Learning the Language

echo "<hl>Good evening!</hl>";
} else {

echo "<hl>Good night!</hl>";
}

SleapYear = false;

if (((Syear % 4 ==) && (Syear % 100 != 0)) || (Syear % 400 ==))
SleapYear = true;

echo "<p>Did you know that S$year is" . ($SleapYear ? "" : " not") . " a leap
yvear?</p>";

?>
</body>
</html>

The script displays a greeting based on the current time of day, and also lets you know whether the
current year is a leap year. To run it, simply visit the script’'s URL in your Web browser. You can see a
sample output in Figure 4-1.

N CLTEELMgS = MO SR reEToxX s E m
File Edit Vview History Bookmarks Tools Help

= o e o | (@ hipilucalhostfgreeting.php ~ | |IGl~ -1

Good afternoon!

Did you know that 2008 is a leap year?

Done

Figure 4-1

How It Works

After displaying an XHTML page header, the script sets two variables: $hour, holding the current
hour of the day, and $year, holding the current year. It uses PHP’s date () function to get these two
values; passing the string "G" to date () returns the hour in 24-hour clock format, and passing "v"
returns the year.

You can find out more about the workings of the date () function in Chapter 16.

Next, the script uses an 1£. . .elseif. . .else construct to display an appropriate greeting. If the
current hour is between 5 and 12 the script displays “Good morning!”; if it's between 12 and 18 it
displays “Good afternoon!” and so on.

Finally, the script works out if the current year is a leap year. It creates a new $leapYear variable, set
to false by default, then sets $1eapYear to true if the current year is divisible by 4 but not by 100, or
if it’s divisible by 400. The script then outputs a message, using the ternary operator (?) to insert the
word "not" into the message if $leapvYear is false.

58

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

Doing Repetitive Tasks with Looping

You can see that the ability to make decisions — running different blocks of code based on certain
criteria — can add a lot of power to your PHP scripts. Looping can make your scripts even more
powerful and useful.

The basic idea of a loop is to run the same block of code again and again, until a certain condition is met.
As with decisions, that condition must take the form of an expression. If the expression evaluates to
true, the loop continues running. If the expression evaluates to false, the loop exits, and execution
continues on the first line following the loop’s code block.

You look at three main types of loops in this chapter:

Q whileloops
QO do...whileloops

Q for loops

You explore foreach () loops, which work specifically with arrays, in Chapter 6.

Simple Looping with the while Statement

The simplest type of loop to understand uses the while statement. A while construct looks very similar
to an if construct:

while (expression) {
// Run this code
}

// More code here

Here’s how it works. The expression inside the parentheses is tested; if it evaluates to true, the code
block inside the braces is run. Then the expression is tested again; if it’s still true, the code block is run
again, and so on. However, if at any point the expression is false, the loop exits and execution
continues with the line after the closing brace.

Here’s a simple, practical example of a while loop:
<?php
SwidgetsLeft = 10;
while (SwidgetsLeft > 0) {
echo "Selling a widget... ";
SwidgetsLeft--;
echo "done. There are SwidgetsLeft widgets left.
";
}

echo "We're right out of widgets!";

?>

59

(c) ketabto

n.com: The Digital Library

Part Il Learning the Language

First a variable, $widgetsLeft, is created to record the number of widgets in stock (10). Then the while
loop works through the widgets, “selling” them one at a time (represented by decrementing the
$widgetsLeft counter) and displaying the number of widgets remaining. Once $widgetsLeft reaches
0, the expression inside the parentheses ($widgetsLeft > 0)becomes false, and the loop exits.
Control is then passed to the echo () statement outside the loop, and the message “We're right out of
widgets!” is displayed.

To see this example in action, save the code as widgets.php in your document root folder and run the
script in your browser. You can see the result in Figure 4-2.

(& Vozllla FIrefox. =EE

File Edit Vview History Bookmarks Tools Help

- - 6 %% | @ | http:flocalhostwidgets.php |'I |G~ o

Selling a widget... done. There are 9 widgets left.
Selling a widget... done. There are 8 widgets left.
Selling a widget... done. There are 7 widgsts left.
Selling a widget... done. There are 6 widgets left.
Selling a widget... done. There are 5 widgets left.
Selling a widget... done. Thare are 4 widgets laft.
Selling a widget... done. There are 3 widgets left.
Selling a widget... done. There are 2 widgsts left.
Selling a widget... done. There are 1 widgets left.
Selling a widget... done. There are 0 widgets left.
We're right out of widgets!

Done

Figure 4-2

Testing at the End: The do . .. while Loop

60

Take another look at the while loop in the previous example. You'll notice that the expression is tested at
the start of the loop, before any of the code inside the braces has had a chance to run. This means that, if
$widgetsLeft was set to 0 before the while statement was first run, the expression would evaluate to
false and execution would skip to the first line after the closing brace. The code inside the loop would
never be executed.

Of course, this is what you want to happen in this case; you can’t sell someone a widget when there are
no widgets to sell! However, sometimes it’s useful to be able to run the code in the loop at least once
before checking the expression, and this is exactly what do. . .while loops let you do. For example, if
the expression you're testing relies on setting a variable inside the loop, you need to run that loop at least
once before testing the expression.

Here’s an example of a do. . .while loop:
<?php

Swidth = 1;
$length = 1;

do {
Swidth++;

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

Slength++;
Sarea = Swidth * S$Slength;
} while ($Sarea < 1000);

echo "The smallest square over 1000 sg ft in area is S$width ft x $length ft.";
?>

This script computes the width and height (in whole feet) of the smallest square over 1000 square feet in
area (which happens to be 32 feet by 32 feet). It initializes two variables, $width and $height, then
creates a do. . .while loop to increment these variables and compute the area of the resulting square,
which it stores in $area. Because the loop is always run at least once, you can be sure that $area will
have a value by the time it’s checked at the end of the loop. If the area is still less than 1000, the
expression evaluates to true and the loop repeats.

Neater Looping with the for Statement

The for statement is a bit more complex than do and do. . .while, but it’s a neat and compact way to
write certain types of loops. Typically, you use a for loop when you know how many times you want
to repeat the loop. You use a counter variable within the for loop to keep track of how many times
you've looped.

The general syntax of a for loop is as follows:

for (expressionl; expression2; expression3) {
// Run this code
}

// More code here

As withwhile and do. . .while loops, if you only need one line of code in the body of the loop you
can omit the braces.

You can see that, whereas do and do. . .while loops contain just one expression inside their parentheses,
a for loop can contain three expressions. These expressions, in order, are:

Q The initializer expression — This is run just once, when the for statement is first encountered.
Typically, it’s used to initialize a counter variable (for example, $counter = 1)

Q The loop test expression — This fulfils the same purpose as the single expression in a do or
do...while loop. If this expression evaluates to true, the loop continues; if it'’s false, the loop
exits. An example of a loop test expression would be $counter <= 10

Q The counting expression — This expression is run after each iteration of the loop, and is usually
used to change the counter variable — for example, $counter++

Here’s a typical example of a for loop in action. This script counts from 1 to 10, displaying the current
counter value each time through the loop:

for ($i = 1; $i <= 10; $i++) {
echo "I've counted to: $i
";

}

echo "All done!™";

61

(c) ketabto

n.com: The Digital Library

Part Il Learning the Language

62

The loop sets up a new counter variable, $i, and sets its value to 1. The code within the loop displays the
current counter value. Each time the loop repeats, $i is incremented. The loop test expression checks to
see if $1 is still less than or equal to 10; if it is, the loop repeats. Once $1 reaches 11, the loop exits and the
“All done!” message is displayed.

It’s perfectly possible to write any for loop using a while statement instead. Here’s the previous for
loop rewritten using while:

$1 = 1;

while ($1 <= 10) {
echo "I've counted to: S$i
";
$i++;

}

echo "All done!";
However, as this example clearly shows, a for loop is generally neater and more compact.

There’s a lot more to the for statement than meets the eye. For example, you don’t have to use it for
simple counting, nor does the loop test expression have to involve the same variable that’s in the
counting expression. Here’s an example:

$SstartTime = microtime(true);

for ($num = 1; microtime(true) < S$startTime + 0.0001; $num = Snum * 2) {
echo "Current number: S$Snum
";

}

echo "Out of time!";

You're probably wondering what on earth this script does. Well, it races the PHP engine against
the clock!

First, the script stores the current Unix timestamp, in microseconds, in a variable, $startTime. To do
this, it uses PHP’s microtime () function with an argument of true, which returns the current
timestamp as a floating-point number (with the number of seconds before the decimal point and the
fraction of a second after the decimal point).

Next, the for loop goes into action. The initializer sets up a variable, $num, with a value of 1. The loop
test expression checks to see if the current time — again retrieved using microtime () — is still earlier
than 1/10000th of a second (100 microseconds) after the start time; if it is the loop continues. Then the
counting expression, rather than simply incrementing a counter, multiplies the $num variable by 2.
Finally, the body of the loop simply displays the current value of $num.

So to summarize, the for loop sets $num to 1, then keeps multiplying $num by 2, displaying the result
each time, until 100 microseconds have elapsed. Finally, the script displays an “Out of time!” message.

To try out this race, save the code as race . php and open the script’s URL in your Web browser. Exactly
how far this script will get depends on the speed of your Web server! On my computer it made it up to 8
before running out of time, as shown in Figure 4-3.

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

& VD21l S = reToxs gmg

File Edit Vview History Bookmarks Tools Help

& - 6 o |.6 http:jflocalhostirace.php |'| |-G|' @

Current number: 1
Current number: 2
Currcnt number: 4
Current number: 8
Out of time!

Done

Figure 4-3

It's worth pointing out that having a complex loop test expression can seriously slow down your script,
because the test expression is evaluated every single time the loop repeats. In the example just shown,
the expression needs to be fairly processor-intensive because it has to retrieve the current time — an
ever-changing value. However, generally it’s better to pre-compute as much of the test expression as you
can before you enter the loop. For example:

SsecondsInDay = 60 * 60 * 24;
for ($seconds = 0; S$seconds < $secondsInDay; S$seconds++) {
// Loop body here
is generally going to be a bit faster than:
for ($seconds = 0; $seconds < 60 * 60 * 24; S$seconds++) {

// Loop body here

You can actually leave out any of the expressions within a for statement, as long as you keep the
semicolons. Say you've already initialized a variable called $1 elsewhere. Then you could miss out the
initializer from the for loop, as follows:
for (; $i <= 10; S$i++) {
// Loop body here
You can even leave out all three expressions if you so desire, thereby creating an infinite loop:

for (; ;)

Of course, such a loop is pretty pointless unless you somehow exit the loop in another way! Fortunately,
you can use the break statement — discussed in the next section — to do just that.

63

(c) ketabton.com: The Digital Library

Part Il Learning the Language

Escaping from Loops with the break Statement

Normally, awhile, do. . .while, or for loop will continue looping as long as its test expression
evaluates to true. However, you can exit a loop at any point while the loop’s executing by using the
break statement. This works just like it does within a switch construct (described earlier in this
chapter) — it exits the loop and moves to the first line of code outside the loop.

Why would you want to do this? Well, in many situations it’s useful to be able to break out of a loop. The
infinite for loop discussed earlier is a good example; if you don’t break out of an infinite loop somehow,
it will just keep running and running, consuming resources on the server. For example, although the
following while loop is ostensibly an infinite loop because its test expression is always true, it in fact
counts to 10 and then exits the loop:

Scount = 0;

while (true) {
Scount++;
echo "I've counted to: S$Scount
";
if (Scount == 10) break;

}

Another common reason to break out of a loop is that you want to exit the loop prematurely, because
you've finished doing whatever processing you needed to do. Consider the following fairly trivial
example:

SrandomNumber = rand(1, 1000);

for ($i=1; $i <= 1000; S$i++) {

if ($i == $randomNumber) {
echo "Hooray! I guessed the random number. It was: $i
";
break;

}
}

This code uses PHP’s rand () function to generate and store a random integer between 1 and 1000, then
loops from 1 to 1000, trying to guess the previously stored number. Once it’s found the number, it
displays a success message and exits the loop with break. Note that you could omit the break statement
and the code would still work; however, because there’s no point in continuing once the number has
been guessed, using break to exit the loop avoids wasting processor time.

This type of break statement usage is common when working with potentially large sets of data such as
arrays and database records, as you see later in this book.

Skipping Loop Iterations with the continue Statement

64

Slightly less drastic than the break statement, continue lets you prematurely end the current iteration
of a loop and move onto the next iteration. This can be useful if you want to skip the current item of data
you're working with; maybe you don’t want to change or use that particular data item, or maybe the
data item can’t be used for some reason (for example, using it would cause an error).

The following example counts from 1 to 10, but it misses out the number 4 (which is considered unlucky
in many Asian cultures):

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

for ($i=1; $i <= 10; Si++) {

if ($i ==) continue;

echo "I've counted to: S$i
";
}
echo "All done!";

Though break and continue are useful beasts when you need them, it’s best not to use them unless
you have to. They can make looping code quite hard to read if they re overused.

Creating Nested Loops

There’s nothing to stop you creating a loop inside another loop. In fact, this can be quite a useful
technique. When you nest one loop inside another, the inner loop runs through all its iterations first.
Then the outer loop iterates, causing the inner loop to run through all its iterations again, and so on.

Here’s a simple example of nested looping;:

for (Stens = 0; Stens < 10; Stens++) {
for ($Sunits = 0; $Sunits < 10; Sunits++) {
echo Stens Sunits . "
";

}

This example displays all the integers from 0 to 99 (with a leading zero for the numbers 0 through 9).

To do this, it sets up two loops: an outer “tens” loop and an inner “units” loop. Each loop counts from 0
to 9. For every iteration of the “tens” loop, the “units” loop iterates 10 times. With each iteration of the
“units” loop, the current number is displayed by concatenating the $units value onto the $tens value.

Note that the outer loop iterates 10 times, whereas the inner loop ends up iterating 100 times: 10
iterations for each iteration of the outer loop.

Nested loops are great for working with multidimensional data structures such as nested arrays and
objects. You're not limited to two levels of nesting either; you can create loops inside loops inside loops,
and so on.

When using the break statement with nested loops, you can pass an optional numeric argument to indicate
how many levels of nesting to break out of. For example:

// Break out of the inner loop when Sunits == 5
for ($Stens = 0; S$Stens < 10; Stens++) {
for ($units = 0; S$Sunits < 10; Sunits++) {
if (Sunits == 5) break 1;
echo $tens . Sunits . "
";
}
}
// Break out of the outer loop when $units == 5
for ($tens = 0; S$tens < 10; Stens++) {
for (Sunits = 0; Sunits < 10; Sunits++) {
if (Sunits ==) break 2;
echo $tens . Sunits . "
";

}

65

(c) ketabton.com: The Digital Library

Part Il Learning the Language

Incidentally, you can also use a numeric argument with break in this way to break out of nested switch
constructs (or, for example, a switch embedded within a while or for loop).

_ A Homing Pigeon Simulator

Here’s an example script that brings together some of the concepts you've learned in this chapter so
far. The script graphically simulates the path of a homing pigeon as it flies from its starting point to its
home. We’re not exactly talking 3-dimensional animated graphics here, but it gets the idea across!

Here’s the script in all its glory:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Homing Pigeon Simulator</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
div.map { float: left; text-align: center; border: 1lpx solid #666;
background-color: #fcfcfc; margin: 5px; padding: lem; }
span.home, span.pigeon { font-weight: bold; }
span.empty { color: #666; }
</style>
</head>
<body>

<?php
SmapSize = 10;
// Position the home and the pigeon

do {

ShomeX = rand (0, SmapSize-1);

ShomeY = rand (0, SmapSize-1);

SpigeonX = rand (0, SmapSize-1);

SpigeonY = rand (0, SmapSize-1);
} while ((abs(ShomeX - S$pigeonX) < SmapSize/2) && (abs(ShomeYy -
SpigeonY) < S$mapSize/2));

do {
// Move the pigeon closer to home
if ($pigeonX < S$homeX)
SpigeonX++;
elseif (S$pigeonX > S$homeX)

SpigeonX--;

if (SpigeonY < S$homeY)
SpigeonY++;

66

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

elseif ($pigeonY > ShomeY)
SpigeonY--;

// Display the current map
echo '<div class="map" style="width: ' . SmapSize . 'em;"><pre>';

for (Sy = 0; Sy < SmapSize; Sy++) {

for ($x = 0; $x < S$mapSize; $x++) {
if ($x == ShomeX && Sy == ShomeY) {
echo '+'; // Home
} elseif ($x == S$pigeonX && Sy == S$SpigeonY) {
echo '%'; // Pigeon
} else {
echo '.'; // Empty square
}
echo ($x != SmapSize - 1) 2 " " . "";
}
echo "\n";

}

echo "</pre></div>\n";
} while ($pigeonX != S$homeX || $pigeonY != S$homeY);
?>

</body>
</html>

To try out the script, save it as homing_pigeon.php in your document root folder, and open the script’s
URL in your Web browser. You should see something like Figure 4-4. Each map represents the progress
of the pigeon (represented by the % symbol) toward its home (the + symbol). Reload the page to run a
new simulation, with the home and the pigeon in different positions.

If your page looks different, make sure your document root folder contains the common . css file
described in Chapter 2.

67

(c) ketabton.com: The Digital Library

Part Il Learning the Language

File Edit WView History Bookmarks Tools Help
& > e i ||Eﬂ' hitp:ilocalhostihoming pigeon.php | > | I|C' T o
., L 5 i
Al % v b
. " %
* + . ¥ . +.%
% &
Done
Figure 4-4

How It Works

This script uses a number of decisions and loops to simulate the pigeon flying toward home and
displays the results.

First, the script displays an XHTML page header. Then it sets a variable, $mapsSize, representing the
width and height of the map square (you might want to try experimenting with different values to see
how it affects the simulation):

SmapSize = 10;

Next, you encounter the first loop of the script: a do. . .while loop. This code uses PHP’s rand ()
function to randomly position the home point and the pigeon within the boundaries of the map. After
positioning the home and pigeon, the condition of the do. . .while loop checks to ensure that the
home and the pigeon are at least half the width (or height) of the map apart from each other; if they’'re
not, the loop repeats itself with new random positions. This ensures that the pigeon always has a
reasonable distance to travel:

// Position the home and the pigeon

do {

ShomeX = rand (0, SmapSize-1);

ShomeY = rand (0, SmapSize-1);

SpigeonX = rand (0, SmapSize-1);

SpigeonY = rand (0, S$mapSize-1);
} while ((abs(S$homeX - $pigeonX) < SmapSize/2) && (abs(ShomeYy -
SpigeonY) < $mapSize/2));

68

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

The built-in abs () function determines the absolute value of a number. For example, abs (3) is 3, and
abs (-3) isalso 3.

The next loop in the scriptis also a do. . .while loop, and comprises the main body of the simulation. The
first code within the loop uses decision-making to simulate the pigeon’s homing instinct. It simply checks
to see if the x coordinate of the pigeon is greater or less than the x coordinate of the home square, and
adjusts the pigeon’s x coordinate appropriately. The y coordinate is adjusted in the same way:

// Move the pigeon closer to home

if (SpigeonX < ShomeX)
SpigeonX++;

elseif ($pigeonX > $homeX)
SpigeonX--;

if ($pigeonY < ShomeY)
SpigeonY++;

elseif ($pigeonY > S$homeY)
SpigeonY--;

Note that if the x or y coordinate of the pigeon matches the corresponding home coordinate, there’s no
need to adjust the pigeon’s coordinate. Hence there is no else code branch.

The last section of code within the loop is concerned with displaying the current map. This code itself
comprises two nested for loops that move through all the x and y coordinates of the map. For each
square within the map, the code displays a + symbol if the square matches the coordinates of the home
position, and a % symbol if the square matches the pigeon coordinates. Otherwise, it displays a dot (.).
After each square, it adds a space character (unless it’s the last square on the row):

// Display the current map
echo '<div class="map" style="width: ' . SmapSize . 'em;"><pre>';

for ($y = 0; $y < $mapSize; S$y++) {

for ($x = 0; $x < SmapSize; S$x++) {
if ($x == ShomeX && Sy == ShomeY) {
echo '+'; // Home
} elseif ($x == S$pigeonX && Sy == S$pigeonY) {
echo '%'; // Pigeon
} else {
echo '.'; // Empty square
}
echo ($x != $mapSize - 1) 2 " " : "n;
}
echo "\n";

}

echo "</pre></div>\n";

69

(c) ketabton.com: The Digital Library

Part Il Learning the Language

Finally, you reach the end of the main do. . .while loop. As you’d expect, the loop ends once the
pigeon coordinates match the home coordinates:

} while ($pigeonX != $homeX || $pigeonY != ShomeY);

In addition, the script used various CSS styles (embedded within the head element of the page) to
improve the appearance of the maps.

Mixing Decisions and Looping with HTML

In Chapter 2, you learned that you can embed PHP within HTML Web pages and, indeed, most of the
examples in this book use this technique to wrap an XHTML page header and footer around the PHP code.

You also learned that you can switch between displaying HTML markup and executing PHP code by

using the <?php ... 2> tags. This feature really comes into its own with decisions and looping,
because you can use PHP to control which sections of a Web page are displayed (and how they’re
displayed).

Here’s a simple example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Fibonacci sequence</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
th { text-align: left; background-color: #999; }
th, td { padding: 0.4em; }
tr.alt td { background: #ddd; }
</style>
</head>
<body>

<h2>Fibonacci sequence</h2>

<table cellspacing="0" border="0" style="width: 20em; border: lpx solid
#666; ">

<tr>
<th>Sequence #</th>
<th>Value</th>

</tr>

<tr>
<td>F₀</td>
<td>0</td>

</tr>

<tr class="alt">
<td>F₁</td>
<td>1l</td>

</tr>

70

(c) ketabton.com: The Digital Library

Chapter 4: Decisions and Loops

<?php
Siterations = 10;

Snuml = 0;
Snum?2 1;

for (

{
$sum = Snuml + $num2;
Snuml = Snum2;
Snum2 = S$sum;

?>

$i=2; $i <= Siterations; S$i++)

<tr<?php if ($1 % 2 != 0) echo

class="alt"' ?>>

<td>F_{<?php echo $i?>}</td>

<td><?php echo $num2?></td>
</tr>

<?php
}
?>

</table>

</body>

</html>

Try saving this file as fibonacci . php in your document root folder and running the script in your

browser. Figure 4-5 shows the result.

TOONHCErE ca =0 (S
file Edit wiew Hislory Bookmarks Tools Help
& - 6 i = ‘ @ httpyfocalhostfibenacci.php | - I [|C|'— 11z (1|
Fibonacci sequence
[Seauonces vake |
P o
; 1 |
Fa 1
Fy 2 ‘
F, a
F5 5
F &]
Fa 13
Fo 21
Fy 34
Fio 55
Done
Figure 4-5

71

(c) ketabton.com: The Digital Library

Part Il Learning the Language

This code displays the first 10 numbers in the Fibonacci sequence. First the XHTML page header and
table header are displayed. Then a for loop generates each Fibonacci number, breaking out into HTML
each time through the loop to display a table row containing the number. Notice how the script flips
between HTML markup and PHP code several times using the <?php ... ?> tags. The alternating
table rows are achieved with a CSS class in the head element combined with an i f decision embedded
within the table row markup.

You can see how easy it is to output entire chunks of HTML — in this case, a table row — from inside a
loop, or as the result of a decision.

Summary

In this chapter you explored two key concepts of PHP (or any programming language for that matter):
decisions and loops. Decisions let you choose to run a block of code based on the value of an expression,
and include:

Q The if statement for making simple “either/or” decisions

QO The else and elseif statements for decisions with multiple outcomes

QO The switch statement for running blocks of code based on the value of an expression

Q The » (ternary) operator for writing compact if. . .else style decisions
Loops allow you to run the same block of code many times until a certain condition is met. You
learned about:

QO while loops that test the condition at the start of the loop

O do...whileloops that test the condition at the end of the loop

O for loops that let you write neat “counting” loops
You also looked at other loop-related statements, including the break statement for exiting a loop and the

continue statement for skipping the current loop iteration. Finally, you explored nested loops, and looked
at a powerful feature of PHP: the ability to mix decision and looping statements with HTML markup.

In the next chapter you take a thorough look at strings in PHP, and how to manipulate them. Before
reading it, though, try the following two exercises to cement your understanding of decisions and loops.
As always, you can find solutions to the exercises in Appendix A.

Exercises

72

1. Write a script that counts from 1 to 10 in steps of 1. For each number, display whether that
number is an odd or even number, and also display a message if the number is a prime number.
Display this information within an HTML table.

2. Modify the homing pigeon simulator to simulate two different pigeons on the same map, both
flying to the same home point. The simulation ends when both pigeons have arrived home.

(c) ketabton.com: The Digital Library

Strings

You briefly looked at the concept of strings back in Chapter 3. In programming-speak, a string is
simply a sequence of characters. For instance, the values "hello", "how are you?", "123",
and "!e#$%" are all valid string values.

Fundamentally, the Web is based on string data. HTML and XHTML pages consist of strings of
plain text, as does HTTP header information (more on this in Chapter 16) and, of course, URLs. As
you’d imagine, this means that Web programming languages such as PHP are particularly geared
toward working with strings. Indeed, PHP has nearly 100 different functions that are directly
concerned with manipulating strings.

For example, you can use PHP’s string functions to:

Q Search for text within a string

O Replace some text within a string with another string of text

Q Format strings so that they’re easier to read or work with

0 Encode and decode strings using various popular encoding formats

On top of all that, you can also work with strings using regular expressions (which you learn
about in Chapter 18).

In this chapter you look at the basics of strings in PHP — how to create string values and variables,
and how to access characters within strings. You then explore PHP’s string functions. The chapter
doesn’t aim to cover every single string function in PHP; the subject could fill a whole book on its
own. Instead, you get to learn about the most useful (and commonly used) functions that you're
likely to need in everyday situations.

If you want the full list of PHP’s string functions, it’s available in the online PHP manual at
www . php .net/manual/en/ref.strings.php.

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

C

74

reating and Accessing Strings

As you learned in Chapter 3, creating a string variable is as simple as assigning a literal string value to a
new variable name:

SmyString = 'hello’;

In this example, the string literal (hello) is enclosed in single quotation marks ('). You can also use
double quotation marks ("), as follows:

SmyString = "hello";

Single and double quotation marks work in different ways. If you enclose a string in single quotation
marks, PHP uses the string exactly as typed. However, double quotation marks give you a couple of
extra features:

0 Any variable names within the string are parsed and replaced with the variable’s value
0 You can include special characters in the string by escaping them
Here are some examples to make these differences clear:

SmyString = 'world';

echo "Hello, S$myString!
"; // Displays "Hello, world!"
echo 'Hello, s$myString!
'; // Displays "Hello, $myString!"
echo "<pre>Hi\tthere!</pre>"; // Displays "Hi there!"
echo '<pre>Hi\tthere!</pre>'; // Displays "Hi\tthere!"

With the “Hello, world!” example, notice that using double quotes causes the $myString variable name
to be substituted with the actual value of $myString. However, when using single quotes, the text
$myString is retained in the string as-is.

With the “Hi there!” example, an escaped tab character (\t) is included within the string literal. When
double quotes are used, the \t is replaced with an actual tab character; hence the big gap between Hi
and there! in the output. The same string enclosed in single quotes results in the \t characters being
passed through intact.

Here’s a list of the more common escape sequences that you can use within double-quoted strings:

Sequence Meaning
\n A line feed character (ASCII 10)
\r A carriage return character (ASCII 13)
\t A horizontal tab character (ASCII 9)
\v A vertical tab character (ASCII 11)
\ £ A form feed character (ASCII 12)
\\ A backslash (as opposed to the start of an escape sequence)
\$ A $ symbol (as opposed to the start of a variable name)
\" A double quote (as opposed to the double quote marking the end of a string)

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Within single-quoted strings, you can actually use a couple of escape sequences. Use \ ' to include a lit-
eral single quote within a string. If you happen to want to include the literal characters \ ' within a sin-
gle-quoted string, use \\\ ' — that is, an escaped backslash followed by an escaped single quote.

By the way, it’s easy to specify multi-line strings in PHP. To do this, just insert newlines into the string
literal between the quotation marks:

SmyString = "
I stay too long; but here my Father comes:

A double blessing is a double grace;
Occasion smiles vpon a second leaue

"o
7

Including More Complex Expressions within Strings

Though you can insert a variable’s value in a double-quoted string simply by including the variable’s
name (preceded by a $ symbol), at times things get a bit more complicated. Consider the following
situation:

S$favoriteAnimal = "cat";
echo "My favorite animals are S$favoriteAnimals";

This code is ambiguous; should PHP insert the value of the $ favoriteaAnimal variable followed by an
"s" character? Or should it insert the value of the (non-existent) $favoriteaAnimals variable? In fact,
PHP attempts to do the latter, resulting in:

My favorite animals are

Fortunately, you can get around this problem using curly brackets, as follows:

S$favoriteAnimal = "cat";
echo "My favorite animals are {$favoriteAnimall}s";

This produces the expected result:
My favorite animals are cats

You can also place the opening curly bracket after the $ symbol, which has the same effect:
echo "My favorite animals are ${favoriteAnimal}s";

The important thing is that you can use the curly brackets to distinguish the variable name from the
rest of the string.

You can use this curly bracket syntax to insert more complex variable values, such as array element
values and object properties. (You explore arrays and objects in the next few chapters.) Just make sure

the whole expression is surrounded by curly brackets, and you're good to go:

SmyArray["age"] = 34;
echo "My age is {SmyArray["age"]}"; // Displays "My age is 34"

75

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Of course, if you don’t want to use curly brackets you can always create the string by concatenating the
values together:

SmyArray["age"] = 34;
echo "My age is " . SmyArray["age"]; // Displays "My age is 34"

Using Your Own Delimiters

Although quotation marks make good delimiters for string literals in most situations, sometimes it
helps to be able to use your own delimiter. For example, if you need to specify a long string containing
lots of single and double quotation marks, it’s tedious to have to escape many quotation marks within
the string.

You can use your own delimiters in two ways: heredoc syntax and nowdoc syntax. Heredoc is the
equivalent of using double quotes: variable names are replaced with variable values, and you can use
escape sequences to represent special characters. Nowdoc works in the same way as single quotes: no
variable substitution or escaping takes place; the string is used entirely as-is.

Heredoc syntax works like this:
SmyString = <<<DELIMITER

(insert string here)
DELIMITER;

DELIMITER is the string of text you want to use as a delimiter. It must contain just letters, numbers, and
underscores, and must start with a letter or underscore. Traditionally, heredoc delimiters are written in
uppercase, like constants.

Nowdoc syntax is similar; the only difference is that the delimiter is enclosed within single quotes:
SmyString = <<<'DELIMITER'
(insert string here)
DELIMITER;

Here’s an example of heredoc syntax in action:

Sreligion = 'Hebrew';

SmyString = <<<END_TEXT

"'T am a Sreligion,' he cries - and then - 'I fear the Lord the God of
Heaven who hath made the sea and the dry land!'"
END_TEXT;

echo "<pre>$myString</pre>";
This example displays the following output:

"'T am a Hebrew,' he cries - and then - 'I fear the Lord the God of
Heaven who hath made the sea and the dry land!'"

76

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Here’s the same example using nowdoc syntax instead:
Sreligion = 'Hebrew';

SmyString = <<<'END_TEXT'

"'T am a Sreligion,' he cries - and then - 'I fear the Lord the God of
Heaven who hath made the sea and the dry land!'"
END_TEXT;

echo "<pre>$SmyString</pre>";

The output from this example is as follows (notice how the $religion variable name is not substituted
this time):

"'T am a Sreligion,' he cries - and then - 'I fear the Lord the God of
Heaven who hath made the sea and the dry land!'"

Nowdoc syntax was introduced in PHP 5.3.0.

Other Ways to Create Strings

You don’t have to assign a literal string value to create a string variable; you can assign the result of
any expression:

SmyString = $yourString;
SmyString = "how " . "are " . "you?";
SmyString ($x > 100) ? "Big number" : "Small number";

In addition, many PHP functions return string values that you can then assign to variables (or display in
the browser). For example, file_get_contents (), which you learn about in Chapter 11, reads the
contents of a file into a string.

Finding the Length of a String

Once you have a string variable, you can find out its length with the strlen () function. This function
takes a string value as an argument, and returns the number of characters in the string. For example:

SmyString = "hello";
echo strlen($SmyString) . "
"; // Displays 5
echo strlen("goodbye") . "
"; // Displays 7

strlen() often comes in useful if you want to loop through all the characters in a string, or if you want
to validate a string to make sure it’s the correct length. For example, the following code makes sure that
the string variable $year is 4 characters long:

if (strlen(Syear) != 4) {
echo "The year needs to contain 4 characters. Please try again.";

else {

// Process the year

77

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Another useful related function is str_word_count (), which returns the number of words in a string.
For example:

echo str_word_count("Hello, world!"); // Displays 2

Accessing Characters within a String

You might be wondering how you can access the individual characters of a string. PHP makes this easy
for you. To access a character at a particular position, or index, within a string, use:

Scharacter = $string[index];
In other words, you place the index between square brackets after the string variable name. String

indices start from 0, so the first character in the string has an index of 0, the second has an index of 1,
and so on. You can both read and change characters this way. Here are some examples:

SmyString = "Hello, world!";

echo $myString[0] . "
"; // Displays 'H'

echo $myString([7] . "
"; // Displays 'w'
SmyString[12] = '?';

echo $myString . "
"; // Displays 'Hello, world?'

If you need to extract a sequence of characters from a string, you can use PHP’s substr () function. This
function takes the following parameters:
Q The string to extract the characters from

O The position to start extracting the characters. If you use a negative number, substr () counts
backward from the end of the string

Q The number of characters to extract. If you use a negative number, substr () misses that many
characters from the end of the string instead. This parameter is optional; if left out, substr ()
extracts from the start position to the end of the string

Here are a few examples that show how to use substr () :

SmyString = "Hello, world!";

echo substr($myString, 0, 5) . "
"; // Displays 'Hello'
echo substr($myString, 7) . "
"; // Displays 'world!"
echo substr($myString, -1) . "
"; // Displays '!

echo substr($myString, -5, -1) . "
"; // Displays 'orld'

You can’t modify characters within strings using substr () . If you need to change characters within a
string, use substr_replace () instead. This function is described later in the chapter.

Searching Strings

Often it’s useful to know whether one string of text is contained within another. PHP gives you several
string functions that let you search for one string inside another:

78

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Q strstr() tells you whether the search text is within the string

Q strpos() and strrpos () return the index position of the first and last occurrence of the search
text, respectively

QO substr_count () tells you how many times the search text occurs within the string

Q strpbrk() searches a string for any of a list of characters

Searching Strings with strstr()

If you just want to find out whether some text occurs within a string, use strstr () . This takes two
parameters: the string to search through, and the search text. If the text is found, strstr () returns the
portion of the string from the start of the found text to the end of the string. If the text isn’t found, it
returns false . For example:

SmyString = "Hello, world!";
echo strstr($myString, "wor") . "
"; // Displays 'world!'
echo (strstr(S$SmyString, "xyz") ? "Yes" : "No") . "
"; // Displays 'No’'

As of PHP 5.3, you can also pass an optional third Boolean argument. The default value is false . If you
pass in a value of true, strstr () instead returns the portion from the start of the string to the character
before the found text:

SmyString = "Hello, world!";
echo strstr(S$myString, "wor", true); // Displays 'Hello, '

Locating Text with strpos() and strrpos()

To find out exactly where a string of text occurs within another string, use strpos () . This function
takes the same two parameters as strstr () : the string to search, and the search text to look for. If the
text is found, strpos () returns the index of the first character of the text within the string. If it’s not
found, strpos () returns false:

SmyString = "Hello, world!";
echo strpos($myString, "wor"); // Displays '7'
echo strpos($SmyString, "xyz"); // Displays '' (false)

There’s a gotcha when the searched text occurs at the start of the string. In this case, strpos () returns 0
(the index of the first character of the found text), but it’s easy to mistake this for a return value of false
if you're not careful. For example, the following code will incorrectly display "Not found" :

SmyString = "Hello, world!";
if (!strpos(SmyString, "Hel")) echo "Not found";

So you need to test explicitly for a false return value, if that’s what you're checking for. The following
code works correctly:

SmyString = "Hello, world!";
if (strpos($myString, "Hel") === false) echo "Not found";

79

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

strpos () can take an optional third argument: an index position within the string to start the search.
Here’s an example:

SmyString = "Hello, world!";
echo strpos($myString, "o") . "
"; // Displays '4'
echo strpos($myString, "o", 5) . "
"; // Displays '8’

You can use this third argument, combined with the fact that strpos () returns the position of the
matched text, to repeatedly find all occurrences of the search text within the string — for example:

SmyString = "Hello, world!";

$pos = 0;

while (($pos = strpos(S$SmyString, "1l", Spos)) !== false) {
echo "The letter 'l' was found at position: $pos
";
Spos++;

}

This code produces the output shown in Figure 5-1.

3 SMOZIITEITETOX T iz
File Edit view History Bookmarks Tools Help

4= > a & | (@ hipglocalhost/strpos example php | - | |Gl = |

The letter ' was found at position: 2
The letter ‘I' was found at poeition: 3
The letter 'I' was found at position: 10

Done

Figure 5-1

strpos () has a sister function, strrpos (), that does basically the same thing; the only difference is that
strrpos () finds the last match in the string, rather than the first:

SmyString = "Hello, world!";
echo strpos($myString, "o") . "
"; // Displays '4'
echo strrpos($myString, "o") . "
"; // Displays '8’

As with strpos (), you can pass an optional third argument indicating the index position from which to
start the search. If this index position is negative, strrpos () starts that many characters from the end of
the string, rather than from the beginning.

Finding the Number of Occurrences with substr_count()

Occasionally you might need to know how many times some text occurs within a string. For example, if
you were writing a simple search engine, you could search a string of text for a keyword to see how
relevant the text is for that keyword; the more occurrences of the keyword, the greater the chance that the
text is relevant.

80

(c) ketabton.com: The Digital Library

Chapter 5: Strings

You could find the number of occurrences easily enough using strpos () and a loop, but PHP, as in
most other things, gives you a function to do the job for you: substr_count () . To use it, simply pass
the string to search and the text to search for, and the function returns the number of times the text was
found in the string. For example:

SmyString = "I say, nay, nay, and thrice nay!";
echo substr_count($SmyString, "nay"); // Displays '3'

You can also pass an optional third argument to specify the index position to start searching, and an
optional fourth argument to indicate how many characters the function should search before giving up.
Here are some examples that use these third and fourth arguments:

SmyString = "I say, nay, nay, and thrice nay!";
echo substr_count($myString, "nay", 9) . "
"; // Displays '2'
echo substr_count($myString, "nay", 9, 6) . "
"; // Displays '1l'

Searching for a Set of Characters with strpbrk()

What if you need to find out if a string contains any one of a set of characters? For example, you might
want to make sure a submitted form field doesn’t contain certain characters for security reasons. PHP
gives you a function, strpbrk (), that lets you easily carry out such a search. It takes two arguments: the
string to search, and a string containing the list of characters to search for. The function returns the
portion of the string from the first matched character to the end of the string. If none of the characters in
the set are found in the string, strpbrk () returns false.

Here are some examples:

SmyString = "Hello, world!";

echo strpbrk($SmyString, "abcdef"); // Displays 'ello, world!'

echo strpbrk($myString, "xyz"); // Displays '' (false)

Susername = "matt@example.com";

if (strpbrk(Susername, "@!")) echo "@ and ! are not allowed in usernames";

Replacing Text within Strings

As well as being able to search for text within a larger string, you can also replace portions of a string
with different text. This section discusses three useful PHP functions for replacing text:

0 str_replace() replaces all occurrences of the search text within the target string
Q substr_replace() replaces a specified portion of the target string with another string

Q strtr() replaces certain characters in the target string with other characters

Replacing All Occurrences using str_replace()

str_replace () lets you replace all occurrences of a specified string with a new string. It’s the PHP
equivalent of using the Replace All option in a word processor.

81

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

The function takes three arguments: the search string, the replacement string, and the string to search
through. It returns a copy of the original string with all instances of the search string swapped with the
replacement string. Here’s an example:

SmyString = "It was the best of times, it was the worst of times,";

// Displays "It was the best of bananas, it was the worst of bananas,"
echo str_replace("times", "bananas", S$myString);

If you want to know how many times the search string was replaced, pass in a variable as an optional
fourth argument. After the function runs, this variable holds the number of replacements:

SmyString = "It was the best of times, it was the worst of times,";

// Displays "It was the best of bananas, it was the worst of bananas,"
echo str_replace("times", "bananas", SmyString, S$Snum) . "
";

// Displays "The text was replaced 2 times."
echo "The text was replaced $num times.
";

You can pass arrays of strings for the first and second arguments to search for and replace multiple
strings at once. You can also pass an array of strings as the third arqument, in which case str_
replace () replaces the text in all the strings in the array and returns an array of altered strings. This
is a very powerful way to do a global search and replace. You learn all about arrays in the next chapter.

Replacing a Portion of a String with substr_replace()

82

Whereas str_replace () searches for a particular string of text to replace, substr_replace () replaces
a specific portion of the target string. To use it, pass three arguments: the string to work on, the
replacement text, and the index within the string at which to start the replacement. substr_replace ()
replaces all the characters from the start point to the end of the string with the replacement text,
returning the modified string as a copy (the original string remains untouched).

This example shows how substr_replace () works:
SmyString = "It was the best of times, it was the worst of times,";

// Displays "It was the bananas"
echo substr_replace($SmyString, "bananas", 11) . "
";

You can see that the preceding code has replaced all of the original text from the character at index 11
onwards with the replacement text ("bananas").

If you don’t want to replace all the text from the start point to the end of the string, you can specify an
optional fourth argument containing the number of characters to replace:

SmyString = "It was the best of times, it was the worst of times,";

// Displays "It was the best of bananas, it was the worst of times,"
echo substr_replace($SmyString, "bananas", 19, 5) . "
";

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Pass a negative fourth argument to replace up to that many characters from the end of the string:
SmyString = "It was the best of times, it was the worst of times,";

// Displays "It was the best of bananas the worst of times,"
echo substr_replace($myString, "bananas", 19, -20) . "
";

You can also pass a zero value to insert the replacement text into the string rather than replacing
characters:

SmyString = "It was the best of times, it was the worst of times,";

// Displays "It really was the best of times, it was the worst of times,"
echo substr_replace($myString, "really ", 3, 0) . "
";

_ Justifying Text

You can use the string functions you've learned so far to write a script to justify lines of text. Justifying
text means aligning text within a column so that the text is flush with both the left and right margins.

Here’s the script. Save it as justification.php in your document root folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Justifying Lines of Text</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Justifying Lines of Text</hl>

<?php
// The text to justify

SmyText = <<<END_TEXT

But think not that this famous town has
only harpooneers, cannibals, and
bumpkins to show her visitors. Not at
all. Still New Bedford is a queer place.
Had it not been for us whalemen, that
tract of land would this day perhaps
have been in as howling condition as the
coast of Labrador.

END_TEXT;
SmyText = str_replace("\r\n", "\n", SmyText);

$linelLength = 40; // The desired line length
SmyTextJustified = "";

83

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

$SnumlLines = substr_count(S$myText, "\n");
SstartOfLine = 0;

// Move through each line in turn

for ($i=0; $i < $numLines; $i++) {
SoriginalLineLength = strpos(SmyText, "\n", S$startOfLine) - $startOfLine;
SjustifiedLine = substr(SmyText, S$startOfLine, SoriginalLineLength);
SjustifiedLinelLength = SoriginalLineLength;

// Keep adding spaces between words until the desired
// line length is reached

while ($i < SnumLines - 1 && SjustifiedLineLength < $lineLength) {
for ($3=0; $j < $justifiedLineLength; S$j++) {
if (SjustifiedLineLength < $lineLength && $justifiedLine([$j] == " ") {
SjustifiedLine = substr_replace($justifiedLine, " ", $3j, 0);
SjustifiedLineLength++;
$3++;

// Add the justified line to the string and move to the
// start of the next line

SmyTextJustified .= "S$justifiedLine\n";
SstartOfLine += SoriginallLineLength + 1;
?>

<h2>0Original text:</h2>
<pre><?php echo S$myText ?></pre>

<h2>Justified text:</h2>
<pre><?php echo S$myTextJustified ?></pre>

</body>
</html>

Now run the script by visiting its URL in your Web browser. You should see a page like Figure 5-2. The
first block of text is the original, unjustified text with a ragged right-hand margin. The second block of
text is the justified version with both left and right margins aligned.

84

(c) ketabton.com: The Digital Library

Chapter 5: Strings

(@ Justifying Lines of lext - Mozil
File Edit WView History Bookmarks Tools Help

E= e °) ﬁ [|;'gihttp:ﬂlocalhostﬂusliﬁcation.php |v] ”C!v s00gle Q‘|

Justifying Lines of Text

Original text:

Bul think nul thal this lamous Lown has
only harpooneers, cannibals, and
bumpkins to show her visitors. Not at
all. 5till New Hedford is a queer place.
Had il nol been for us whalemen, Lhat
tract of land would this day perhaps
have been in as howling condition as the
coast of Labrador.

Justified text:

But think not that this famous town has
only harpooneers, cannibals, and
bumpkins to show her visitors, Not at
all. St1ll New Redford 18 a queer place.
Had il nol been for us whalemen, thal
tract of land would this day perhaps
have been in as howling condition as the
coast of |ahrador.

Done

Figure 5-2

How It Works

The script starts by displaying an XHTML page header, then defining a variable, $myText, containing the
text to justify. The text is included in the script using the heredoc syntax. (The extra blank line at the end
of the text ensures that the last line of the text has a newline character at the end of it; this is required by
the algorithm that the script uses.)

After defining $myText, the script uses str_replace () to convert any Windows line endings

(a carriage return followed by a line feed) into UNIX line endings (a line feed on its own). Windows
line endings can occur if the script file was saved on a Windows machine, and they can confuse the
justification algorithm (which expects each line to end with just a line feed):

SmyText = str_replace("\r\n", "\n", SmyText);
Next, the script sets a few more variables:

0 $lineLength: The desired length that you'd like each line of text to be. Try changing this to
different values to see what happens

Q $myTextJustified: This will contain the final, justified text

85

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

0 $numLines : Contains the number of lines of text, computed by counting the number of newline
characters in the text with the substr_count () function

QO $startOofLine: Points to the index position within $myText of the start of the current line
being processed

Now that the script has initialized these variables, the text can be processed. To do this, the script sets up
a for loop that moves through each line of the text:

for ($i=0; $i < $numLines; $i++) {

Within the loop, the script first computes the length of the original, unjustified line. It does this by
using strpos () to find the index position of the next newline character after the start of the current
line, then subtracting this index position from that of the start of the line:

SoriginalLineLength = strpos($SmyText, "\n", S$startOfLine) - S$startOfLine;

Now that the script knows the length of the line, it’s easy to copy the entire line to a new variable,
$justifiedLine, that will hold the justified version of the line. Another variable,
$justifiedLineLength, is set up to track the length of the justified line:

$justifiedLine = substr(SmyText, $startOfLine, $originalLineLength);
$justifiedLineLength = SoriginalLineLength;

The next block of code makes up the meat of the justification algorithm. The script uses a while loop
to run the algorithm repeatedly until the line has been padded out to match the desired line length.
Note that the while loop condition also skips the last line of text, because you don’t want this to be
justified:

while ($i < S$numLines - 1 && S$SjustifiedLineLength < $lineLength) {

Within the while loop, a for loop works its way through $justifiedLine, character by character. If
the current character is a space, and the line length is still less than the desired length, the script uses
substr_replace () toinsert an extra space character at that point. It then increments
$justifiedLineLength to keep track of the current length, and also increments the loop counter, $7,
to skip over the extra space that’s just been created:

for ($3j=0; $j < S$justifiedLineLength; $j++) {

if ($justifiedLinelLength < $lineLength && $justifiedLine[$j] == " ") {
SjustifiedlLine = substr_replace($justifiedLine, " ", $3j, 0);
$justifiedLineLength++;
$3++;

}

}

The net result of these two loops is that the script moves through the current line from left to right,
adding extra space between each word, until the desired line length is reached. If the desired length isn’t
reached by the time the end of the line’s reached, the algorithm starts again from left to right, adding
additional spaces. This way the words are spaced as evenly as possible to produce a smooth justification.

86

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Once the desired line length has been reached, the justified line is appended to $myTextJustified
(adding a newline character at the end of the line), and the $startofLine pointer is moved to the
start of the next line (adding 1 to the index to skip over the newline character):

SmyTextJustified .= "$justifiedLine\n";
SstartOfLine += S$SoriginallLinelLength + 1;

Finally, the original and justified blocks of text are displayed in the page:
?>

<h2>0riginal text:</h2>
<pre><?php echo S$myText ?></pre>

<h2>Justified text:</h2>
<pre><?php echo SmyTextJustified ?></pre>

</body>
</html>

Translating Characters with strtr()

A fairly common requirement — especially with Web programming — is to be able to replace certain
characters in a string with certain other characters. For example, you might want to make a string “URL
friendly” by replacing spaces with + (plus) symbols and apostrophes with - (hyphen) symbols.

This is where strtr () comes in. This function takes three arguments: the string to work on, a string
containing a list of characters to translate, and a string containing the characters to use instead. The
function then returns a translated copy of the string. So you could write a simple script to make a “URL
friendly” string as follows:

SmyString = "Here's a little string";

// Displays "Here-s+a+little+string"
echo strtr($myString, " '", "+-") . "
";

strtr() is especially useful if you need to translate a string from one character set to another, because
you can easily map hundreds of characters to their equivalents in the new character set just by passing a
couple of strings.

You can also use strtr () to replace strings with strings, rather than characters with characters. To do
this, pass just two arguments: the string to work on, and an array of key/value pairs, where each key is
the string to search for and each corresponding value is the string to replace it with. More on arrays in the
next chapter.

Dealing with Upper- and Lowercase

Most Western character sets have a concept of upper- and lowercase letters. PHP lets you convert strings
between upper- and lowercase in a variety of ways.

87

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

To convert a string to all lowercase, use strtolower () . This function takes a string to convert, and
returns a converted copy of the string:

SmyString = "Hello, world!";
echo strtolower(S$myString); // Displays 'hello, world!'

Similarly, you can use strtoupper () to convert a string to all uppercase:

SmyString = "Hello, world!";
echo strtoupper($myString); // Displays 'HELLO, WORLD!"

ucfirst () makes just the first letter of a string uppercase:

$SmyString = "hello, world!";

echo ucfirst($myString); // Displays 'Hello, world!'
lcfirst () —introduced in PHP 5.3 — makes the first letter of a string lowercase:

SmyString = "Hello, World!";

echo lcfirst($myString); // Displays 'hello, World!'

Finally, ucwords () makes the first letter of each word in a string uppercase:

SmyString = "hello, world!";
echo ucwords($myString); // Displays 'Hello, World!'

Speaking of upper- and lowercase, most of the search and replacement functions described earlier in the
chapter are case-sensitive. This means that they’ll only match letters of the same case. For example:

SmyString = "Hello, world!";

// Displays "Not found"

if (strstr(SmyString, "hello"))
echo "Found";

else
echo "Not found";

However, PHP includes case-insensitive versions of many string functions, which means they’ll work
even if the case of the strings don’t match. For example, there’s a case-insensitive version of strstr (),
called stristr() :

SmyString = "Hello, world!";

// Displays "Found"

if (stristr(SmyString, "hello"))
echo "Found";

else
echo "Not found";

88

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Here’s a list of case-insensitive string functions:

Function Case-Insensitive Equivalent
strstr () stristr()

strpos () stripos ()

strrpos () strripos ()
str_replace() str_ireplace ()

Formatting Strings

Often, a script’s internal representation of a string can look fairly ugly or unreadable to a person using
the script. For example, “$143,834.12” is much easier to understand than “143834.12”. Fortunately, PHP
gives you a number of functions that you can use to format strings in ways that are more human-
friendly. In this section you explore some of the more common string formatting functions in PHP.

General-Purpose Formatting with printf() and sprintf()

printf () —and its close cousin, sprintf () — are very powerful functions that you can use to format
strings in all sorts of different ways. printf () takes a string argument called a format string, usually followed
by one or more additional arguments containing the string or strings to format. It then outputs the result.

The format string contains ordinary text intermingled with one or more conversion specifications. Each
conversion specification requires an additional argument to be passed to printf (), and it formats that
argument as required and inserts it into the format string. The resulting formatted string is then
displayed. Conversion specifications always start with a percent (%) symbol.

This probably sounds a little overwhelming at first glance, so here’s a simple example to illustrate
the point:

// Displays "Pi rounded to a whole number is: 3"
printf("Pi rounded to a whole number is: %d", M_PI);

In this example, "Pi rounded to a whole number is: %d"is the format string, and the "%d" within
the string is a conversion specification. In this case, the conversion specification tells printf () to read
an additional argument and insert it, formatted as a whole decimal number, into the format string. The
additional argument is the PHP constant M_PI, which represents an approximation of pi to a number of
decimal places (14 by default). So the net result of the function call is to print the format string with the
"%d" replaced by the value of pi rounded to a whole number.

Here’s another example that uses multiple conversion specifications:

// Displays "2 times 3 1is 6."
printf("%d times %d is %d4.", 2, 3, 2*3);

This code displays three decimal numbers within the output string: 2, 3, and the result of the expression 2*3 .

89

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Using Type Specifiers

20

The

d within the conversion specification, "%d", is called a type specifier; it tells printf () to format the

argument as a decimal integer. You can format in other ways using different type specifiers, as follows:

Type Specifier Meaning

b Treat the argument as an integer and format it as a binary number.

€ Treat the argument as an integer and format it as a character with that ASCII
value.

d Treat the argument as an integer and format it as a signed decimal number.

e Format the argument in scientific notation (for example, 3.45e+2).

£ Format the argument as a floating-point number, taking into account the
current locale settings (for example, many European locales use a comma for
the decimal point, rather than a period).

F Format the argument as a floating-point number, ignoring the locale
settings.

o Treat the argument as an integer and format it as an octal number.

S Format the argument as a string.

u Treat the argument as an integer and format it as an unsigned decimal
number.

x Treat the argument as an integer and format it as a lowercase hexadecimal
number.

X Treat the argument as an integer and format it as an uppercase hexadecimal

number.

Display a literal percent (%) symbol. This doesn’t require an argument.

Here’s an example script that displays the same argument — the number 123 .45 — formatted using
different type specifiers:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Type Specifiers in Action</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Type Specifiers in Action</hl>

(c) ketabton.com: The Digital Library

Chapter 5: Strings

<?php

SmyNumber = 123.45;

printf("Binary: %b
", S$SmyNumber);
printf("Character: %c
", S$SmyNumber);
printf("Decimal: %d
", SmyNumber);
printf("Scientific: %e
", S$SmyNumber);
printf("Float: %$f
", S$myNumber) ;
printf("Octal: %o
", SmyNumber) ;
printf("String: %$s
", SmyNumber) ;
printf("Hex (lower case): %x
", S$SmyNumber);
printf("Hex (upper case): %X
", SmyNumber);
?>

</body>
</html>

You can see the result in Figure 5-3.

«o-e

ple Edit wview History Bookmarks Dbols Help

= |IB' hitp:fflocalhosiftype specifiers.php

Type Specifiers in Action

Binary: 1111011
Character: {
Decimal. 123

Scientific: 1.234500e4+2
Float: 123.450000
Octal: 173

String: 123.45

Hex (lower case): 7b
Hex (upper case): 7B

Done

Figure 5-3

Specifying Signs
By default, printf () displays negative numbers with a minus (-) symbol in front of them, but doesn’t

put a plus (+) symbol in front of positive numbers. To change printf () s behavior so that it always
displays a sign symbol, use the sign specifier, +, in front of the type specifier. Here’s an example:

printf
printf
printf
printf

(
(
(
(

"$d
", 123)
"$d
", -123
"%+d
", 123
"%+d
", -123

)
)

7

)

7

//
//
//
//

Displays
Displays
Displays
Displays

"123"

"-123"
"+123"
"-123"

91

(c) ketabto

n.com: The Digital Library

Part Il: Learning the Language

Padding the Output

92

You can add characters to the left (by default) or the right of the formatted argument in order to pad it
out to a fixed width. This is useful if you want to add leading zeros to a number, or horizontally align
many strings by padding with spaces.

To add padding you insert a padding specifier into your conversion specification, before the type specifier.
The padding specifier consists of either a zero (to pad with zeros) or a space character (to pad with
spaces), followed by the number of characters to pad the result out to. printf () then adds as many
zeros or spaces as required to make the result the correct width.

For example, the following code displays various numbers, using leading zeros where necessary to
ensure the result is always six digits long:

printf("%$06d
", 123); // Displays "000123"
printf("%06d
", 4567); // Displays "004567"
printf("%$06d
", 123456); // Displays "123456"

The padding specifier can add characters where required, but it never truncates the output. So print
("s06d", 12345678)d$pmys"l2345678",n0t"345678".

This example pads various strings using leading spaces to ensure that they’re right-aligned:

print "<pre>";

printf("% 15s\n", "Hi");
printf("% 15s\n", "Hello");
printf("% 15s\n", "Hello, world!");

print "</pre>";
Here’s the result:

Hi

Hello

Hello, world!

You can also leave out the zero or space and just specify a number, in which case print£ () pads
with spaces.

You're not limited to zeros and spaces. To use your own padding character, insert an apostrophe (')
followed by the character instead of the zero or space:

printf("%'#8s", "Hi"); // Displays "######Hi"

If you want to add padding to the right rather than the left — so that the result is left-aligned rather than
right-aligned — add a minus (-) symbol between the padding character and the width specifier:

printf("$'#-8s", "Hi"); // Displays "Hi######"

Padding behaves differently when using £ or ¥ to display a float. For more details, see “Specifying
Number Precision.”

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Specifying Number Precision

When displaying floating-point numbers with the £ or F type specifier, you can use a precision specifier to
indicate how many decimal places to round the number to. To add a precision specifier, insert a period
(.), followed by the number of decimal places to use, before the type specifier:

printf("$f
", 123.4567); // Displays "123.456700" (default precision)
printf("%.2f
", 123.4567); // Displays "123.46"
printf("%$.0f
", 123.4567) // Displays "123"

printf("%$.10f
", 123.4567); // Displays "123.4567000000"

You can use a padding specifier with a precision specifier, in which case the entire number is padded to
the required length (including the digits after the decimal point, as well as the decimal point itself):

echo "<pre>";

printf("%.2f
", 123.4567); // Displays "123.46"
printf("%$012.2f
", 123.4567); // Displays "000000123.46"
printf("%$12.4f
", 123.4567); // Displays " 123.4567"

echo "</pre>";

By the way, if you use a precision specifier when formatting a string, print£ () truncates the string to
that many characters:

printf("%.8s\n", "Hello, world!"); // Displays "Hello, w"

Swapping Arguments

As you've probably noticed, the order of the additional arguments passed to printf () must match the
order of the conversion specifications within the format string. Normally this isn’t a problem, but
occasionally you might need to change the order of the conversion specifications without being able to
change the order of the arguments.

For example, say your format string is stored in a separate text file, rather than being embedded in your
PHP code. This is handy if you want to change the way your script displays its output — for example, if
you're creating a different “skin” for your application, or if you're creating English, French, and German
versions of your application. Imagine the following format string is saved in a file called template. txt:

You have %d messages in your %s, of which %d are unread.
Your PHP code might then use this template. txt file to display a message to a user as follows (in a
real-world application the $mailbox, $totalMessages, and SunreadMessages values would probably
be pulled from a database):

Smailbox = "Inbox";

StotalMessages = 36;

SunreadMessages = 4;

printf(file_get_contents("template.txt"), S$totalMessages, S$mailbox,

SunreadMessages) ;

This code would display the following message:

You have 36 messages in your Inbox, of which 4 are unread.

93

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

In case you're wondering, file_get_contents () reads a file and returns its contents as a string.
You learn about it in more detail in Chapter 11.

Now, say you were “re-skinning” your application for a different market, and wanted to use the
following template. txt file instead:

Your %s contains %d unread messages, and %$d messages in total.

The format string contains the same conversion specifications, but the order is different. This would
result in the following message, which is clearly nonsense:

Your 36 contains 0 unread messages, and 4 messages in total.

Normally, the only way to fix this problem would be to change the order of the arguments in your PHP
code to match, which is overkill if you're just re-skinning.

This is where argument swapping comes in. Using this technique, you can specify which argument you
want each conversion specification to refer to. Here’s how it works: after each percentage (%) symbol,
add the position of the argument you want to refer to (1 is the first argument after the format string, 2 is
the second, and so on) followed by a dollar ($) symbol. So you could edit your template. txt file and
change your format string to the following;:

Your %2$s contains %3$d unread messages, and %1$d messages in total.

Now your message displays correctly, even though you haven’t touched your PHP script:

Your Inbox contains 4 unread messages, and 36 messages in total.

Storing the Result Instead of Printing It

94

printf () is all very well, but what if you want to store the results in a variable for later use? You might
not be ready to display the string at the time you create it. This is where the sprintf () function comes
in handy. sprintf () behaves exactly like printf (), except it returns the resulting string rather than
printing it. For example:

<?php

Susername = "Matt";

Smailbox = "Inbox";

StotalMessages = 36;

SunreadMessages = 4;

SmessageCount = sprintf(file_get_contents("template.txt"), S$StotalMessages,
$mailbox, S$SunreadMessages);

?>

<p>Welcome, <?php echo Susername?>.</p>
<p class="messageCount"><?php echo S$messageCount?></p>

Another variant of print£ () is fprintf (), which writes the resulting string to an open file. To use
it, pass the file handle, followed by the format string, followed by the remaining arguments. Find out
more about files and file handles in Chapter 11.

(c) ketabton.com: The Digital Library

Chapter 5: Strings

Trimming Strings with trim(), Itrim(), and rtrim()

Often you find yourself working with text that you’ve received from an outside source, such as an
HTML form field or a text file. In these situations, the text can often contain unwanted white space at the
beginning or end of the text (or both). For example, a user might add newlines before or after text in a
text area field, or a text file might contain tabs for padding at the start of each line.

White space isn’t usually a problem for humans, but it can wreak havoc with a script that expects a
string to be of a certain length, or that is trying to compare one string to another. Fortunately, PHP
provides three useful functions to remove unnecessary white space from strings:

Q trim() removes white space from the beginning and end of a string

QO 1ltrim() removes white space only from the beginning of a string

QO rtrim() removes white space only from the end of a string

Note that these functions only trim white space before or after the text; any white space within the text
itself is left intact.

All three functions work in the same way — they take the string to trim as an argument, and return the
trimmed string:

SmyString = " What a lot of space! ",

echo "<pre>";

echo "|" . trim($myString) . "|\n"; // Displays "|What a lot of space!|"

echo "|" . ltrim($myString) . "|\n"; // Displays "|What a lot of space! [
echo "|" . rtrim($myString) . "|\n"; // Displays "| What a lot of space!|";

echo "</pre>";

You can also specify an optional second argument: a string of characters to treat as white space. The
function then trims any of these characters from the string, instead of using the default white space
characters — which, incidentally, are " " (space), "\t " (tab), "\n" (newline), "\r" (carriage return), "\0"
(anull byte), and "\v" (vertical tab). You can also use " . . " to specify ranges of characters (for example,
"1..5"or "a..z"). Here’s an example that strips line numbers, colons, and spaces from the start of
each line of verse:

Smiltonl = "1: The mind is its own place, and in it self\n";
Smilton2 = "2: Can make a Heav'n of Hell, a Hell of Heav'n.\n";
Smilton3 = "3: What matter where, if I be still the same, \n";

echo "<pre>";

echo ltrim($miltonl, "0..9: ");
echo ltrim(S$Smilton2, "0..9: ");
echo ltrim(S$milton3, "0..9: ");
echo "</pre>";

This code displays:

The mind is its own place, and in it self
Can make a Heav'n of Hell, a Hell of Heav'n.
What matter where, if I be still the same,

95

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Padding Strings with str_pad()

You've already seen how you can use printf () to add padding to the beginning or end of a string.
However, PHP features a dedicated function, str_pad (), that is both more flexible than the printf ()
approach and easier to work with.

To use str_pad (), pass the string to be padded, and the desired width of the final string. The function
returns the string padded on the right using space characters (by default):

echo '<pre>"';
echo str_pad("Hello, world!", 20); // Displays "Hello, world! "
echo '"</pre>';

To pad using characters other than space, pass a string to use as an optional third argument. Note that
this can be either a single character or a string of characters; in the latter case, the string is repeated as
needed to pad out the input string:

// Displays "Hello, world!**x*%%xn
echo str_pad("Hello, world!", 20, "*") . "\n";

// Displays "Hello, world!1231231"
echo str_pad("Hello, world!", 20, "123") . "\n";

You can also make str_pad () add padding to the left of the string, or to both the left and the right
of the string. To do this, pass an optional fourth argument comprising one of the following built-in
constants:
0 STR_PAD_RIGHT to pad the string on the right (the default setting), left-aligning the string
a STR_PAD_LEFT to pad the string on the left, right-aligning the string

0 STR_PAD_BOTH to pad the string on both the left and the right, centering the result as much
as possible

The following example adds padding to both the left and right of a string;:

// Displays "***Hello, world!***x*n
echo str_pad("Hello, world!", 20, "*", STR_PAD_BOTH) . "\n";

Wrapping Lines of Text with wordwrap()

Sometimes you need to display a large amount of text to a user, such as in a Web page or in an email
message. If your script receives the text as one long line — this might occur as a result of user input, or
due to the way text is formatted in a particular database table — then you might want to break the text
into individual lines to make it easier to read.

PHP’s wordwrap () function takes a single-line string of text and splits it into several lines using newline

("\n") characters, wrapping the lines at the ends of words to avoid splitting words. To use it, pass the
string to wrap, and the function returns the wrapped string:

96

(c) ketabton.com: The Digital Library

Chapter 5: Strings

SmyString = "But think not that this famous town has only harpooneers,
cannibals, and bumpkins to show her visitors. Not at all. Still New Bedford
is a queer place. Had it not been for us whalemen, that tract of land would
this day perhaps have been in as howling condition as the coast of
Labrador.";

echo "<pre>";
echo wordwrap(SmyString);
echo "</pre>";

This code displays the following output:

But think not that this famous town has only harpooneers, cannibals, and
bumpkins to show her visitors. Not at all. Still New Bedford is a queer
place. Had it not been for us whalemen, that tract of land would this day
perhaps have been in as howling condition as the coast of Labrador.

By default, wordwrap () makes sure each line is no longer than 75 characters, but you can change this by
passing an optional second argument:

SmyString = "But think not that this famous town has only harpooneers,
cannibals, and bumpkins to show her visitors. Not at all. Still New Bedford
is a queer place. Had it not been for us whalemen, that tract of land would
this day perhaps have been in as howling condition as the coast of
Labrador.";

echo "<pre>";
echo wordwrap (SmyString, 40);
echo "</pre>";

Here’s the result:

But think not that this famous town has
only harpooneers, cannibals, and
bumpkins to show her visitors. Not at
all. Still New Bedford is a queer place.
Had it not been for us whalemen, that
tract of land would this day perhaps
have been in as howling condition as the
coast of Labrador.

If you’d rather split lines using a different character or characters than the newline character, pass the
character(s) you'd like to use as an optional third argument. For example, by splitting the lines with the
HTML line break element
, the example script no longer needs to enclose the output in
<pre>...</pre> tags:

SmyString = "But think not that this famous town has only harpooneers,
cannibals, and bumpkins to show her visitors. Not at all. Still New Bedford
is a queer place. Had it not been for us whalemen, that tract of land would
this day perhaps have been in as howling condition as the coast of
Labrador.";

echo wordwrap (SmyString, 40, "
");

97

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

By the way, if you want to convert the newlines in a string to HTML
 elements, you can use
PHP’s n12br () function. This takes a string to convert as an argument and returns the string with all
newlines converted to
s.

You can also pass an optional fourth argument to wordwrap () . If this argument is true (the default is
false), the function always wraps the string to the specified line width, even if this means splitting
words that are longer than the line width. Here’s an example:

SmyString = "This string has averylongwordindeed.";
echo wordwrap ($SmyString, 10, "
");

echo "

";
echo wordwrap (S$SmyString, 10, "
", true);

Here’s what this code outputs:
This
string has
averylongwordindeed.
This
string has

averylongw
ordindeed.

Formatting Numbers with number_format()

PHP’s number_format () function gives you a convenient way to format numbers in an easy-to-read
way, with thousands separators and rounded to a specified number of decimal places. In its most basic
form, you just need to pass the number to format as a single argument, and the function returns the
formatted string:

echo number_format(1234567.89); // Displays "1,234,568"

Note that this rounds to the nearest whole number. If you’d rather include some decimal places, specify
the number of places as a second, optional argument:

echo number_format(1234567.89, 1); // Displays "1,234,567.9"
Finally, you can change the characters used for the decimal point and thousands separator by passing
two more optional arguments. For example, the following code formats the number using the French
convention of a comma for the decimal point and a space for the thousands separator:

echo number_format(1234567.89, 2, ",", " "); // Displays "1 234 567,89"

You can pass empty strings for either of these two parameters, so you can format a number with no
thousands separators if you like:

echo number_format(1234567.89, 2, ".", ""); // Displays "1234567.89"

98

(c) ketabton.com: The Digital Library

Chapter 5: Strings

PHP also features another handy function, money_format (), that you can use to format monetary
values according to various currency conventions, using a syntax similar to printf () . The only
drawback is that it’s not available on Windows platforms (at least at the time of writing). See http://
www . php .net /money_format for more details.

Summary

In this chapter you explored strings in PHP, and looked at some of the functions that you can use to
manipulate strings. You learned how to create string literals within your PHP code by using single and
double quotation marks as well as the heredoc and nowdoc syntaxes. You also learned how to find the
length of a string, as well as count the number of words in a string, access the individual characters
within a string, and access groups of characters in a string.

You then looked at various functions for searching strings and replacing text within strings, including:

] strstr(), strpos (), and strrpos () for searching for text

substr_count () for counting the occurrences of a search term within a string
strpbrk () for searching for any one of a set of characters

str_replace () for replacing all occurrences of a search term within a string

substr_replace () for replacing a specified portion of a string

U 00 oo

strtr () for replacing certain characters in a string with other characters

Next, you took a look at issues regarding case sensitivity, and explored a few functions — strtolower (),
strtoupper (), ucfirst (), lefirst (), and ucwords () — that you can use to convert case.

Finally, you studied PHP’s printf () and sprintf () functions, which you can use to format strings in
many different ways, and also learned about some other string formatting functions such as trim(),
ltrim(), rtrim(), str_pad(), wordwrap (), and number_format ().

You now have a pretty good understanding of how strings work in PHP, and you’ve learned about some
of the more important string-manipulation functions that PHP offers. However, as mentioned at the start of
the chapter, PHP has a lot more string-related functions than those listed here. For a full list, see the PHP
manual at http: //www.php.net/manual/en/ref.strings.php .

In the next chapter you explore another important PHP language concept: arrays. Before leaving this

chapter, though, you might find it helpful to work through the following two exercises to test your
knowledge of strings. You can find the solutions to these exercises in Appendix A.

929

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Exercises

100

1.

Using the printf () function, write a single line of code that takes a month (from 1 to 12), a day
(from 1 to 31), and a four-digit year, and displays the resulting date, formatted in mm/dd/yyyy
format. Don’t forget to add a zero in front of the month or day if it’s less than 10.

Write a script that emulates the function call str_pad($myString, $desiredLength).
In other words, take a string, and add space characters to the right of it until the string reaches
the desired length. Display both the original and padded string in the page.

(c) ketabton.com: The Digital Library

Arrays

In Chapter 3, you learned about variables in PHP; in particular, you learned that a variable is a
container that can store a single value. However, a couple of types of variables can store many
values at once within a single variable. One such type is an object, which you discover in
Chapter 8; the other type is an array, which you explore in this chapter.

Arrays are a very powerful feature of any programming language, because they let you easily
work with large amounts of similar data. For example, say you are writing a script that stores
information about 100 customers. Rather than having to create 100 separate variables —
$customerl, $customer2, and so on — to store the customers, you can create just one array
variable called $customers that holds information on all the customers at once.

Two specific features of arrays make them good for storing lots of data:

0 Arrays can be of any length — An array can store one value, or millions of values, all
referenced via a single variable name (for example, $customers). What's more, you can
easily change the length — by adding or removing values — at any time

0 It's easy to manipulate all values in an array at once — For example, you can loop through
all the values inside an array, reading or changing them as you go. You can easily sort an
array in any order you like. You can search for a value in an array, merge two arrays
together, and much more

In this chapter, you:

0O Learn how PHP arrays work

0O Look at different ways of creating arrays

0 Discover how to access the elements of an array
a

Find out how to use loops (which you studied in Chapter 4) to work your way through all
the elements of an array

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

O Take a look at multidimensional arrays, which let you create rich, complex data structures

Q Explore some of PHP’s powerful array-manipulation functions to do tricks such as sorting
arrays and merging arrays together

The Anatomy of an Array

Before diving into creating and using arrays, it’s worth taking a moment to explore the concept of an
array in more detail.

As already mentioned, an array is a single variable that can hold more than one value at once. You can
think of an array as a list of values. Each value within an array is called an element, and each element is
referenced by its own index, which is unique to that array. To access an element’s value — whether you're
creating, reading, writing, or deleting the element — you use that element’s index. In this sense, arrays
share some similarity with strings, which you studied in the previous chapter. Just as you can access any
character of a string via its index, you can access any element of an array using the element’s index.

Many modern programming languages — including PHP — support two types of arrays:

O Indexed arrays — These are arrays where each element is referenced by a numeric index,
usually starting from zero. For example, the first element has an index of 0, the second has an
index of 1, and so on

O Associative arrays — This type of array is also referred to as a hash or map. With associative
arrays, each element is referenced by a string index. For example, you might create an array
element representing a customer’s age and give it an index of "age"

Although PHP lets you create and manipulate both indexed and associative arrays, all PHP arrays are in
fact of the same type behind the scenes. This can sometimes come in handy; for example, you can mix
numeric and string indices within the same array, or treat an indexed array like an associative array. In
practice, though, you generally want to work with one array type or another, and it helps to think of
indexed and associative arrays as different types of arrays.

An array index is often referred to as a key. Typically, a numeric index is called an index and a string
index is called a key; however there’s no hard-and-fast rule with this. You'll see both terms used inter-
changeably in this book and elsewhere.

The actual values stored in array elements can be of any type, and you can mix types within a single

array. So, for example, an array might contain a string as its first element, a floating-point number as its
second element, and a Boolean value as its third element.

Creating Arrays

Powerful though they are, arrays in PHP are easy to create. The simplest way to create a new
array variable is to use PHP’s built-in array () construct. This takes a list of values and creates
an array containing those values, which you can then assign to a variable:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

102

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

In this line of code, an array of four elements is created, with each element containing a string value.
The array is then assigned to the variable $authors. You can now access any of the array elements
via the single variable name, $authors, as you see in a moment.

This array is an indexed array, which means that each of the array elements is accessed via its own
numeric index, starting at zero. In this case, the "Steinbeck" element has an index of 0, "Kafka" has an
index of 1, "Tolkien" has an index of 2, and "Dickens" has an index of 3.

If you want to create an associative array, where each element is identified by a string index rather than a
number, you need to use the=> operator, as follows:

SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

This creates an array with three elements: "The Grapes of Wrath", which has anindex of "title";
"John Steinbeck", which has an index of "author"; and 1939, which has an index of "pubYear".

Many built-in PHP functions also create arrays. For example, £11e (), covered in Chapter 11, reads an
entire file into an array, one element per line.

Accessing Array Elements

Once you've created your array, how do you access the individual values inside it? In fact, you do this in
much the same way as you access the individual characters within a string;:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
SmyAuthor = $authors[0]; // $myAuthor contains "Steinbeck"
SanotherAuthor = $authors[l]; // SanotherAuthor contains "Kafka"

In other words, you write the variable name, followed by the index of the element in square
brackets. If you want to access the elements of an associative array, simply use string indices rather
than numbers:

SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

SmyTitle = SmyBook["title"]; // S$myTitle contains "The Grapes of Wrath"
SmyAuthor = S$myBook["author"]; // SmyAuthor contains "Steinbeck"

You don’t have to use literal values within the square brackets; you can use any expression, as long as it
evaluates to an integer or string as appropriate:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

$pos = 2;
echo Sauthors[$Spos + 1]; // Displays "Dickens"

103

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Changing Elements

As well as accessing array values, you can also change values using the same techniques. It’s helpful to
think of an array element as if it were a variable in its own right; you can create, read, and write its
value at will.

For example, the following code changes the value of the third element in an indexed array from
"Tolkien" to "Melville":

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
Sauthors([2] = "Melville";

What if you wanted to add a fifth author? You can just create a new element with an index of 4,

as follows:
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
Sauthors[4] = "Orwell";

There’s an even easier way to add a new element to an array — simply use square brackets with

no index:
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
Sauthors([] = "Orwell";

When you do this, PHP knows that you want to add a new element to the end of the array, and it
automatically assigns the next available index — in this case, 4 — to the element.

In fact, you can create an array from scratch simply by creating its elements using the square bracket
syntax. The following three examples all produce exactly the same array:

// Creating an array using the array() construct
Sauthorsl = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

// Creating the same array using [] and numeric indices

Sauthors2[0] = "Steinbeck";

Sauthors2[1] = "Kafka";

Sauthors2[2] = "Tolkien";

Sauthors2[3] = "Dickens";

// Creating the same array using the empty [] syntax
Sauthors3[] = "Steinbeck";

Sauthors3[] = "Kafka";

Sauthors3[] = "Tolkien";

Sauthors3[] = "Dickens";

However, just as with regular variables, you should make sure your arrays are initialized properly first.
In the second and third examples, if the $authors2 or $authors3 array variables already existed and
contained other elements, the final arrays might end up containing more than just the four elements
you assigned.

104

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

If in doubt, always initialize your array variables when you first create them, even if you're not creating
any array elements at that point. You can do this easily by using the array () construct with an empty list:

Sauthors = array();

This creates an array with no elements (an empty array). You can then go ahead and add elements later:

Sauthors[] = "Steinbeck";
Sauthors[] = "Kafka";
Sauthors[] = "Tolkien";
Sauthors[] = "Dickens";

You can also add and change elements of associative arrays using square bracket syntax. Here an
associative array is populated in two ways: first using the array () construct, and second using the
square bracket syntax:

// Creating an associative array using the array() construct
SmyBook = array("title" => "The Grapes of Wrath",

"author" => "John Steinbeck",

"pubYear" => 1939);

// Creating the same array using [] syntax
$myBook = array();

SmyBook["title"] = "The Grapes of Wrath";
SmyBook ["author"] = "John Steinbeck";
SmyBook ["pubYear"] = 1939;

Changing elements of associative arrays works in a similar fashion to indexed arrays:
SmyBook["title"] = "East of Eden";

SmyBook ["pubYear"] = 1952;

Outputting an Entire Array with print_r()

Arrays can get quite complex, as you see later in the chapter, so often you'll find that you want to inspect
an array to see what it contains. You can’t just print an array with print () or echo (), like you can with
regular variables, because these functions can work with only one value at a time. However, PHP does
give you a function called print_r () that you can use to output the contents of an array for debugging.
Using print_r () is easy — just pass it the array you want to output:

print_r($array);

The following example code creates an indexed array and an associative array, then displays both arrays
in a Web page using print_r (). You can see the result in Figure 6-1.

105

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Outputting Arrays with print_r()</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Outputting Arrays with print_r()</hl>

<?php
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

echo '<h2>Sauthors:</h2><pre>';
print_r (Sauthors);

echo '</pre><h2>$myBook:</h2><pre>"';
print_r (SmyBook);

echo "</pre>";

?>

</body>
</html>

File Edit View History Bookmarks Tools Help

& - ° fé‘f ||3' hitp:ilocathostjprint rphp | "] |IGl~ o

Outputting Arrays with print_r()

$authors:

Array

{
[0] == Steinbeck
[1] => Kafka
[Z]1 => lolkien
[3] == Dickens

$myBook:

Array

{
[title] == The Girapes of Wrath
l[author] == Juhn Sleinbeck
[pubYear] -= 1939

Done

Figure 6-1

106

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

You can see that print_r () displays the type of the variable it was passed — Array — followed by a
list of all the elements in the array, in the form key => value. The keys (or indices) of the indexed array
are 0 through 3, and the keys of the associative array are title, author, and pubYear.

By the way, the script wraps <pre> and </pre> tags around the output from print_r () so that you can
see the formatting properly. Without these tags, the output would appear on a single line when viewed
in a Web page.

You can use print_x () to output pretty much any type of data, not just array variables. For example,
you can use it to output the contents of objects, which you get to work with in Chapter 8.

If you’d rather store the output of print_r () in a string, rather than displaying it in a browser, pass a
second true argument to the function:

SarrayStructure = print_r(Sarray, true);
echo SarrayStructure; // Displays the contents of Sarray

Extracting a Range of Elements with array_slice()

Sometimes you want to access more than one array element at a time. For example, if you have an array
containing 100 pending orders from customers, you might want to extract the first ten orders so that you
can process them.

PHP has a built-in function, array_slice (), that you can use to extract a range of elements from an
array. To use it, pass it the array to extract the slice from, followed by the position of the first element in
the range (counting from zero), followed by the number of elements to extract. The function returns a new
array containing copies of the elements you extracted (it doesn’t touch the original array). For example:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
SauthorsSlice = array_slice(Sauthors, 1, 2);

// Displays "Array ([0] => Kafka [1] => Tolkien)"
print_r(SauthorsSlice);

This example extracts the second and third elements from the $authors array and stores the resulting
array in a new variable, $authorsSlice. The code then uses print_r () to display the slice.

Note that array_slice() doesn’t preserve the keys of the original elements, but instead re-indexes the

elements in the new array, starting from zero. So whereas "Kafka" has an index of 1 in the $authors
array, it has an index of 0 in the $authorsSlice array.

107

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

In case you're wondering, yes you can use array_slice () with associative arrays. Although associative
arrays don’t have numeric indices, PHP does remember the order of the elements in an associative array.
So you can still tell array_slice () to extract, say, the second and third elements of an associative array:

$SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

$SmyBookSlice = array_slice($myBook, 1, 2);

// Displays "Array ([author] => John Steinbeck [pubYear] => 1939)";
print_r(SmyBookSlice);

Note that array_slice() does preserve the keys of elements from an associative array.

By the way, if you leave out the third argument to array_slice (), the function extracts all elements
from the start position to the end of the array:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
SauthorsSlice = array_slice(Sauthors, 1);

// Displays "Array ([0] => Kafka [1l] => Tolkien [2] => Dickens)";
print_r(SauthorsSlice);

Earlier you learned that array_slice () doesn’t preserve the indices of elements taken from an indexed
array. If you want to preserve the indices, you can pass a fourth argument, true, to array_slice():

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

// Displays "Array ([0] => Tolkien [1] => Dickens)";
print_r(array_slice($authors, 2, 2));

// Displays "Array ([2] => Tolkien [3] => Dickens)";
print_r(array_slice(Sauthors, 2, 2, true));

Counting Elements in an Array

How do you find out how many elements are in an array? Easy: you use PHP’s handy count () function.
All you need to do is pass the array to count (), and it returns the number of elements as an integer:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
$SmyBook = array("title" => "The Grapes of Wrath",

"author" => "John Steinbeck",

"pubYear" => 1939);

echo count($Sauthors) . "
"; // Displays "4"
echo count($myBook) . "
"; // Displays "3"

You might want to use count () to retrieve the last element of an indexed array:
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

$lastIndex = count(Sauthors) - 1;
echo S$Sauthors[$lastIndex]; // Displays "Dickens"

108

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

This works, but be careful. Just because an indexed array has, say, four elements, it doesn’t necessarily
mean that the last element has an index of 3! Consider the following (somewhat contrived) example:

// Create a sparse indexed array
Sauthors = array(0 => "Steinbeck", 1 => "Kafka", 2=> "Tolkien", 47 =>

"Dickens");
S$lastIndex = count(Sauthors) - 1;
echo Sauthors[$lastIndex]; // Generates an "Undefined offset" notice

Although this array has numeric keys, which in one sense makes it an indexed array, the keys are not
consecutive. You could also think of the array as an associative array with numeric keys! As mentioned
at the start of the chapter, PHP doesn’t distinguish internally between indexed and associative arrays,
hence it’s possible to create indexed arrays with non-consecutive numeric indices. Although the
$authors array’s highest index is 47, the array contains four elements, not 48. (These types of arrays are
often called sparse arrays.)

So when the script tries to access the last element ("Dickens") using $lastIndex — which is set to 3, or
one less than the return value of count () — PHP generates an “Undefined offset” notice, and the
echo () statement prints an empty string.

Having said all this, provided you know that an indexed array contains consecutively numbered
indices, you can assume that, for example, the 30th element in the array will always have an index of 29.
If you're in doubt you can use the functions described in the next section — “Stepping Through an
Array” — to retrieve the element you're after.

Stepping Through an Array

You've already learned that you can access any element in an array using its key — whether numeric (in
the case of indexed arrays) or string (in the case of associative arrays). But what if you don’t know all of the
keys in an array in advance?

As you saw in the previous section, it’s possible to create indexed arrays where the indices aren’t
consecutively numbered from zero, but are instead arbitrary numbers. Furthermore, an associative
array’s keys don’t have to follow any pattern either — one element’s key might be "elephant" while
the next element’s key could be "teacup" — so unless you know the keys of the array in advance you're
going to find it hard to access its elements!

Fortunately, PHP provides you with a suite of array-access functions that you can use to step through
each element in an array, regardless of how the elements are indexed. When you create an array, PHP
remembers the order that the elements were created in, and maintains an internal pointer to the elements
in the array. This pointer initially points to the first element that was created, but you can move the
pointer forward and backward through the array at will.

109

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

To manipulate the pointer and access the elements that it points to, use the following functions:

Function

current ()

key ()

Description

Returns the value of the current element pointed to by the pointer, without
changing the pointer position.

Returns the index of the current element pointed to by the pointer, without
changing the pointer position.

next ()
prev ()
end ()

reset ()

Moves the pointer forward to the next element, and returns that element’s value.
Moves the pointer backward to the previous element, and returns that element’s value.
Moves the pointer to the last element in the array, and returns that element’s value.

Moves the pointer to the first element in the array, and returns that element’s value.

Each of these functions takes just one argument — the array — and returns the required element’s value
or index, or false if an element couldn’t be found (for example, if you use next () when the pointer is
at the end of the array, or you use current () on an empty array).

Here’s an example script that uses each of these functions. You can see the result in Figure 6-2.

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"

lang="en">

<head>
<title>Stepping Through an Array</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Stepping Through an Array</hl>
<?php
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
echo "<p>The array: " print_r(Sauthors, true) "< /p>";
echo "<p>The current element is: " . current($Sauthors) . ".</p>";
echo "<p>The next element is: " next (Sauthors) "< /p>";
echo "<p>...and its index is: " key (Sauthors) "L</p>";
echo "<p>The next element is: " . next(Sauthors) ".</p>";
echo "<p>The previous element is: " . prev($authors) "< /p>";
echo "<p>The first element is: " reset (Sauthors) v</p>";
echo "<p>The last element is: " . end(Sauthors) "L</p>";
echo "<p>The previous element is: " . prev(Sauthors) "L</p>";
?>
</body>
</html>

110

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

S eI TG N TG T En AT ay =V D2l ST ET0) =0 =

File Edit View History Bookmarks Tools Help

& - e bt |E:9 http:fflocalhostfarray stepping.php ~ | |[Gl=

Stepping Through an Array

The array; Array ([0] => Steinbeck [1] => Kafka [2] => Tolkien [3] == Dickens)
The current element is: Steinbeck.

The next element is: Kafka.

..and its index is: 1.

The next element is: Tolkien.

The previous element is: Kafka.

The first element is: Steinbeck.

The |ast element is: Dickens.

The previous element is: Tolkien

Done

Figure 6-2

Notice how using these functions moves the array pointer forward and backward through the array (the
notable exceptions being current () and key (), which simply return the current value or key without
moving the pointer).

Referring back to the sparse array example in the previous section on the count () function, you now
know how to retrieve the last element of the array without needing to know how it’s indexed:

// Create a sparse indexed array

Sauthors = array(0 => "Steinbeck", 1 => "Kafka", 2=> "Tolkien", 47 =>
"Dickens");

echo end($authors); // Displays "Dickens"

These functions are very useful, but there’s a slight problem with them. Each function returns false if an
element couldn’t be retrieved. This is all very well, but what if one or more of the elements in your array
actually contain the value false? In this case, when a function returns false you won't know whether
you're getting back the element’s value, or whether there was in fact a problem retrieving the element.

To get round this issue, you can use another PHP function: each (). This returns the current element of
the array, then advances the pointer to the next element. Unlike the previous five functions, however,
each () returns a four-element array rather than a value. This array contains both the key of the current
element, as well as its value. If an element couldn’t be retrieved — because the pointer has reached the
end of the array, or because the array is empty — each () returns false. This makes it easy to tell if
each () has retrieved an element with the value of false — in which case it returns the four-element
array — or if it couldn’t retrieve an element at all, in which case it returns false.

111

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

The four-element array that each () returns is itself a shining example of PHP’s flexibility with arrays,
because it contains elements with both numeric and string indices, as follows:

Element Index Element Value

0 The current element’s key
"key" The current element’s key

1 The current element’s value
"value" The current element’s value

In other words, you can use an index of either 0 or "key" to access the current element’s key, or an index
of 1 or "value" to access its value. For example:

SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

Selement = each($myBook);

echo "Key: " . Selement[0] . "
";

echo "Value: " . $element[1l] . "
";

echo "Key: " . Selement["key"] . "
";

echo "Value: " . Selement["value"] . "
";
This code displays:

Key: title

Value: The Grapes of Wrath
Key: title
Value: The Grapes of Wrath

Here’s how to use each () to retrieve an array element with a value of false:

SmyArray = array(false);

Selement = each(SmyArray);
Skey = Selement["key"]; // $Skey now equals 0
sval = Selement["value"]; // $val now equals false

Because each () both returns the current array element and advances the array pointer, it’s easy to use it
in a while loop to move through all the elements of an array. The following example works through the
$myBook array, returning each element’s key and value as it goes. Figure 6-3 shows the result.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Using each() with a while loop</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>

112

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

<body>

<hl>Using each()

with a while loop</hl>

<dl>
<?php
SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);
while ($element = each($myBook)) {
echo "<dt>$element[0]</dt>";
echo "<dd>S$element[l]</dd>";
}
?>
</dl>
</body>
</html>

) " Using each() with a while foop - Mozilla Firef (el
File Edit ‘Vview History Bookmarks Tools Help
& - 6 = |56 hitpsflocalhostfeach loop.php | bl | |Gl = =

Using each() with a while loop

title The Grapes of Wrath
author John Steinbeck
pubYear 1939
Dong

Figure 6-3

The while loop continues as long as each () keeps returning a four-element array (which evaluates to
true). When the end of the array is reached, each () returns false and the loop finishes.

Looping Through Arrays with foreach

As you just saw, it’s easy to use each () in combination with while to loop through all the elements of
an array. In fact, there’s an even easier way: you can use PHP’s foreach statement.

113

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

foreach is a special kind of looping statement that works only on arrays (and objects). You can use it in
two ways. You can either retrieve just the value of each element, or you can retrieve the element’s key
and value.

Using foreach to Loop Through Values

The simplest way to use foreach is to retrieve each element’s value, as follows:

foreach (Sarray as S$value) {
// (do something with S$value here)
}

// (rest of script here)

As you might imagine, the foreach loop continues to iterate until it has retrieved all the values in the
array, from the first element to the last. On each pass through the loop, the $value variable gets set to
the value of the current element. You can then do whatever you need to do with the value within the
loop’s code block. Then, the loop repeats again, getting the next value in the array, and so on.

Here’s an example:
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
foreach (Sauthors as $val) {
echo $val . "
";
}
This code displays:
Steinbeck
Kafka
Tolkien

Dickens

Note that you can use any variable name you like to store the value. Essentially, any variable that you
place after the as in the foreach statement gets assigned the current element’s value.

Using foreach to Loop Through Keys and Values

To use foreach to retrieve both keys and values, use the following syntax:
foreach (Sarray as Skey => $value) {
// (do something with S$key and/or $value here
}

// (rest of script here)

This behaves exactly like the previous foreach construct; the only difference is that the element’s key is
also stored in the $key variable. (Again, you can use any variable names you like; they don’t have to be
$key and $value.)

114

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

Now you can rewrite the example that used each () with a while loop in the previous section
(“Stepping Through an Array”) to use a foreach loop instead:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Using foreach</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<h1>Using foreach</hl>

<dl>
<?php
$myBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);
foreach ($myBook as S$key => S$value) {

echo "<dt>$key</dt>";
echo "<dd>$value</dd>";

</dl>
</body>
</html>

This code produces the same list of keys and values as shown in Figure 6-3.

Altering Array Values with foreach

When using foreach, the values you work with inside the loop are copies of the values in the array

itself. This means that if you change the value given to you by foreach, you're not affecting the

corresponding value in the original array. The following example code illustrates this:
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
// Displays "Steinbeck Kafka Hardy Dickens";
foreach (Sauthors as S$val) {

if ($val == "Tolkien") $val = "Hardy";
echo $val . " ";

echo "
";

// Displays "Array ([0] => Steinbeck [1] => Kafka [2] => Tolkien [3]
Dickens)"
print_r (Sauthors);

115

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Notice that, although $val was changed from "Tolkien" to "Hardy" within the loop, the original
$authors array remains untouched, as evidenced by the output from print_r () on the final line.

However, if you do want to modify the array values themselves, you can get foreach () to return a
reference to the value in the array, rather than a copy. This means that the variable within the loop points
to the value in the original array element, allowing you to change the element’s value simply by
changing the variable’s value.

To work with references to the array elements rather than copies of the values, simply add a &
(ampersand) symbol before the variable name within the foreach statement:

foreach (Sarray as &$value) {

Here’s the previous example rewritten to use references:
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

// Displays "Steinbeck Kafka Hardy Dickens";
foreach (Sauthors as &Sval) {
if ($val == "Tolkien") S$val = "Hardy";
echo Sval . " ";

}

unset ($val);
echo "
";

// Displays "Array ([0] => Steinbeck [1] => Kafka [2] => Hardy [3] =>
Dickens)"
print_r (Sauthors);

Notice how, this time, the third element’s value in the $authors array is changed from "Tolkien" to
"Hardy" in the array itself.

By the way, the unset ($val) line ensures that the $val variable is deleted after the loop has finished.
This is generally a good idea, because when the loop finishes, $val still holds a reference to the last
element (that is, "Dickens"). If you were to change $val later in your code, you would inadvertently
alter the last element of the $authors array. By unsetting (deleting) $val, you safeguard against this
potential bug.

References are a powerful tool, and they re explained in more detail in the next chapter.

Working with Multidimensional Arrays

So far, all the arrays you've worked with in this chapter have contained simple values, such as strings
and integers. However, arrays can get a lot more powerful than this. As mentioned in “The Anatomy of
an Array,” earlier in this chapter, PHP arrays can store values of any type. This includes resources,
objects, and, more importantly, other arrays.

116

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

This ability of arrays to store other arrays in their elements allows you to create multidimensional arrays
(also known as nested arrays because they comprise one or more arrays nested inside another). An array
that contains other arrays is a two-dimensional array. If those arrays also contain arrays, then the top-

level array is a three-dimensional array, and so on.

Creating a Multidimensional Array

The following script creates a simple two-dimensional array called $myBooks, then displays its contents
using print_r (). You can see the result in Figure 6-4.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>A Two-Dimensional Array</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>A Two-Dimensional Array</hl>

<?php

SmyBooks = array(

array (
"title" => "The Grapes of Wrath",

"author" => "John Steinbeck",
"pubYear" => 1939
),

array (
"title" => "The Trial",
"author" => "Franz Kafka",

"pubYear" => 1925
)

array (
"title" => "The Hobbit",
"author" => "J. R. R. Tolkien",
"pubYear" => 1937

),

array (
"title" => "A Tale of Two Cities",

"author" => "Charles Dickens",
"pubYear" => 1859
),
)

echo "<pre>";
print_r ($myBooks);
echo "</pre>";

?>

</body>
</html>

117

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

File Edit View History Bookmarks Tools Help
& > e = |I§ httpifflocalhostfcreate multidimensional array.php |T | |IGl= 2
A Two-Dimensional Array
Array
(
[0] == Array
(
[title] => The Grapes of Wrath
fauthorl == John Steinbeck
[pubYear] => 1939
[1]1 => Array
(
[title] == The Trial
[author] => Franz Kafka
[pubYear] == 1925
)
[2] => Array
{
[title] =- The Hobbit
[author] == J. R, R. Tolkien
[pubYear] =» 1937
]
[3] => Array
(
[title]l => A Tale of Two Cities
[author] == Charles Dickens
[pubYear] == 1859
)]
)
Done
Figure 6-4

As you can see, this script creates an indexed array, $myBooks, that contains four elements with the keys
0,1, 2, and 3. Each element is, in turn, an associative array that contains three elements with keys of
"title", "author",and "pubYear".

Although this array is a simple example, it gives you some idea of the power of multidimensional arrays.
You could potentially store thousands and thousands of books in this array, with as much information as
you like about each book.

Accessing Elements of Multidimensional Arrays

Using the square bracket syntax that you've already learned, you can access any element within a
multidimensional array. Here are some examples (these work on the $myBooks array just shown):

// Displays "Array ([title] => The Trial [author] => Franz Kafka [pubYear]
=> 1925)";
print_r($myBooks[1l]);

// Displays "The Trial"
echo "
" . SmyBooks[l]["title"] . "
";

// Displays "1859"
echo S$myBooks[3] ["pubYear"] . "
";

118

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

The print_r () example shows that the second element of $myBooks is in fact an associative array
containing information on “The Trial.” Meanwhile, the two echo () examples show how to access
elements in the nested associative arrays. As you can see, you use two keys within two sets of square
brackets. The first key is the index of an element in the top-level array, and the second key is the index of
an element in the nested array. In this example, the first key selects the associative array you want to
access, and the second key selects an element within that associative array.

Looping Through Multidimensional Arrays

You know how to use foreach to loop through one-dimensional arrays, but how do you loop through
multidimensional arrays? Well, because multidimensional arrays are basically arrays nested inside other
arrays, you can loop through them using nested loops!

_ Displaying an Array of Books

The following example uses two nested foreach loops to loop through the $myBooks array. Save it as
multidimensional_array_loop.php within your document root folder, then browse to the script’s
URL to see it in action. You should see something like Figure 6-5.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Looping Through a Two-Dimensional Array</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Looping Through a Two-Dimensional Array</hl>

<?php

SmyBooks = array (

array (
"title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939

)

array (
"title" => "The Trial",
"author" => "Franz Kafka",
"pubYear" => 1925

b o

array (
"title" => "The Hobbit",
"author" => "J. R. R. Tolkien",
"pubYear" => 1937

)

array (
"title" => "A Tale of Two Cities",
"author" => "Charles Dickens",

119

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

"pubYear" => 1859
) g
) 5

SbookNum = 0;

foreach ($SmyBooks as $book) {
SbookNum++ ;
echo "<h2>Book #S$SbookNum:</h2>";

echo "<dl>";

foreach (S$book as S$key => S$value) {
echo "<dt>$Skey</dt><dd>S$value</dd>";

}
echo "</dl>";
}
?>
</body>
</html>
00 0 ougi 2 1 v |
File Edit Wview History Bookmarks Tools Help
& - e ﬁ ||; http:flocalhostimultidimensional array loop.php | 'I |[C|' 1l ‘:’\|
Looping Through a Two-Dimensional Array N
Book #1:
title The Grapes of Wrath
author John Steinbeck
pubYear 1939
Book #2:
title The Trial
author Franz Kafka
pubYear 1925 B
Book #3:
title The Hobbit
author J. R. R. Tolkien =
Done "
Figure 6-5

120

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

How It Works

After displaying the standard XHTML page header, the script starts by defining the $myBooks two-
dimensional array. Each element of the array is an associative array containing information about a
specific book.

Next, the script sets a counter variable, $bookNum, to zero and sets up the outer foreach loop. This
loop moves through each of the elements of the top-level $myBooks array. For each element, it
increments $bookNum and displays the current book number, then starts a new definition list (a1)
XHTML element.

The inner foreach loop works through the elements of the associative array stored in the current
element. For each element of the associative array, it displays the element’s key ("title", "author",
or "pubYear") within an XHTML dt element, and the element’s value within a dd element. After the
inner foreach loop has run, the d1 element is closed.

Once the outer loop has completed, the script ends the XHTML page.

Manipulating Arrays

You've now learned the essentials of PHP arrays: what arrays are, how to create them, how to access
their elements, how to loop through them, and how to work with multidimensional arrays.

PHP’s array support doesn’t stop there, though. As you saw with strings in Chapter 5, PHP comes with a
huge number of array-processing functions that you can use to make arrays even more useful. In this
section you explore some of the most commonly used functions.

Sorting Arrays

One powerful feature of arrays in most languages is that you can sort the elements in any order you

like. For example, if you've just read 100 book titles from a text file into an array, you can sort the titles
alphabetically before you display them. Or you might create a multidimensional array containing customer
information, then sort the array by number of purchases to see who your most loyal customers are.

When it comes to sorting arrays, PHP provides no less than twelve functions that you can use to sort an
array. The more common ones are:

QO sort() and rsort () — For sorting indexed arrays

Q asort() and arsort () — For sorting associative arrays

Q ksort() and krsort () — For sorting associative arrays by key rather than by value
QO array multisort () — A powerful function that can sort multiple arrays at once, or

multidimensional arrays

Sorting Indexed Arrays with sort() and rsort()

The simplest of the array sorting functions are sort () and rsort (). sort () sorts the values of the
array in ascending order (alphabetically for letters, numerically for numbers, letters before numbers),
and rsort () sorts the values in descending order. To use either function, simply pass it the array to be

121

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

sorted. The function then sorts the array. As with all the sorting functions covered in this chapter, the
function returns true if it managed to sort the array or false if there was a problem.

Here’s an example that sorts a list of authors alphabetically in ascending order, and then in
descending order:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

// Displays "Array ([0] => Dickens [1] => Kafka [2] => Steinbeck [3] =>
Tolkien)"

sort (Sauthors);

print_r(Sauthors);

// Displays "Array ([0] => Tolkien [1] => Steinbeck [2] => Kafka [3] =>
Dickens)"

rsort (Sauthors);

print_r (Sauthors);

Sorting Associative Arrays with asort() and arsort()

Take another look at the previous sort () and rsort () code examples. Notice how the values in the
sorted arrays have different keys from the values in the original array. For example, "Steinbeck" has an
index of 0 in the original array, 2 in the second array, and 1 in the third array. The sort () and rsort ()
functions are said to have reindexed the original array.

For indexed arrays, this is usually what you want to happen: you need the elements to appear in the
correct order, and at the same time you expect the indices in an indexed array to start at zero. However,
for associative arrays, this can cause a problem. Consider the following scenario:

SmyBook = array("title" => "Bleak House",
"author" => "Dickens",
"year" => 1853);

sort (SmyBook);

// Displays "Array ([0] => Bleak House [1l] => Dickens [2] => 1853)"
print_r($SmyBook);

Notice how sort () has reindexed the associative array, replacing the original string keys with numeric

keys and effectively turning the array into an indexed array. This renders the sorted array practically
useless, because there’s no longer an easy way to find out which element contains, say, the book title.

122

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

This is where asort () and arsort () come in. They work just like sort () and rsort (), but they
preserve the association between each element’s key and its value:

SmyBook = array("title" => "Bleak House",
"author" => "Dickens",
"year" => 1853);

// Displays "Array ([title] => Bleak House [author] => Dickens [year] =>

1853)"
asort($myBook) ;
print_r(SmyBook);

// Displays "Array ([year] => 1853 [author] => Dickens [title] => Bleak

House)"
arsort ($SmyBook);
print_r($SmyBook);

Note that although you can use asort () and arsort () on indexed arrays, they’re commonly used
with associative arrays.

Sorting Associative Array Keys with ksort() and krsort()

ksort () and krsort () behave in much the same way as asort () and arsort (), in that they sort
arrays in ascending and descending order, respectively, preserving the associations between keys and
values. The only difference is that, whereas asort () and arsort () sort elements by value, ksort ()
and krsort () sort the elements by their keys:

SmyBook = array("title" => "Bleak House",
"author" => "Dickens",
"year" => 1853);

// Displays "Array ([author] => Dickens [title] => Bleak House [year] =>

1853)"
ksort (SmyBook) ;
print_r($myBook);

// Displays "Array ([year] => 1853 [title] => Bleak House [author] =>
Dickens)"

krsort ($SmyBook) ;

print_r(SmyBook);

In this example, ksort () has sorted the array by key in ascending order ("author",
"title", "year"), whereas krsort () has sorted by key in the opposite order.

As with asort () and arsort (), ksort () and krsort () tend to be used mainly with associative
arrays.

123

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Multi-Sorting with array_multisort()

array_multisort () lets you sort multiple related arrays at the same time, preserving the relationship
between the arrays. To use it, simply pass in a list of all the arrays you want to sort:

array_multisort(Sarrayl, Sarray2, ...);

Consider the following example. Rather than storing book information in a multidimensional array, this
script stores it in three related arrays: one for the books” authors, one for their titles, and one for their
years of publication. By passing all three arrays to array_multisort (), the arrays are all sorted
according to the values in the first array:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");

Stitles = array("The Grapes of Wrath", "The Trial", "The Hobbit", "A Tale of
Two Cities");

SpubYears = array(1939, 1925, 1937, 1859);

array_multisort($Sauthors, S$titles, S$pubYears);

// Displays "Array ([0] => Dickens [1] => Kafka [2] => Steinbeck [3] =>
Tolkien)"

print_r (Sauthors);

echo "
";

// Displays "Array ([0] => A Tale of Two Cities [1] => The Trial [2] => The
Grapes of Wrath [3] => The Hobbit)"

print_r (Stitles);

echo "
";

// Displays "Array ([0] => 1859 [1] => 1925 [2] => 1939 [3] => 1937)"
print_r ($pubYears);

Notice how the $authors array is sorted alphabetically, and the $titles and $pubYears arrays are
rearranged so that their elements are in the same order as their corresponding elements in the $authors
array. If you wanted to sort by title instead, just change the order of the arguments passed to
array_multisort():

array_multisort($titles, S$Sauthors, S$pubYears);

In fact, array_multisort () is a bit cleverer than this. It actually sorts by the values in the first array,
then by the values in the next array, and so on. Consider this example:

Sauthors = array("Steinbeck", "Kafka", "Steinbeck", "Tolkien", "Steinbeck",
"Dickens");

Stitles = array("The Grapes of Wrath", "The Trial", "Of Mice and Men", "The
Hobbit", "East of Eden", "A Tale of Two Cities");

SpubYears = array(1939, 1925, 1937, 1937, 1952, 1859);
array_multisort($Sauthors, S$titles, S$pubYears);

// Displays "Array ([0] => Dickens [1] => Kafka [2] => Steinbeck [3] =>
Steinbeck [4] => Steinbeck [5] => Tolkien)"

124

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

print_r (Sauthors);
echo "
";

// Displays "Array ([0] => A Tale of Two Cities [1] => The Trial [2] => East
of Eden [3] => Of Mice and Men [4] => The Grapes of Wrath [5] => The Hobbit)"
print_r (Stitles);

echo "
";

// Displays "Array ([0] => 1859 [1] => 1925 [2] => 1952 [3] => 1937 [4] =>
1939 [5] => 1937)"
print_r (SpubYears);

These arrays contain information on three books by Steinbeck. You can see that array_multisort ()
has sorted all the arrays by author in ascending order as before. However, it has also sorted the three
Steinbeck books — East of Eden, Of Mice and Men, and The Grapes of Wrath — into ascending order.

You can also use array_multisort () to sort multidimensional arrays. This works in much the same

way as for multiple arrays, except that you only pass in one array. The function then sorts the array by
the first element of each nested array, then by the second element of each nested array, and so on. The

order of the elements in the nested array is untouched.

The following code illustrates how array_multisort () sorts a two-dimensional array. Figure 6-6
shows the output from the script.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Using array_multisort() on a Two-Dimensional Array</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl1>Using array_multisort() on a Two-Dimensional Array</hl>

<?php

SmyBooks = array (

array (
"title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939

),

array (
"title" => "Travels With Charley",
"author" => "John Steinbeck",
"pubYear" => 1962

),

array (
"title" => "The Trial",
"author" => "Franz Kafka",
"pubYear" => 1925

),

125

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

array (
"title" => "The Hobbit",
"author" => "J. R. R. Tolkien",
"pubYear" => 1937

),

array (
"title" => "A Tale of Two Cities",
"author" => "Charles Dickens",
"pubYear" => 1859

)

)i

array_multisort(S$myBooks) ;
echo "<pre>";

print_r (SmyBooks);

echo "</pre>";

?>

</body>
</html>

& ~ ° x ﬁ [IR httpiflocalhost/multisort multidimensional array.php |"] [@T Q;]
[al
Using array_multisort() on a Two-Dimensional Array D
Array
{
101 == Array
(
[title]l == A Tale of Two Cities
[author] == Charles Dickens
[pub¥ear] == 1059
]
[1] == Array
[
[Lille] == The Grapes of Wrath
[auther] == John Steinbeck
IpubYear] == 1939
)
[2] == array
[title]l == The Hohhit
[authur] == 3. R. R, Tulhkien
[pub¥ear] -= 1837
]
[2] == Array
(
[title] == The Trial
[authar] => Franz Kafka
[pubrear] == 1925
]
[4] == Array
(
Ititlel => Iravels with Charley
[author] == John Steinbeck
[pub¥ear] == 1982
)
i
Done
Figure 6-6

126

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

You can see that array_multisort () has sorted the $myBooks array by title. What if you wanted to
sort by author, then by publication year, then by title? In that case you need to change the order of the

elements in the nested associative arrays:

$SmyBooks = array (
array (
"author" => "John Steinbeck",
"pubYear" => 1939,
"title" => "The Grapes of Wrath"
),
array (
"author" => "John Steinbeck",
"pubYear" => 1962,
"title" => "Travels With Charley"
),
array (
"author" => "Franz Kafka",
"pubYear" => 1925,
"title" => "The Trial"
),
array (
"author" => "J. R. R. Tolkien",
"pubYear" => 1937,
"title" => "The Hobbit"
),
array (
"author" => "Charles Dickens",
"pubYear" => 1859,
"title" => "A Tale of Two Cities"
),
)

Running array_multisort () on this array produces the result shown in Figure 6-7.

127

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

File Edit View History Bookmarks Tools Help

& e e b ||B http:fflocalhostfmultisort multidimensional array 2.php | - | |IGl~ - ‘(‘.|
Sorting by author, pubYear, title []
Array

{

101 == Array
(
[author] == Charles Dickens
[pubYear] == 1u59
[title] == A Tale of Two Cities
[1] == Array
[
laulhor] == Franz Kalka
[pub¥ear] -= 1925
Ititlel == The Irial
[2] == Array
(
[authar] == 1. R. R. Tolkien
[pubrear] == 1937
[title] —= The Hobbit
[2] == Array
[author] == John Steinbeck
[pubYear] == 1939
[title] == The Grapes of wWrath
[4] == Array
fauthorl == John Steinbeck

[pub¥ear] == 1562
[title] == Travels With Charley

1

[«]

Done

Figure 6-7

array_multisort () preserves associations between string keys and their values, but it reindexes
numeric keys.

Adding and Removing Array Elements

You already know that you can add elements to an array using square bracket syntax. For example:

SmyArray[] = "new value";
SmyArray ["newKey"] = "new value";

This syntax is fine for simple scenarios. However, if you need something more powerful, PHP features
five useful functions that you can use to add and remove elements:

Q array_unshift () — Adds one or more new elements to the start of an array
O array_shift () — Removes the first element from the start of an array

Q array_push() — Adds one or more new elements to the end of an array

128

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

Q array pop() — Removes the last element from the end of an array

Q array_splice() — Removes element(s) from and/or adds element(s) to any point in an array

Adding and Removing Elements at the Start and End

You can use array_unshift () to insert an element or elements at the start of an array. Just pass the
array, followed by one or more elements to add. The function returns the new number of elements in the

array. For example:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
echo array_unshift($Sauthors, "Hardy", "Melville") . "
"; // Displays "6"
// Displays "Array ([0] => Hardy [1] => Melville [2] => Steinbeck [3] =>

Kafka [4] => Tolkien [5] => Dickens)"
print_r(Sauthors);

You can’t add key/value pairs to associative arrays using array_unshift () (or its counterpart,
array_pop ()). However, you can work around this by using array_merge (), which is discussed
later in the chapter.

array_shift () removes the first element from an array, and returns its value (but not its key). To use it,
pass the array in question to array_shift ():

SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

echo array_shift($myBook) . "
"; // Displays "The Grapes of Wrath"
// Displays "Array ([author] => John Steinbeck [pubYear] => 1939)"

print_r(SmyBook);

To add an element to the end of an array, you can of course use the square bracket syntax mentioned
previously. You can also use array_push (), which allows you to add multiple elements at once (and
also tells you the new length of the array). You use it in much the same way as array_unshift (): pass
the array, followed by the value(s) to add. Here’s an example:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
echo array_push(Sauthors, "Hardy", "Melville") . "
"; // Displays "6"
// Displays "Array ([0] => Steinbeck [1] => Kafka [2] => Tolkien [3] =>

Dickens [4] => Hardy [5] => Melville)"
print_r($authors);

129

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

By the way, with both array_unshift () and array_push(), if you include an array as one of the
values to add, the array is added to the original array as an element, turning the original array into a
multidimensional array:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
SnewAuthors = array("Hardy", "Melville");
echo array_push($Sauthors, S$newAuthors) . "
"; // Displays "5"
/*
Displays:
Array
(
[0] => Steinbeck
[1] => Kafka
[2] => Tolkien
[3] => Dickens
[4] => Array

[0] => Hardy
[1] => Melville

)
*/
print "<pre>";
print_r(Sauthors);
print "</pre>";

If you instead want to add the elements of the array individually to the original array, use array_
merge () (discussed later in this chapter).

array_pop () is the counterpart to array_shift (); it removes the last element from an array and
returns the element’s value. To use it, pass the array that you want to remove the element from:

smyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

echo array _pop($myBook) . "
"; // Displays "1939"

// Displays "Array ([title] => The Grapes of Wrath [author] => John
Steinbeck)"
print_r(S$SmyBook);

array_push () and array_pop () are handy for creating a last-in, first-out (LIFO) stack of values.
You add new values onto the “top” of the stack with array_push (), then retrieve the most recently
added value with array_pop (). Stacks are very useful if you write a lot of recursive code. (Recursion
is covered in Chapter 7.)

Adding and Removing Elements in the Middle

If you want to do something a bit more involved than add or remove values at the beginning or end of an
array, you need the more powerful array_splice () function. This function is the array equivalent of the
string-manipulation function substr_replace (). (You learned about substr_replace () in Chapter 5.)

130

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

array_splice () lets you remove a range of elements in an array and replace them with the elements
from another array. Both the removal and the replacement are optional, meaning you can just remove
elements without adding new ones, or just insert new elements without removing any.

Here’s how it works. array_splice() takes the array to be manipulated, and the position of the first
element (counting from zero) to start the splice operation. (Remember that all arrays, even associative
arrays, have a concept of element positioning.) Next, you pass in an optional argument that specifies how
many elements to remove; if omitted, the function removes all elements from the start point to the end of
the array. Finally, you can pass another optional argument, which is the array of elements to insert.

array_splice () returns an array containing the extracted elements (if any).

_ Playing with array_splice()

The following example script shows how to use the various parameters of array_splice (). Save it
as array_splice.php in your document root folder and open it in your Web browser. Figure 6-8
shows the result.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Using array_splice()</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
h2, pre { margin: 1lpx; }
table { margin: 0; border-collapse: collapse; width: 100%; }
th { text-align: left; }
th, td { text-align: left; padding: 4px; vertical-align: top; border:
lpx solid gray; }
</style>
</head>
<body>
<h1>Using array_splice()</hl>

<?php

SheadingStart = '<tr><th colspan="4"><h2>';
$headingEnd = '</h2></th></tr>"';

SrowStart = '<tr><td><pre>';

SnextCell = '</pre></td><td><pre>';

SrowEnd = '</pre></td></tr>';

echo '<table cellpadding="0" cellspacing="0"><tr><th>Original
array</th><th>Removed</th><th>Added</th><th>New array</th></tr>"';

echo "{SheadingStart}l. Adding two new elements to the middle{SheadingEnd}";
Sauthors = array("Steinbeck", "Kafka", "Tolkien");

SarrayToAdd = array("Melville", "Hardy");
echo SrowStart;

131

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

print_r(Sauthors);

echo S$nextCell;

print_r(array_splice($Sauthors, 2, 0, SarrayToAdd));
echo S$nextCell;

print_r (SarrayToAdd) ;

echo S$nextCell;

print_r(Sauthors);

echo SrowEnd;

echo "{SheadingStart}2. Replacing two elements with a new
element {$headingEnd}";

Sauthors = array("Steinbeck", "Kafka", "Tolkien");
SarrayToAdd = array("Bronte");

echo SrowStart;

print_r (Sauthors);

echo S$nextCell;

print_r(array_splice($authors, 0, 2, SarrayToAdd));
echo S$nextCell;

print_r(SarrayToAdd) ;

echo S$nextCell;

print_r (Sauthors);

echo SrowEnd;

echo "{SheadingStart}3. Removing the last two elements{SheadingEnd}";

Sauthors = array("Steinbeck", "Kafka", "Tolkien");
echo SrowStart;

print_r(Sauthors);

echo S$nextCell;

print_r(array_ splice(Sauthors, 1));

echo S$nextCell;

echo "Nothing";

echo S$nextCell;

print_r (Sauthors);

echo S$SrowEnd;

echo "{SheadingStart}4. Inserting a string instead of an array{SheadingEnd}";

Sauthors = array("Steinbeck", "Kafka", "Tolkien");
echo S$rowStart;

print_r(Sauthors);

echo S$nextCell;

print_r(array splice(Sauthors, 1, 0, "Orwell"));
echo S$nextCell;

echo "Orwell";

echo S$nextCell;

print_r(Sauthors);

echo S$SrowEnd;

echo '</table>';
?>

</body>
</html>

132

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

fle Edit view History Bookmarks Iools Help

@ > o ﬁ | [@) | hitp:localhostfarray_splice.php | - J “ﬁ - e Q,|
Original array Removed Added New array i
1. Adding two new elements to the middle
Array Array Array | Ar ray B
[0 i i

[0] == Steinbeck } [0] == Melville [0] == Steinbeck

[1] == Kafka [1] == Hardy [1] == Kafka

I2] == Tolkien | 121 == Melville
] [3] == Hardy

[A] == Tolkien

2. Replacing two elements with a new element
Array Array Array Array
[{

[8] == Steinbeck [B] == Steinbeck [@] => Bronte [0] == Bronte

[1] == Kafka [1] == Kafka] [1] == Tolkien
[2] =» Tolkien } }

3. Removing the last two elements

Array Array Hothing | Array
{ { {
[o] == Steinbeck [@] == Kafka [@] == Steinbeck
[11 == Kafka [11l == Tolkien I
[2] == Tolkien }
)

4. Inserting a string instead of an array

Array Array Orwell | Ar ray

{ { {
[0] == Steinbeck } [@] == Steinbeck
[1] == Kafka [1] == Orwell
[2] == Tolkien [2] => Kafka

) [2] => Tolkien

€1

Done

Figure 6-8

How It Works

This script demonstrates four different uses of array_splice (), displaying the results in an HTML
table. The first example inserts two new elements at the third position in the array, displaying the
removed elements, which in this case is an empty array because no elements were removed:

print_r(array_splice($authors, 2, 0, $SarrayToAdd));

You can read this line as: “At the third position (2), remove zero (0) elements, then insert
$arrayToAdd”.

The second example demonstrates how to remove and insert elements at the same time:

print_r(array_splice($authors, 0, 2, $SarrayToAdd));

This code removes two elements from the start of the array (position 0), then inserts the contents of
$arrayToAdd at position 0.

The third example shows what happens if you omit the third argument:

print_r(array_splice($authors, 1));

133

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

This code removes all the elements from the second position in the array (position 1) to the end
of the array.

Finally, the fourth example demonstrates that you don’t have to pass an array as the fourth argument.
If you only have one element to add — say, a string value — you can just pass the value. This is
because array_splice () automatically casts the fourth argument to an array before using it. So the
string "Orwell" gets converted into an array with a single element ("0rwel1l") before being added to
the array:

print_r(array_splice(S$Sauthors, 1, 0, "Orwell"));

By the way, you’ll have noticed that the script outputs a lot of the more repetitive markup by creating
variables to store snippets of markup ($headingStart, $headingEnd, $rowStart,
$nextCell, S$rowEnd). Not only does this make the PHP code more compact and easier to follow,
but it makes it easier to change the markup at a later point if needed.

Note that, when inserting an array, the keys of the inserted elements aren’t preserved; instead they’re
reindexed using numeric keys. So array_splice () isnt that useful for inserting associative arrays.
For example:

Sauthors = array("Steinbeck", "Kafka", "Tolkien");

array_splice($Sauthors, 1, 0, array("authorName" => "Milton"));
echo "<pre>";

print_r($authors);

echo "</pre>";

This code produces the following result:

Array

(

> Steinbeck
Milton
Kafka
Tolkien

Innon
vV V Vv

w N = O

[
[
[
[
)

Notice how the "Milton" element has had its original key ("authorName") replaced with a numeric
key (1).

Merging Arrays Together

If you want to join two or more arrays together to produce one big array, you need the array_merge ()
function. This function takes one or more arrays as arguments, and returns the merged array. (The
original array(s) are not affected.)

134

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

Here’s an example:

Sauthors = array("Steinbeck", "Kafka"

$moreAuthors = array("Tolkien", "Milton");

// Displays "Array ([0] => Steinbeck [1] => Kafka [2] => Tolkien [3] =>
Milton)"

print_r(array_merge(Sauthors, S$moreAuthors));

Note that array_merge () joins the array elements of the arrays together to produce the final array. This
contrasts with array_push (), array_unshift (), and the square bracket syntax, which all insert array

arguments as-is to produce multidimensional arrays:

Sauthors = array("Steinbeck", "Kafka");

SmoreAuthors = array("Tolkien", "Milton");

array_push(Sauthors, $moreAuthors);

// Displays "Array ([0] => Steinbeck [1] => Kafka [2] => Array ([0] =>
Tolkien [1] => Milton))"

print_r($authors);

A nice feature of array_merge () is that it preserves the keys of associative arrays, so you can use it to

add new key/value pairs to an associative array:

"title" =>
"author" =>
"pubYear" => 1939);

SmyBook array (

array_merge (S$myBook,

SmyBook

[title]
=> 1939

// Displays "Array (
Steinbeck [pubYear]
print_r (SmyBook);

array (

=> The Grapes of Wrath

[numPages] => 464)"

"The Grapes of Wrath",
"John Steinbeck",

"numPages" => 464));

[author] => John

If you add a key/value pair using a string key that already exists in the array, the original element gets
overwritten. This makes array_merge () handy for updating associative arrays:

SmyBook = array("title" => "The Grapes of Wrath",

"author" => "John Steinbeck",

"pubYear" => 1939);
SmyBook = array_merge(SmyBook, array("title" => "East of Eden", "pubYear"
=> 1952));
// Displays "Array ([title] => East of Eden [author] => John Steinbeck
[pubYear] => 1952)"
print_r ($SmyBook);

135

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

However, an element with the same numeric key doesn’t get overwritten; instead the new element is
added to the end of the array and given a new index:

Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens");
Sauthors = array _merge($authors, array(0 => "Milton"));

// Displays "Array ([0] => Steinbeck [1] => Kafka [2] => Tolkien [3] =>
Dickens [4] => Milton)"
print_r (Sauthors);

If you want to merge arrays while preserving numeric keys, try the array_replace () function (new to
PHP 5.3). For details see http: / /www.php.net/manual/en/function.array-replace.php.

You can also use array_merge () to reindex a single numerically indexed array, simply by passing the
array. This is useful if you want to ensure that all the elements of an indexed array are consecutively
indexed:

Sauthors = array(34 => "Steinbeck", 12 => "Kafka", 65 => "Tolkien", 47 =>
"Dickens");

// Displays "Array ([0] => Steinbeck [1] => Kafka [2] => Tolkien [3] =>
Dickens)"
print_r(array _merge(Sauthors));

Converting Between Arrays and Strings

PHP provides a few functions that let you convert a string to an array, or an array to a string.

To convert a string to an array, you can use PHP’s handy explode () string function. This function takes
a string, splits it into separate chunks based on a specified delimiter string, and returns an array
containing the chunks. Here’s an example:

SfruitString = "apple,pear,banana, strawberry,peach";
sfruitArray = explode(",", S$SfruitString);

After running this code, $fruitArray contains an array with five string elements: "apple", "pear",
"banana", "strawberry", and "peach".

You can limit the number of elements in the returned array with a third parameter, in which case the last
array element contains the whole rest of the string:

$fruitString = "apple,pear,banana, strawberry,peach";
SfruitArray = explode(",", S$fruitString, 3);

In this example, $fruitArray contains the elements "apple", "pear", and
"banana, strawberry, peach".

Alternatively, specify a negative third parameter to exclude that many components at the end of the

string from the array. For example, using -3 in the example just shown creates an array containing just
"apple" and "pear". (The three components "banana", "strawberry", and "peach" are ignored.)

136

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

explode () is often useful when you need to read in a line of comma- or tab-separated data from a file
and convert the data to an array of values.

Other useful string-to-array functions include preg_split () for splitting based on regular expres-
sions (see Chapter 18), and str_split () for splitting a string into characters (or into fixed-length
character chunks) — see http: //www.php.net/manual/en/function.str-split.php for
details.

If you want to do the opposite of explode () and glue array elements together into one long string,

use — you guessed it — implode (). This takes two arguments: the string of characters to place between
each element in the string, and the array containing the elements to place in the string. For example, the
following code joins the elements in $fruitArray together to form one long string, $fruitString,
with each element separated by a comma:

SfruitArray = array("apple", "pear", "banana", "strawberry", "peach");
$fruitString = implode(",", S$fruitArray);

// Displays "apple,pear,banana, strawberry,peach"
echo $fruitString;

Converting an Array to a List of Variables

The final array-manipulation tool you learn about in this chapter is 1ist (). This construct provides an
easy way to pull out the values of an array into separate variables. Consider the following code:

SmyBook = array("The Grapes of Wrath", "John Steinbeck", 1939);
$title = $myBook[0];

Sauthor = S$myBook[1];
SpubYear = $myBook[2];

echo $title . "
"; // Displays "The Grapes of Wrath"
echo Sauthor . "
"; // Displays "John Steinbeck"
echo SpubYear . "
"; // Displays "1939"

It works, but is rather long-winded. This is where 1ist () comes into play. You use it as follows:

SmyBook = array("The Grapes of Wrath", "John Steinbeck", 1939);
list($title, Sauthor, S$pubYear) = SmyBook;

echo $title . "
"; // Displays "The Grapes of Wrath"

echo Sauthor . "
"; // Displays "John Steinbeck"

echo SpubYear . "
"; // Displays "1939"

Note that 1ist () only works with indexed arrays, and it assumes the elements are indexed
consecutively starting from zero (so the first element has an index of 0, the second has an index of 1,
and so on).

137

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

A classic use of 1ist () is with functions such as each () that return an indexed array of values. For
example, you could rewrite the each () example from “Stepping Through an Array,” earlier in this
chapter, to use 1ist ():

$SmyBook = array("title" => "The Grapes of Wrath",
"author" => "John Steinbeck",
"pubYear" => 1939);

while (list(Skey, S$value) = each($myBook)) {
echo "<dt>$key</dt>";
echo "<dd>$value</dd>";

Summary

This chapter has introduced you to another important concept: arrays. These are special variables that
can store more than one value, and you'll find that you use them all the time in your PHP scripts.

First you delved into the anatomy of arrays, and learned the concepts of indexed and associative arrays.
Then you learned how to create arrays in PHP, and access array elements using both square brackets and
array_slice (). Along the way you learned about a very useful PHP function, print_r (), that you
can use to output entire arrays for debugging purposes.

Next, you discovered that every PHP array has an internal pointer that references its elements, and you
learned how to use this pointer to move through the elements in an array using current (), key (),
next (), prev (), end (), and reset (). You also used the handy foreach looping construct to loop
through elements in an array.

Arrays get really powerful when you start nesting them to produce multidimensional arrays. You
studied how to create such arrays, as well as how to access their elements and loop through them.

Finally, you explored some of PHP’s powerful array-manipulation functions, including;:

Q Sorting functions — You looked at functions such as sort (), asort (), ksort () and
array_multisort ()

Q Functions for adding and removing elements — These include array_unshift (), array_
shift (), array push(),array_pop () and array_splice()

Q array_merge () — This function is useful for merging two or more arrays together
0O explode() and implode () — These let you convert between arrays and strings
0O 1list()— You can use this to store array elements in a list of individual variables

PHP has a lot more array-related functions than the ones covered in this chapter. It’s a good idea to
explore the online PHP manual at http: //www.php.net/types.array to get an overview of the other
array functions that PHP has to offer. Also, try the following two exercises to test your array
manipulation skills. You can find the solutions to these exercises in Appendix A.

The next chapter looks at the concept of functions in PHP, and shows you how to create your own
functions and build reusable chunks of code.

138

(c) ketabton.com: The Digital Library

Chapter 6: Arrays

Exercises

1. Imagine that two arrays containing book and author information have been pulled from

a database:
Sauthors = array("Steinbeck", "Kafka", "Tolkien", "Dickens", "Milton",
"Orwell");

Sbooks = array(

array (
"title" => "The Hobbit",
"authorId" => 2,
"pubYear" => 1937

),

array (
"title" => "The Grapes of Wrath",
"authorId" => 0,
"pubYear" => 1939

),

array (
"title" => "A Tale of Two Cities",
"authorIid" => 3,
"pubYear" => 1859

),

array (
"title" => "Paradise Lost",
"authorId" => 4,
"pubYear" => 1667

),

array (
"title" => "Animal Farm",
"authorId" => 5,
"pubYear" => 1945

),

array (
"title" => "The Trial",
"authorId" => 1,
"pubYear" => 1925

),

)

Instead of containing author names as strings, the $books array contains numeric indices
(keyed on "authorId") pointing to the respective elements of the $authors array. Write a
script to add an "authorName" element to each associative array within the $books array that
contains the author name string pulled from the $authors array. Display the resulting $books
array in a Web page.

2. Imagine you are writing a version of the computer game Minesweeper. Use arrays to create and
store a minefield on a 20 x 20 grid. Place ten mines randomly on the grid, then display the grid,
using asterisks (*) for the mines and periods (.) for the empty squares. (Hint: To return a ran-
dom number between 0 and 19 inclusive, use rand(0, 19).)

139

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Functions

If you've been following the book up to now, you're already familiar with the concept of functions.
You've used built-in functions such as gettype () for determining the type of a variable, and
count () that returns the number of elements in an array.

This chapter takes a formal look at functions, and shows why they’re so useful. You learn:

Q More about how to call functions
0 How to create your own functions to make your code easier to read and work with

Q All about parameters and arguments — you use these to pass values into your functions —
and how to return values from functions. (With these techniques, your functions can
communicate with the code that calls them)

Q Variable scope and how to use local, global, and static variables to your advantage

0 How to create anonymous functions, which are useful when you need to create simple,
disposable functions

Finally, toward the end of the chapter, you get to explore more advanced concepts, such as
references — which let a function modify variables that were created in the code that calls it — and
recursion, which you can use as an alternative to looping. First, though, it’s a good idea to start at
the beginning, and look at exactly what a function does.

What Is a Function?

Generally speaking, a function — also called a subroutine in some other languages — is a self-
contained block of code that performs a specific task. You define a function using a special syntax —
which you learn about later in this chapter — and you can then call that function from elsewhere in
your script.

A function often accepts one or more arguments, which are values passed to the function by the
code that calls it. The function can then read and work on those arguments. A function may also

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

optionally return a value that can then be read by the calling code. In this way, the calling code can
communicate with the function.

You can think of a function as a black box. The code that calls a function doesn’t need to know what’s
inside the function; it just uses the function to get the job done.

Why Functions Are Useful

Functions are an important part of any programming language, and you'll find yourself using and
creating functions in PHP all the time. Functions are useful for a number of reasons:

Qa

They avoid duplicating code — Let’s say you've written some PHP code to check that an email
address is valid. If you're writing a webmail system, chances are you'll need to check email
addresses at lots of different points in your code. Without functions, you’d have to copy and
paste the same chunk of code again and again. However, if you wrap your validation code
inside a function, you can just call that function each time you need to check an email address

They make it easier to eliminate errors — This is related to the previous point. If you've copied
and pasted the same block of code twenty times throughout your script, and you later find that
code contained an error, you'll need to track down and fix all twenty errors. If your code was
inside a function, you’d only need to fix the bug in a single place

Functions can be reused in other scripts — Because a function is cleanly separated from the rest
of the script, it’s easy to reuse the same function in other scripts and applications

Functions help you break down a big project — Writing a big Web application can be
intimidating. By splitting your code into functions, you can break down a complex application
into a series of simpler parts that are relatively easy to build. (This also makes it easier to read
and maintain your code, as well as add more functionality later if needed)

Calling Functions

If you've worked through the previous chapters you've already called quite a few of PHP’s built-in
functions. To call a function, you write the function name, followed by an opening and a closing
parenthesis:

functionName ()

If you need to pass arguments to the function, place them between the parentheses, separating each
argument by commas:

functionName (argument)
functionName (argumentl, argument2)

142

(c) ketabton.com: The Digital Library

Chapter 7: Functions

If a function returns a value, you can assign the value to a variable:
SreturnvVal = functionName (argument) ;

You can also pass the return value directly to another function, such as print ():
print (functionName (argument));

In general terms, the return value of a function call is an expression, which means you can use a
function’s return value anywhere that you can use an expression.

When you call a function from within your script, the PHP engine jumps to the start of that function and
begins running the code inside it. When the function is finished, the engine jumps back to the point just
after the code that called the function and carries on from there. Here’s a simple example that illustrates
this point:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Square roots</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Square roots</hl>
<?php

echo "The square root of 9 is: " . sqgrt(9) . ".
";
echo "All done!
";

?>
</body>
</html>

This code produces the output shown in Figure 7-1. Here’s how it works:

Q After displaying the XHTML page header, the first echo () line is run, and the PHP engine
evaluates the expression after the echo () statement. This includes a function call to PHP’s built-
in sqrt () function, which determines the square root of its argument (in this case, 9)

Q The engine jumps to the code for the sqgrt () function and runs it. The function does its job and
exits, returning the value 3

Q The engine jumps back to the first echo () statement and, now that it knows the result of the call
to sqrt (), evaluates the rest of the expression, producing the string: "The square root of 9
is: 3." This string value is then displayed in the Web page using the echo () statement

Q Finally, the engine moves to the next line of code, and displays the "A11 done!" message

143

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

- SOUETEToots =Mzl EIrETox s |l
File Edit Vview History Bookmarks Tools Help

o« > a % | [® | httpylocalhost/square_raot.php |'| G~ @)

Square roots

The square root of 9is: 3.
All done!

Done

Figure 7-1

Working with Variable Functions

When you include a function call in your code, most of the time you’ll know the name of the function
you want to call. However, sometimes it’s useful to be able to store the name of a function in a string
variable, and use that variable instead of the function name when calling a function. Here’s an example:

$SsquareRoot = "sqgrt";
echo "The square root of 9 is: " . $squareRoot(9) . ".
";
echo "All done!
";

As you can see, the first line of code stores the function name, "sqrt", as a string in the $squareRoot
variable. This variable is then used in place of the function name on the second line.

This example is fairly trivial, but it shows how the concept works. Here’s a slightly more complex
example:

StrigFunctions = array("sin", "cos", "tan");
Sdegrees = 30;

foreach (S$trigFunctions as S$trigFunction) {
echo "S$trigFunction($degrees) = " . S$StrigFunction(deg2rad(S$degrees))
.o
 n ;
}
This code creates an array of three built-in function names — "sin", "cos", and "tan" — and sets up a

$degrees variable. It then loops through the array. For each element, it calls the function whose name is
stored in the element, passing in the value of $degrees converted to radians (using PHP’s built-in
deg2rad () function), and displays the result. Here’s the output from the code:

144

(c) ketabton.com: The Digital Library

Chapter 7: Functions

sin(30) = 0.5
cos (30) 0.866025403784
tan(30) = 0.57735026919

In the real world, variable function calling is often used to dynamically select a function to execute on
the fly, depending on, for example, user input or other external factors. You can also use it to write code
that calls user-created callback functions or event handler functions. (You create callback functions in
Chapter 15 and some event handlers in Chapter 19.)

Writing Your Own Functions

So far you've learned that functions are useful beasts that let you encapsulate and reuse code, and
you’ve explored how to call functions in PHP. Here’s where the fun really begins, as you get to create
your own functions.

Defining a function is really easy — just use the following syntax:

function myFunc () {
// (do stuff here)
}

In other words, you write the word function, followed by the name of the function you want to create,
followed by parentheses. Next, put your function’s code between curly brackets ({}).

Here’s a trivial example:

function hello() {
echo "Hello, world!
";
}

// Displays "Hello, world!"
hello();

As you can see, this script defines a function, hello (), that simply displays the string "Hello,
world! " After the function definition, the script calls the hello () function to display the output.

Notice that the code within the hello () function is only run when the function is later called, not
when the function itself is created. Simply creating a function does not run the code within the function;
you have to explicitly call the function in order to run its code.

Defining Parameters

As you know, functions can optionally accept one or more arguments, which are values passed to the
function. To tell PHP that you want your function to accept arguments, you specify one or more
corresponding parameters when you define your function. A parameter is a variable that holds the value
passed to it when the function is called.

145

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Strictly speaking, an argument is a value that you pass to a function, and a parameter is the variable
within the function that receives the argument. In practice, programmers often use the two terms

interchangeably.
To specify parameters for your function, insert one or more variable names between the parentheses,
as follows:
function myFunc(SoneParameter, S$anotherParameter) ({
// (do stuff here)
}

You can include as many parameter variables as you like. For each parameter you specify, a
corresponding argument needs to be passed to the function when it’s called. The arguments passed to
the function are then placed in these parameter variables. Here’s an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Saying hello with style</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Saying hello with style</hl>

<?php

function helloWithStyle($font, $size) {
echo "<p style=\"font-family: S$font; font-size: {S$sizel}em;\">Hello, world!</p>";

}

helloWithStyle("Helvetica", 2);
helloWithStyle("Times", 3);
hellowithStyle("Courier", 1.5);

?>

</body>
</html>

This code creates a function, hellowithStyle (), that has two parameter variables: $font and $size.
These variables are then used within the function to set the font and size of the text via CSS.

By the way, the curly bracket syntax used in the code {$size}em is useful when you need to include
some letters and/or numbers — in this case, em — immediately after a variable name. You can find out
more about this syntax in Chapter 5.

Next, the code calls the hellowithStyle () function three times, passing in different arguments each
time. For each function call, the $font parameter takes on the value of the first argument, and the $size

parameter takes on the value of the second argument.

Notice how the order of the arguments in the function calls matches the order of the parameters in the
function definition.

146

(c) ketabton.com: The Digital Library

Chapter 7: Functions

Save this script as hello_with_style.php in your document root folder and try it out. The resulting
page is shown in Figure 7-2. You can see how the same line of code within the function is used three
times to produce three quite different-looking greetings.

@ SEVING el DWWt SEyE=IvoZTHIEIFErox S) 1 |
File Edit view History Bookmarks Tools Help

& > 6 o | o) | hitpiflocalhosthello with style.php | - | |Gl = -}

Saying hello with style

Hello, world!

Hello, world!

Hello, world!

Done

Figure 7-2

Optional Parameters and Default Values

The preceding hello_with_style.php script shows that functions can be pretty powerful. The single-
line function within the script, helloWithStyle (), is capable of displaying the text “Hello, world!”
using any font and text size supported by the user’s browser.

However, suppose that most of the time you wanted to use a font size of 1.5 em. It would be tiresome to
have to include the second argument each time you called the function:

hellowWithStyle("Helvetica",
hellowithStyle("Times", 1.5
hellowithStyle("Courier", 1.

.5)

7

o~

)

Fortunately, PHP lets you create functions with optional parameters. You define an optional parameter
as follows:

function myFunc(S$SparameterName=defaultValue) {
// (do stuff here)
}

147

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

In other words, you insert the parameter name, followed by an equals (=) sign, followed by a default
value. This is the value that the parameter will take on if the corresponding argument is not passed
when the function is called. So you could then rewrite the previous hello_with_style.php script
as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Saying hello with style</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Saying hello with style</hl>

<?php

function helloWithStyle($font, $size=1.5) {
echo "<p style=\"font-family: S$font; font-size: {S$size}em;\">Hello, world!</p>";

}

hellowWithStyle("Helvetica", 2);
helloWithStyle("Times", 3);
hellowithStyle("Courier");

?>

</body>
</html>

You can see that the third call to hellowithStyle () doesn’t pass a second argument to the function.
This causes PHP to give the $size parameter its default value of 1.5. The end result is that the third
“Hello, world!” is displayed in Courier font with a size of 1.5 em, just like the first version of the script.

Returning Values from Your Functions

Earlier in the chapter, you saw that functions can return values as well as accept them. For example, the
built-in sgrt () function shown earlier accepts an argument (a number) and returns a value (the square
root of that number).

Note that both accepting arguments and returning values are optional. A function can do either, both, or
neither of these things.

To get your function to return a value, you use — you guessed it — PHP’s return statement:
function myFunc () {
// (do stuff here)
return value;

}

value can be any expression, so you can use a literal value (such as 1 or false), a variable name (such
as $result), or a more complex expression (for example, $x * 3 / 7).

148

(c) ketabton.com: The Digital Library

Chapter 7: Functions

When the PHP engine encounters the return statement, it immediately exits the function and returns
value back to the code that called the function, which can then use the value as required.

The following example script shows how to define and use a function that returns a value:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Normal and bold text</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Normal and bold text</hl>

<?php

function makeBold($text) {
return "$text";

}

SnormalText = "This is normal text.";
SboldText = makeBold("This is bold text.");
echo "<p>$normalText</p>";

echo "<p>$boldText</p>";

?>

</body>
</html>

This script defines a function, makeBold (), that accepts a string argument and returns the string
enclosed by HTML . . . (bold) tags. It then creates a variable, $normalText, containing an
unformatted string of text. Then it calls the makeBold () function, passing it some text to format, and
stores the return value from makeBold () in another variable, $boldText. Finally, the script outputs
both $normalText and $boldText to the browser.

You can see the result in Figure 7-3.

[

File Edit Vview History Bookmarks Tools Help

=] > 6 = |:':0 hitpyfocalhostbold text.php | v| |:C|' &)

Normal and bold text
This is normal lexl.

This Is bold text.

Done

Figure 7-3

149

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

As a matter of fact, you can use the return statement without including a value to return:

function myFunc () {
// (do stuff here)
return;

}

This simply exits the function at that point, and returns control to the calling code. This is useful if you
simply want a function to stop what it’s doing, without necessarily returning a value.

Understanding Variable Scope

You can create and use variables within a function, just as you can outside functions. For example, the
following function creates two string variables, $hello and $world, then concatenates their values and
returns the result:

function helloWithVariables () {
Shello = "Hello, ";
Sworld = "world!";
return $hello . Sworld;

echo hellowithvariables(); // Displays "Hello, world!"

However, the important thing to remember is that any variables created within a function are not
accessible outside the function. So in the preceding example, the variables $hello and $world that are
defined inside the function are not available to the calling code. The next example demonstrates this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Understanding variable scope</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Understanding variable scope</hl>

<?php

function hellowWithVariables () {
Shello = "Hello, ";
Sworld = "world!";
return S$hello . Sworld;

}

echo helloWithvVariables() . "
";
echo "The value of \$hello is: 'sShello'
";
echo "The value of \Sworld is: 'Sworld'
";
?>

</body>
</html>

150

(c) ketabton.com: The Digital Library

Chapter 7: Functions

You can see the script’s output in Figure 7-4.

B G s T A A =)

Fle Edit View Hislory Bookmarks Tools Help

%)

=] = e 0 | 8| httpylocalhostpvariable_scope.php |'| G~

Understanding variable scope
Hello, world!

The value of $hello is: "
The value of $world is:

Done

Figure 7-4

Notice how the calling code tries to display the values of $hello and $world, but nothing gets
displayed. This is because the $hello and $world variables that were created inside the function don’t
exist outside the function. The scope of $hello and $world is said to be limited to the function that
created them; they are said to be local variables.

Now at first glance you might think that this is a drawback, because it means you can’t easily access
variables within a function from outside the function. In fact, though, this is a good feature, because it
means that the names of variables used inside a function don’t clash with the names of variables used
outside the function.

Consider the following example:

function describeMyDog () {
Scolor = "brown";
echo "My dog is $color
";
}

// Define my cat's color
Scolor = "black";

// Display info about my dog and cat
describeMyDog () ;
echo "My cat is S$color
";

Notice that the code creates variables with the same name — $color — both inside and outside the
function. Thanks to the concept of variable scope, however, the $color variable inside the
describeMyDog () function is independent of the $color variable created outside the function, so the
code produces the expected result:

My dog is brown
My cat is black

151

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Consider what would happen if the scope of the $color variable was not limited. In this case, $color
would first be set to "black" as before:

// Define my cat
Scolor = "black";

However, when the describeMyDog () function was then called, it would overwrite the $color variable
with the value "brown" (because there’s only one $color variable), producing the following output:

My dog is brown
My cat is brown

So variable scope avoids clashing variable names, which helps to prevent you accidentally overwriting
variables of the same name. This is another reason why functions are so good.

Working with Global Variables

Although the concept of variable scope is extremely useful, occasionally you do actually want to create
a variable that can be accessed anywhere in your script, whether inside or outside a function. Such a
variable is called a global variable.

PHP supports global variables, but if you're used to other programming languages you’ll find PHP
handles globals slightly differently.

In PHP, all variables created outside a function are, in a sense, global in that they can be accessed by any
other code in the script that’s not inside a function. To use such a variable inside a function, write the
word global followed by the variable name inside the function’s code block. Here’s an example:

$myGlobal = "Hello there!";

function hello() {
global S$myGlobal;
echo "$SmyGlobal
";
}

hello(); // Displays "Hello there!"

You can see that the hello () function accesses the $myGlobal variable by declaring it to be global using
the global statement. The function can then use the variable to display the greeting.

In fact, you don’t need to have created a variable outside a function to use it as a global variable. Take a
look at the following script:

function setup() {

global S$SmyGlobal;

SmyGlobal = "Hello there!";
}

function hello() {
global $myGlobal;
echo "S$SmyGlobal
";
}

setup () ;
hello(); // Displays "Hello there!"

152

(c) ketabton.com: The Digital Library

Chapter 7: Functions

In this script, the setup () function is called first. It declares the $myGlobal variable as global, and gives
it a value. Then the hello () function is called. It too declares $myGlobal to be global, which means it
can now access its value — previously set by setup () — and display it.

By the way, you can also declare more than one global variable at once on the same line — just separate
the variables using commas:

function myFunction() {
global SoneGlobal, S$anotherGlobal;
}

Finally, you can also access global variables using the $GLOBALS array. This array is a special type of
variable called a superglobal, which means you can access it from anywhere without using the global
statement. It contains a list of all global variables, with the variable names stored in its keys and the
variables’ values stored in its values. Here’s an example that uses $GLOBALS:

SmyGlobal = "Hello there!";
function hello () {
echo S$GLOBALS["myGlobal"] . "
";
}
hello(); // Displays "Hello there!"

The hello () function accesses the contents of the $myGlobal variable via the $GLOBALS array. Notice
that the function doesn’t have to declare the $myGlobal variable as global in order to access its value.

PHP makes other superglobal variables available to you as well. You study superglobals in more depth
in Chapter 9.

Be careful with global variables. If you modify the value of a global variable in many different places
within your application, it can make it hard to debug your code when something goes wrong. Generally
speaking, you should avoid using global variables unless it’s strictly necessary.

Using Static Variables to Preserve Values

As you've seen, variables that are local to a function don’t exist outside the function. In fact, all variables
declared within a function are deleted when the function exits, and created anew when the function is
next called. This is usually what you want to happen, because it allows you to write nicely self-contained
functions that work independently of each other.

However, sometimes it’s useful to create a local variable that has a somewhat longer lifespan. Static
variables let you do just this. These types of variables are still local to a function, in the sense that they can
be accessed only within the function’s code. However, unlike local variables, which disappear when a

function exits, static variables remember their values from one function call to the next.

To declare a local variable as static, all you need to do is write the word static before the variable
name, and assign an initial value to the variable:

static Svar = 0;

153

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

The first time the function is called, the variable is set to its initial value (zero in this example). However,
if the variable’s value is changed within the function, the new value is remembered the next time the
function is called. The value is remembered only as long as the script runs, so the next time you run

the script the variable is reinitialized.

So when might you use static variables? Here’s a situation where a local variable isn’t much use:
function nextNumber () {

Scounter = 0;
return ++S$counter;

}

echo "I've counted to: " . nextNumber() . "
";
echo "I've counted to: " . nextNumber() . "
";
echo "I've counted to: " . nextNumber() . "
";

This code outputs the following:

I've counted to: 1
I've counted to: 1
I've counted to: 1

Each time the nextNumber () function is called, its $counter local variable is re-created and initialized
to zero. Then it’s incremented to 1 and its value is returned to the calling code. So the function always
returns 1, no matter how many times it’s called.

However, by making a small change to turn $counter into a static variable, the script produces the
expected output:

function nextNumber () {
static Scounter = 0;
return ++$counter;

}

echo "I've counted to: " . nextNumber() . "
";

echo "I've counted to: " . nextNumber() . "
";

echo "I've counted to: " . nextNumber() . "
";
Now the code displays:

I've counted to: 1
I've counted to: 2
I've counted to: 3

You probably won’t use static variables that often, and you can often achieve the same effect (albeit with
greater risk) using global variables. However, when you do really need to create a static variable you'll
probably be thankful that they exist. They’re often used with recursive functions (which you learn about
later in this chapter) to remember values throughout the recursion.

Creating Anonymous Functions

PHP lets you create anonymous functions — that is, functions that have no name. You might want to
create anonymous functions for two reasons:

154

(c) ketabton.com: The Digital Library

Chapter 7: Functions

Q To create functions dynamically — You can customize the code within an anonymous function
at the time that you create it. Although you'll rarely need to do this, it can make your code very
flexible in certain specific situations

Q To create short-term, disposable functions — Commonly, you do this when you work with built-in
functions that require you to create a callback or event handler function to work with. Examples
include xml_set_element_handler (), which you meet in Chapter 19, and array functions such
as array_walk (), which lets you apply a function to each value in an array, and usort (), which
sorts an array’s elements according to a comparison function that you create yourself

To create an anonymous function, you use create_function (). This expects two arguments: a comma-
separated list of parameters (if any), and the code for the function body (minus the curly brackets, but
including a semicolon at the end of each line of code). It returns a unique, randomly generated string
value that you can use to refer to the function later:

SmyFunction = create_function('Sparaml, S$param2',6 'function code here;');

Here’s a trivial example that creates an anonymous function dynamically based on the value of a variable:

Smode = "+";
SprocessNumbers = create_function('Sa, $b', "return \S$a Smode \Sb;");
echo S$processNumbers(2, 3); // Displays "5"

This code uses the value of the $mode variable as the operator used to process its two arguments, $a and
$b. For example, if you change $mode to " * ", the code displays "6" instead (2 times 3). In itself this code
is rather pointless, but if you can imagine a more complex function, where its contents are determined by
external factors such as user input, you can see that it’s a potentially powerful feature of PHP.

More commonly, you'll use anonymous functions to create callback functions as required by certain
built-in functions, as shown in the following example.

_ Sorting Words by Length

This example script takes a block of text and sorts all the words within the text by the number of
letters in each word, shortest word first. To do this, it uses anonymous functions, along with PHP’s
built-in usort (), preg_replace(), array_unique (), and preg_split () functions.

Save the script as sort_words_by_length.php in your document root folder, then run it in your
browser. You should see a page similar to Figure 7-5.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Sorting words in a block of text by length</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Sorting words in a block of text by length</hl>

<?php

SmyText = <<<END_TEXT

155

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

But think not that this famous town has
only harpooneers, cannibals, and
bumpkins to show her visitors. Not at
all. Still New Bedford is a queer place.
Had it not been for us whalemen, that
tract of land would this day perhaps
have been in as howling condition as the
coast of Labrador.

END_TEXT;

echo "<h2>The text:</h2>";
echo "<div style=\"width: 30em;\">SmyText</div>";

SmyText = preg_replace("/[\,\.]1/", "", SmyText);
Swords = array_unique(preg_split("/[\n\r\tl+/", SmyText));
usort (Swords, create_function('Sa, $b', 'return strlen(Sa) - strlen(Sb);

))

echo "<h2>The sorted words:</h2>";
echo "<div style=\"width: 30em;\">";

foreach (Swords as Sword) {
echo "Sword ";

echo "</div>";

?>

</body>
</html>

File Edit View History Bookmarks Tools Help

& S e bt |55- http:/flocalhost/sort words by length.php | o | HGI' 2

Sorting words in a block of text by length

The text:

But think neot that thie famous town has only harpooneers, cannibalg,
and bumpkins to show her visitors. Not at all. Still New Bedford is a
gueer place. Had il nol been lor us whalemen, thal (racl of land
would this day perhaps have heen in as howling condition as the
coast of Labrador.

The sorted words:

ail al us of as inlo is Bul New all [or day the nol has Had Nol her
and this that land only have been show town coast would Still tract
queer think place tamous perhaps howling Bedtord Labrador
whalemen visitors bumpkins cannibale condition harpooneers

Done

Figure 7-5

156

(c) ketabton.com: The Digital Library

Chapter 7: Functions

How It Works

After displaying an XHTML page header, the script sets up a $myText variable that holds the text
whose words are to be sorted. (Feel free to replace the example text with your own.) It then displays
the text within a fixed-width HTML div element.

Next, the script gets to work on processing the text. First it uses PHP’s preg_replace () function to
strip out all commas and periods from the text:

SmyText = preg_replace("/[\,\.]1/", "", SmyText);
(This line of code uses a simple regular expression to do its job; you learn more about preg_
replace () and regular expressions in Chapter 18.)

The next line of code calls the PHP function preg_split () to split the string into an array of words,
using any of the whitespace characters \n, \r, \t and space to determine the word boundaries. It then
processes the array through PHP’s handy array_unique () function, which removes any duplicate
words from the array:

Swords = array_unique(preg_split("/[\n\r\t]l+/", SmyText));

preg_split () splits a string by using a regular expression to locate the points at which to split. Find
out more about preg_split () in Chapter 18.

Next comes the sorting logic, and this is where anonymous functions come into play. The script uses
PHP’s usort () function to sort the array of words. usort () expects an array to sort, followed by a
callback comparison function. All comparison functions need to accept two values — $a and $b — and
return one of three values:

Q Anegative number if $a is considered to be “less than” $b

Q Zeroif $a is considered to be “equal to” $b

0 A positive number if $a is considered to be “greater than” $b
In this case, the comparison function needs to determine if the length of the string $a is less than, equal
to, or greater than the length of the string $b. It can do this simply by subtracting the length of $a from

the length of $b and returning the result. (Remember from Chapter 5 that PHP’s strlen() function
returns the length of a string.)

Here, then, is the complete line of code to sort the array:
usort (Swords, create_function('$a, $b', 'return strlen($a) - strlen(Sb);'));

Notice that this line of code uses the create_function() function to create an anonymous comparison
function, which is in turn used by usort () to sort the array.

157

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Finally, the script displays the sorted list of words in another fixed-width div element.

By the way, you don’t have to use an anonymous function in this situation. The preceding line of code
could be written as:

function sortByLength(S$a, $b) {
return strlen($Sa) - strlen($b);

}

usort (Swords, "sortByLength");

As you can see, though, the anonymous function version is much more compact.

Working with References

You've already learned that you can pass information to a function in the form of arguments, as well as
return information from a function to its calling code using the return statement. When you do either of
these things, PHP actually passes copies of the information to and from the function; this is known as
passing and returning by value.

Most of the time this isn’t a problem, but sometimes you want your function to work on the original
information, rather than on a copy. Consider the following example:

function resetCounter(sc) {
$c = 0;
}

Scounter = 0;

Scounter++;

Scounter++;

Scounter++;

echo "S$counter
"; // Displays "3"
resetCounter (S$counter);

echo "$counter
"; // Displays "3"

This code defines a function, resetCounter (), that resets its argument to zero. A $counter variable is
then initialized to zero and incremented three times. As you’d expect, the value of $counter at this
point is 3. resetCounter () is then called, passing in $counter, the variable to reset. However, as the
second echo statement shows, $counter has not been reset by the function. This is because the
parameter $c inside resetCounter () merely holds a copy of the information stored in $counter. So
when the function sets $c to zero, it doesn’t affect the value of $counter at all.

Fortunately, PHP provides a mechanism known as references that you can use to work around such issues.
A reference is a bit like a shortcut or alias to a file on your hard drive. When you create a reference to a
PHP variable, you now have two ways to read or change the variable’s contents — you can use the
variable name, or you can use the reference. Here’s a simple example that creates a reference to a variable:

SmyVar = 123;
SmyRef =& SmyVar;

SmyRef++;
echo SmyRef . "
"; // Displays "124"
echo $myVar . "
"; // Displays "124"

158

(c) ketabton.com: The Digital Library

Chapter 7: Functions

First a new variable, $myVar, is initialized with the value 123. Next, a reference to $myVar is created,
and the reference is stored in the variable $myRef. Note the ampersand (&) symbol after the equals sign;
using this symbol creates the reference.

The next line of code adds one to the value of $myRef. Because $myRef actually points to the same data
as $myVar, both $myRef and $myVar now contain the value 124, as shown by the two echo statements.

Now that you know what references are, and how to create them, it’s time to look at how you can pass
references into and out of your functions.

Passing References to Your Own Functions

By passing a reference to a variable as an argument to a function, rather than the variable itself, you pass
the argument by reference, rather than by value. This means that the function can now alter the original
value, rather than working on a copy.

To get a function to accept an argument as a reference rather than a value, put an ampersand (&) before
the parameter name within the function definition:

function myFunc(&$SaReference) {
// (do stuff with $aReference)
}

Now, whenever a variable is passed to myFunc (), PHP actually passes a reference to that variable, so
that myFunc () can work directly with the original contents of the variable, rather than a copy.

Now that you know this, you can fix the earlier counter example by using a reference:
function resetCounter(&$c) {

$c = 0;
}

Scounter = 0;

Scounter++;

Scounter++;

Scounter++;

echo "S$counter
"; // Displays "3"
resetCounter (Scounter);

echo "$counter
"; // Displays "0"

The only change in the script is in the first line:

function resetCounter(&$c) {
Adding the ampersand before the $c causes the $c parameter to be a reference to the passed argument
($counter in this example). Now, when the function sets $c to zero, it’s actually setting the value of
$counter to zero, as can be seen by the second echo statement.
Many built-in PHP functions accept references in this way. For example, PHP’s sort () function, which you

met in the previous chapter, changes the array you pass to it, sorting its elements in order. The array is passed
in by reference rather than by value, so that the function can change the array itself, rather than a copy of it.

159

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Returning References from Your Own Functions

As well as passing variables by reference into functions, you can also get functions to return references,
rather than values. To do this, you place an ampersand before the function name in your function
definition. Then, when you return a variable with the return statement, you pass a reference to that
variable back to the calling code, rather than the variable’s value:

function &myFunc () {
// (do stuff)
return $var; // Returns a reference to S$Svar

}

Here’s an example that shows return-by-reference in action:
SmyNumber = 5;
function &getMyNumber () {

global S$myNumber;
return SmyNumber;

}

$numberRef =& getMyNumber () ;

SnumberRef++;

echo "\SmyNumber = SmyNumber
"; // Displays "6"

echo "\S$numberRef = $numberRef
"; // Displays "6"

Here’s how it works. First, a global variable, $myNumber, is created and given the value 5. Next, a
function, getMyNumber (), is defined. This function simply uses the global keyword to access the
global variable $myNumber, then returns $myNumber. Because getMyNumber () has an ampersand before
its name, it returns a reference to $myNumber, rather than the value that $myNumber holds.

Next, the script calls getMyNumber (). The return value of getMyNumber () — that is, the reference to
$myNumber — is then assigned to a new variable, $numberRef. Notice the ampersand after the equals
sign; this ensures that $numberRef takes on the reference returned by getMyNumber (), rather than
taking on the value that the reference points to.

At this point, $numberRef and $myNumber both point to the same contents. To prove this, the code
increments $numberRef, then outputs the values of both $myNumber and $numberRef. Notice that they
both hold the same value — 6 — because they both point to the same piece of data.

Return-by-reference is used quite often in languages such as C++, because it’s the easiest way to return
complex data structures such as arrays and objects. However, because PHP lets you return pretty much
anything with its return statement, and automatically returns objects by reference anyway (as you see
in the next chapter), you probably won’t use return-by-reference that much in PHP.

Writing Recursive Functions

In Chapter 4, you learned how to use loops to operate on large amounts of data at once. Looping is
often known as iteration.

160

(c) ketabton.com: The Digital Library

Chapter 7: Functions

Recursion is another technique that you can use if you need to work on a set of values. Generally
speaking, it’s usually easier to use iteration than recursion; however, in certain situations recursion
makes more sense. Practically any loop can be converted to use recursion instead, and vice-versa.

So what is recursion, and how does it relate to functions? Well, in simple terms, recursion occurs when a
function calls itself. As you’d imagine, such a process would repeat indefinitely if not stopped, so the
recursion needs to have some sort of end condition — much like a loop. This end condition is known as
the base case, and the part of the function that calls itself is known as the recursive case.

Here’s a quick overview of how a recursive function operates:

Q The recursive function is called by the calling code
Q If the base case, or end condition, is met, the function does any processing required, then exits

Q Otherwise, the function does any processing required, then calls itself to continue the recursion

Of course, you have to make sure that the base case is eventually reached, otherwise the function will
keep calling itself indefinitely (causing an infinite loop).

_ Creating the Fibonacci Sequence with Recursion

Chapter 4 showed how to use looping to create the Fibonacci sequence of numbers. The following
script is similar to that shown in Chapter 4, except that it uses a recursive function to generate each
value, rather than computing the values iteratively.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Fibonacci sequence using recursion</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
th { text-align: left; background-color: #999; }
th, td { padding: 0.4em; }
tr.alt td { background: #ddd; }
</style>
</head>
<body>

<h2>Fibonacci sequence using recursion</h2>

<table cellspacing="0" border="0" style="width: 20em; border:
lpx solid #666; ">
<tr>
<th>Sequence #</th>
<th>Value</th>
</tr>
<?php

Siterations = 10;

161

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

function fibonacci($n) {

if (($n ==) || ($n == 1)) return $n;
return fibonacci($n-2) + fibonacci($n-1);
}
for ($1=0; $i <= Siterations; S$i++)
{
?>
<tr<?php if ($1 % 2 != 0) echo ' class="alt"' ?>>
<td>F_{<?php echo $i?>}</td>
<td><?php echo fibonacci($i)?></td>
</tr>
<?php
}
?>
</table>
</body>
</html>

Save the script as fibonacci_recursion.php in your document root folder and run it via your Web
browser. You should see a page much like Figure 7-6. Notice that the sequence is identical to that
produced by the script in Chapter 4.

File Edit View History Bookmarks Tools Help
& > ° = ||3: hitp:ilocalhostfibonacc recursion.php | > | |[—|'] & @
Fibonacci sequence using recursion
(Soquencet Vae |
% 0
ﬁ 1
Fz 1
Fﬂ o
F, 4
n 5
£, 8
7 13
Fo 21
% a4
] 10 55
Done
Figure 7-6

162

(c) ketabton.com: The Digital Library

Chapter 7: Functions

How It Works

Most of the code is similar to the script in Chapter 4. The script displays an XHTML header, then
creates a table to display the results. It also uses a for loop to display the Fibonacci numbers F to F,,,
much like the Chapter 4 script.

The difference is in how the Fibonacci numbers are computed. The iterative version in Chapter 4 uses
two variables, $numl and $num2, to hold the current two Fibonacci numbers, computing new numbers
as it iterates through the loop. This script, on the other hand, uses a recursive function, fibonacci (),
to compute the Fibonacci number for any given sequence number. This function is then called from
within the for loop to display the Fibonacci numbers F to F, .

So how does the fibonacci () function work? You can see that it accepts the current sequence
number, $n, as an argument. The first line of the function itself represents the base case:

if (($Sn==20) || ($n ==)) return S$n;

This code checks if the sequence number is 0 or 1; if it is then it immediately exits the function and
returns the sequence number (because F,is 0 and F, is 1). So once this condition is met, the function
finishes and control is passed back to the calling code.

If the base case hasn’t yet been reached, the second line of code is run:

return fibonacci($n-2) + fibonacci($n-1);

This code calls the £ibonacci () function twice recursively — once to compute the Fibonacci number
two positions lower in the sequence, and once to compute the Fibonacci number that’s one position
lower in the sequence. It then adds these two Fibonacci numbers together to produce the Fibonacci
number for the current sequence number, which it then returns to the calling code (which will either
be the code within the for loop, or another instance of the fibonacci () function).

So when this function is run with a sequence number of, say, 10, it calls itself to obtain the numbers at
positions 8 and 9. In turn, when called with the sequence number 8, the function computes the
Fibonacci number at this position by calling itself to obtain the numbers at positions 6 and 7, and so
on. This process continues until the function is called with a sequence number of 0 or 1; at this point, it
no longer calls itself but merely returns the value 0 or 1.

You can see that the function calls itself in a pattern that resembles a tree, with the initial function call
as the root of the tree and the various recursive calls as branches of the tree. In fact, recursive functions
are well suited to working on data organized like a tree, as you see when working with files and
folders in Chapter 11.

Summary

This chapter has introduced you to the concept of functions in PHP. A function is like a black box that
can accept one or more inputs and return a result. You've learned that functions make it easier for you to
write robust, structured code by breaking down large projects into smaller pieces. In addition, you
learned that by encapsulating code inside a function, you only have to write that code once, no matter
how many times you use it throughout your script.

163

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

You looked in some detail at how to call a function — whether built-in or user-defined — and explored
how the PHP engine behaves when a function is called. You also learned about variable functions — a
feature of PHP that lets you select which function to call while your script is running.

The main part of the chapter concentrated on writing your own functions. You studied:

Q How to define a function
QO How to specify function parameters, including optional parameters with default values

QO The return statement that lets you return a value from a function, or exit a function
prematurely

Q The difference between local, global, and static variables, and how to work with all three types
Q The concept of anonymous functions, and how to create them

Next, you learned about references, and you saw how references allow functions to access and modify
variables outside of them.

Finally, you were introduced to the concept of recursion, where a function repeatedly calls itself until an
end condition is reached. By way of example, you used a recursive function to generate numbers in the
Fibonacci sequence.

Now that you know how to create and use functions, you'll find it much easier to write larger PHP
scripts that are also easier to read and maintain. Try the following two exercises to brush up on your
function skills. You can find the solutions to these exercises in Appendix A.

The next chapter introduces object-oriented programming, which extends the idea of reusable code even
further and can add a lot of power and flexibility to your PHP applications.

Exercises

1. Write a function that takes an array argument, and returns a string containing XHTML markup for
a definition list where each key of the array is a term, and each corresponding value is a definition.
(Hint: An XHTML definition list element consists of <d1> ... </dl> tags. Inside these tags,
terms are marked up using <dt> ... </dt> tags, and definitions using <dd> ... </dd> tags.)

2. Afactorial of any given integer, 7, is the product of all positive integers between 1 and 7 inclu-
sive. So the factorial of 4is 1 x 2 x 3 x 4 =24, and the factorial of 5is 1 x 2 x 3 x 4 x 5 = 120. This
can be expressed recursively as follows:

O Ifn==0, return 1. (This is the base case)
O If n >0, compute the factorial of n—1, multiply it by n, and return the result

Write a PHP script that uses a recursive function to display the factorials of the integers 0 to 10.

164

(c) ketabton.com: The Digital Library

Objects

This chapter introduces not just objects, but the whole concept of object-oriented programming
(OOP). This style of programming is a great way to build modular, reusable code, letting you
create large applications that are relatively easy to maintain. The OOP approach has become very
popular with the PHP community in recent years.

You may already be familiar with OOP from working with other languages such as Java, C#, or
Perl, but if you're not, a general introduction follows shortly.

The rest of the chapter teaches the main concepts of OOP, and shows how to write object-oriented
code in PHP. You learn:

Qa

Q

How to define classes, which are the blueprints from which objects are made. You then
learn how to create objects from classes

Two important components of objects — properties and methods — and how to use them
to add rich functionality to your objects. Along the way you learn how to make your
objects as self-contained as possible, which allows them to be readily reused for different
purposes

How to use inheritance — a process where one object inherits behavior from another. This
is one of the most powerful aspects of objects. You learn how to achieve this in PHP, and
how to fine-tune the inheritance process to create robust classes that you can use again
and again

Other OOP concepts such as abstract classes, interfaces, constructors, and destructors

Some of PHP’s handy object-related functions for automatically loading classes,
converting objects to strings, and identifying an object’s class

OOFP is a big topic, and this chapter introduces quite a lot of concepts. Don’t worry if it all seems
overwhelming at first. Plenty of code examples make things clearer, and you'll find that, once you
start writing your own object-oriented code, the concepts will fit into place.

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

What Is Object-Oriented Programming?

So far in this book you've written code that passes chunks of data from one function to the next —a
technique known as procedural programming. Object-oriented programming takes a different approach.
Objects model the real-world things, processes, and ideas that your application is designed to handle. An
object-oriented application is a set of collaborating objects that independently handle certain activities.

For example, when a house is being constructed, the plumbers deal with the pipes, and the electricians
deal with the wires. The plumbers don’t need to know whether the circuit in the bedroom is 10 amps

or 20. They need only concern themselves with their own activities. A general contractor ensures that
each subcontractor is completing the work that needs to be accomplished but isn’t necessarily interested
in the particulars of each task. An object-oriented approach is similar in that each object hides from the
others the details of its implementation. How it does its job is irrelevant to the other components of the
system. All that matters is the service that the object is able to provide.

The concepts of classes and objects, and the ways in which you can use them, are the fundamental ideas
behind object-oriented programming. As you'll see, an object-oriented approach gives you some big
benefits over procedural programming.

Advantages of OOP

Let’s take a look at some of the advantages of an OOP approach to software development.

To start with, OOP makes it easy to map business requirements to code modules. Because your
application is based on the idea of real-world objects, you can often create a direct mapping of people,
things, and concepts to classes. These classes have the same properties and behaviors as the real-world
concepts they represent, which helps you to quickly identify what code needs to be written and how
different parts of the application need to interact.

A second benefit of OOP is code reuse. You frequently need the same types of data in different places in
the same application. For example, an application that manages hospital patient records might contain a
class called Person. A number of different people are involved in patient care — the patient, the doctors,
the nurses, hospital administrators, and so on. By defining a class called Person that encompasses the
properties and methods common to all of these people, you can reuse an enormous amount of code in a
way that isn’t always possible in a procedural programming approach.

What about other applications? How many applications can you think of that handle information about
individuals? Probably quite a few. A well-written Person class can easily be copied from one project to
another with little or no change, instantly giving you all the rich functionality for dealing with
information about people that you developed previously. This is one of the biggest benefits of an object-
oriented approach — the opportunities for code reuse within a given application as well as across
different projects.

Another OOP advantage comes from the modularity of classes. If you discover a bug in your Person
class, or you want to add new features to the class or change the way it functions, you have only one
place to go. All the functionality of that class is contained in a single PHP file. Any parts of the
application that rely on the Person class are immediately affected by changes to it. This can vastly

166

(c) ketabton.com: The Digital Library

Chapter 8: Objects

simplify the search for bugs and makes the addition of features a relatively painless task. Modularity is
particularly important when working on large, complex applications.

Applications written using OOP are usually relatively easy to understand. Because an object-oriented
approach forces you to think about how the code is organized, it’s a lot easier to discover the structure
of an existing application when you are new to the development team. What’s more, the object-oriented
design of the application gives you a ready-made framework within which you can develop new
functionality.

On larger projects, there are often many programmers with varying skill levels. Here, too, an object-
oriented approach has significant benefits over procedural code. Objects hide the details of their
implementation from the users of those objects. Instead of needing to understand complex data
structures and all of the quirks of the business logic, junior members of the team can, with just a little
documentation, begin using objects created by senior members of the team. The objects themselves are
responsible for triggering changes to data or the state of the system.

Now you have an idea of the advantages of object-oriented applications. You're now ready to learn the
nitty-gritty of classes and objects, which you do in the next few sections. By the end of this chapter, you'll
probably come to see the benefits of the OOP approach for yourself.

Understanding Basic OOP Concepts

Before you start creating objects in PHP, it helps to understand some basic concepts of object-oriented
programming. In the following sections, you explore classes, objects, properties, and methods. These are
the basic building blocks that you can use to create object-oriented applications in PHP.

Classes

In the real world, objects have characteristics and behaviors. A car has a color, a weight, a manufacturer,
and a gas tank of a certain volume. Those are its characteristics. A car can accelerate, stop, signal for a
turn, and sound the horn. Those are its behaviors. Those characteristics and behaviors are common to all
cars. Although different cars may have different colors, all cars have a color.

With OOP, you can model the general idea of a car — that is, something with all of those qualities — by
using a class. A class is a unit of code that describes the characteristics and behaviors of something, or of
a group of things. A class called car, for example, would describe the characteristics and behaviors
common to all cars.

Objects

An object is a specific instance of a class. For example, if you create a Car class, you might then go on to
create an object called myCar that belongs to the Car class. You could then create a second object,
yourCar, also based on the car class.

Think of a class as a blueprint, or factory, for constructing an object. A class specifies the characteristics

that an object will have, but not necessarily the specific values of those characteristics. Meanwhile, an
object is constructed using the blueprint provided by a class, and its characteristics have specific values.

167

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

For example, the car class might indicate merely that cars should have a color, whereas a specific myCar
object might be colored red.

The distinction between classes and objects is often confusing to those new to OOP. It helps to think of
classes as something you create as you design your application, whereas objects are created and used
when the application is actually run.

Properties

In OOP terminology, the characteristics of a class or object are known as its properties. Properties

are much like regular variables, in that they have a name and a value (which can be of any type).
Some properties allow their value to be changed and others do not. For example, the Car class might
have properties such as color and weight. Although the color of the car can be changed by giving it
a new paint job, the weight of the car (without cargo or passengers) is a fixed value.

Methods

The behaviors of a class — that is, the actions associated with the class — are known as its methods.
Methods are very similar to functions; in fact, you define methods in PHP using the function statement.

Like functions, some methods act on external data passed to them as arguments, but an object’s method
can also access the properties of the object. For example, an accelerate method of the Car class might
check the fuel property to make sure it has enough fuel to move the car. The method might then update
the object’s velocity property to reflect the fact that the car has accelerated.

The methods of a class, along with its properties, are collectively known as members of the class.

Creating Classes and Objects in PHP

Although the theory behind classes and objects can get quite involved, classes and objects are actually
really easy to create in PHP. As you’d imagine, you need to create a class before you create an object
belonging to that class. To create a class, you use PHP’s class keyword. Here’s a really simple class:

class Car {
// Nothing to see here; move along

}

This code simply defines a class called car that does nothing whatsoever — it merely includes a
comment. (You add some functionality to the class shortly.) Notice that a class definition consists of the
class keyword, followed by the name of the class, followed by the code that makes up the class,
surrounded by curly brackets ({ }).

A common coding standard is to begin a class name with a capital letter, though you don’t have to do
this. The main thing is to be consistent. You can find out more about coding standards in Chapter 20.

168

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Now that you've defined a class, you can create objects based on the class. To create an object, you use
the new keyword, followed by the name of the class that you want to base the object on. You can then
assign this object to a variable, much like any other value.

Here’s an example that shows how to create objects:

class Car {
// Nothing to see here; move along

}

Sbeetle = new Car();
$mustang = new Car();

print_r(Sbeetle); // Displays "Car Object ()"
print_r($mustang); // Displays "Car Object ()"

This code first defines the empty Car class as before, then creates two new instances of the Car class —
that is, two Car objects. It assigns one object to a variable called $beetle, and another to a variable
called $mustang. Note that, although both objects are based on the same class, they are independent of
each other, and each is stored in its own variable.

Once the objects have been created, their contents are displayed using print_r (). You'll remember from
Chapter 6 that print_r () can be used to output the contents of arrays. It can also be used to output
objects, which is very handy for debugging object-oriented code. In this case, the Car class is empty, so
print_r () merely displays the fact that the objects are based on the car class.

In Chapter 7, you learned how PHP passes variables to and from functions by value, and assigns them
to other variables by value, unless you explicitly tell it to pass them or assign them by reference. The
exception to this rule is objects, which are always passed by reference.

Creating and Using Properties

Now that you know how to create a class, you can start adding properties to it. Class properties are very
similar to variables; for example, an object’s property can store a single value, an array of values, or even
another object.

Understanding Property Visibility

Before diving into creating properties in PHP, it’s worth taking a look at an important concept of classes
known as visibility. Each property of a class in PHP can have one of three visibility levels, known as
public, private, and protected:

Q Public properties can be accessed by any code, whether that code is inside or outside the class. If
a property is declared public, its value can be read or changed from anywhere in your script

169

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Q Private properties of a class can be accessed only by code inside the class. So if you create a
property that’s declared private, only methods inside the same class can access its contents.
(If you attempt to access the property outside the class, PHP generates a fatal error.)

Q Protected class properties are a bit like private properties in that they can’t be accessed by code
outside the class, but there’s one subtle difference: any class that inherits from the class can also
access the properties. (You learn about inheritance later in the chapter.)

Generally speaking, it’s a good idea to avoid creating public properties wherever possible. Instead, it’s
safer to create private properties, then to create methods that allow code outside the class to access those
properties. This means that you can control exactly how your class’s properties are accessed. You learn
more about this concept later in the chapter. In the next few sections, though, you work mostly with
public properties, because these are easiest to understand.

Declaring Properties

To add a property to a class, first write the keyword public, private, or protected — depending on
the visibility level you want to give to the property — followed by the property’s name (preceded by a $

symbol):
class MyClass {
public S$propertyl; // This is a public property
private S$property?2; // This is a private property

protected S$property3; // This is a protected property
}

By the way, you can also initialize properties at the time that you declare them, much like you can with
variables:

class MyClass {

public $widgetsSold = 123;
}

In this case, whenever a new object is created from MyClass, the object’s $widgetsSold property
defaults to the value 123.

Accessing Properties

Once you've created a class property, you can access the corresponding object’s property value from
within your calling code by using the following syntax:

Sobject->property;

That is, you write the name of the variable storing the object, followed by an arrow symbol composed of

a hyphen (-) and a greater-than symbol (>), followed by the property name. (Note that the property
name doesn’t have a $ symbol before it.)

170

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Here’s an example that shows how to define properties then set and read their values:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Defining and Using Object Properties</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Defining and Using Object Properties</hl>

<?php

class Car {
public Scolor;
public $manufacturer;

}

Sbeetle = new Car();
Sbeetle->color = "red";
Sbeetle->manufacturer = "Volkswagen";

Smustang = new Car();
Smustang->color = "green';
$mustang->manufacturer = "Ford";

echo "<h2>Some properties:</h2>";

echo "<p>The Beetle's color is " . Sbeetle->color . ".</p>";

echo "<p>The Mustang's manufacturer is " . Smustang->manufacturer . ".</p>";
echo "<h2>The \S$beetle Object:</h2><pre>";

print_r(Sbeetle);

echo "</pre>";

echo "<h2>The \Smustang Object:</h2><pre>";

print_r(Smustang) ;

echo "</pre>";

?>

</body>
</html>

You can see the output from this script in Figure 8-1. The script defines a class, Car, with two public
properties, $color and $manufacturer. Then it creates a new Car object and assigns it to a variable
called $beetle, and sets $beetle’s $color and $manufacturer properties to "red" and
"Volkswagen", respectively. Next the script creates another car object, assigns it to $mustang, and sets
ﬁs$coloryﬂopeﬁyt0“green"andﬁs$manufacturer¥ﬂopeﬁyt0“Fordﬂ

Now that the two objects have been created and their properties set, the script displays the values of a
couple of properties: the $color property of the $beetle object ($beetle->color) and the
$manufacturer property of the $mustang object (Smustang->manufacturer). Finally, the script uses
print_r () to display the two objects; notice how print_r () displays an object’s properties in much
the same way as it displays array keys and values.

171

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

File Edit View History Bookmarks Tools Help

&a - ° = ||3' hitp:flocalhostfproperties.php | '| |:G]' ¢ @

Defining and Using Object Properties

Some properties:
The Beetle's color is red

The Muslang's manulaclurer is Ford.

The $beetle Object:
Car Ohject
{

[color] == red

Imanutacturer| => Volkswagen
1

The $mustang Object:
Car object
{

lcolorl == green
[manufacturer] == Ford

]
Done

Figure 8-1

Static Properties

You encountered static function variables in the previous chapter. You can also create static class
properties in a similar way, by adding the static keyword just before the property name:

class MyClass {
public static SmyProperty;
}

Static members of a class are independent of any particular object derived from that class. To access
a static property, you write the class name, followed by two colons (: :), followed by the property name
(preceded by a $ symbol):

MyClass: :$SmyProperty = 123;
Here’s an example using the Car class:
class Car {
public $color;
public $manufacturer;
static public S$numberSold = 123;
}

Car: :SnumberSold++;
echo Car::$numberSold; // Displays "124"

172

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Within the car class, a static property, $numbersold, is declared and also initialized to 123. Then,
outside the class definition, the static property is incremented and its new value, 124, is displayed.

Static properties are useful when you want to record a persistent value that’s relevant to a particular
class, but that isn’t related to specific objects. You can think of them as global variables for classes. The
nice thing about static properties is that code outside the class doesn’t have to create an instance of
the class — that is, an object — in order to access the property.

Class Constants

You learned in Chapter 3 that you can create constants — special identifiers that hold fixed values
throughout the running of your script. PHP also lets you create constants within classes. To define a class
constant, use the keyword const, as follows:

class MyClass {
const MYCONST = 123;
}

As with normal constants, it's good practice to use all-uppercase letters for class constant names.
Like static properties, you access class constants via the class name and the : : operator:
echo MyClass: :MYCONST;

Class constants are useful whenever you need to define a fixed value, or set a configuration option, that’s
specific to the class in question. For example, for the Car class you could define class constants to
represent various types of cars, then use these constants when creating Car objects:

class Car {
const HATCHBACK = 1;
const STATION_WAGON = 2;
const SUV = 3;

public $model;
public S$Scolor;
public $manufacturer;
public S$type;
}

SmyCar = new Car;

SmyCar->model = "Dodge Caliber";
$myCar->color = "blue";
SmyCar->manufacturer = "Chrysler";

SmyCar->type = Car::HATCHBACK;

echo "This $myCar->model is a ";
switch ($SmyCar->type) {
case Car::HATCHBACK:
echo "hatchback";
break;

173

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

case Car::STATION_WAGON:
echo "station wagon";

break;

case Car::SUV:
echo "SUV";
break;

}

In this example, the Car class contains three class constants — HATCHBACK, STATION_WAGON, and SUV —
that are assigned the values 1, 2, and 3, respectively. These constants are then used when setting and
reading the $type property of the $myCar object.

Working with Methods

Up to this point, the classes and objects you've created have mostly consisted of properties. As such,
they’re not really much use, except as glorified associative arrays. It's when you start adding methods to
classes that they become truly powerful. An object then becomes a nicely encapsulated chunk of
functionality, containing both data and the methods to work on that data.

As mentioned earlier, a method is much like a function, except that it’s tied to a specific class.

Method Visibility

Earlier in the chapter you learned that a property can have three visibility levels: public, private, and
protected.

The same is true of methods. All methods can be called by other methods within the same class. If a
method is declared public, any code outside the class definition can also potentially call the method.
However, if a method is declared private, only other methods within the same class can call it. Finally, a
protected method can be called by other methods in the class, or in a class that inherits from the class.

Creating a Method

To add a method to a class, use the public, private, or protected keyword, then the function
keyword, followed by the method name, followed by parentheses. You then include the method’s code
within curly braces:
class MyClass {
public function aMethod() {
// (do stuff here)
}

}

You can optionally leave out the public, private, or protected keyword. If you do this, public
is assumed.

174

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Calling Methods

To call an object’s method, simply write the object’s name, then the same arrow used for accessing
properties (->), then the method name followed by parentheses:

$object->method () ;

Here’s a simple example that creates a class with a method, then creates an object from the class and calls
the object’s method:

class MyClass {

public function hello() {
echo "Hello, World!";
}
}

$obj = new MyClass;
Sobj->hello(); // Displays "Hello, World!"

Adding Parameters and Returning Values

As with functions, which you studied in the previous chapter, you can add parameters to a method so
that it can accept arguments to work with. A method can also return a value, just like a function.

You add parameters and return values in much the same way as with functions. To add parameters,
specify the parameter names between the parentheses after the method’s name:

public function aMethod($paraml, Sparam2) {
// (do stuff here)

}
To return a value from a method — or to simply exit a method immediately — use the return keyword:

public function aMethod($paraml, Sparam2) {
// (do stuff here)
return true;

}

Accessing Object Properties from Methods

Although you can happily pass values to and from a method using parameters and return values,
much of the power of OOP is realized when objects are as self-contained as possible. This means that
an object’s methods should ideally work mainly with the properties of the object, rather than relying on
outside data to do their job.

175

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

To access an object’s property from within a method of the same object, you use the special variable
name $this, as follows:

Sthis->property;
For example:
class MyClass {
public $greeting = "Hello, World!";

public function hello() {
echo S$this->greeting;
}
}

$obj = new MyClass;
Sobj->hello(); // Displays "Hello, World!"

In this example, a class, MyClass, is created, with a single property, $greeting, and a method, hello().
The method uses echo to display the value of the $greeting property accessed via $this->greeting.
After the class definition, the script creates an object, $obj, from the class, and calls the object’s hello ()
method to display the greeting.

Note that the $this inside the hello () method refers to the specific object whose hello () method is
being called — in this case, the object stored in $obj. If another object, $obj2, were to be created from
the same class and its hello () method called, the $this would then refer to $ob7j2 instead, and
therefore $this->greeting would refer to the $greeting property of Sobj2.

By the way, you can also use $this to call an object’s method from within another method of the
same object:

class MyClass {

public function getGreeting() {
return "Hello, World!";

}

public function hello() {
echo S$this->getGreetingl() ;
}
}

$obj = new MyClass;
Sobj->hello(); // Displays "Hello, World!"

Here, the hello () method uses $this->getGreeting () to call the getGreeting () method in the
same object, then displays the returned greeting string using echo.

176

(c) ketabton.com: The Digital Library

Chapter 8: Objects

_ A Car that Moves

The following example shows how adding a few methods to a class can really start to make it useful.
Save the script as car_simulator.php in your document root folder, then run it in your Web
browser. Figure 8-2 shows the result.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>A Simple Car Simulator</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>A Simple Car Simulator</hl>

<?php

class Car {
public S$Scolor;
public S$manufacturer;
public $model;
private $_speed = 0;

public function accelerate() {
if ($this->_speed >= 100) return false;
Sthis->_speed += 10;
return true;

}

public function brake()
if (Sthis->_speed <=
Sthis->_speed -= 10;
return true;

}

{
0) return false;

public function getSpeed() {
return S$Sthis->_speed;
}
}

SmyCar = new Car () ;

SmyCar->color = "red";
SmyCar->manufacturer = "Volkswagen';
SmyCar->model = "Beetle";

echo "<p>I'm driving a SmyCar->color $myCar->manufacturer S$SmyCar->model.</
p>";

echo "<p>Stepping on the gas...
";
while (SmyCar->accelerate()) {

echo "Current speed: " . SmyCar->getSpeed() . " mph
";
}

177

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

echo "</p><p>Top speed! Slowing down...
";
while ($myCar->brake()) {
echo "Current speed: " . SmyCar->getSpeed() . " mph
";
echo "</p><p>Stopped!</p>";
?>

</body>
</html>

File Edit View History Bookmarks Tools Help

@ ¥ ° ﬁf ||3:- http:flocalhostfcar simulator.php | 'I |[C|' o

A Simple Car Simulator
I'm driving a red Volkswagen Beelle.

Slepping on lhe gas...
Current speed: 10 mph
Current speed: 20 mph
Current speed: 30 mph
Current speed: 40 mph
Currenl speed: 50 mph
Current speed: 50 mph
Current speed: 70 mph
Current speed: 80 mph
Current speed: 90 mph
Current speedd: 100 mph

Top speed! Slowing down...
Current speed: 90 mph
Current speed: 80 mph
Current speed: 70 mph
Current speed: 60 mph
Current speed: 50 mph
Current speed: 40 mph
Current speed: 30 mph
Current speed: 20 mph
Currenl speed: 10 mph
Current speed: 0 mph

Stopped! =
Done 7
Figure 8-2

How It Works

This script adds some useful behaviors to the Car class in the form of three methods:

U accelerate() speeds up the car by 10 mph, returning true if successful. If the car is already at top
speed — 100 mph — the car isn’t accelerated any further, and accelerate () returns false

178

(c) ketabton.com: The Digital Library

Chapter 8: Objects

O brake() does the opposite of accelerate () — it decreases speed by 10 mph, returning true if
successful, or false if the car is stationary

U getsSpeed() simply returns the car’s current speed, in mph

The script then creates an instance of the Car class — the $myCar object — and sets its public properties
to reflect a specific car (a red Volkswagen Beetle). Finally, the script displays these properties, then

runs through a couple of loops, accelerating the car to top speed then decelerating back down to zero
mph, and displaying the current speed as it goes by using the getSpeed () method.

Notice that the Car class contains a private property, $_speed. This is good OOP practice, because
you should keep an object’s data and behaviors private unless they absolutely need to be publicly
available. In this case, you don’t want outside code to be able to directly read or modify the car’s
speed; instead the calling code should use the three methods you created. For this reason, it makes
sense for $_speed to be private.

Incidentally, the underscore at the start of the $_speed variable name is a common coding practice
used to indicate private properties and methods. You don’t have to use this convention, but it can
make it easier to identify private class members at a glance.

Static Methods

PHP lets you create static methods in much the same way as static properties. To make a method static,
add the static keyword before the function keyword in the method definition:

class MyClass {
public static function staticMethod() {
// (do stuff here)
}
}

To call a static method, write the class name, followed by two colons, followed by the method name and
the arguments (if any) in parentheses:

MyClass: :staticMethod() ;

As with static properties, static methods are useful when you want to add some functionality that’s
related to a class, but that doesn’t need to work with an actual object created from the class. Here’s a
simple example:
class Car {
public static function calcMpg($miles, $gallons) {
return (S$miles / S$gallons);
}
}

echo Car::calcMpg(168, 6); // Displays "28"

179

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

The calcMpg () method take two arguments — miles traveled and gallons of fuel used — and
returns the calculated miles per gallon. The method is then tested by calling it with some sample figures

and displaying the result.

Unlike the accelerate (), brake (), and getSpeed () methods you created in the car_simulator.php
example earlier, the calcMpg () method doesn’t depend on an actual object to do its job, so it makes
sense for it to be static. Notice that the calling code doesn’t need to create a Car object to use calcMpg ().

If you need to access a static method or property, or a class constant, from within a method of the same

class, you can use the same syntax as you would outside the class:
class MyClass {

const MYCONST = 123;
public static $staticVar = 456;

public function myMethod() {

echo "MYCONST = " . MyClass::MYCONST . ", ";
echo "\$staticVar = " . MyClass::S$staticvVar . "
";

}

$Sobj = new MyClass;
Sobj->myMethod(); // Displays "MYCONST = 123, S$staticVar = 456"

You can also use the self keyword (much as you use $this with objects):
class Car {
public static function calcMpg(Smiles, S$gallons) {
return (Smiles / Sgallons);
}
public static function displayMpg(Smiles, S$gallons) {
echo "This car's MPG is: " . self::calcMpg(S$miles, S$gallons);

}
}

echo Car::displayMpg(168, 6); // Displays "This car's MPG is: 28"

Using Hints to Check Method Arguments

Generally speaking, PHP doesn’t care much about the types of data that you pass around. This
makes PHP quite flexible, but it can cause problems that are quite hard to track down. Consider the

following code:
class Car {
public S$color;

}

class Garage {
public function paint($car, $color) {

180

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Scar->color = S$color;

}

Scar = new Car;

Sgarage = new Garage;

Scar->color = "blue";

Sgarage->paint (Scar, "green");

echo Scar->color; // Displays "green"

This code creates two classes: Car, with a single $color property, and Garage, with a paint ()
method. This method takes a Car object and a color string, and changes the car’s $color property

to the string provided. You can see this in action in the code after the Garage class, which creates new
car and Garage objects, sets the Car object’s color to blue, then calls the Garage object’s paint ()
method to change the car’s color to green. So far so good.

However, suppose that another, somewhat naive programmer wants to use your Garage class to paint a
cat, rather than a car. They create a string variable holding the name of the cat, then try to use the
paint () method on it:

Scat = "Lucky";
Sgarage = new Garage;
Sgarage->paint (Scat, "red"); // Error!

Unsurprisingly, PHP takes exception to this, generating the following warning-level error:
PHP Warning: Attempt to assign property of non-object

This is because the Garage: :paint () method has attempted to change the $color property of a string,
"Lucky", which is of course impossible. The error is really in the calling code — it shouldn’t have passed
a string as the first argument to Garage: :paint () — but the script actually falls over inside the

paint () method. If the paint () method was quite long, or if it in turn called other methods, it could
get quite hard to track down the source of the problem.

This is where type hinting comes into play. You can use a hint to tell PHP that Garage: :paint () should
expect a Car object as its first argument, and reject any other type of argument. To do this, you simply
place the class name before the argument name, as follows:

public function paint(Car Scar, Scolor) {

Now, if the same programmer tries to call the paint () method with a string instead of a Car object as
the first argument, PHP gives an error similar to the following;:

PHP Catchable fatal error: Argument 1 passed to Garage::paint() must be an
instance of Car, string given, called in script.php on line 23 and defined in

script.php on line 9

This is much more helpful, because it lets you track down the problem to the calling code, rather than
wasting time looking inside the method for a bug.

181

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

By the way, you can also use type hinting with regular functions, not just methods, and you can also
check that an argument is an array using hinting:

function showAll(array Sitems) {

Sadly, PHP supports type hinting only for objects and arrays. Other data types, such as strings or
integers, can’t be checked using this technique. If you want to check for these types you'll need to use
is_string(),is_int (), and so on as described in Chapter 3.

Making Your Classes Self-Contained with Encapsulation

So far, most of the classes you've created in this chapter have contained public properties, and outside
code has been able to reach into a class’s innards and manipulate its public properties at will. Usually,
this is a bad idea. One of the strengths of OOP is the concept of encapsulation. This means that a class’s
internal data should be protected from being directly manipulated from outside, and that the details
of the class’s implementation — such as how it stores values or manipulates data — should be hidden
from the outside world. By doing this, you gain two advantages:

0 You can change your class’s implementation details at any time without affecting code that
uses the class

0 You can trust the state of an object to be valid and to make sense

Generally speaking, all internal properties of a class should be declared private. If outside code needs to
access those variables, it should be done through a public method. This gives your class the opportunity
to validate the changes requested by the outside code and accept or reject them.

For example, if you're building a banking application that handles details of customer accounts, you
might have an Account object with a property called $totalBalance and methods called
makeDeposit () and makewWithdrawal (). The only way to affect the balance should be to make a
withdrawal or a deposit. If the $totalBalance property is implemented as a public property, you could
write outside code that would increase the value of that variable without having to actually make a
deposit. Obviously, this would be bad for the bank.

Instead, you implement this property as a private property and provide a public method called
getTotalBalance (), which returns the value of that private property:

class Account {
private $_totalBalance = 0;

public function makeDeposit(Samount) {
Sthis->_totalBalance += $amount;
}

public function makeWithdrawal ($Samount) {
if ($amount < $this->_totalBalance) {
Sthis->_totalBalance -= $amount;
} else {
die("Insufficient funds
");
}
}

182

(c) ketabton.com: The Digital Library

Chapter 8: Objects

public function getTotalBalance () {
return S$this->_totalBalance;
}
}

$a = new Account;

Sa->makeDeposit(500);

Sa->makeWithdrawal (100);

echo $Sa->getTotalBalance() . "
"; // Displays "400";
Sa->makeWithdrawal (1000); // Displays "Insufficient funds"

Because the variable storing the account balance is private, it can’t be manipulated directly. Customers
have to actually make a deposit via makeDeposit () if they want to increase the value of their account.

By encapsulating internal data and method implementations, an object-oriented application can protect
and control access to its data and hide the details of implementation, making the application more
flexible and more stable.

Object Overloading with __get(),
__set(), and __call()

Normally, if you try to read or write an object’s property, PHP dutifully reads or sets the property’s value
(assuming the property exists and your code has permission to access it). Similarly, if you call an object’s
method, PHP looks for the method within the object and, if it finds it, runs it.

However, PHP lets you use a technique known as overloading to intercept attempts to read or write an
object’s properties, or call its methods. This can be quite powerful. As far as the calling code is
concerned, the object contains fixed, pre-programmed properties and methods. However, behind the
scenes, your object can be doing all sorts of interesting things. For example:

Q The calling code reads the value of $myObject->property, which actually causes $myObject
to retrieve the value from an array instead

Q The calling code sets $myObject->anotherProperty to a new value, but behind the scenes
$myObject actually writes this value to a database field

Q The calling code calls $myObject->aMethod (). This method doesn’t actually exist in
$myObject, but $myObject intercepts the call and calls another method instead

Although you probably won't use object overloading that often, you can see that the technique can offer
you a lot of flexibility.

183

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

PHP allows you to create three “magic” methods that you can use to intercept property and
method accesses:

Q __get() is called whenever the calling code attempts to read an invisible property of the object
QO _ set() is called whenever the calling code attempts to write to an invisible property of

the object
Q _ call() is called whenever the calling code attempts to call an invisible method of the object

What is meant by “invisible”? In this context, invisible means that the property or method isn’t visible to
the calling code. Usually this means that the property or method simply doesn’t exist in the class, but it
can also mean that the property or method is either private or protected, and hence isn't accessible to
code outside the class.

Overloading Property Accesses with _ get() and __set()

To intercept attempts to read an invisible property, you create a method called __get () within your
class. (That’s two underscores, followed by the word get.) Your __get () method should expect a single
argument: the name of the requested property. It should then return a value; this value in turn gets
passed back to the calling code as the retrieved property value.

Here’s an example:

class Car {
public function __get(SpropertyName) {
echo "The value of 'SpropertyName' was requested
";
return "blue";

}

Scar = new Car;
$x = S$car->color; // Displays "The value of 'color' was requested"
echo "The car's color is $x
"; // Displays "The car's color is blue"

In this example, the Car class contains no actual properties, but it does contain a __get () method. This
method simply displays the value of the requested property name, and returns the value "blue". The rest
of the script creates a new Car object, and attempts to retrieve the nonexistent property scar->color,
storing the result in a new variable, $x. Doing this triggers the Car object’s __get () method, which
displays the requested property name ("color") and returns the literal string "blue". This string is then
passed back to the calling code and stored in $x, as shown by the last line of code.

Similarly, to catch an attempt to set an invisible property to a value, use __set (). Your __set () method
needs two parameters: the property name and the value to set it to. It does not need to return a value:

public function __set(SpropertyName, S$propertyValue) {

// (do whatever needs to be done to set the property value)

}

184

(c) ketabton.com: The Digital Library

Chapter 8: Objects

_ Using _ get() and __set()

The following example shows how __get () and __set () can be used to store “nonexistent”
properties in a private array. This effectively creates a class with a potentially unlimited number of
“virtual” properties that are kept safely away from any real properties of the class. This technique can
be useful for creating classes that need to hold arbitrary data.

Save the following script as get_set . php in your document root folder and run it in your browser.
You should see the result shown in Figure 8-3.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Using _ get() and _ set()</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<h1>Using _ get() and _ set()</hl>

<?php

class Car {
public $manufacturer;
public Smodel;
public $color;
private $_extraData = array();

public function __get(SpropertyName) {

if (array_key_ exists(SpropertyName, S$Sthis->_extrabata)) {
return $this->_extraData[S$SpropertyName] ;
} else {

return null;
}
}

public function _ set(S$SpropertyName, SpropertyValue) {
Sthis->_extraDatal[SpropertyName] = SpropertyValue;
}
}

SmyCar = new Car();

SmyCar->manufacturer = "Volkswagen";

SmyCar->model = "Beetle";

SmyCar->color = "red";

SmyCar->engineSize = 1.8;

SmyCar->otherColors = array("green", "blue", "purple");

185

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

echo "<h2>Some properties:</h2>";

echo "<p>My car's manufacturer is " . $SmyCar->manufacturer . ".</p>";
echo "<p>My car's engine size is " . SmyCar->engineSize . ".</p>";
echo "<p>My car's fuel type is " . SmyCar->fuelType . ".</p>";

echo "<h2>The \S$SmyCar Object:</h2><pre>";
print_r(SmyCar);
echo "</pre>";

?>

</body>
</html>

File Edit WView History Bookmarks Tools Help

& - e = |:Eﬂ' hitp:flocalhostfgel set.php | '] ||—C|' ¢ %

Using __get() and __set()

Some properties:
My car's manufaciurer is Volkswagen
My car's engine size Is 1.8.

My car's fuel type Is .

The $myCar Object:

Car Object
{
[manufacturer] == Volkswagen
[model] == Reetle
[color] == red
[_extraDatatprivate] == Array
[

[engineSize] == 1.8
[otherColers] == Array
(
[0] == green
[1] == blue
[2] == purple

1

Done

Figure 8-3

How It Works

This script creates the familiar Car class containing some fixed public properties — $manufacturer,
$model, and $color — and also adds a private array property, $_extraData. The Car class

also contains a __get () method that looks up the requested property name in the keys of the
$_extraData array, returning the corresponding value in the array (if found). The corresponding __set ()
method takes the supplied property name and value, and stores the value in the $_extraData array,
keyed by the property name.

186

(c) ketabton.com: The Digital Library

Chapter 8: Objects

To test these methods, the script then creates a new Car object, $myCar, and sets five properties. The
first three are actual properties in the Car class — $manufacturer, $model, and $color — so these
properties get set to "Volkswagen", "Beetle", and "red". The fourth property, $engineSize,
doesn’t exist in the class, so the __set () method is called; this in turn creates an array element in
$_extraData with a key of "engineSize" and a value of 1.8.

Similarly, the fifth property, $otherColors, also doesn’t exist in the Car class, so __set () is called,
creating an array element in $extraData with a key of "otherColors" that stores the passed-in
value, which in this case is an array containing the strings "green", "blue", and "purple".

Next, the script displays the values of some of the properties of the $myCar object. Notice that, to the
calling code, the $engineSize property is as “real” as the $Smanufacturer property, even though

the $engineSize property doesn’t exist in the Car class. The script also tries to retrieve the value of a
property called $ fuelType; because this doesn’t exist in the class or in the $_extraData array, the __get ()
method returns null to the calling code. This is why no value is displayed in the page.

Finally, the script dumps the contents of the $myCar object using print_r (). Notice that the extra
“properties” — $engineSize and $otherColors — are stored inside the private $_extraData array.
(You can see that print_r () also displays private properties inside an object, which is useful for

debugging.)

Although the nonexistent properties were stored in a private array in this example, they could just as
easily have been stored in a file or database table, or passed via an API (application programming
interface) to another application. This gives you some idea of the power of __get () and __set ().

Overloading Method Calls with __call()

Justas youcanuse __get () and __set () to handle reading and writing nonexistent properties, you can
alsouse __call () to handle calls to nonexistent methods of a class. Just create a method named __call ()
in your class that accepts the nonexistent method name as a string, and any arguments passed

to the nonexistent method as an array. The method should then return a value (if any) back to the

calling code:

public function _ call($methodName, S$Sarguments) {

// (do stuff here)
return Sreturnval;

__call() is very useful if you want to create a “wrapper” class that doesn’t contain much functionality
of its own, but instead hands off method calls to external functions or APIs for processing.

187

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

_ Create a Wrapper String Class

The following example shows how you can use __call () to create a wrapper class. In this case, the
class provides an object-oriented interface to three of PHP’s built-in string functions. Save the script as
clever_string.php in your document root folder, then run it in your Web browser:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Creating a Wrapper Class with _ _call()</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Creating a Wrapper Class with _ call()</hl>

<?php
class CleverString {

private $_theString = "";
private static $_allowedFunctions = array("strlen", "strtoupper",
"strpos");

public function setString(S$stringVal) {
Sthis->_theString = S$stringVal;
}

public function getString() {
return Sthis->_theString;
}

public function __ call(SmethodName, S$arguments) {
if (in_array($methodName, CleverString::$_allowedFunctions)) {
array_unshift(Sarguments, S$this->_theString);
return call_user_func_array(S$SmethodName, S$arguments) ;
} else {
die ("<p>Method 'CleverString::SmethodName' doesn't exist</p>");

}
SmyString = new CleverString;
SmyString->setString("Hello!");

echo "<p>The string is: " . SmyString->getString() . "</p>";
echo "<p>The length of the string is: " . SmyString->strlen() . "</p>";

188

(c) ketabton.com: The Digital Library

Chapter 8: Objects

echo "<p>The string in uppercase letters is: " . SmyString->strtoupper ()
ll</p> n ;
echo "<p>The letter 'e' occurs at position: " . SmyString->strpos("e")
ll</p> n ,.

SmyString->madeUpMethod () ;
?>

</body>
</html>

When run, the script produces the output shown in Figure 8-4.

Tt O W A ETIC B e WA T) PR E T Ir 2 o3 M = [)

File Edit Wview History Bookmarks Tools Help

- no e o |E§ http:fflocalhost/clever_string php | | |C|' a)

Creating a Wrapper Class with __ call()
The string is; Hello!

The length of the string is: 6

The string in uppercase letters is: HELLO!

The letter 'e' ocours at position: 1

Method 'CleverString::madeUpMethod' doesn't exist

Done

Figure 8-4

How It Works

The cleverstring class serves two purposes: it stores a string to be operated on, and it provides
method-based access to three built-in string functions that operate on the stored string:

Q strlen() for calculating the length of the string
0 strtoupper () for converting the string to uppercase letters
Q strpos() for finding the position of the first occurrence of a character in the string

As mentioned earlier, it’s good practice to encapsulate the members of a class as much as possible in
order to make the class robust and maintainable. To this end, the stored string is encapsulated in a
private property, $_theString; calling code can use the public methods setString () and
getString () to set and read the string value.

189

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

The __call () method is where the meat of the class lies:

public function _ call($methodName, S$Sarguments) {
if (in_array($SmethodName, CleverString::$_allowedFunctions)) {
array_unshift(Sarguments, $this->_theString);
return call_user_func_array($SmethodName, Sarguments);
} else {
die ("<p>Method 'CleverString::SmethodName' doesn't exist</p>");

First, the method stores the name of the method that was called in a $methodName parameter, and the
array containing any passed arguments is stored in the $arguments parameter.

Next the method checks that $methodName is contained in the CleverString: : $_allowedFunctions
array. This is a private static property, created at the start of the class, that contains the allowed
method names:

private static $_allowedFunctions = array("strlen", "strtoupper", "strpos");

If $methodName is not one of these three values, the function terminates the script with an error
message:

die ("<p>Method 'CleverString::S$SmethodName' doesn't exist</p>");

This ensures that only the string functions strlen(), strtoupper (), and strpos () can be called via
the class. In reality, most of PHP’s built-in string functions could be called this way, but for this simple
example, the script allows only these three functions to be called. Generally speaking, for security
reasons it’s a good idea to check arguments of this nature against a list of allowed values.

Once $methodName has been successfully validated, the method adds the object’s stored string value,
$this->_theString, to the start of the $arguments array:

array_unshift(Sarguments, $this->_theString);

This is because most built-in string functions — including the three that this class is capable of calling
— expect the string to operate on to be the first argument that is passed to them.

Finally, the __call () method is ready to call the appropriate string function. It does this using the
PHP function call_user_func_array (), which expects the function name as the first argument, and
the argument list — as an array — as the second argument. The __call () method then returns the
return value from the string function back to the method’s calling code:

return call_user_func_array($methodName, Sarguments);
The script then tests the class by creating a new CleversString object, setting its string value to
"Hello! ", displaying the stored string value, and calling various methods to operate on the string:

SmyString = new CleverString;
SmyString->setString("Hello!");

echo "<p>The string is: " . $SmyString->getString() . "</p>";

echo "<p>The length of the string is: " . SmyString->strlen() . "</p>";
echo "<p>The string in uppercase letters is: " . SmyString->strtoupper ()
||</p>ll;

190

(c) ketabton.com: The Digital Library

Chapter 8: Objects

echo "<p>The letter 'e' occurs at position: " . $SmyString->strpos("e")
ll</p>l|;
SmyString->madeUpMethod () ;

The first two method calls, $myString->strlen() and $myString->strtoupper (), don’t have any
arguments because their equivalent PHP functions only require one argument — the string to work
with — and this is automatically populated with the stored string thanks to the __cal1l () method.
The third method call, $myString->strpos("e"), requires a single argument — the string to
search for — which is then passed as the second argument to PHP’s strpos () function.

The following table shows how the Cleverstring method calls map to the actual PHP
string functions:

Method Call PHP String Function Call
SmyString->strlen () strlen($this->_theString)
SmyString->strtoupper () strtoupper (Sthis->_theString)
SmyString->strpos("e") strpos($this->_theString, "e")

Finally, the script attempts to call a disallowed — in fact, nonexistent — string function, which
displays an error message in the page:

SmyString->madeUpMethod () ;

This example shows how easy it is to wrap a set of existing functions, methods, or API calls in a class
using a single __call () method. You could easily extend this example to allow practically all of
PHP’s tens of string functions to be called, without having to write much extra code.

Other Overloading Methods

Although you probably won’t use them much, it's worth mentioning three other overloading methods
provided by PHP:

__isset() is called whenever the calling code attempts to call PHP’s isset () function on an invisible
property. It takes one argument — the property name — and should return true if the property is
deemed to be “set,” and false otherwise:

class MyClass {
public function __isset($propertyName) {

// All properties beginning with "test" are "set"
return (substr(SpropertyName, 0, 4) == "test") ? true : false;

191

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

StestObject = new MyClass;
echo isset(StestObject->banana) . "
"; // Displays "" (false)
echo isset(S$testObject->testBanana) . "
"; // Displays "1" (true)

__unset () is called when the calling code attempts to delete an invisible property with PHP’s
unset () function. It shouldn’t return a value, but should do whatever is necessary to “unset” the
property (if applicable):

class MyClass {
public function __unset(S$propertyName) {
echo "Unsetting property 'S$propertyName'
";
}
}

StestObject = new MyClass;
unset (StestObject->banana); // Displays "Unsetting property 'banana'"

__callstatic() workslike __call(), except that it is called whenever an attempt is made to call an
invisible static method. For example:

class MyClass {

public static function _ callStatic($methodName, Sarguments) {
echo "Static method 'S$methodName' called with the arguments:
";
foreach ($Sarguments as S$Sarg) {

echo "$arg
";

}

MyClass: :randomMethod("apple", "peach", "strawberry");
This code produces the following output:

Static method 'randomMethod' called with the arguments:

apple

peach
strawberry

Using Inheritance to Extend the
Power of Objects

So far, all the classes you've created have been self-contained. However, objects get really interesting
when you start using inheritance. Using this technique, you can create classes — known as child
classes — that are based on another class: the parent class. A child class inherits all the properties and
methods of its parent, and it can also add additional properties and methods.

192

(c) ketabton.com: The Digital Library

Chapter 8: Objects

The wonderful thing about inheritance is that, if you want to create a lot of similar classes, you have to
write the code that they have in common only once, in the parent class. This saves you from duplicating
code. Furthermore, any outside code that can work with the parent class automatically has the ability to
work with its child classes, provided the code works only with the properties and methods contained in
the parent class.

Imagine that you're creating a program to deal with various regular shapes, such as circles, squares,
equilateral triangles, and so on. You want to create a Shape class that can store information such as
number of sides, side length, radius, and color, and that can calculate values such as the shape’s area and
perimeter. However, not all shapes are the same. Circles don’t really have a clearly defined number of
sides, and you calculate an equilateral triangle’s area using a different formula than for a square. So if
you wanted to handle all types of regular shapes in a single Shape class, your class’s code would get
quite complicated.

By using inheritance, however, you can break the problem down into simpler steps. First, you create a
parent Shape class that contains just those properties and methods that are common to all shapes. Then,
you can create child classes such as Circle, Square, and Triangle that inherit from the Shape class.

To create a child class that’s based on a parent class, you use the extends keyword, as follows:

class Shape {
// (General Shape properties and methods here)
}

class Circle extends Shape {
// (Circle-specific properties and methods here)

}

_ Create a Parent Class and Child Classes

The following script shows inheritance in action. It creates a parent Shape class, holding properties
and methods common to all shapes, then creates two child classes based on Shape — Circle and
Square — that contain properties and methods related to circles and squares, respectively.

Save the script as inheritance.php in your document root folder, then run the script in your Web
browser. You should see the page shown in Figure 8-5.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Creating Shape Classes using Inheritance</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Creating Shape Classes using Inheritance</hl>

<?php

193

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

class Shape {
private $_color = "black";
private $_filled = false;

public function getColor () {
return Sthis->_color;

}

public function setColor($Scolor) {
Sthis-> color = $color;

}

public function isFilled() {
return Sthis->_filled;
}

public function £ill () {
Sthis-> filled = true;
}

public function makeHollow() {
Sthis->_filled = false;
}
}

class Circle extends Shape {
private $_radius = 0;

public function getRadius() {
return S$this->_radius;

}

public function setRadius(S$Sradius) {
Sthis->_radius = S$radius;

}

public function getArea() {
return M_PI * pow(S$this->_radius, 2);
}

class Square extends Shape {
private $_sideLength = 0;

public function getSideLength() {
return $this->_sideLength;

}

public function setSideLength(S$length) {
Sthis->_sideLength = $length;
}

194

(c) ketabton.com: The Digital Library

Chapter 8: Objects

public function getArea() {
return pow(Sthis->_sideLength, 2);

SmyCircle = new Circle;
SmyCircle->setColor("red");
SmyCircle->fill () ;
SmyCircle->setRadius(4);
echo "<h2>My Circle</h2>";

echo "<p>My circle has a radius of " . SmyCircle->getRadius() . ".</p>";
echo "<p>It is " . SmyCircle->getColor() . " and it is " . (SmyCircle->
isFilled() ? "filled" : "hollow") . ".</p>";

echo "<p>The area of my circle is: " . SmyCircle->getArea() . ".</p>";

SmySquare = new Square;
SmySquare->setColor("green");
SmySquare->makeHollow () ;
SmySquare->setSideLength(3);
echo "<h2>My Square</h2>";

echo "<p>My square has a side length of " . S$mySquare->getSideLength ()
n -</p>" ;
echo "<p>It is " . SmySquare->getColor() . " and it is " . (SmySquare->
isFilled() ? "filled" : "hollow") . ".</p>";
echo "<p>The area of my square is: " . SmySquare->getArea() . ".</p>";
?>
</body>
</html>

B! T B AT o NEp e ICIAE BE e O WA ET AN CE P DA VITe

File Edit View History Bookmarks Tools Help

& = e bt |i5 http:fflocalhostfinheritance.php |'| [[Gl= “.|

Creating Shape Classes using Inheritance

My Circle
My circle has a radius of 4.
It is red and it is filled,

The area of my circle is: 50.2654824574.

My Square
My square has a side length of 3.
It is green and it is hollow.

The area of my square is: 9.

Done

Figure 8-5

195

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

How It Works

The script first creates the parent Shape class. This class contains just the properties and methods
common to all shapes. It contains private properties to store the shape’s color and record whether the
shape is filled or hollow, then provides public accessor methods to get and set the color, as well as fill
the shape or make it hollow and retrieve the shape’s fill status.

Next, the script creates a Circle class that inherits from the shape class. Remember that a child class
inherits all the properties and methods of its parent. The circle class also adds a private property to
store the circle’s radius, and provides public methods to get and set the radius, as well as calculate the
area from the radius using the formula nr?

The script then creates Square, another class that inherits from Shape. This time, the class adds a
private property to track the length of one side of the square, and provides methods to get and set the
side length and calculate the square’s area using the formula (side length).

Finally, the script demonstrates the use of the Circle and Square classes. First it creates a new
Circle object, sets its color, fills it, and sets its radius to 4. It then displays all the properties of

the circle, and calculates its area using the getArea () method of the Circle class. Notice how the
script calls some methods that are in the parent Shape class, such as setColor () and isFilled(),
and some methods that are in the child circle class, such as setRadius () and getArea().

The script then repeats the process with the Square class, creating a hollow green square with a side
length of 3, then displaying the square’s properties and calculating its area using the Square class’s
getArea () method.

Overriding Methods in the Parent Class

What if you want to create a child class whose methods are different from the corresponding methods in
the parent class? For example, you might create a class called Fruit that contains methods such as

peel (), slice(),and eat (). This works for most fruit; however, grapes, for example, don’t need to be
peeled or sliced. So you might want your Grape object to behave somewhat differently to the generic
Fruit object if you try to peel or slice it.

PHP, like most object-oriented languages, lets you solve such problems by overriding a parent class’s
method in the child class. To do this, simply create a method with the same name in the child class. Then,
when that method name is called for an object of the child class, the child class’s method is run instead of
the parent class’s method:

class ParentClass {
public function someMethod() {
// (do stuff here)
}
}

class ChildClass extends ParentClass {
public function someMethod() {
// This method is called instead for ChildClass objects
}

196

(c) ketabton.com: The Digital Library

Chapter 8: Objects

SparentObj = new ParentClass;

SparentObj->someMethod(); // Calls ParentClass::someMethod ()
$childObj = new ChildClass;
$childObj->someMethod () ; // Calls ChildClass: :someMethod ()

Notice that the parent class’s method is called when accessed from an object of the parent class, and the
child class’s method is called when using an object of the child class.

The following example code shows how you can use inheritance to distinguish grapes from other fruit:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Overriding Methods in the Parent Class</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>0Overriding Methods in the Parent Class</hl>

<?php
class Fruit {

public function peel () {
echo "<p>I'm peeling the fruit...</p>";

}
public function slice() {
echo "<p>I'm slicing the fruit...</p>";
}
public function eat () {

echo "<p>I'm eating the fruit. Yummy!</p>";

}

public function consume() {
Sthis->peel();
Sthis->slice();
Sthis->eat () ;

}

class Grape extends Fruit {
public function peel() {
echo "<p>No need to peel a grape!</p>";

}
public function slice() {

echo "<p>No need to slice a grape!</p>";
}

197

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

echo "<h2>Consuming an apple...</h2>";
Sapple = new Fruit;
Sapple->consume () ;

echo "<h2>Consuming a grape...</h2>";
Sgrape = new Grape;
Sgrape->consume () ;

?>

</body>
</html>

You can see the output from this script in Figure 8-6. Notice how the overridden methods, peel () and
slice(), are called for the Grape object, whereas the parent class’s peel () and slice () methods are
called for the Fruit object.

File Edit Vview History Bookmarks Tools Help

& > e o |55 http:fflocalhostfoverriding.php |'| |G~ @

Overriding Methods in the Parent Class

Consuming an apple...
I'm peeling lhe [ruil...
I'm slicing the fruit...

I'm eating the fruit. Yummy!

Consuming a grape...
No need to peel a grape!
No need to slice a grape!

I'm eating the fruit. Yummy!

Done

Figure 8-6

Preserving the Functionality of the Parent Class

Occasionally you want to override the method of a parent class in your child class, but also use some of
the functionality that is in the parent class’s method. You can do this by calling the parent class’s
overridden method from within the child class’s method. To call an overridden method, you write
parent: : before the method name:

parent: :someMethod () ;

198

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Taking the previous Fruit and Grape example, say you want to create a Banana class that extends the
Fruit class. Generally, you consume a banana like any other fruit, but you also need to break the banana
off from a bunch of bananas first. So within your Banana class, you can override the parent’s consume ()
method to include functionality to break off a banana, then call the overridden consume () method from
within the Banana class’s consume () method to finish the consumption process:

class Banana extends Fruit {
public function consume() {
echo "<p>I'm breaking off a banana...</p>";
parent: :consume () ;
}
}

$banana = new Banana;
Sbanana->consume () ;

This code produces the following output:

I'm breaking off a banana...
I'm peeling the fruit...
I'm slicing the fruit...
I'm eating the fruit. Yummy!

Blocking Inheritance and Overrides with Final
Classes and Methods

By now you probably realize that being able to extend a class with inheritance is one of the more
powerful aspects of OOP. Generally speaking, there’s no problem with allowing your classes to be
extended in this way (by you or by other programmers).

However, occasionally it’s useful to be able to lock down a class so that it can’t be inherited from.
Similarly, you might want to lock down one or more methods inside a class so that they can’t be
overridden in a child class. By doing this, you know that your class — or methods within your class —
will always behave in exactly the same way.

You can add the keyword final before a class or method definition to lock down that class or method.
For example, here’s how to create a final class:

final class HandsOffThisClass {
public $someProperty = 123;
public function someMethod() {
echo "A method";
}
}

// Generates an error:
// "Class ChildClass may not inherit from final class (HandsOffThisClass)"

class ChildClass extends HandsOffThisClass {
}

199

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Similarly, here’s how you make a final method:

class ParentClass {
public $someProperty = 123;
public final function handsOffThisMethod () {
echo "A method";
}
}

// Generates an error:
// "Cannot override final method ParentClass::handsOffThisMethod ()"

class ChildClass extends ParentClass {
public function handsOffThisMethod() {
echo "Trying to override the method";
}
}

You probably won’t need to create final classes or methods that often; usually it’s better to allow your
classes to be extended, because it makes your code more flexible.

Using Abstract Classes and Methods

Being able to create new child classes from parent classes is all very well, but things can get out of hand
if a child class has radically different functionality to its parent. Sometimes it’s good to be able to lay
down some ground rules about how a child class should behave. Abstract classes and methods let you
do just that.

To illustrate class abstraction, cast your mind back to the Shape class example you created earlier.
Remember that you created a generic Shape parent class that contained some basic functionality, then
extended the Shape class with the Circle and Square child classes.

Now, both Circle and Square contain a getArea () method that calculates the shape’s area, regardless
of the type of shape. You can use this fact to your advantage to create a generic ShapeInfo class that
contains a method, showInfo (), that displays the color and area of a given shape:

class ShapeInfo {
private $_shape;

public function setShape($shape) {
Sthis->_shape = $shape;
}

public function showInfo() {
echo "<p>The shape's color is " . Sthis->_shape->getColor();
echo ", and its area is " . Sthis->_shape->getArea() .".</p>";

200

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Here’s how you might use ShapeInfo to display the color and size of a square:

SmySquare = new Square;

SmySquare->setColor("green");

SmySquare->makeHollow () ;

SmySquare->setSideLength(3);

$info = new ShapeInfol();

$info->setShape($SmySquare) ;

Sinfo->showInfo(); // Displays "The shape's color is green, and its area is 9."

You're probably wondering what this has to do with abstract classes. Well, imagine another programmer
comes along and creates a new child class, Rectangle, based on your Shape class:

class Rectangle extends Shape {
private $_width = 0;
private $_height = 0;

public function getWidth() ({
return $this->_width;

}

public function getHeight () {
return S$this->_height;
}

public function setWidth(Swidth) {
Sthis->_width = $Swidth;
}

public function setHeight(Sheight) {
Sthis->_height = S$height;
}

Notice anything missing? What happens if you try to use a Rectangle object with the ShapeInfo
class’s showInfo () method?

$SmyRect = new Rectangle;

SmyRect->setColor("yellow");

SmyRect->fill () ;

$SmyRect->setWidth(4);

SmyRect->setHeight (5);

Sinfo = new ShapelInfol();

Sinfo->setShape(SmyRect);

$info->showInfo () ;

The answer is that you get the following error:
Call to undefined method Rectangle::getArea ()
Our intrepid programmer has forgotten to create a getArea () method in his Rectangle class. Or

maybe he didn’t realize he was supposed to. After all, how was he to know that Rectangle objects
needed to work with your shapeInfo class?

201

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

This is where abstract classes and methods come into play. By making a parent class abstract, you lay
down the rules as to what methods its child classes must contain. When you declare an abstract method
in the parent class, you don’t actually insert any code in the method; instead, you leave that up to the
child classes. You're specifying what the child class must do, not how to do it.

To declare an abstract method, simply use the abstract keyword, as follows:
abstract public function myMethod($paraml, S$param2);

As you can see, you can also optionally specify any parameters that the method must contain. However,
you don’t include any code that implements the method, nor do you specify what type of value the
method must return.

If you declare one or more methods of a class to be abstract, you must also declare the whole class to be
abstract, too:

abstract class MyClass {
abstract public function myMethod($paraml, S$param2);
}

You can’t instantiate an abstract class — that is, create an object from it — directly:

// Generates an error: "Cannot instantiate abstract class MyClass"
SmyObj = new MyClass;

So when you create an abstract class, you are essentially creating a template, rather than a fully fledged
class. You are saying that any child classes must implement any abstract methods in the abstract class
(unless those child classes are themselves declared to be abstract).

By the way, you can mix abstract and non-abstract methods within an abstract class. So your abstract
class might define behavior that is common to all possible child classes, while leaving the remainder of
the methods abstract for the child classes to implement.

The opposite of an abstract class — that is, a class that implements all the methods of its parent abstract
class — is called a concrete class.

Now return to the Shape example. By creating the Shape class as an abstract class, you can add a
declaration for the abstract getArea () method, ensuring that all child classes of Shape have to
implement getArea():

abstract class Shape {
private $_color = "black";
private $_filled = false;

public function getColor() {

return S$Sthis->_color;

}

202

(c) ketabton.com: The Digital Library

Chapter 8: Objects

public function setColor(S$Scolor) {
Sthis->_color = $color;

}

public function isFilled() {
return $this->_filled;
}

public function £ill() {
Sthis-> filled = true;
}

public function makeHollow() {
Sthis->_filled = false;
}

abstract public function getAreal() ;

You can now use the ShapeInfo class with any class that is derived from the Shape class, safe in the
knowledge that the child class implements getArea ().

So when the programmer attempts to add his Rectangle class without the getArea () method, it
generates an error:

Class Rectangle contains 1 abstract method and must therefore be declared
abstract or implement the remaining methods (Shape::getArea)

This should be enough to remind the programmer to add the required getArea () method to the class:

class Rectangle extends Shape {
private $_width = 0;
private $_height = 0;

public function getWidth() {
return $this->_width;

}

public function getHeight () {
return S$this->_height;
}

public function setWidth(Swidth) {
Sthis->_width = $Swidth;
}

public function setHeight(Sheight) {

Sthis->_height = S$height;
}

203

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

public function getArea() {
return S$this->_width * S$this->_height;
}

Now the shapeInfo::showInfo () method works correctly with Rectangle objects:

smyRect = new Rectangle;

SmyRect->setColor("yellow");

SmyRect->£f111() ;

SmyRect->setWidth(4);

SmyRect->setHeight (5);

$info = new ShapelInfo();

$info->setShape($myRect);

Sinfo->showInfo(); // Displays "The shape's color is yellow, and its area
is 20."

Working with Interfaces

In the previous section you learned how you can use abstract classes to force all child classes of a given
class to implement a consistent set of methods. Interfaces work in a similar way, in that they declare

a consistent set of methods that classes must implement. However, whereas an abstract class has a
parent-child relationship with the class that extends it, this relationship doesn’t exist with interfaces.
Instead, a class implements an interface. (At the same time, the class can also extend a parent class.)

Because interfaces lie outside the inheritance hierarchy, you can create classes of totally different ancestry
that can still implement the same interface. To give a practical example, a television is a very different
kind of object to a tennis ball, and each type of object will have very different properties and behaviors.
Yet an online retailer might well sell both televisions and tennis balls. By creating a Sellable interface,
and making both Television and TennisBall classes implement that interface, you can ensure that
both classes contain methods such as sellItem (), deliverItem(), and getStockLevel (), allowing
Television and TennisBall objects to be sold in the online store.

What’s more, a class can implement more than one interface at once (provided the method names
declared in the interfaces don’t clash), which allows you to build very powerful, adaptable classes that
can be used in lots of situations.

You create an interface much like a class, except that you use the keyword interface rather than
class. You then specify a list of methods that implementing classes must include:

interface MyInterface {
public function myMethodl (S$Sparaml, Sparam2) ;
public function myMethod2($paraml, S$param2);

}
Interfaces can’t contain properties; they can only contain method declarations (which can’t contain any

implementation code). What's more, all methods in an interface must be public (otherwise it wouldn’t be
much of an interface!).

204

(c) ketabton.com: The Digital Library

Chapter 8: Objects

You can then make a class implement an interface using the implements keyword:

class MyClass implements MyInterface {
public function myMethodl (S$paraml, S$param2) {
// (implement the method here)
}

public function myMethod2(S$paraml, S$param2) {
// (implement the method here)
}

To implement more than one interface at once, separate the interface names with commas:

class MyClass implements MyInterfacel, MyInterface2 {

_ Create and Use an Interface

The following example shows how to create and use a Sellable interface to turn two quite unrelated
classes — Television and TennisBall — into sellable items in an online store. Save the script as
interfaces.php in your document root folder and open it in your browser; you should see the result
shown in Figure 8-7.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Creating and Using an Interface</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Creating and Using an Interface</hl>

<?php

interface Sellable {
public function addStock(S$numItems) ;
public function sellItem() ;
public function getStockLevel () ;

}

class Television implements Sellable {
private $_screenSize;
private $_stockLevel;

public function getScreenSize() {

return $this->_screenSize;

}

205

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

public function setScreenSize(S$SscreenSize) {
Sthis->_screenSize = S$SscreenSize;

}

public function addStock(S$numItems) {
Sthis->_ stockLevel += SnumlItems;

}

public function sellItem() {
if ($this->_stockLevel > 0) {
Sthis->_stockLevel--;
return true;
} else {
return false;

}

public function getStockLevel () {
return S$this->_stockLevel;
}
}

class TennisBall implements Sellable {
private $_color;
private $_ballsLeft;

public function getColor() {
return S$this->_color;

}

public function setColor($color) {
$Sthis->_color = $color;

}

public function addStock($numItems) {
Sthis->_ballsLeft += SnumlItems;
}

public function selllItem() {
if (Sthis->_ballsLeft > 0) {
Sthis-> ballsLeft--;
return true;
} else {
return false;

}
public function getStockLevel () {

return S$Sthis->_ballsLeft;
}

class StoreManager {
private $_productList = array();

206

(c) ketabton.com: The Digital Library

Chapter 8: Objects

public function addProduct(Sellable S$product) {
Sthis->_productList[] = S$product;
}

public function stockUp() {
foreach ($this->_productList as S$product) {
Sproduct->addStock(100);

}

Stv = new Television;
Stv->setScreenSize(42);
$ball = new TennisBall;
Sball->setColor("yellow");
Smanager = new StoreManager () ;
Smanager->addProduct ($tv) ;
Smanager->addProduct ($ball);
$manager->stockUp () ;

echo "<p>There are ". S$tv->getStockLevel() . " " . S$Stv->getScreenSize();
echo "-inch televisions and " . Sball->getStockLevel() . " "
Sball->getColor () ;

echo " tennis balls in stock.</p>";

echo "<p>Selling a television...</p>";
Stv->sellItem() ;

echo "<p>Selling two tennis balls...</p>";
Sball->sellItem() ;

Sball->sellItem() ;

echo "<p>There are now ". S$tv->getStockLevel() . " " . $tv->getScreenSize();
echo "-inch televisions and " . Sball->getStockLevel () o
Sball->getColor () ;
echo " tennis balls in stock.</p>";
?>

</body>
</html>

@ CrEatNgand UsMoanInterface SMozllTatFirarox s P 1 T |

File Edit view History Bookmarks Tools Help

[4=] o e 2 | (el httpiflocalhostfinterfaces php ~ | |IGl= 2,

Creating and Using an Interface

There are 100 42-inch televisions and 100 yellow tennis balls in stock.
Selling a television...

Selling two tennis balle...

There are now 99 42-inch televisions and 98 yellow tennis balls in stock.

Done
Figure 8-7
207

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

How It Works
This script creates an interface, Sellable, that contains three method declarations:

public function addStock($SnumItems) ;
public function sellItem() ;
public function getStockLevel () ;

Next, two classes — Television and TennisBall — are created. These classes are unrelated and
contain quite different properties and methods; for example, Television contains a private
$_screenSize property and methods to access it, whereas TennisBall contains a private $_color
property with associated methods.

However, both classes implement the Sellable interface. This means that they must provide the code
to implement the three methods — addstock (), sellItem(), and getStockLevel () — declared in
Sellable. This they do. Notice, by the way, that each class has a different way of recording its stock;
Television records the stock level in a $_stockLevel property, whereas TennisBall has a
$_ballsLeft property. This doesn’t matter at all; from the perspective of the outside world, the
important thing is that the classes correctly implement the three methods in the Sellable interface.

Next, the script creates a StoreManager class to store and handle products for sale in the online store.
This class contains a private $_productList array to store different types of products; an
addproduct () method to add product objects to the product list; and a stockUp () method that
iterates through the product list, adding 100 to the stock level of each product type.

stockUp () calls the addstock () method of each object to add the stock; it knows that such a method
must exist because the objects it deals with implement the Sellable interface. Notice that
addProduct () uses type hinting to ensure that all objects that it is passed implement the sellable
interface (you can use type hinting with interface names as well as class names):

public function addProduct(Sellable S$product) {

Finally, the script tests the interface and classes. It creates a new Television object, $tv, and sets its
screen size to 42 inches. Similarly, it creates a TennisBall object, $ball, and sets its color to yellow.
Then the script creates a new StoreManager object, $manager, and adds both the $tv and $ball
product types to the stock list using the addProduct () method. Once the products are added,
$manager->stockUp () is called to fill the warehouse with 100 units of each item. It then displays
information about each product, calling functions specific to the Television and TennisBall classes
(getScreensize () and getColor (), respectively) as well as the getStockLevel () function declared
by the sellable interface.

The script then sells some stock by calling the sel1Item() method of both the $tv and $ball objects —

again, remember that this method is required by the Sellable interface — and redisplays information
about both products, including their new stock levels.

208

(c) ketabton.com: The Digital Library

Chapter 8: Objects

You can see from this example that interfaces let you unify quite unrelated classes in order to use them
for a specific purpose — in this case, to sell them in an online store. You could also define other
interfaces; for example, you could create a Shippable interface that tracks the shipping of products, and
make both Television and TennisBall implement that interface too. Remember that a class can
implement many interfaces at the same time.

Constructors and Destructors

When creating a new object, often it’s useful to set up certain aspects of the object at the same time. For
example, you might want to set some properties to initial values, fetch some information from a database
to populate the object, or register the object in some way.

Similarly, when it’s time for an object to disappear, it can be useful to tidy up aspects of the object, such
as closing any related open files and database connections, or unsetting other related objects.

Like most OOP languages, PHP provides you with two special methods to help with these tasks. An
object’s constructor method is called just after the object is created, and its destructor method is called just
before the object is freed from memory.

In the following sections you learn how to create and use constructors and destructors.

Setting Up New Objects with Constructors

Normally, when you create a new object based on a class, all that happens is that the object is brought
into existence. (Usually you then assign the object to a variable or pass it to a function.) By creating a
constructor method in your class, however, you can cause other actions to be triggered when the
object is created.

To create a constructor, simply add a method with the special name __construct () to your class.
(That’s two underscores, followed by the word “construct,” followed by parentheses.) PHP looks for this
special method name when the object is created; if it finds it, it calls the method.

Here’s a simple example:
class MyClass {
function _ construct() {
echo "Whoa! I've come into being.
";
}
}

Sobj = new MyClass; // Displays "Whoa! I've come into being."

The class, MyClass, contains a very simple constructor that just displays the message. When the code
then creates an object from that class, the constructor is called and the message is displayed.

209

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

You can also pass arguments to constructors, just like normal methods. This is great for setting certain
properties to initial values at the time the object is created. The following example shows this principle
in action:

class Person {
private $_firstName;
private $_lastName;
private $_age;

public function __ construct($firstName, $lastName, Sage) {
Sthis->_firstName = S$firstName;
Sthis->_ lastName = S$lastName;
Sthis->_age = Sage;

}

public function showDetails () {
echo "S$Sthis->_firstName S$this->_lastName, age $this->_age
";
}

}
Sp = new Person("Harry", "Walters", 28);
Sp->showDetails(); // Displays "Harry Walters, age 28"

The Person class contains three private properties and a constructor that accepts three values,
setting the three properties to those values. It also contains a showDetails () method that displays
the property values. The code creates a new Person object, passing in the initial values for the three
properties. These arguments get passed directly to the __construct () method, which then sets the
property values accordingly. The last line then displays the property values by calling the
showDetails () method.

If a class contains a constructor, it is only called if objects are created specifically from that class; if an
object is created from a child class, only the child class’s constructor is called. However, if necessary you
can make a child class call its parent’s constructor with parent: : __construct ().

Cleaning Up Objects with Destructors

Destructors are useful for tidying up an object before it’s removed from memory. For example, if an
object has a few files open, or contains data that should be written to a database, it’s a good idea to close
the files or write the data before the object disappears.

You create destructor methods in the same way as constructors, except that you use __destruct ()
rather than __ construct ():

function _ destruct() {
// (Clean up here)

}

Note that, unlike a constructor, a destructor can’t accept arguments.

210

(c) ketabton.com: The Digital Library

Chapter 8: Objects

An object’s destructor is called just before the object is deleted. This can happen because all references to
it have disappeared (such as when the last variable containing the object is unset or goes out of scope), or
when the script exits, either naturally or because of an error of some sort. In each case, the object gets a
chance to clean itself up via its destructor before it vanishes.

Here’s an example that shows this concept:

class Person {
public function save() {
echo "Saving this object to the database...
";

}

public function _ destruct() {
$this->save() ;
}
}

Sp = new Person;

unset (Sp);

Sp2 = new Person;

die("Something's gone horribly wrong!
");

This code displays the following output:

Saving this object to the database...
Something's gone horribly wrong!
Saving this object to the database...

This Person class contains a destructor that calls the object’s save () method to save the object’s
contents to a database before the object is destroyed. (In this example, nothing is actually saved; instead
the message "Saving this object to the database..." isdisplayed.)

A new Person object is created and stored in the variable $p. Next, $p is removed from memory using
the built-in unset () function. Doing this removes the only reference to the Person object, so it’s deleted.
But just before it’s removed, its __destruct () method is called, displaying the message "Saving this
object to the database...".

Next the code creates another Person object, storing it in the variable $p2. Finally, the code raises an
error using the built-in die () function, which causes the script to end with a "Something's gone
horribly wrong!" message. Just before the script finally terminates, however, the object’s destructor is
called, displaying the "Saving this object to the database..." message.

As with constructors, a destructor of a parent class is not called when the child object is deleted, but you
can explicitly call a parent’s destructor with parent: :__destruct ().

211

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Automatically Loading Class Files

Although many of the example scripts in this chapter contain more than one class definition, generally
it’s a good idea to keep your classes in separate script files, one class per file. It also helps to name each
class file after the class it contains. For example, you might create a class called Person and store it in a
file called Person.php inside a classes folder (so that you know that Person.php contains a class). Or
if you have created a class called Fruit, you might store it in a file called class.Fruit.php.

Then, when your script needs to create a Person object, it can include the Person. php file to create the
class, then go ahead and create an object from the class:

<?php

require_once("classes/Person.php");
Sp = new Person() ;

?>

require_once () lets you include one PHP script file inside another, which means you can break up
your PHP application into small, manageable script files. You learn more about require_once () and
related functions in Chapter 20.

Not only does this good practice help to keep your scripts organized and maintainable, but it lets you
take advantage of a nifty feature of PHP: class autoloading.

With autoloading, you create an __autoload () function somewhere in your script. This function should
accept a class name as an argument. Then, whenever another part of your script attempts to create a new
object from a nonexistent class, __autoload () is automatically called, passing in the class name. This
gives your __autoload() function a chance to find and include the class file, thereby allowing the PHP
engine to carry on and create the object.

Here’s an example __autoload () function:

function _ autoload($className) {
SclassName = str_replace ("..", "", SclassName);
require_once("classes/$className.php");

}

This function stores the name of the nonexistent class in a $className parameter. It then filters this
parameter to ensure it contains no " . . " substrings (which could potentially be used by an attacker to
open files or folders above the classes folder). Finally, it calls PHP’s require_once () function to load
the file in the classes folder with the same name as the missing class. This should cause the class to be
created, allowing the object in turn to be created from the class.

For example, imagine the same script contained the following code:

$p = new Person;
When the PHP engine encounters the new Person construct, it looks to see if the Person class has been
defined. If not, it calls the previously defined __autoload() function. This in turn includes and runs the

file Person.php inside the classes folder, which creates the class and allows the new Person object to
be created.

212

(c) ketabton.com: The Digital Library

Chapter 8: Objects

If the PHP engine can’t find an __autoload() function, or if your __autoload() function fails to load
the Person class, the script exits witha "Class 'Person' not found" error.

Storing Objects as Strings

Objects that you create in PHP are stored as binary data in memory. Although you can pass objects
around using PHP variables, functions, and methods, sometimes its useful to be able to pass objects to
other applications, or via fields in Web forms, for example.

PHP provides two functions to help you with this:

0 serialize() converts an object — properties, methods, and all — into a string of text
0O unserialize() takes a string created by serialize () and turns it back into a usable object

The following example shows these two functions in action:

class Person {
public Sage;
}

Sharry = new Person() ;

Sharry->age = 28;

SharryString = serialize(Sharry);

echo "Harry is now serialized in the following string: 'SharryString'
";
echo "Converting 'SharryString' back to an object...
";

Sobj = unserialize(SharryString);

echo "Harry's age is: S$obj->age
";

This code creates a simple Person class with one property, $age. It then creates a new Person object,
$harry, and sets its $age property to 28. It calls serialize () to convert the object to a string, which it
displays. Finally, it converts the string back into a new object, $obj, then displays its $obj->age
property (28). Here’s the result of running the script:

Harry is now serialized in the following string: 'O:6:"Person":1:{s:3:"age";1i
:28; 1"

Converting 'O:6:"Person":1:{s:3:"age";1i:28;}' back to an object...

Harry's age is: 28

You can actually use serialize () and unserialize () on any PHP value, not just objects. However,
it’s especially useful with objects and arrays, because these structures can be quite complex and it’s not
easy to convert them to strings in any other way.

What’s more, when you serialize an object, PHP attempts to call a method with the name __sleep ()
inside the object. You can use this method to do anything that’s required before the object is serialized.
Similarly, you can create a __wakeup () method that is called when the object is unserialized.

__sleep() is useful for cleaning up an object prior to serializing it, in the same way that you might

clean up in a destructor method. For example, you might need to close database handles, files, and so on.
In addition, __sleep () has another trick up its sleeve. PHP expects your __sleep () method to return

213

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

an array of names of properties to preserve in the serialized string. You can use this fact to limit the
number of properties stored in the string — very useful if your object contains a lot of properties that
you don’t need to store.

Here’s an example:

class User {
public Susername;
public S$password;
public $loginsToday;

public function __sleep() {
// (Clean up; close database handles, etc)

return array("username", "password");
}
}
Suser = new User;
Suser->username = "harry";
Suser->password = "monkey";

Suser->loginsToday = 3;

echo "The original user object:
";

print_r(Suser);

echo "

";

echo "Serializing the object...

";

SuserString = serialize(Suser);

echo "The user is now serialized in the following string:
";
echo "$SuserString

";

echo "Converting the string back to an object...

";
Sobj = unserialize(SuserString);

echo "The unserialized object:
";

print_r($Sobj);

echo "
";

This code outputs the following:

The original user object:
User Object ([username] => harry [password] => monkey [loginsToday] => 3)

Serializing the object...

The user is now serialized in the following string:
O:4:"User":2:{s:8:"username";s:5: "harry";s:8: "password";s:6: "monkey";}

Converting the string back to an object...

The unserialized object:
User Object ([username] => harry [password] => monkey [loginsToday] =>)

In this example, we don’t care about preserving the number of times the user has logged in today,

so the __sleep () method only returns the "username" and "password" property names. Notice that
the serialized string doesn’t contain the $1oginsToday property. Furthermore, when the object is
restored from the string, the $1oginsToday property is empty.

214

(c) ketabton.com: The Digital Library

Chapter 8: Objects

In a real-world situation, make sure you don’t transmit sensitive information such as usernames as
passwords as plain text strings if there’s a chance that the data might be intercepted or read by
untrusted third parties.

If you do need to preserve all your object’s properties, you can use the built-in get_object_vars ()
function to get an associative array of all the properties in the object, then use the array_keys () function
to get just the property names as an array, which you can then return from your __sleep () method:

class User {
public Susername;
public Spassword;

public $loginsToday;

public function _ sleep() {
// (Clean up; close database handles, etc)

return array_keys(get_object_vars($this));

}
Finally, here’s an example that shows the __wakeup () method in action:

class User {

public function _ wakeup () {
echo "Yawn... what's for breakfast?
";
}
}
Suser = new User;
SuserString = serialize(Suser);
Sobj = unserialize($SuserString); // Displays "Yawn... what's for breakfast?"

Determining an Object’s Class

Earlier in the chapter you learned that you can use hints in method and function arguments to ensure
that the correct class of object is being passed. Sometimes, though, you might want to explicitly

check the class of a particular object that you're working with. For example, you might want to check
that all the objects in an array are of a certain class, or treat objects differently depending on their class.

To find out the class of an object, you can use PHP’s built-in get_class () function, as follows:

class MyClass {
}

$obj = new MyClass();
echo get_class($obj); // Displays "MyClass"

215

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

get_class () is useful if you want to find out exactly which class an object belongs to. However, often
it’s more useful to know if an object is descended from a given class. Consider the following example:

class Fruit {
}

class SoftFruit extends Fruit {
}

class HardFruit extends Fruit {

}

function eatSomeFruit(array S$fruitToEat) {
foreach($fruitToEat as $itemOfFruit) {
if (get_class($itemOfFruit) == "SoftFruit" || get_class($itemOfFruit)
== "HardFruit") {
echo "Eating the fruit - yummy!
";

}
Sbanana = new SoftFruit();

Sapple = new HardFruit () ;
eatSomeFruit (array(S$banana, S$apple));

In this situation, the eatSomeFruit () function is happy to eat any fruit, soft or hard, so all it really cares
about is that the objects it is passed descend from the Fruit class. However, get_class () only returns
the specific class of an object, so eat SomeFruit () has to resort to a rather unwieldy if expression to
determine if the object it’s dealing with is a fruit.

Fortunately, PHP provides a useful instanceof operator, which you can use as follows:

if($object instanceof ClassName) {

If $object’s class is ClassName, or if $object’s class is descended from ClassName, then instanceof
returns true. Otherwise, it returns false.

So you can now rewrite the preceding eatSomeFruit () function in a more elegant fashion:

function eatSomeFruit(array S$fruitToEat) {
foreach($fruitToEat as S$SitemOfFruit) {

if (SitemOfFruit instanceof Fruit) {

echo "Eating the fruit - yummy!
";

216

(c) ketabton.com: The Digital Library

Chapter 8: Objects

Summary

This chapter explored the large and wonderful world of object-oriented programming in PHP. You
learned some of the benefits of an object-oriented approach, and explored the following OOP topics:

H]
H]

a

The basic building blocks of OOP: classes, objects, properties, and methods

Creating classes and objects in PHP. You learned about property and method visibility, and how
to create and access properties and methods. Along the way, you studied static properties

and methods; class constants; parameters and return values; how to access properties from
within methods; and how to use hints to check the class of objects passed to methods and
functions

The concept of encapsulation — the idea that objects should be as self-contained as possible —
and how to put this into practice when creating your own classes

Three special methods that you can use to overload objects: __get (), __set(),and __call().
You learned how to use these methods to intercept property accesses and method calls,
letting you create very powerful, flexible classes

Inheritance, one of the most important and powerful aspects of OOP. You learned how to create
child classes; how to override methods in a parent class; how to access parent methods; how to
prevent inheritance with the £inal keyword; and how to use abstract classes and interfaces

to add consistency to your classes, making them more readily adaptable and extendable for
yourself and for other developers

How to use constructors and destructors to initialize and clean up your objects
Using PHP’s __autoload () function to automatically retrieve class files on the fly

Converting objects to strings — and back again — using PHP’s handy serialize () and
unserialize () functions

How to find out the class of an object using get_class () and instanceof

Though this chapter has given you enough knowledge to write fully fledged object-oriented
applications, there is yet more to learn about object-oriented programming in PHP, including reflection,
late static binding, and object cloning. To read about these more advanced topics, take a look at the
“Classes and Objects” section of the PHP Language Reference at http: //www.php.net/manual/en/
langref .php. You might also like to try the exercises at the end of this chapter to put your OOP skills to
work. You can find the solutions to these exercises in Appendix A.

You have now learned the basic concepts of the PHP language. In the third and final part of the book you
put all this theory into practice, and learn techniques for building real-world PHP Web applications. The
next chapter gets the ball rolling with a look at creating and processing Web forms, which are often used
extensively throughout interactive Web sites.

217

(c) ketabton.com: The Digital Library

Part Il: Learning the Language

Exercises

1. Writeacalculator class that can store two values, then add them, subtract them, multiply
them together, or divide them on request. For example:

Scalc = new Calculator(3, 4);
echo S$calc->add(); // Displays "7"
echo Scalc->multiply(); // Displays "12"

2. Create another class, CalcAdvanced, that extends (inherits from) the calculator class.
CalcAdvanced should be capable of storing either one or two values:

$ca = new CalcAdvanced(3);
$ca = new CalcAdvanced(3, 4);

CalcAdvanced should also add the following methods:

QO pow() that returns the result of raising the first number (the base) to the power of the
second number

a sgrt () that returns the square root of the first number

0 exp() thatreturns e raised to the power of the first number

(Hint: PHP contains built-in functions called pow (), sqrt (), and exp().)

218

(c) ketabton.com: The Digital Library

Part IlI
Using PHP in Practice

Chapter 9: Handling HTML Forms with PHP

Chapter 10: Preserving State With Query Strings, Cookies
and Sessions

Chapter 11: Working with Files and Directories
Chapter 12: Introducing Databases and SQL

Chapter 13: Retrieving Data from MySQL with PHP
Chapter 14: Manipulating MySQL Data with PHP
Chapter 15: Making Your Job Easier with PEAR
Chapter 16: PHP and the Outside World

Chapter 17: Generating Images with PHP

Chapter 18: String Matching with Regular Expressions
Chapter 19: Working with XML

Chapter 20: Writing High-Quality Code

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Handling HTML Forms
with PHP

You've now learned the basics of PHP. You know how PHP scripts work, and you've studied the
important building blocks of the language, including variables, operators, decisions, looping,
strings, arrays, functions, and objects.

Now it’s time to start building real-world applications with PHP, and a key part of most PHP
applications is the ability to accept input from the person using the application. So far, all the
scripts you've created haven’t allowed for any user input at all; to run the script, you merely type
its URL into your Web browser and watch it do its stuff. By adding the ability to prompt the user
for input and then read that input, you start to make your PHP scripts truly interactive.

One of the most common ways to receive input from the user of a Web application is via an HTML
form. You've probably filled in many HTML forms yourself. Common examples include contact
forms that let you email a site owner; order forms that let you order products from an online store;
and Web-based email systems that let you send and receive email messages using your Web
browser.

In this chapter, you learn how to build interactive Web forms with PHP. You look at:

Q Creating HTML forms

Q Writing PHP scripts to capture the data sent from your forms
0 Some of the security issues surrounding form data
Q

How to handle empty form fields, as well as form fields that send more than one value

at once
Q Using PHP scripts to generate Web forms, giving your forms a lot of flexibility
Q Creating forms with built-in error checking

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Q How to use hidden form fields to create a user-friendly three-stage registration form
Q Creating forms that allow users to upload files

0O How to use page redirection to make your forms smoother and safer to use

Once you've worked through this chapter you'll be able to use Web forms to make your PHP scripts
much more useful and flexible.

How HTML Forms Work

Before looking at the PHP side of things, take a quick look at how an HTML form is constructed. (If
you're already familiar with building HTML forms you may want to skip this section.)

An HTML form, or Web form, is simply a collection of HTML elements embedded within a standard
Web page. By adding different types of elements, you can create different form fields, such as text fields,
pull-down menus, checkboxes, and so on.

All Web forms start with an opening <form> tag, and end with a closing </ form> tag:

<form action="myscript.php" method="post">
<!-- Contents of the form go here -->
</form>

By the way, the second line of code in this example is an HTML comment — everything between the
<!--and --> is ignored by the Web browser.

Notice that there are two attributes within the opening <form> tag:

Q action tells the Web browser where to send the form data when the user fills out and
submits the form. This should either be an absolute URL (such as http://www.example.com/
myscript.php) or a relative URL (such as myscript.php, /myscript.php,or ../
scripts/myscript.php). The script at the specified URL should be capable of accepting
and processing the form data; more on this in a moment.

0 method tells the browser how to send the form data. You can use two methods: get is useful for
sending small amounts of data and makes it easy for the user to resubmit the form, and post
can send much larger amounts of form data.

Once you've created your basic form element, you can fill it with various elements to create the fields

and other controls within your form (as well as other HTML elements such as headings, paragraphs, and
tables, if you so desire).

222

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

_ Create an HTML Form

In this example, you create a Web form that contains a variety of form fields. Not only will you learn
how to create the various types of form fields, but you can see how the fields look and work in your
Web browser.

Save the following file as web_form.html in your document root folder, then open it in your browser
to see the form:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>An HTML Form</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>An HTML Form</hl>

<form action="" method="get">
<div style="width: 25em;">

<label for="textField">A text input field</label>

<input type="text" name="textField" id="textField" wvalue="" />

<label for="passwordField">A password field</label>

<input type="password" name="passwordField" id="passwordField"
value="" />

<label for="checkboxField">A checkbox field</label>

<input type="checkbox" name="checkboxField" id="checkboxField"
value="yes" />

<label for="radioButtonFieldl">A radio button field</label>

<input type="radio" name="radioButtonField" id="radioButtonFieldl"
value="radiol" />

<label for="radioButtonField2">Another radio button</label>

<input type="radio" name="radioButtonField" id="radioButtonField2"
value="radio2" />

<label for="submitButton">A submit button</label>

<input type="submit" name="submitButton" id="submitButton"
value="Submit Form" />

<label for="resetButton">A reset button</label>

<input type="reset" name="resetButton" id="resetButton"
value="Reset Form" />

<label for="fileSelectField">A file select field</label>

<input type="file" name="fileSelectField" id="fileSelectField"
value="" />

223

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

<label for="hiddenField">A hidden field</label>
<input type="hidden" name="hiddenField" id="hiddenField" value=""
<label for="imageField">An image field</label>
<input type="image" name="imageField" id="imageField" value=""
src="asterisk.gif" width="23" height="23" />
<label for="pushButton">A push button</label>
<input type="button" name="pushButton" id="pushButton"
value="Click Me" />
<label for="pullDownMenu">A pull-down menu</label>
<select name="pullDownMenu" id="pullDownMenu" size="1">
<option value="optionl">Option 1</option>
<option value="option2">Option 2</option>
<option value="option3">Option 3</option>
</select>
<label for="listBox">A list box</label>
<select name="listBox" id="listBox" size="3">
<option value="optionl">Option 1</option>
<option value="option2">Option 2</option>
<option value="option3">Option 3</option>
</select>
<label for="multiListBox">A multi-select list box</label>
<select name="multiListBox" id="multiListBox" size="3"
multiple="multiple">
<option value="optionl">Option 1</option>
<option value="option2">Option 2</option>
<option value="option3">Option 3</option>
</select>
<label for="textAreaField">A text area field</label>
<textarea name="textAreaField" id="textAreaField" rows="4"
cols="50"></textarea>
</div>
</form>

</body>

</html>

Figure 9-1 shows what the form looks like. (In this figure an asterisk image was used for the image
field; you will of course need to use an image of your own.) Try clicking each control to see how it
functions.

224

/>

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

File Edit view History Bookmarks Tools Help

=] - 6 = | [@] | hitpsgflocalhostpweb form html | = | |G~ a
An HTML Form [
A text input fiekd [|
A password field | |
A checkhox field @
A radio button field o
Another radio button]
A submit button
A reset button
Atile select tield | Browse.., |
A hidden field
An image field EI
A push button
A pull-dewn menu [option 1)
Alistbox [onrian 1 -
Option 2 |
Option 3 -
A multi-select list box [option 1 -
option 2]
Option 3

A text area field

a_

Done

Figure 9-1

How It Works
This XHTML Web page contains the most common types of form controls you're likely to come across.
First, the form itself is created:

<form action="" method="get">

Notice that the form is created with the get method. This means that the form field names and
values will be sent to the server in the URL. You learn more about the get and post methods
shortly. Meanwhile, the empty action attribute tells the browser to send the form back to the same
page (web_form.html). In a real-world form this attribute would contain the URL of the form
handler script.

Next, each of the form controls is created in turn. Most controls are given a name attribute, which is the
name of the field that stores the data, and a value attribute, which contains either the fixed field value
or, for fields that let the users enter their own value, the default field value. You can think of the field
names and field values as being similar to the keys and values of an associative array.

Most controls are also given an associated 1abel element containing the field label. This text describes
the field to the users and prompts them to enter data into the field. Each label is associated with its
control using its for attribute, which matches the corresponding id attribute in the control element.

225

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

The created form fields include:

O Atextinput field — This allows the user to enter a single line of text. You can optionally prefill
the field with an initial value using the value attribute (if you don’t want to do this, specify an
empty string for the value attribute, or leave the attribute out altogether):

<label for="textField">A text input field</label>
<input type="text" name="textField" id="textField" wvalue="" />

QO Apassword field — This works like a text input field, except that the entered text is not
displayed. This is, of course, intended for entering sensitive information such as passwords.
Again, you can prefill the field using the value attribute, though it’s not a good idea to do this
because the password can then be revealed by viewing the page source in the Web browser:

<label for="passwordField">A password field</label>
<input type="password" name="passwordField" id="passwordField"
value="" />

Q A checkbox field — This is a simple toggle; it can be either on or off. The value attribute should
contain the value that will be sent to the server when the checkbox is selected (if the checkbox
isn’t selected, nothing is sent):

<label for="checkboxField">A checkbox field</label>
<input type="checkbox" name="checkboxField" id="checkboxField"
value="yes" />

You can preselect a checkbox by adding the attribute checked="checked" to the input tag — for
exumple: <input type="checkbox" checked="checked" ... />.

By creating multiple checkbox fields with the same name attribute, you can allow the user to select mul-
tiple values for the same field. (You learn how to deal with multiple field values in PHP later in this
chapter.)

QO Two radio button fields — Radio buttons tend to be placed into groups of at least two buttons.
All buttons in a group have the same name attribute. Only one button can be selected per group.
As with checkboxes, use the value attribute to store the value that is sent to the server if the
button is selected. Note that the value attribute is mandatory for checkboxes and radio buttons,
and optional for other field types:

<label for="radioButtonFieldl">A radio button field</label>
<input type="radio" name="radioButtonField" id="radioButtonFieldl"

value="radiol" />
<label for="radioButtonField2">Another radio button</label>
<input type="radio" name="radioButtonField" id="radioButtonField2"
value="radio2" />

You can preselect a radio button using the same technique as for preselecting checkboxes.
Q A submit button — Clicking this type of button sends the filled-in form to the server-side script

for processing. The value attribute stores the text label that is displayed inside the button (this
value is also sent to the server when the button is clicked):

226

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

<label for="submitButton">A submit button</label>
<input type="submit" name="submitButton" id="submitButton"
value="Submit Form" />

Q Areset button — This type of button resets all form fields back to their initial values (often
empty). The value attribute contains the button label text:

<label for="resetButton">A reset button</label>
<input type="reset" name="resetButton" id="resetButton"
value="Reset Form" />

Q Afile select field — This allows the users to choose a file on their hard drive for uploading to the
server (see “Creating File Upload Forms” later in the chapter). The value attribute is usually
ignored by the browser:

<label for="fileSelectField">A file select field</label>
<input type="file" name="fileSelectField" id="fileSelectField"
value="" />

O Ahidden field — This type of field is not displayed on the page; it simply stores the text value
specified in the value attribute. Hidden fields are great for passing additional information from
the form to the server, as you see later in the chapter:

<label for="hiddenField">A hidden field</label>
<input type="hidden" name="hiddenField" id="hiddenField" value="" />

Q Animage field — This works like a submit button, but allows you to use your own button
graphic instead of the standard gray button. You specify the URL of the button graphic using the
src attribute, and the graphic’s width and height (in pixels) with the width and height
attributes. As with the submit button, the value attribute contains the value that is sent to the
server when the button is clicked:

<label for="imageField">An image field</label>
<input type="image" name="imageField" id="imageField" value=""
src="asterisk.gif" width="23" height="23" />

Q A push button — This type of button doesn’t do anything by default when it’s clicked, but you
can make such buttons trigger various events in the browser using JavaScript. The value
attribute specifies the text label to display in the button:

<label for="pushButton">A push button</label>
<input type="button" name="pushButton" id="pushButton"
value="Click Me" />

Q A pull-down menu — This allows a user to pick a single item from a predefined list of options.
The size attribute’s value of 1 tells the browser that you want the list to be in a pull-down menu
format. Within the select element, you create an option element for each of your options.
Place the option label between the <option> ... </option> tags. Each option element can
have an optional value attribute, which is the value sent to the server if that option is selected. If

227

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

you don’t include a value attribute, the text between the <option> ... </option>
tags is sent instead:

<label for="pullDownMenu">A pull-down menu</label>
<select name="pullDownMenu" id="pullDownMenu" size="1">
<option value="optionl">Option 1l</option>
<option value="option2">Option 2</option>
<option value="option3">Option 3</option>
</select>

Q Alist box — This works just like a pull-down menu, except that it displays several options at
once. To turn a pull-down menu into a list box, change the size attribute from 1 to the number
of options to display at once:

<label for="listBox">A list box</label>
<select name="listBox" id="listBox" size="3">
<option value="optionl">Option 1l</option>
<option value="option2">Option 2</option>
<option value="option3">Option 3</option>
</select>

QO A multi-select list box — This works like a list box, but it also allows the user to select multiple
items at once by holding down Ctrl (on Windows and Linux browsers) or Command (on Mac
browsers). To turn a normal list box into a multi-select box, add the attribute multiple (with a
value of "multiple") to the select element. If the user selects more than one option, all the
selected values are sent to the server (you learn how to handle multiple field values later in
the chapter):

<label for="multiListBox">A multi-select list box</label>
<select name="multiListBox" id="multiListBox" size="3"
multiple="multiple">
<option value="optionl">Option 1l</option>
<option value="option2">Option 2</option>
<option value="option3">Option 3</option>
</select>

You can preselect an option in any type of select element by adding the attribute
selected="selected" to the relevant <option> tag — for example: <option
value="optionl" selected="selected">.

O Atextarea field — This is similar to a text input field, but it allows the user to enter multiple
lines of text. Unlike most other controls, you specify an initial value (if any) by placing the text
between the <textarea> ... </textarea> tags, rather than in a value attribute. A
textarea element must include attributes for the height of the control in rows (rows) and the
width of the control in columns (cols):

<label for="textAreaField">A text area field</label>
<textarea name="textAreaField" id="textAreaField" rows="4"

cols="50"></textarea>

Once the controls have been added to the form, it’s simply a case of closing the form element:

</form>

228

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

Try filling in a few of the fields, then clicking the Submit Form button. Because the action attribute in
the <form> tag is an empty string, the browser sends the form data back to the same URL (web_form.
html). Obviously web_form.html can’t do anything with the form data because it’s simply an HTML
Web page, but shortly you'll be writing PHP scripts that can handle data sent from a form.

Notice that, once you submit your form, you can see all of the form data in your browser’s address bar,
as shown in Figure 9-2. This is because your form used the get method, which sends the form data in
the URL. You can see that the form data is preceded by a ? character, and that the data for each form
field is sent as a name/value pair:

http://localhost/web_form.html?textField=Hello&passwordField=secret&

The get method is limited in the amount of data it can send, because a URL can only contain a small
number of characters (1,024 characters is a safe upper limit). If you need to send larger amounts of data
from a form, use the post method instead:

<form action="myscript.php" method="post">

The post method sends the data within the HTTP headers of the request that’s sent to the server, rather

than embedding the data in the URL. This allows a lot more data to be sent. If the users try to refresh the
page after sending a form via the post method, their browser usually pops up a dialog box asking them
if they want to resend their form data.

You can find out more about HTTP headers in Chapter 16.

File Edit View |listory DBookmarks Tools llelp

& - 6 o | @ | hitpglocalbost web_form btml?text Feld= Hello&passwordFisld=secret &chackboxFiell=yes SradioBul LonFisld=r | - |

An HTML Form

Atext input field |

A password field |

]
|
A checkbox field o

A radio button field)
Another radio button Q

A submit button
A reset button Resel Form
Afile select field [Browse... |
A hidden lield
Animage field E}
A push bullon Click Me
A pull-down menu Option 1 =
Alist box [gption 1
option 2 |
Option 3 |
Done
Figure 9-2

229

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Capturing Form Data with PHP

You now know how to create an HTML form, and how data in a form is sent to the server. How do you
write a PHP script to handle that data when it arrives at the server?

First of all, the form’s action attribute needs to contain the URL of the PHP script that will handle the
form. For example:

<form action="form handler.php" method="post">

Next, of course, you need to create the form_handler.php script. When users send their forms, their
data is sent to the server and the form_handler . php script is run. The script then needs to read the
form data and act on it.

To read the data from a form, you use a few superglobal variables. You were introduced briefly to
superglobals in Chapter 7. A superglobal is a built-in PHP variable that is available in any scope: at the
top level of your script, within a function, or within a class method. Chapter 7 discussed the $GLOBALS
superglobal array, which contains a list of all global variables used in your applications. Here, you learn
about three new superglobal arrays:

Superglobal Array Description

S_GET Contains a list of all the field names and values sent by a form using
the get method

$_POST Contains a list of all the field names and values sent by a form using
the post method

$_REQUEST Contains the values of both the $_GET and $_POST arrays combined,
along with the values of the $_COOKIE superglobal array

You learn about the $_COOKIE superglobal in the next chapter.
Each of these three superglobal arrays contains the field names from the sent form as array keys, with
the field values themselves as array values. For example, say you created a form using the get method,
and that form contained the following control:

<input type="text" name="emailAddress" value="" />

You could then access the value that the user entered into that form field using either the $_GET or the
$_REQUEST superglobal:

Semail = $_GET["emailAddress"];
Semail = $_REQUEST["emailAddress"];

230

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

_ Write a Simple Form Handler

In this example, you create a simple user registration form, then write a form handler script that reads
the field values sent from the form and displays them in the page.

First, create the registration form. Save the following HTML code as registration.html in your
document root folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>Membership Form</title> <link rel="stylesheet" type="text/
css" href="common.css" />
</head>
<body>

<hl>Membership Form</hl>

<p>Thanks for choosing to join The Widget Club. To register, please fill
in your details below and click Send Details.</p>

<form action="process_registration.php" method="post">
<div style="width: 30em; ">

<label for="firstName">First name</label>
<input type="text" name="firstName" id="firstName" value="" />

<label for="lastName">Last name</label>
<input type="text" name="lastName" id="lastName" value="" />

<label for="passwordl">Choose a password</label>

<input type="password" name="passwordl" id="passwordl" wvalue="" />
<label for="password2">Retype password</label>
<input type="password" name="password2" id="password2" value="" />

<label for="genderMale">Are you male...</label>

<input type="radio" name="gender" id="genderMale" value="M" />
<label for="genderFemale">...or female?</label>

<input type="radio" name="gender" id="genderFemale" value="F" />

<label for="favoriteWidget">What's your favorite widget?</label>
<select name="favoriteWidget" id="favoriteWidget" size="1">

<option value="superWidget">The SuperWidget</option>

<option value="megaWidget">The MegaWidget</option>

<option value="wonderWidget">The WonderWidget</option>
</select>

<label for="newsletter">Do you want to receive our newsletter?</label>
<input type="checkbox" name="newsletter" id="newsletter" value="yes" />

<label for="comments">Any comments?</label>

<textarea name="comments" id="comments" rows="4"
cols="50"> </textarea>

231

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

<div style="clear: both;">
<input type="submit" name="submitButton" id="submitButton"
value="Send Details" />
<input type="reset" name="resetButton" id="resetButton"
value="Reset Form" style="margin-right: 20px;" />
</div>
</div>
</form>

</body>
</html>

Next, save the following script as process_registration.php in your document root (the folder
where you placed registration.html), then open the registration.html URL in your Web
browser. Fill in the fields in the form, then click the Send Details button. If all goes well, you should
see a page displaying the data that you just entered.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Thank You</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Thank You</hl>

<p>Thank you for registering. Here is the information you submitted:</p>

<dl>
<dt>First name</dt><dd><?php echo $_POST["firstName"]?></dd>
<dt>Last name</dt><dd><?php echo $_POST["lastName"]?></dd>
<dt>Password</dt><dd><?php echo $_POST|["passwordl"]?></dd>
<dt>Retyped password</dt><dd><?php echo $_POST|["password2"]?></dd>
<dt>Gender</dt><dd><?php echo $_POST["gender"]?></dd>
<dt>Favorite widget</dt><dd><?php echo $_POST["favoriteWidget"]?></dd>
<dt>Do you want to receive our newsletter?</dt><dd><?php echo

$_POST["newsletter"]?></dd>

<dt>Comments</dt><dd><?php echo $_POST["comments"]?></dd>

</dl>

</body>
</html>

Figure 9-3 shows an example form just before it was submitted, and Figure 9-4 shows the result of
sending the form.

232

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

File Edit View |listory DBookmarks Tools llelp

@ * - ° X @ [&Iih|lp:ﬂl(ll:i-]l!I[]Hlfngi!i[!Hli[]ll.}lllYll |'] [lglvl ool Q]

Membership Form

Thanks for choosing to join The Widget Club. To register, please fill in your details below and click Send D etails.

First name |mate |

Last name |poyle
Choose apassword |geeeee
Relype password |ggpeene|

Are you male...

...or femala?

e @il

What's your favorite [1he Magawidget
widget?

Do you wanl lo receive our
newsleller?

b

Any comments? [Greal producls!

[Reset rorm | [send petails |

Done
Figure 9-3
STaT Y o =M oe
File Edit View History Dookmarks Tools llelp
=] - o) @ [&Iih|lF)Zﬂl(ll:i-]liI[].‘ilﬂ}l[][:(-!!i.‘i_ll’.gi.‘ﬂli-l|i[1ll.|l"lp | v] [lgl'! g le Q]
Thank You
Thank you for registering. Here is the information you submitted:
First name Matt
Last name Doyle
Password secret
Retyped password secrel
Gender M
Favorite widget megaWidget
Do you want to receive our yes
newsletter?
Comments Great products!
Done
Figure 9-4

233

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

How It Works

As you can see, the process of capturing and displaying the submitted form data is really quite simple.
Because the form is sent using the post method, the script extracts the form field values from the
$_POST superglobal array, and displays each field value using echo ():

<dt>First name</dt><dd><?php echo $_POST["firstName"]?></dd>

<dt>Last name</dt><dd><?php echo $_POST["lastName"]?></dd>

<dt>Password</dt><dd><?php echo $_POST["passwordl"]?></dd>

<dt>Retyped password</dt><dd><?php echo $_POST["password2"]?></dd>

<dt>Gender</dt><dd><?php echo $_POST["gender"]?></dd>

<dt>Favorite widget</dt><dd><?php echo $_POST["favoriteWidget"]?></dd>

<dt>Do you want to receive our newsletter?</dt><dd><?php echo
S_POST["newsletter"]?></dd>

<dt>Comments</dt><dd><?php echo $_POST["comments"]?></dd>

By the way, because the $_REQUEST superglobal contains the elements of both $_GET and $_P0OST, you
could instead access the form field values using $_REQUEST:

<dt>First name</dt><dd><?php echo $_REQUEST["firstName"]?></dd>

Generally speaking, if you know that your user data will come from a form with a get or a post
method, it’s best to use $_GET or $_POST rather than $_REQUEST. This reduces ambiguity and the
chance of bugs appearing in your code, and also eliminates any risk of clashes between form fields
and cookies; for example, there might be a cookie with the same name as one of your form fields.

Dealing Securely with Form Data

Although the preceding script is just an example and is not designed for use in the real world, a couple
of security issues with the script are worth pointing out. First of all, you wouldn’t of course display the
password that the users had just entered (although you might send them their password in an email to
remind them of it).

Secondly, it’s generally a bad idea to pass any user-entered data — such as the values in $_GET and
$_POST — straight through to a statement like echo () or print () for displaying in a Web page. You
should never trust user input on a public Web site; a malicious user might be trying to break into the site.
It’s quite easy for a wrong-doer to submit form data to an unprotected site that could be used to gain
access to other users’ credentials, for example. Therefore you should always validate (that is, check) or
filter user input to make sure it’s safe before you display it in a Web page. You find out more about this
topic in Chapter 20.

Handling Empty Form Fields

The process_registration.php script assumes that the user has filled in all the fields in the form.
However, users often forget to (or don’t want to) fill in certain fields in a form. When this happens, some

234

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

data is not sent to the server. Sometimes the field is sent as an empty string; sometimes no field name is
sent at all. The following table illustrates the behavior of various form controls when they’re not filled in
or selected:

Form Control What Happens When It's Not Filled In Or Selected
Text input field The field name is sent, along with an empty value.
Password field The field name is sent, along with an empty value.
Checkbox field Nothing is sent at all.

Radio button field Nothing is sent at all.

Submit button Nothing is sent at all if the button isn’t clicked. This can happen if the user
presses Enter /Return to submit a form. However, if there’s only one submit
button in the form, most browsers will still send the button’s field name

and value.
Reset button Nothing is ever sent.
File select field The field name is sent, along with an empty value.
Hidden field The field name is sent, along with an empty value.
Image field Same behavior as a submit button.
Push button Nothing is ever sent.
Pull-down menu Impossible to select no option, so a value is always sent.
List box Nothing is sent at all.
Multi-select box Nothing is sent at all.
Text area field The field name is sent, along with an empty value.

Why is this important? Well, when nothing is sent at all for a field, PHP doesn’t create an element for the
field in the $_POST, $_GET, or $_REQUEST array. So if you attempt to access the element, you'll generate
a PHP notice along the lines of:

PHP Notice: ©Undefined index: gender in process_registration.php on line 18
This notice might appear in your server’s error log, or in the browser window, depending on your error
reporting settings. Such notices won't interfere with the running of your script; for example, in the case

just shown, all that happens is that an empty string is passed to the echo () statement:

<dt>Gender</dt><dd><?php echo $_POST["gender"]?></dd>

235

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

However, it’s generally a good idea to write your code so that it doesn’t generate notices. This helps to
ensure the robustness and security of your application. This means that you should check for the
presence of a submitted form field before using it, rather than assuming that it exists. You can do this
using PHP functions such as isset () or array_key_exists():

<dt>Gender</dt><dd><?php if (isset($_POST["gender"])) echo $_
POST ["gender"]?></dd>

Dealing with Multi-Value Fields

You learned earlier in the chapter that you can create form fields that send multiple values, rather than a
single value. For example, the following form fields are capable of sending multiple values to the server:

<label for="favoriteWidgets">What are your favorite widgets?</label>
<select name="favoriteWidgets" id="favoriteWidgets" size="3"
multiple="multiple">
<option value="superWidget">The SuperWidget</option>
<option value="megaWidget">The MegaWidget</option>
<option value="wonderWidget">The WonderWidget</option>
</select>

<label for="newsletterWidgetTimes">Do you want to receive our
'Widget Times' newsletter?</label>

<input type="checkbox" name="newsletter" id="newsletterWidgetTimes"
value="widgetTimes" />

<label for="newsletterFunWithWidgets">Do you want to receive our
'Fun with Widgets' newsletter?</label>

<input type="checkbox" name="newsletter" id="newsletterFunWithWidgets"
value="funWithwidgets" />

The first form field is a multi-select list box, allowing the user to pick one or more (or no) options. The
second two form fields are checkboxes with the same name (newsletter) but different values
(widgetTimes and funwithwidgets). If the user checks both checkboxes then both values,
widgetTimes and funwithwidgets, are sent to the server under the newsletter field name.

So how can you handle multi-value fields in your PHP scripts? The trick is to add square brackets ([1)
after the field name in your HTML form. Then, when the PHP engine sees a submitted form field name
with square brackets at the end, it creates a nested array of values within the $_GET or $_pOST (and
$_REQUEST) superglobal array, rather than a single value. You can then pull the individual values out of
that nested array. So you might create a multi-select list control as follows:

<select name="favoriteWidgets[]" id="favoriteWidgets" size="3"
multiple="multiple" ... </select>

You’d then retrieve the array containing the submitted field values as follows:

sfavoriteWidgetValuesArray S_GET["favoriteWidgets"]; // If using get method
sfavoriteWidgetValuesArray = $_POST["favoriteWidgets"]; // If using post method

236

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

_ A Registration Form with Multi-Value Fields

Here are the registration form and form handler you created earlier, but this time the form includes a
multi-select list box for the “favorite widget” selection and two checkboxes to allow the user to sign
up for two different newsletters. The form handler deals with these multi-value fields, displaying their

values within the Web

page.

Save the following form as registration_multi.html in your document root folder:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.o0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="h
<head>

ttp://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<title>Membership Form</title>

<link rel=
</head>
<body>

<hl>Member

<p>Thanks
in your detail

<form acti

"stylesheet" type="text/css" href="common.css" />

ship Form</hl>

for choosing to join The Widget Club. To register, please fill

s below and click Send Details.</p>

on="process_registration multi.php" method="post">

<div style="width: 30em; ">

<label
<input

<label
<input

<label
<input
<label
<input

<label
<input
<label
<input

<label

<selec
multiple="mult
<opt

<opt

<opt

</sele

<label
'Widget Times'
<input
Times" value="

for="firstName">First name</label>
type="text" name="firstName" id="firstName" value="" />

for="lastName">Last name</label>
type="text" name="lastName" id="lastName" value="" />

for="passwordl">Choose a password</label>
type="password" name="passwordl" id="passwordl" value=""
for="password2">Retype password</label>

type="password" name="password2" id="password2" value=""

for="genderMale">Are you male...</label>
type="radio" name="gender" id="genderMale" value="M" />
for="genderFemale">...or female?</label>

type="radio" name="gender" id="genderFemale" value="F" />

/>

/>

for="favoriteWidgets">What are your favorite widgets?</label>

t name="favoriteWidgets[]" id="favoriteWidgets" size="3"
iple">

ion value="superWidget">The SuperWidget</option>

ion value="megaWidget">The MegaWidget</option>

ion value="wonderWidget">The WonderWidget</option>

ct>

for="newsletterWidgetTimes">Do you want to receive our
newsletter?</label>

type="checkbox" name="newsletter[]" id="newsletterWidget

widgetTimes" />

237

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

<label for="newsletterFunWithWidgets">Do you want to receive our
'Fun with Widgets' newsletter?</label>

<input type="checkbox" name="newsletter[]" id="newsletterFunWith
Widgets" value="funWithwWidgets" />

<label for="comments">Any comments?</label>
<textarea name="comments" id="comments" rows="4" cols="50">
</textarea>

<div style="clear: both; ">
<input type="submit" name="submitButton" id="submitButton"
value="Send Details" />
<input type="reset" name="resetButton" id="resetButton"
value="Reset Form" style="margin-right: 20px;" />
</div>
</div>
</form>

</body>
</html>

Now save the following script as process_registration_multi.php in your document root folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Thank You</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Thank You</hl>

<p>Thank you for registering. Here is the information you submitted:</p>

<?php
sfavoriteWidgets = "";
Snewsletters = "";
if (isset($_POST["favoriteWidgets"])) {
foreach ($_POST["favoriteWidgets"] as Swidget) {
sfavoriteWidgets .= Swidget . ", ";
}
}
if (isset($_POST["newsletter"])) {
foreach ($_POST["newsletter"] as Snewsletter) {
Snewsletters .= $newsletter . ", ";

238

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

sfavoriteWidgets = preg _replace("/, $/", "", SfavoriteWidgets) ;
Snewsletters = preg_replace("/, $/", "", Snewsletters);
2>

<dl>

<dt>First name</dt><dd><?php echo $_POST["firstName"]?></dd>
<dt>Last name</dt><dd><?php echo $_POST["lastName"]?></dd>
<dt>Password</dt><dd><?php echo $_POST["passwordl"]?></dd>
<dt>Retyped password</dt><dd><?php echo $_POST|["password2"]?></dd>
<dt>Gender</dt><dd><?php echo $_POST["gender"]?></dd>
<dt>Favorite widgets</dt><dd><?php echo $favoriteWidgets?></dd>
<dt>You want to receive the following newsletters:</dt><dd>

<?php echo Snewsletters?></dd>
<dt>Comments</dt><dd><?php echo $_POST["comments"]?></dd>

</dl>

</body>
</html>

As before, fill out the form, and try selecting a couple of the “favorite widget” options and both
“newsletter” checkboxes. Now submit the form. Notice how the PHP script handles the multi-value
fields. You can see a sample form in Figure 9-5 and the resulting script output in Figure 9-6.

fle Edit wview History Bookmarks Ipols Help

e B - c = |if0_' hitp:ilocalhostregistration_rmulti.html |'

Membership Form

Thanks for choosing to Join The Widget Club. To register, please fill in your detalls below and click Send Detalls

First name [Matt

Last name [Poyle

|
|
Choose ap d |]
|

Relype password [ggeeee

Are you male... @®
..or lemale? @

What are your favorite ' the superwidget
widgets? The Megawidget =l

The WonderWidget
Do you want to receive our]
'Widget Times' newsletter?
Do you want to receive our ™
'Fun with Widgets'
newsletter?

Any comments? [T Love widgets!

| Reset Frorm | | Send Details |

Done

Figure 9-5

239

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

File Edit View History Bookmarks Tools Help

& s e bt |I§- http:fflocalhost/process reqgistration multi.php | '] |[G|' : oy

Thank You

Thank you for registering. Here is the information you submitted;

First name Mait
Last name Doyle
Password secrel
Retyped password secret
Gender M
Favorite widgets megaWidget, wonderWidget
You want to receive the widgetTimes, funWithWidgets
following newsletters:
Comments | love widgets!
Done
Figure 9-6

How It Works

The Web form, registration multi.html, is largely similar to the previous registration.html
page. However, this form contains a multi-select list box (favoritewidgets) and two checkboxes
with the same name (newsletter). Because these controls are capable of sending multiple values, two
empty square brackets ([1) are appended to the field names:

240

<label for="favoriteWidgets">What are your favorite widgets?</label>
<select name="favoriteWidgets[]" id="favoriteWidgets" size="3"
multiple="multiple">
<option value="superWidget">The SuperWidget</option>
<option value="megaWidget">The MegaWidget</option>
<option value="wonderWidget">The WonderWidget</option>
</select>

<label for="newsletterWidgetTimes">Do you want to receive our
'Widget Times' newsletter?</label>

<input type="checkbox" name="newsletter[]" id="newsletterWidgetTimes"
value="widgetTimes" />

<label for="newsletterFunWithWidgets">Do you want to receive our
'Fun with Widgets' newsletter?</label>

<input type="checkbox" name="newsletter[]" id="newsletterFunWith
Widgets" value="funWithwWidgets" />

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

The square brackets tell the PHP engine to expect multiple values for these fields, and to create
corresponding nested arrays within the relevant superglobal arrays ($_POST and $_REQUEST in this case).

The form handler, process_registration_multi.php, displays the user’s submitted form data in the
page. Because most fields contain just one value, it’s simply a case of displaying the relevant $_posT
values using the echo () statement.

For the multi-value fields, however, the script needs to be a bit smarter. First it creates two empty string
variables to hold the list of field values to display:

$favoriteWidgets = "";
Snewsletters = "";

Next, for the favoritewidgets field, the script checks to see if the corresponding $_POST array element
($_POST["favoritewWidgets"]) exists. (Remember that, for certain unselected form controls such as
multi-select lists and checkboxes, PHP doesn’t create a corresponding $_POST/$_GET/$_REQUEST array
element.) If the $_POST ["favoriteWidgets"] array element does exist, the script loops through each
of the array elements in the nested array, concatenating their values onto the end of the
$favoriteWidgets string, along with a comma and space to separate the values:

if (isset($_POST["favoriteWidgets"])) {
foreach ($_POST["favoriteWidgets"] as S$Swidget) {
SfavoriteWidgets .= S$widget . ", ";

}
}

The script then repeats this process for the newsletter field:

if (isset($_POST["newsletter"])) {
foreach ($_POST["newsletter"] as Snewsletter) {
Snewsletters .= $newsletter . ", ";
}

If any field values were sent for these fields, the resulting strings now have a stray comma and space on
the end, so the script uses a regular expression to remove these two characters, tidying up the strings:

sfavoriteWidgets = preg_replace("/, $/", "", SfavoriteWidgets);
Snewsletters = preg_replace("/, $/", "", Snewsletters);

You can find out more about regular expressions in Chapter 18.

Now it’s simply a case of outputting these two strings in the Web page, along with the other
single-value fields:

<dl>
<dt>First name</dt><dd><?php echo $_POST["firstName"]?></dd>
<dt>Last name</dt><dd><?php echo $_POST["lastName"]?></dd>
<dt>Password</dt><dd><?php echo $_POST["passwordl"]?></dd>

241

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

<dt>Retyped password</dt><dd><?php echo $_POST["password2"]?></dd>
<dt>Gender</dt><dd><?php echo $_POST["gender"]?></dd>
<dt>Favorite widgets</dt><dd><?php echo $favoriteWidgets?></dd>
<dt>You want to receive the following newsletters:</dt><dd><?php echo
Snewsletters?></dd>
<dt>Comments</dt><dd><?php echo $_POST["comments"]?></dd>
</dl>

Generating Web Forms with PHP

So far, the forms you've created have been embedded in static HTML pages. However, because PHP
scripts can contain and output HTML, it’s perfectly possible to combine both the form and the form
handler in a single PHP file. Doing this gives you a couple of advantages. First, if the users haven't filled
in the form correctly, you can redisplay the form to them so they can correct the errors. Second, because
the form is created from within a PHP script, you can dynamically set various parts of the form at the
time the script is run, adding a lot of power and flexibility to your forms.

As with generating any HTML markup, you can use two common approaches to generate a form within
PHP: you can use echo or print statements to write out the markup for the form, or you can separate
the PHP code from the form markup using the <?php and ?> tags. You can also use a mixture of the two
techniques within the same script.

_ Create an Interactive Form with PHP

The following all-in-one PHP script does the following things:

Q It displays a registration form for the user to fill out. Certain fields are required to be filled in;
these are labeled with asterisks in the form. The remaining fields are optional

0 When the form is sent, the script checks that the required fields have been filled in

O

If all required fields are filled, the script displays a thank-you message

Q If one or more required fields are missing, the script redisplays the form with an error message,
and highlights the fields that still need to be filled in. The script remembers which fields the user
already filled in, and prefills those fields in the new form

To try out the script, first save the following code as registration.php in your document
root folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Membership Form</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
.error { background: #d33; color: white; padding: 0.2em; }

242

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

</style>
</head>
<body>

<?php

if (isset($_POST["submitButton"])) {
processForm() ;

} else {
displayForm(array());

}

function validateField($fieldName, SmissingFields) {
if (in_array($fieldName, SmissingFields)) {
echo ' class="error"';

}

function setValue($fieldName) {
if (isset($_POST[SfieldName])) {
echo $_POST[$fieldName];

}

function setChecked(S$fieldName, S$fieldvalue) {
if (isset($_POST[SfieldName]) and $_POST[SfieldName] == S$fieldvalue) {
echo ' checked="checked"';

}

function setSelected(S$fieldName, S$fieldvalue) {
if (isset($_POST[SfieldName]) and $_POST[SfieldName] == S$fieldvalue) {
echo ' selected="selected"';

}

function processForm() {
SrequiredFields = array("firstName", "lastName", "passwordl",
"password2", "gender");
SmissingFields = array () ;

foreach (SrequiredFields as SrequiredField) {
if (!isset($_POST[SrequiredField]) or !$_POST[SrequiredField]) {
SmissingFields[] = SrequiredField;

}

if (SmissingFields) {
displayForm(SmissingFields) ;
} else {
displayThanks () ;
}

243

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

244

function displayForm($missingFields) {
?>
<hl>Membership Form</hl>

<?php if (SmissingFields) { ?>

<p class="error">There were some problems with the form you submitted.
Please complete the fields highlighted below and click Send Details to
resend the form.</p>

<?php } else { ?>

<p>Thanks for choosing to join The Widget Club. To register, please
fill in your details below and click Send Details. Fields marked with an
asterisk (*) are required.</p>

<?php } ?>

<form action="registration.php" method="post">
<div style="width: 30em; ">

<label for="firstName"<?php validateField("firstName",

SmissingFields) ?>>First name *</label>
<input type="text" name="firstName" id="firstName"
value="<?php setValue("firstName") ?2>" />

<label for="lastName"<?php validateField("lastName",

SmissingFields) ?>>Last name *</label>
<input type="text" name="lastName" id="lastName" value=
"<?php setValue("lastName") ?>" />
<label for="passwordl"<?php if (SmissingFields) echo
' class="error"' ?>>Choose a password *</label>
<input type="password" name="passwordl" id="passwordl" value="" />
<label for="password2"<?php if (SmissingFields) echo
' class="error"' ?>>Retype password *</label>
<input type="password" name="password2" id="password2" value="" />

<label<?php validateField("gender", $missingFields) ?>>Your
gender: *</label>

<label for="genderMale">Male</label>

<input type="radio" name="gender" id="genderMale" value=
"M"<?php setChecked("gender", "M")?>/>

<label for="genderFemale">Female</label>

<input type="radio" name="gender" id="genderFemale" value=
"F"<?php setChecked("gender", "F")?> />

<label for="favoriteWidget">What's your favorite widget? *</label>
<select name="favoriteWidget" id="favoriteWidget" size="1">
<option value="superWidget"<?php setSelected("favoriteWidget",
"superWidget") ?>>The SuperWidget</option>

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

<option value="megaWidget"<?php setSelected("favoriteWidget",
"megaWidget") ?>>The MegaWidget</option>
<option value="wonderWidget"<?php setSelected("favoriteWidget",
"wonderWidget") ?>>The WonderWidget</option>
</select>

<label for="newsletter">Do you want to receive our newsletter?
</label>

<input type="checkbox" name="newsletter" id="newsletter" value="yes"
<?php setChecked("newsletter", "yes") ?> />

<label for="comments">Any comments?</label>
<textarea name="comments" id="comments" rows="4" cols="50"><?php
setValue("comments") ?></textarea>

<div style="clear: both; ">
<input type="submit" name="submitButton" id="submitButton" value=
"Send Details" />
<input type="reset" name="resetButton" id="resetButton"
value="Reset Form" style="margin-right: 20px;" />
</div>

</div>
</form>
<?php
}

function displayThanks () {

?>

<hl>Thank You</hl>

<p>Thank you, your application has been received.</p>
<?php
}
?>

</body>

</html>

Now browse the script’s URL in your Web browser. You'll see a blank registration form. Try
submitting an empty form by clicking Send Details. You should see an error message, with the missing
required fields highlighted. If you fill in some values and resubmit, the script keeps checking to see if
you've filled in the required fields. If not, it redisplays the form, including any data you've already
entered, and highlights the missing fields, as shown in Figure 9-7.

245

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

Finally, try filling in all the required fields and clicking Send Details again. This time, you should see
the thank-you message.

& > ° O B ||;"- hitplocalhostregistration.php | vI [@v a)

Membership Form

First name * [an

]
BT |
oo se| |
| |

Male ®)

Female

What's your favorite (e syperwidget)

widget? *

Do you wanl lo receive our]
newsletter?

Any comments? (Greal widgels!

Heset Form | | Send Details

Done

Figure 9-7

How It Works
The script kicks off with the standard XHTML page header. It includes an additional CSS class for the
red error boxes:

<style type="text/css">
.error { background: #d33; color: white; padding: 0.2em; }
</style>

Next, the script checks to see if the form has been submitted. It does this by looking for the existence
of the submitButton field. If present, it means that the Send Details button has been clicked and the
form received, and the script calls a processForm () function to handle the form data. However, if
the form hasn’t been displayed, it calls displayForm() to display the blank form, passing in an
empty array (more on this in a moment):

if (isset($_POST["submitButton"])) {
processForm() ;
} else {

displayForm(array());
}

246

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

Next the script defines some helper functions. validateField() is used within the form to display a
red error box around a form field label if the required field hasn’t been filled in. It’s passed a field
name, and a list of all the required fields that weren't filled in. If the field name is within the list, it
displays the markup for the error box:

function validateField(s$fieldName, SmissingFields) {
if (in_array($fieldName, S$SmissingFields)) {
echo " class="error";';

setValue () is used to prefill the text input fields and text area field in the form. It expects to be passed a
field name. It then looks up the field name in the $_POST superglobal array and, if found, it outputs the
field’s value:

function setValue($fieldName) {
if (isset($_POST[SfieldName])) {
echo $_POST[$fieldName];

setChecked () is used to preselect checkboxes and radio buttons by inserting a checked attribute into
the element tag. Similarly, setSelected() is used to preselect an option in a select list via the
selected attribute. Both functions look for the supplied field name in the $_POST array and, if the field
is found and its value matches the supplied field value, the control is preselected:

function setChecked($fieldName, S$fieldvalue) {
if (isset($_POST[SfieldName]) and $_POST[SfieldName] == S$Sfieldvalue) {
echo ' checked="checked"';

function setSelected(S$fieldName, S$Sfieldvalue) {
if (isset($_POST[SfieldName]) and $_POST[SfieldName] == S$fieldvalue) {
echo ' selected="selected"';

}

Next comes the form handling function, processForm (). This sets up an array of required field names,
and also initializes an array to hold the required fields that weren't filled in:

function processForm() {

SrequiredFields = array("firstName", "lastName", "passwordl", "password2",
"gender") ;

SmissingFields = array();

247

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Now the function loops through the required field names and looks for each field name in the $_poST
array. If the field name doesn’t exist, or if it does exist but its value is empty, the field name is added to
the $missingFields array:

foreach (S$requiredFields as S$requiredField) {
if (!isset($_POST[SrequiredField]) or !$_POST[SrequiredField]) {
SmissingFields[] = SrequiredField;

If missing fields were found, the function calls the displayForm() function to redisplay the form,
passing in the array of missing field names so that displayForm() can highlight the appropriate fields.
Otherwise, displayThanks () is called to thank the user:

if (SmissingFields) {
displayForm(SmissingFields);
} else {
displayThanks () ;

}

The displayForm () function itself displays the HTML form to the user. It expects an array of any
missing required field names. If this array is empty, the form is presumably being displayed for the first
time, so displayForm() shows a welcome message. However, if there are elements in the array, the
form is being redisplayed because there were errors, so the function shows an appropriate error message:

function displayForm(SmissingFields) {
?>
<hl>Membership Form</hl>

<?php if (SmissingFields) { ?>

<p class="error">There were some problems with the form you submitted.
Please complete the fields highlighted below and click Send Details to resend
the form.</p>

<?php } else { ?>

<p>Thanks for choosing to join The Widget Club. To register, please fill
in your details below and click Send Details. Fields marked with an asterisk
(*) are required.</p>

<?php } ?>

Next, the form itself is displayed. The form uses the post method, and its action attribute points back
to the script’s URL:

<form action="registration.php" method="post">
Then each form control is created using HTML markup. Notice how the validateField(),
setValue (), setChecked (), and setSelected () functions are called throughout the markup in order

to insert appropriate attributes into the elements.

With the password fields, it's unwise to redisplay a user’s password in the page because the password
can easily be read by viewing the HTML source. Therefore, the two password fields are always

248

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

redisplayed as blank. The script checks to see if the form is being redisplayed due to missing required
field values; if so, the password field labels are highlighted with the red error boxes to remind the users

to reenter their password:

<label for="passwordl"<?php if ($missingFields) echo

' class="error"' ?>>Choose a password *</label>
<input type="password" name="passwordl" id="passwordl" wvalue="" />
<label for="password2"<?php if ($SmissingFields) echo '
class="error"' ?>>Retype password *</label>
<input type="password" name="password2" id="password2" value="" />

Finally, the script defines the displayThanks () function. This displays a simple thank-you message
when the form has been correctly filled out:

function displayThanks () {

?>
<hl>Thank You</hl>
<p>Thank you, your application has been received.</p>
<?php
}
?>

With this example you can see that, by embedding an HTML form within a PHP script, you can start to
develop quite complex interactive Web forms.

Storing PHP Variables in Forms

Earlier in the chapter you were introduced to hidden fields. A hidden field is a special type of input
element that can store and send a string value, just like a regular text input control. However, a hidden
field is not displayed on the page (although its value can be seen by viewing the page source), and
therefore its value cannot be changed by the users when they’re filling out the form. By combining
hidden fields with PHP’s ability to insert data dynamically into form fields, you effectively have the
ability to store data between one browser request and the next:

<input type="hidden" name="selectedWidget" value="<?php echo $selectedwWidget
2> />

Although users can’t change a hidden field’s value when using their browser under normal conditions,
it’s fairly easy for an attacker to submit a form that does contain hidden fields with altered values.
Therefore, it’s not a good idea to use hidden fields to transmit sensitive or critical information such as
user IDs or order numbers, at least not without performing additional validation in your script to
ensure the supplied data is correct.

249

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

_ Create a Multi-Step Form

You can use hidden fields to create a series of forms that guide the user through the data entry process
step by step. Within each form, you can store the current step — so that the script knows what stage
the user has reached — as well as the data already entered by the user in other steps.

Here’s an example that splits the previous registration.php form into three steps:

Q First name/last name
QO Gender/favorite widget

QO Newsletter preference/comments

Save the following script as registration_multistep.php in your document root folder and run
the script in your Web browser. Try filling in some field values and using the Back and Next buttons to
jump between the three steps. Notice how the field values are preserved when you return to a
previously completed step. Figure 9-8 shows the first step of the form, and Figure 9-9 shows the
second step.

To keep things simple, this script doesn’t validate any form fields in the way that registration.php
does. However, you could easily use the same techniques used in registration.php to validate each
step of the form as it is submitted.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Membership Form</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>

<?php

if (isset($_POST["step"]) and $_POST["step"] >= 1 and $_POST["step"]
<=3) {
call_user_ func("processStep" . (int)$_POST["step"]);
} else {
displayStepl () ;
}

function setvValue($fieldName) {
if (isset($_POST[SfieldName])) {
echo $_POST[S$fieldName];
}

250

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

function setChecked (

if (isset(
echo '

}

function setSelected(

if (isset(
echo '

}

function processStepl () {
displayStep2 () ;

}

function processStep2 () {

if (isset(
"< Back") {

$_POST["submitButton"])

displayStepl () ;

} else {

displayStep3 () ;

}

function processStep3 () {

if (isset(
"< Back") {

$_POST["submitButton"])

displayStep2 () ;

} else {

displayThanks () ;

}

function displayStepl () {

$fieldName,
S_POST[$fieldName])
checked="checked"';

$fieldName,
$_POST[SfieldName])
selected="selected"';

Sfieldvalue) {

and $_POST[SfieldName] == S$fieldvalue) {

Ssfieldvalue) {
and $_POST[$fieldName]

sfieldvalue) {

and $_POST["submitButton"]

and $_POST["submitButton"]

?>
<hl>Member Signup: Step 1l</hl>
<form action="registration_multistep.php" method="post">
<div style="width: 30em; ">
<input type="hidden" name="step" value="1" />
<input type="hidden" name="gender" value="<?php setValue
("gender") ?>" />
<input type="hidden" name="favoriteWidget" value="<?php setValue
("favoriteWidget") ?>" />
<input type="hidden" name="newsletter" value="<?php setValue
("newsletter") ?2>" />
<input type="hidden" name="comments" value="<?php setValue
("comments") ?>" />
<label for="firstName">First name</label>
<input type="text" name="firstName" id="firstName" value="<?php
setValue("firstName") ?2>" />
<label for="lastName">Last name</label>

251

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

252

<input type="text" name="lastName" id="lastName" value="
<?php setValue ("lastName") ?>" />

<div style="clear: both; ">
<input type="submit" name="submitButton" id="nextButton" value=
"Next >" />

</div>
</div>
</form>
<?php
}
function displayStep2 () {
?>
<hl>Member Signup: Step 2</hl>
<form action="registration_multistep.php" method="post">
<div style="width: 30em; ">
<input type="hidden" name="step" value="2" />
<input type="hidden" name="firstName" value="<?php setValue
("firstName") ?>" />
<input type="hidden" name="lastName" value="<?php setValue
("lastName") ?2>" />
<input type="hidden" name="newsletter" value="<?php setValue
("mewsletter") ?2>" />

<input type="hidden" name="comments" value="<?php setValue
("comments") ?>" />

<label>Your gender:</label>

<label for="genderMale">Male</label>

<input type="radio" name="gender" id="genderMale" value=
"M"<?php setChecked("gender", "M")?>/>

<label for="genderFemale">Female</label>

<input type="radio" name="gender" id="genderFemale" value=
"F"<?php setChecked("gender", "F")?> />

<label for="favoriteWidget">What's your favorite widget? *</label>
<select name="favoriteWidget" id="favoriteWidget" size="1">
<option value="superWidget"<?php setSelected("favoritewWidget",
"superWidget") ?>>The SuperWidget</option>
<option value="megaWidget"<?php setSelected("favoritewWidget",
"megaWidget") ?>>The MegaWidget</option>
<option value="wonderWidget"<?php setSelected("favoriteWidget",
"wonderWidget") ?>>The WonderWidget</option>
</select>

<div style="clear: both; ">
<input type="submit" name="submitButton" id="nextButton" value=
"Next >" />

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

<input type="submit" name="submitButton"
style="margin-right:

value="< Back"
</div>
</div>
</form>
<?php
}

function displayStep3 () {

id="backButton"

20px; " />

?>
<hl>Member Signup: Step 3</hl>
<form action="registration_multistep.php" method="post">
<div style="width: 30em; ">
<input type="hidden" name="step" value="3" />
<input type="hidden" name="firstName" value="<?php setValue
("firstName") ?2>" />
<input type="hidden" name="lastName" value="<?php setValue
("lastName") ?2>" />
<input type="hidden" name="gender" value="<?php setValue
("gender") ?>" />
<input type="hidden" name="favoriteWidget" value=
"<?php setValue("favoritewidget") ?2>" />

</label>

"yves"<?php setChecked(

<label for="newsletter">Do you want to receive our newsletter?

<input type="checkbox" name="newsletter" id="newsletter" value=

"newsletter", "yes")?> />

<label for="comments">Any comments?</label>

<textarea name="comments" id="comments"
<?php setValue("comments") ?></textarea>

<div style="clear: both; ">
<input type="submit" name="submitButton"
"Next >" />
<input type="submit" name="submitButton"
value="<
Back" style="margin-right:
</div>
</div>
</form>
<?php
}

20px; " />

function displayThanks () {

rows="4"

cols="50">

id="nextButton" value=

id="backButton"

?>
<hl>Thank You</hl>
<p>Thank you, your application has been received.</p>
<?php
}
?>
</body>
</html>

253

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

File Edit View History Bookmarks Tools Help

& > e U T [|E|.http:fﬂoca|h0stfregi5tration_mullistep.php l'] ["'- sgle 9‘]

Member Signup: Step 1

First name [pgrr]

Last name [poyic |

Done
Figure 9-8
@ MemBDersnp Form = Mozila

File Edit ‘iew History Bookmarks Tools Help
& > ° L ﬁ [|E|:http:fﬂoca|h0stfregi5tration_mullistep.php l'] ["'- ogle Q|

Member Signup: Step 2

Your gender:

Male
Female Q
What's your favorite [The Megawidget)|
widget? *
Done
Figure 99

How It Works
For each step of the signup process, the script displays a form with a hidden field, step, to track the
current step. For example:

<input type="hidden" name="step" value="1" />

The script starts by testing for the presence of this field in the submitted form data. If found, and its
value is valid (between 1 and 3), the script uses PHP’s call_user_func () function to call the
appropriate processing function — processStepl (), processStep2 (), or processStep3 (). If the

254

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

step field wasn’t submitted (or its value was invalid), the script assumes the user has just started
the signup process and displays the form for the first step:

if (isset($_POST["step"]) and $_POST["step"] >= 1 and $_POST["step"] <= 3) {
call_user_func("processStep" . (int)$_POST["step"]);
} else {
displayStepl () ;
}
The next three functions — setValue (), setChecked (), and setSelected () — are identical to their

counterparts in registration.php.

Next come the three functions to process the forms submitted from each of the three steps.
processStepl () simply displays step 2:

function processStepl () {
displayStep2 () ;
}

processStep2 () checks to see if the user clicked the Back button. If he did, step 1 is redisplayed;
otherwise it’s assumed the user clicked the Next button, so step 3 is displayed:

function processStep2 () {
if (isset($_POST["submitButton"]) and $_POST["submitButton"] ==
"< Back") {
displayStepl () ;
} else {
displayStep3 () ;
}

}

In a similar fashion, processStep3 () displays step 2 if the Back button was clicked, or the thank-you
page if Next was clicked:

function processStep3 () {
if (isset($_POST["submitButton"]) and $_POST["submitButton"] ==
"< Back") {
displayStep2();
} else {
displayThanks () ;
}
}

The remaining four functions — displayStepl (), displayStep2 (), displayStep3 (), and

displayThanks () — display forms for each of the three steps in the signup process, as well as the
final thank-you page. Notice that each of the step functions includes all of the form fields for the entire

255

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

signup process; the fields for the current step are displayed as normal, and the fields for the other two
steps are displayed as hidden fields. For example, displayStep2 () outputs hidden fields to store the
values for firstName, lastName, newsletter, and comments, while displaying the fields for the
current step (gender and favoritewidget):

<input type="hidden" name="step" value="2" />
<input type="hidden" name="firstName" value="<?php setValue

("firstName") ?2>" />

<input type="hidden" name="lastName" value="<?php setValue (
"lastName") ?>" />

<input type="hidden" name="newsletter" value="<?php setValue
("newsletter") ?>" />

<input type="hidden" name="comments" value="<?php setValue
("comments") ?>" />

<label>Your gender:</label>

<label for="genderMale">Male</label>

<input type="radio" name="gender" id="genderMale" value="M"<?php
setChecked("gender", "M")?>/>

<label for="genderFemale">Female</label>

<input type="radio" name="gender" id="genderFemale" value="F"<?php
setChecked("gender", "F")?> />

<label for="favoriteWidget">What's your favorite widget? *</label>
<select name="favoriteWidget" id="favoriteWidget" size="1">
<option value="superWidget"<?php setSelected("favoriteWidget",
"superWidget") ?>>The SuperWidget</option>
<option value="megaWidget"<?php setSelected("favoriteWidget",
"megaWidget") ?>>The MegaWidget</option>
<option value="wonderWidget"<?php setSelected("favoritewidget",
"wonderWidget") ?>>The WonderWidget</option>
</select>

By including (and populating) all the fields — whether visible or hidden — in each of the three steps,
the script ensures that the entire signup data is sent back to the server each time a form is submitted,
thereby allowing the data to be carried across the three steps.

Steps 2 and 3 also include Back and Next buttons, whereas step 1 just includes a Next button. Finally,
displayThanks () simply displays the thank-you message to the user.

256

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

Creating File Upload Forms

As well as sending textual data to the server, Web forms can be used to upload files to the server. If
you’ve used a Web-based email service such as Yahoo! Mail or Gmail, chances are you've sent email with
attachments. To add an attachment, you generally click the Browse button in the Web page to select a file
on your computer. Then, when you submit the form, your browser sends the file to the server along with
the other form data.

You've already seen how to create a file select field at the start of this chapter:

<label for="fileSelectField">A file select field</label>
<input type="file" name="fileSelectField" id="fileSelectField" value="" />

In addition, a form containing a file select field must use the post method, and it must also have an
enctype="multipart/form-data" attribute in its <form> tag, as follows:

<form action="form_handler.php" method="post" enctype="multipart/form-data">
This attribute ensures that the form data is encoded as mulitpart MIME data — the same format that’s
used for encoding file attachments in email messages — which is required for uploading binary data

such as files.

You can have as many file select fields as you like within your form, allowing your users to upload
multiple files at once.

Accessing Information on Uploaded Files

Once the form data hits the server, the PHP engine recognizes that the form contains an uploaded file or
files, and creates a superglobal array called $_FILES containing various pieces of information about the

file or files. Each file is described by an element in the $_FILES array keyed on the name of the field that
was used to upload the file.

For example, say your form contained a file select field called photo:

<input type="file" name="photo" wvalue="" />

If the user uploaded a file using this field, its details would be accessible via the following PHP
array element:

S_FILES["photo"]

This array element is itself an associative array that contains information about the file. For example, you
can find out the uploaded file’s filename like this:

Sfilename = $_FILES["photo"]["name"];

257

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Here’s a full list of the elements stored in each nested array within the $_FILES array:

Array Element Description
name The filename of the uploaded file.
type The MIME type of the uploaded file. For example, a JPEG image would

probably have a MIME type of image/jpeg, whereas a QuickTime movie file
would have a MIME type of video/quicktime.

size The size of the uploaded file, in bytes.

tmp_name The full path to the temporary file on the server that contains the uploaded
file. (All uploaded files are stored as temporary files until they are needed.)

error The error or status code associated with the file upload.

The error element contains an integer value that corresponds to a built-in constant that explains the
status of the uploaded file. Possible values include:

Constant

UPLOAD_ERR_OK

UPLOAD_ERR_INI_SIZE

UPLOAD_ERR_FORM_SIZE

UPLOAD_ERR_NO_FILE

UPLOAD_ERR_NO_TMP_DIR

UPLOAD_ERR_CANT_WRITE

UPLOAD_ERR_EXTENSION

Most of these error codes are self-explanatory. UPLOAD_ERR_INI_SIZE and UPLOAD_ERR_FORM_SIZE are
explained in the following section.

Value
0

1

Meaning
The file was uploaded successfully.

The file is bigger than the allowed file size specified
in the upload_max_filesize directive in the php.
ini file.

The file is bigger than the allowed file size specified
in the MAX_FILE_SIZE directive in the form.

No file was uploaded.

PHP doesn’t have access to a temporary folder on
the server to store the file.

The file couldn’t be written to the server’s hard disk
for some reason.

The file upload was stopped by one of the currently
loaded PHP extensions.

Limiting the Size of File Uploads

Often it’s a good idea to prevent unusually large files being sent to the server. Apart from consuming
bandwidth and hard disk space on the server, a large file can cause your PHP script to overload the

server’s CPU. For example, if your PHP script is designed to work on an uploaded 10-kilobyte text file,
uploading a 100-megabyte text file might cause your script some problems.

258

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

PHP allows you to limit the size of uploaded files in a few ways. First, if you have access to your php.
ini file, you can add or edit a directive called upload_max_filesize in the file:

; Maximum allowed size for uploaded files.
upload_max_filesize = 32M

Then, if a user tries to upload a file larger than this value (32 megabytes in this example), the file upload
is cancelled and the corresponding error array element is set to UPLOAD_ERR_INI_SIZE.

You can find out more on editing your php . ini file in Appendix B.

If you don’t have access to your server’s php. ini file, you can add a hidden form field called MAX_
FILE_SIZE that specifies the maximum allowed size (in bytes) of an uploaded file. This should be
placed before the file upload field:

<input type="hidden" name="MAX_FILE_SIZE" value="10000" />
<input type="file" name="fileSelectField" id="fileSelectField" value="" />

If the uploaded file is larger than this figure, the upload is cancelled and the corresponding error array
element is set to UPLOAD_ERR_FORM_SIZE. In theory, a browser can also look at the MAX_FILE_SIZE
field in the form and prevent the user from uploading a file bigger than that value in the first place. In
practice, though, hardly any browsers support this technique.

It’s also relatively easy for an attacker to modify your Web form and alter the value of the MAX_FILE_
S1zE hidden field (or even remove the field altogether). For this reason, it’s best to use upload_max_
filesize to limit your file uploads, if possible.

Of course, you can also check the size of an uploaded file manually and reject it if it’s too large:

if ($_FILES["photo"]["size"] > 10000) die("File too big!");

Storing and Using an Uploaded File

Once a file has been successfully uploaded, it is automatically stored in a temporary folder on the server.
To use the file, or store it on a more permanent basis, you need to move it out of the temporary folder.
You do this using PHP’s move_uploaded_file () function, which takes two arguments: the path of the
file to move, and the path to move it to. You can determine the existing path of the file using the tmp_
name array element of the nested array inside the $_FILES array. move_uploaded_file () returns true
if the file was moved successfully, or false if there was an error (such as the path to the file being
incorrect). Here’s an example:

if (move_uploaded_file($_FILES["photo"]["tmp_name"], "/home/matt/photos/
photo.jpg")) {

echo "Your file was successfully uploaded.";
} else {

echo "There was a problem uploading your file - please try again.";

}

259

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

_ Create a File Upload Script

You now have all the knowledge required to create file upload forms and PHP scripts that can handle
them. In this example, you create a script that displays a form allowing the user to upload a JPEG
photo, which is then displayed to them in the page.

First, save the following script as photo_upload.php in your document root folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Uploading a Photo</title>
<link rel="stylesheet" type="text/css" href="common.css" />

</head>
<body>
<?php
if (isset($_POST["sendPhoto"])) {
processForm() ;
} else {
displayForm() ;
}
function processForm() {

if (isset($S_FILES["photo"]) and $_FILES["photo"]["error"] ==
UPLOAD_ERR_OK) {

if ($_FILES["photo"]["type"] != "image/jpeg") {
echo "<p>JPEG photos only, thanks!</p>";
} elseif (!move_uploaded_file($_FILES["photo"]["tmp_name"],
"photos/" . basename($_FILES["photo"]["name"]))) {
echo "<p>Sorry, there was a problem uploading that photo.</p>"
S_FILES["photo"]["error"]
} else {
displayThanks () ;
}
} else {
switch($_FILES["photo"]["error"]) {
case UPLOAD_ERR_INI_SIZE:
Smessage = "The photo is larger than the server allows.";
break;
case UPLOAD_ERR_FORM_SIZE:
Smessage = "The photo is larger than the script allows.";
break;
case UPLOAD_ERR_NO_FILE:
Smessage = "No file was uploaded. Make sure you choose a file to
upload.";
break;
default:
Smessage = "Please contact your server administrator for help.";

}
echo "<p>Sorry, there was a problem uploading that photo. Smessage</p>";

260

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

}

function displayForm() {
?>
<hl>Uploading a Photo</hl>

<p>Please enter your name and choose a photo to upload, then click
Send Photo.</p>

<form action="photo_upload.php" method="post" enctype="multipart/
form-data">
<div style="width: 30em; ">
<input type="hidden" name="MAX_ FILE_SIZE" value="50000" />

<label for="visitorName">Your name</label>
<input type="text" name="visitorName" id="visitorName" value="" />

<label for="photo">Your photo</label>
<input type="file" name="photo" id="photo" value="" />

<div style="clear: both; ">
<input type="submit" name="sendPhoto" value="Send Photo" />
</div>

</div>
</form>
<?php
}

function displayThanks () {
?>

<hl>Thank You</hl>

<p>Thanks for uploading your photo<?php if ($_POST["visitorName"])
echo ", " . $_POST["visitorName"] ?>!</p>

<p>Here's your photo:</p>

<p><img src="photos/<?php echo $_FILES["photo"]["name"] ?>" alt="Photo"
/></p>
<?php
}

?>

</body>
</html>

Next, create a photos folder in the same folder on your Web server (the document root). This folder is
to store the uploaded photos. You'll need to give your Web server user the ability to create files in this

folder. On Linux or Mac OS X you can do this in a Terminal window as follows:

cd /path/to/document/root
chmod 777 photos

261

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

On Windows you can use Windows Explorer to set permissions on the photos folder.

Now try running the script in your browser. You should see the form shown in Figure 9-10. Enter your
name and choose a JPEG photo to upload, then click Send Photo. You should see a thank-you message
appear along with your uploaded photo, as in Figure 9-11.

a & - o 3 ﬁ ||;' hitp:localhostfphoto upload.php | '] “—" | Q.|

Uploading a Photo

Please enler your name and choose a pholo lo upload, then click Send Pholo.

Your name [Matt]
Your photo Jhome/matt/Pictures/dscnl18 | Browse...

Done

Figure 9-10

File Edit View History Bookmarks Tools Help

& > ° o ﬁf ||;- http;fflocalhestfphoto upload.php | = | ||E!v - &

Thank You
Thanks for uploading your photo, Matt!

Here's your photo;

i

Done

Figure 9-11

262

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

How It Works

The script first checks to see if the form has been submitted by looking for the existence of the
sendPhoto submit button field. If the form was submitted, processForm() is called to handle the
form; otherwise the form is displayed with displayForm():

if (isset($_POST["sendPhoto"])) {
processForm() ;
} else {
displayForm() ;
}
processForm() handles the uploaded file (if any). First it checks to make sure a file was uploaded,
and that it uploaded without error:

if (isset($_FILES["photo"]) and $_FILES["photo"]["error"] == UPLOAD_
ERR_OK) {
If the uploaded file is not a JPEG photo, the function refuses it:
if ($_FILES["photo"]["type"] != "image/jpeg") {
echo "<p>JPEG photos only, thanks!</p>";

The function then attempts to move the uploaded file from the temporary folder to the photos folder,
displaying an error message if there was a problem. If all goes well, the thank-you page is displayed:

} elseif (!move_uploaded_file($_FILES["photo"]["tmp_name"], "photos/"
basename($_FILES["photo"]["name"]))) {
echo "<p>Sorry, there was a problem uploading that photo.</p>";
} else {
displayThanks () ;

}

Note the use of the PHP basename () function. This takes a file path and extracts just the filename
portion of the path. Some browsers send the full path of the file when it’s uploaded — not just the
filename — so the script uses basename () to make sure that only the filename portion is used for the
file in the photos folder. Furthermore, this prevents attackers from inserting malicious characters (for
example, " . . /") into the filename.

The function also displays an error message if no photo was uploaded, or if PHP reported an error in
the $_FILES array:

} else {
switch($_FILES["photo"]["error"]) {

case UPLOAD_ERR_INI_SIZE:
Smessage = "The photo is larger than the server allows.";
break;

case UPLOAD_ERR_FORM_SIZE:
Smessage = "The photo is larger than the script allows.";
break;

263

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

case UPLOAD_ERR_NO_FILE:

Smessage = "No file was uploaded. Make sure you choose a file to
upload.";
break;
default:
Smessage = "Please contact your server administrator for help.";
}

echo "<p>Sorry, there was a problem uploading that photo. S$Smessage</p>";

}

The displayForm () function simply displays the file upload form, with a text field for the visitor’s
name and a file select field to allow a file to be uploaded. Finally, the displayThanks () function
thanks the user, displaying the user’s name (if supplied) and his photo.

Redirecting after a Form Submission

Before leaving the topic of form handling in PHP, it’s worth mentioning the concept of URL redirection.
Though not directly related to forms, URL redirection is often used within form handling code.

Normally when you run a PHP script — whether by typing its URL, following a link, or submitting a
form — the script does its thing, displays some sort of response as a Web page, and exits.

However, by sending a special HTTP header back to the browser from the PHP script, you can cause the
browser to jump to a new URL after the script has run. This is commonly used within a form handler
script to redirect the users to a thank-you page after they’ve submitted the form. This means that you can
keep your thank-you page separate from your PHP script, which makes the page easier to edit and
update.

Another good thing about redirecting to a new URL after a form has been submitted is that it prevents
users from accidentally resubmitting the form by clicking their browser’s Reload or Refresh button.
Instead, all that happens is that they reload the page that they were redirected to.

Redirection is as simple as outputting a Location: HTTP header, including the URL you want to
redirect to. You output HTTP headers in PHP using the built-in header () function. So here’s how
to redirect to a page called thanks.html:

header ("Location: thanks.html");

The only thing to watch out for is that you don’t output any content to the browser — whether via
echo () or print (), or by including HTML markup outside the <?php ... ?>tags — before calling
header (). This is because the moment you send content to the browser, the PHP engine automatically
sends the default HTTP headers — which won’t include your Location: header — and you can send
headers only once per request.

264

(c) ketabton.com: The Digital Library

Chapter 9: Handling HTML Forms with PHP

Here’s a quick example of a form handler script that redirects to a thank-you page:
<?php

if (isset($_POST["submitButton"])) {
// (deal with the submitted fields here)
header ("Location: thanks.html");
exit;

} else {
displayForm() ;

}

function displayForm() {
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Membership Form</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>

<hl>Membership Form</hl>
<form action="form_handler_redirect.php" method="post">

<div style="width: 30em; ">
<label for="firstName">First name</label>

<input type="text" name="firstName" id="firstName" value="" />
<label for="lastName">Last name</label>
<input type="text" name="lastName" id="lastName" value="" />

<div style="clear: both; ">

<input type="submit" name="submitButton" id="submitButton" value=

"Send Details" />
</div>
</div>
</form>
</body>

</html>

<?php

}

?>

Notice that the script doesn’t output anything to the browser until either the header () function is

called, or until the membership form is displayed. Also notice that the script terminates with the exit

statement after calling header () to avoid sending any further output to the browser.

265

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Summary

This chapter has shown you how to deal with Web forms within your PHP scripts. You learned:

Q

a

How to create Web forms, including all the different types of controls that you can place in
a form

All about the $_GET, $_POST, and $_REQUEST superglobals, and how your scripts can use them
to capture form data sent by a user

Some of the security issues surrounding Web forms, and how to mitigate them
How to deal with empty form fields

How to get the PHP engine to recognize multi-value fields, and how to read the data that these
fields send

How to generate Web forms from within your PHP scripts. This allows you to add more
interactivity and flexibility to your forms. You worked through an example of creating such an
interactive form

The concept of hidden form fields and how to use them to store data between page requests.
You used this technique to create a three-stage registration form

How to handle files uploaded via Web forms, including using the $_FILES superglobal to read
information about uploaded files

How to redirect the browser after a form submission in order to display a thank-you page and
avoid issues with page reloads

HTML forms are a great way to add interactivity to your Web applications. You can use the skills you've
learned in this chapter to produce a wide variety of interactive Web forms, from contact forms and
registration scripts through to login forms, online store checkout forms, and “tell-a-friend” functions.

In the next chapter you look at how to store application data between page requests, which means your
PHP applications can have a longer lifetime than just a single page view. Meanwhile, try the following
two exercises to test your form-handling knowledge. You can find the solutions to these exercises in
Appendix A.

Exercises

1.

266

Write a simple number-guessing game in PHP. The script should “think” of a random number
between 1 and 100, then give the user five chances to guess the number. For each guess, the
script should report whether the guessed number was too low, too high, or correct. (Hint: Use
rand(1, 100) to generate a random number between 1 and 100.)

Create a script that displays a form allowing the user to select one of three Amazon stores —
amazon.com, amazon.ca, and amazon.co.uk — and then jumps to the relevant store based on
the user’s choice.

(c) ketabton.com: The Digital Library

10

Preserving State With Query
Strings, Cookies, and
Sessions

Most of the PHP scripts you created in previous chapters are very much one-shot affairs. Each time
they run, they start with a “clean slate” of variables and other data. This is because each request
that a browser makes to a Web server is independent of any previous requests. When a Web server
receives a request to run a PHP script, it loads the script into its memory, runs it, then removes all
trace of it from memory.

However, most of the Web applications you use today have a need to store data between browser
requests. For example, a shopping cart needs to remember which items you have added to your
cart, and a forum application needs to remember your identity whenever you post a message in
the forum.

In other words, there is a need to preserve the current state of a user’s interaction with an
application from one request to the next.

You've already looked at a simple example of storing state in the previous chapter, when you used
hidden form fields to store previously entered form data across each step of a three-stage
registration form. Although filling in the registration form involved three separate browser
requests — and therefore three separate runs of the PHP script — the script was able to
“remember” the state of the registration process by storing it in the forms themselves.

Although this approach works perfectly well for simple cases, it has a few disadvantages. For
example, it’s a slow way to store large amounts of data, because all the data has to be ferried
backward and forward from browser to server during each request. What’s more, it’s pretty
insecure, because it’s almost trivial for a mischievous user to change the data stored in the form at
will. In addition, if you need to store large numbers of variables between requests, as well as
complex variables such as arrays and objects, the hidden form field approach can start to get quite
cumbersome.

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

In this chapter, you look at other ways to save state. You learn how to use:

Q Query strings to store small amounts of data in the URL
Q Cookies to store larger amounts of data in the browser itself

0 Sessions to store even larger amounts of data, and store it in a much more secure fashion

By using any of these three methods (or a combination of them), you can create persistent Web
applications that carry their data from one page view to the next.

Saving State with Query Strings

Query strings are a quick, convenient way to pass small amounts of data between browser requests.
Common uses of query strings include remembering a user’s entered keywords when using a search
function, identifying which topic within a forum to display to the user, and specifying which post within
a blog to display.

Query string data is very easy for the user to alter, because it’s visible and editable within the browser’s
address bar. Therefore, query strings should be used only in situations where sending incorrect data
won’t compromise security. For example, don’t use query strings for storing things such as user IDs
(unless your script additionally verifies that the users are who they say they are).

You also need to make sure you don’t rely on query strings to authenticate users, because people often
send URLs to friends in emails or instant messaging applications. If your URL contains all the data
needed to authenticate a user, and that user sends the URL to a friend, then the friend can pretend to be
them! You'll find that sessions — discussed later in the chapter — are a much better way of authenticat-
ing users.

If you've worked your way through Chapter 9, you're already somewhat familiar with the concept of
query strings. You'll remember that you can embed sent form data in a URL by setting the form’s
method attribute to get. When the form data is sent to the server, it is appended to the end of the URL as
follows:

http://localhost/myscript.php?firstName=Fred&lastName=Bishop& ...

In other words, the browser adds a query (?) character to the end of the URL, then follows it with each
of the form fields as "name=value" pairs, with each pair separated by an ampersand (&). The query
string is the part of the URL after the ? character.

Building Query Strings

The great thing about query strings is that they’re not limited to form data. Because a query string is
simply a string of characters stored in a URL, you can manually create a URL containing a query string
in your PHP script, then include the URL as a link within the displayed page or in an email, for example.
PHP even provides some built-in functions to make the process easier.

Here’s a simple example that creates two variables, $firstName and $age, then creates a link in the
displayed page that contains a query string to store the variable values:

268

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

$firstName = "John";

Sage = "34";

SqueryString = "firstName=$firstName&age=Sage";

echo '<p>Find out more info on

this person</p>';
This code generates the following markup:

<p>Find out more info on
this person</p>

If the user then clicks this link, moreinfo. php is run, and the query string data
(firstName=John&age=34) is passed to the moreinfo.php script. Data has been transmitted from one
script execution to the next.

Note that the ampersand (&) character needs to be encoded as & inside XHTML markup.

One thing to watch out for is the type of characters that you insert into the field names and values in
your query string. The specifications for a query string allows only the following characters to be used
within field names and values: letters, numbers, and the symbols -, _, . (period), !, ~, *, * (single quote),
(,and).

So what do you do if you need to transmit other characters, such as spaces, curly braces, or » characters?
The answer is that you should use URL encoding. This is a scheme that encodes any reserved characters
as hexadecimal numbers preceded by a percent (%) symbol, with the exception of space characters, which
are encoded as plus (+) signs. (Characters that don’t need to be encoded, such as letters and numbers, are
sent as they are.)

As it happens, PHP gives you a function called urlencode () that can encode any string using URL
encoding. Simply pass it a string to encode, and it returns the encoded string. So you can use
urlencode () to encode any data that may contain reserved characters. Here’s an example:

SfirstName = "John";

ShomePage = "http://www.example.com/";

SfavoriteSport = "Ice Hockey";

SqueryString = "firstName=" . urlencode($firstName) . "&homePage="
urlencode(S$ShomePage) . "& favoriteSport=" . urlencode($favoriteSport);
echo '<p>Find out more info on

this person</p>"';
This code snippet outputs the following markup:

<p><a href="moreinfo.php?firstName=John& homePage=http%3A%2F%2Fwww.example.
com%2F& favoriteSport=Ice+Hockey">Find out more info on this person</p>

If you ever need to decode a URL-encoded string you can use the corresponding urldecode () func-
tion. See http: //www.php.net/urldecode for details.

269

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

In fact, PHP makes it even easier to create a query string, thanks to the handy built-in ht tp_build_
query () function. This function take an associative array of field names and values and returns the
entire query string. You can then append this string, along with the initial » symbol, to your URL. If
generating XHTML markup, you should also pass the string through PHP’s htmlspecialchars ()
function, which converts, for example, & to & automatically:

sfields = array (
"firstName" => "John",
"homePage" => "http://www.example.com/",

"favoriteSport" => "Ice Hockey"
) ;
echo '<p><a href="moreinfo.php?' . htmlspecialchars(http_build_query
($fields)) . '">Find out more info on this person</p>"';

This code outputs the same markup as before:

<p><a
href="moreinfo.php?firstName=John& homePage=http%3A%2F%$2Fwww.example.com$2
F& favoriteSport=Ice+Hockey">Find out more info on this person</p>

Accessing Data in Query Strings

As you've probably guessed by now, to access the field names and values in a query string you simply read
them from the $_GET superglobal array, just as if you were handling a form sent with the get method:

SfirstName = $_GET["firstName"];
ShomePage = $_GET["homePage"];

So it’s easy to write a simple version of the moreinfo. php script referenced in the previous example:

<?php

SfirstName = $_GET["firstName"];
ShomePage = $_GET["homePage"];
SfavoriteSport = $_GET["favoriteSport"];

echo "<dl>";

echo "<dt>First name:</dt><dd>S$firstName</dd>";

echo "<dt>Home page:</dt><dd>S$homePage</dd>";

echo "<dt>Favorite sport:</dt><dd>$favoriteSport</dd>";
echo "</dl>";

?>

_ Square Numbers with Pagination

This example displays sequences of square numbers; that is, integers that are squares of other integers.
The script lets you view as many square numbers as you wish. It does this by using pagination — the
script displays only ten numbers at a time, but it uses query strings to create Previous Page and Next
Page links that you can use to view more numbers.

Save the following script as number_squaring.php in your document root folder, and run it in your
browser. You should see the squares of the first ten integers (0 through 9) appear. Use the Next Page
link to view the next set of ten numbers, and so on. Figure 10-1 shows the script in action.

270

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Number squaring</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
th { text-align: left; background-color: #999; }
th, td { padding: 0.4em; }
tr.alt td { background: #ddd; }
</style>
</head>
<body>

<?php

define("PAGE_SIZE", 10);

Sstart = 0;
if (isset($_GET["start"]) and $_GET["start"] >= 0 and $_GET["start"] <=
1000000) {
$start = (int) $_GET["start"];
}

Send = $start + PAGE_SIZE - 1;
?>
<h2>Number squaring</h2>

<p>Displaying the squares of the numbers <?php echo $start ?> to <?php echo
Send ?>:</p>

<table cellspacing="0" border="0" style="width: 20em; border: lpx solid

#666; ">
<tr>
<th>n</th>
<th>n²</th>
</tr>
<?php
for ($i=Sstart; $i <= Send; S$i++)
{
?>
<tr<?php if ($i % 2 != 0) echo ' class="alt"' ?>>

<td><?php echo $i?></td>
<td><?php echo pow($i, 2)?></td>

</tr>
<?php
}
2>
</table>
<p>

271

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

<?php if ($start > 0) { 2>

<a href="number_squaring.php?start=<?php echo S$start - PAGE_SIZE
?>">g< Previous Page |
<?php } ?>

<a href="number_squaring.php?start=<?php echo S$start + PAGE_SIZE ?>">Next
Page >
</p>
</body>
</html>

fle Edit wview History Bookmarks Ibols Help

& > G fl_,'s‘f ||_g:: http:ilocalhostmumber_squaring.php?start=10 | - | ||C‘I | ‘?'..]

Number squaring

Displaying the squares of the numbers 10 to 19:

10 100
1 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361

<Previous Page | Next Page =

Done

Figure 10-1

How It Works

The script starts with the regular XHTML page header, adding some CSS styles for the table in the
page. Next the script defines a constant, PAGE_SIZE, that holds the number of squares to display on
each page (ten in this case).

The script then creates a variable, $start, to hold the first integer to display within the page. This
defaults to zero. However, if the field start has been passed to the script in a query string — and the
field’s value is within an acceptable range — this value is used instead. Note that the script casts

the value of $_GET["start"] to an integer as a security measure; it’s always good to filter and/or
validate any user input to make sure it is of the correct format:

272

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

Sstart = 0;

if (isset($_GET["start"]) and $_GET["start"] >= 0 and $_GET["start"] <=
1000000) {

$start = (int) $_GET["start"];
}

Next, the script works out the last integer to display on the current page, and stores it in another
variable, $end:

Send = S$start + PAGE_SIZE - 1;

Now it’s simply a case of displaying the table of ten integers, along with their squares. PHP’s pow ()
function is used to calculate the square of each integer:

?>
<h2>Number squaring</h2>

<p>Displaying the squares of the numbers <?php echo S$start ?> to <?php echo
Send ?>:</p>
<table cellspacing="0" border="0" style="width: 20em; border: 1lpx solid

#666; ">
<tr>
<th>n</th>
<th>n²</th>
</tr>
<?php
for ($i=S$start; $i <= Send; Si++)
{
?>
<tr<?php if ($1i % 2 != 0) echo ' class="alt"' ?>>
<td><?php echo $i?></td>
<td><?php echo pow($i, 2)?></td>
</tr>
<?php
}
?>
</table>

Finally, the Next Page and (if appropriate) Previous Page links are displayed. Notice how the script
builds the query string within each link:

<p>
<?php if ($start > 0) { ?>

<a href="number_squaring.php?start=<?php echo $start - PAGE_SIZE
?>">g<Previous Page |
<?php } ?>

<a href="number_squaring.php?start=<?php echo $start + PAGE_SIZE ?>">Next

Page >
</p>

273

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Because you know that the start field will only ever contain digits, there’s no need to URL-encode the
values in this situation. However, if there’s any chance that your field values might contain reserved char-
acters, you should use urlencode () orhttp_build_query () as discussed earlier in the chapter.

Working with Cookies

So far you've looked at query strings and, in the previous chapter, hidden form fields as ways to
preserve an application’s state between browser requests. Though perfectly adequate for small amounts
of temporary data, these techniques become unwieldy when you need to store larger amounts of data for
longer periods of time. For example, say you wanted to allow each user to choose a font size for
displaying the text on your Web site. Once the user had chosen the size, you'd need to pass this value —
whether in a hidden form field or in a query string — between every single page request on the Web site,
so that your application could read the value and set the font size for each page. Clearly this would be
arduous to implement.

Cookies are a somewhat more sophisticated approach to this problem. A cookie lets you store a

small amount of data — no more than 4KB — within the user’s browser itself. Then, whenever the
browser requests a page on your Web site, all the data in the cookie is automatically sent to the server
within the request. This means that you can send the data once to the browser, and the data is
automatically available to your script from that moment onward.

You can make a cookie last for a fixed amount of time — anywhere from a few seconds to several years
if you like — or you can set a cookie to expire once the browser application is closed. Most modern
browsers can store up to 30 cookies per Web site domain.

Although cookies are somewhat more secure than using query strings — for example, a browser will (by
default) only send cookies back to the Web site that created them — they are still easy for attackers to
tamper with. Therefore you shouldn’t rely on the data in cookies alone to identify or authenticate your
users. Furthermore, it’s easy to turn off cookie support in most browsers, and many folks do so. This
means that your Web site shouldn’t rely on cookies for essential functionality — or, if it does, it should
prompt the user to enable cookies for your Web site if necessary.

However, if you need to store non-critical data, such as user preferences, on an ongoing basis, then
cookies are a useful tool.

Here's a tip: most browsers let you view, as well as delete, any cookies stored by the browser. This can be

very useful for debugging your cookie-based scripts. For example, in Firefox choose Edit = Preferences
(Firefox = Preferences on the Mac), then choose Privacy and click the Show Cookies button.

Cookie Components

A cookie is sent from the server to the browser as part of the HTTP headers. Here’s an example of an
HTTP header to create a cookie:

Set-Cookie: fontSize=3; expires=Tuesday, 6-Jan-2009 17:53:08 GMT; path=/;
domain=.example.com; HttpOnly

274

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

As you can see, a cookie contains a number of pieces of information, summarized in the following table:

Cookie Field Description

name (for The name of the cookie. This is much like the name of a form field, or a key in an
example, associative array.

fontSize)

value (for The value of the cookie. This is similar to the value of a form field or a value in an
example, 3) associative array.

expires The time that the cookie should expire. When this point is reached, it is deleted

from the browser, and is no longer sent back to the server in requests. If this
value is set to zero, or omitted, the cookie lasts as long as the browser is running,
and is automatically deleted when the browser exits.

path The path that the browser should send the cookie back to. If specified, the
browser will only send the cookie to URLSs that contain this path. For example, if
you specify a path of /admin/, only scripts contained in the /admin/ folder (and
any subfolders) will receive the cookie. If you don’t specify a value, the current
directory of the script is assumed. It’s generally a good idea so specify a path. Use
a value of " /" if you want the cookie to be available to all URLs in your Web site.

domain By default, a browser only sends a cookie back to the exact computer that sent it.
For example, if your Web site at www . example. com sets a cookie, the cookie will
only be sent back to URLs that begin with http: //www.example.com. URLs
beginning with http: //example.comor http://www2 .example.com won't
receive the cookie. However, if you set domain to . example.com the browser
will send the cookie back to all URLs within this domain, including URLs
beginning with http: / /www.example.com, http://example.com, or http://
www2 . example.com.

secure This field, if present, indicates that the cookie should be sent only if the browser
has made a secure (https) connection with the server. If it’s not present, the
browser will send the cookie to the server regardless of whether the connection is
secure. Omit this field if you're working with standard (http) connections.

HttpOnly This field, if present, tells the browser that it should make the cookie data accessible
only to scripts that run on the Web server (that is, via HTTP). Attempts to
access the cookie via JavaScript within the Web page are rejected. This can help to
reduce your application’s vulnerability to cross-site scripting (XSS) attacks.

Although you can use the domain field to get the browser to send cookies back to other machines within
the same domain, you can’t use this trick to set cookies for sending to other domains. For example, if
your Web site at www . example . com tries to set a cookie with a domain value of www.google. com,
the cookie will be rejected by the browser.

275

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Setting a Cookie in PHP

So how do you actually send a cookie to the browser in your PHP script? Although you can set a

cookie directly as a Set-Cookie: HTTP header (using PHP’s header () function), there’s an easier way.
PHP provides a built-in function, setcookie (), that can send the appropriate HTTP header to create the
cookie on the browser. This accepts arguments for each of the cookie fields in the order shown in

the previous table. Although only the name argument is required, it’s always a good idea to supply at
least name, value, expires, and path to avoid any ambiguity.

The expires argument should be in UNIX timestamp format. A UNIX timestamp is expressed as the
number of seconds between midnight on January 1, 1970 (in the UTC time zone) and the date/time to
represent. Don’t worry though — you don’t need to work this out yourself. PHP provides many
time-related functions to calculate this value, as you see in a moment.

For more on PHP’s time- and date-related functions, see Chapter 16.

Make sure you call setcookie () before sending any output to the browser. This is because
setcookie () needs to send the Set-Cookie: HTTP header. If you output any content before

calling setcookie (), PHP automatically sends the headers first, so by the time setcookie () is called
it’s too late to send the Set-Cookie: header.

Here’s an example that uses setcookie () to create a cookie storing the user’s font size preference
(3 in this case):

setcookie("fontSize", 3, time() + 60 * 60 * 24 * 365, "/", ".example.com",
false, true);

Notice that the expires argument uses a PHP function called time (). This returns the current time in
UNIX timestamp format. So the expiry time is 60 * 60 * 24 * 365 seconds after the current time, or one
year into the future. The cookie will remain until that time, even if the browser is closed and reopened,
unless the user chooses to delete it manually. The remaining arguments set a path of " /" (so the cookie
will be returned to any URL within the Web site), a domain of " . example.com" (so that the cookie is
sent to any server within the domain example. com), no secure flag (so that the cookie can be sent over
standard HTTP connections), and the Ht tpOnly flag (so that JavaScript can’t read the cookie).

Note that it’s a good idea to precede the domain value with a dot (.) character, as in " . example.
com", unless the domain is a hostname such as www . example . com, in which case the initial period
should not be used.

In this next example, setcookie () is used to store the number of page views in the user’s current
browser session. Note that the expires argument is zero, so the cookie will disappear when the user
closes her browser. In addition the domain argument is an empty string, which means the browser will
only send the cookie back to the exact Web server that created it:

setcookie("pageviews", 7, 0, "/", "", false, true);
You can also update an existing cookie simply by calling setcookie () with the cookie name and
the new value. Note that you still need to supply the path and expires arguments when updating the

cookie:

setcookie("pageviews", 8, 0, "/", "", false, true);

276

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

Accessing Cookies in Your Scripts

Accessing cookies in PHP is very easy: You simply read values from the $_COOKIE superglobal array. As
you’d imagine, this associative array contains a list of all the cookie values sent by the browser in the
current request, keyed by cookie name.

So to display the pageViews cookie set in the previous example, you could use:
echo $_COOKIE|["pageViews"]; // Displays "8"

As with $_GET and $_POST, in a real-world situation you shouldn’t directly output data from the
$_COOKIE array without filtering and/or validating it first. It’s easy for an attacker to inject malicious
data into the cookies sent to the server.

It’s important to realize that a newly created cookie isn’t available to your scripts via $_COOKIE until
the next browser request is made. This is because the first time your script is run, it merely sends the
cookie to the browser. The browser doesn’t return the cookie to the server until it next requests a URL
from the server. For example:

setcookie("pageViews", 7, 0, "/", "", false, true);
echo isset($_COOKIE['"pageViews"]);

This code displays nothing (false) the first time it’s run, because $_COOKIE["pageViews"] doesn’t
exist. However, if the user reloads the page to run the script again, the script displays 1 (true) because
the browser has sent the pageViews cookie back to the server, so it’s available in the $_COOKIE array.

Similarly, if you update a cookie’s value, the $_COOKIE array still contains the old value during the
execution of the script. Only when the script is run again, by the user reloading the page in her browser,
does the $_COOKIE array update with the new value.

Removing Cookies

If you no longer need a cookie that’s stored on the user’s browser, you can instruct the browser to delete
it. To delete a cookie, you call setcookie () with the cookie name and any value (such as an empty
string), and pass in an expires argument that is in the past. This immediately expires the cookie on the
browser, ensuring that it is deleted. You should also pass exactly the same path, domain, and other fields
that you used when you first created the cookie to ensure that the correct cookie is deleted:

setcookie("fontSize", "", time() - 3600, "/", ".example.com", false, true);

This example sets the fontSize cookie’s expiry time to one hour in the past, which effectively deletes it
from the browser.

As with creating and updating cookies, deleting a cookie via setcookie () doesn’t delete it from the

$_COOKIE array while the script is running. However, the next time the browser visits the page, it will no
longer send the cookie to the server and the corresponding $_COOKIE array element will not be created.

277

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

_ Remember User Information

In this example, you create a script that can store the visitor’s first name and location in two browser
cookies, retrieve and display the information from the cookies, and delete the cookies on request.

Save the following script as remember_me . php in your document root folder, then run the script in
your browser. You'll see a form asking you for your name and location. Enter the information and
click Send Info. You'll see a page similar to Figure 10-2. Try reloading the page in your browser, or
reopening the URL in a new browser window. Notice how the script remembers your information,
even though you've sent a fresh request to the server. You can even restart your browser and return to
the page, and the script still remembers your details.

Click the “Forget about me!” link to delete the cookies containing your details. The script redisplays
the user details form.

<?php
if (isset($_POST["sendInfo"])) {
storeInfo() ;
} elseif (isset($_GET["action"]) and $_GET["action"] == "forget") {
forgetInfol() ;
} else {
displayPage () ;
}
function storeInfo() {
if (isset($_POST["firstName"])) {
setcookie("firstName", $_POST["firstName"], time() + 60 * 60 * 24 * 365,
we wr o false, true);
}
if (isset($_POST["location"])) {
setcookie("location", $_POST["location"], time() + 60 * 60 * 24 * 365, "",
"v, false, true);
}
header ("Location: remember_me.php");
}
function forgetInfo() {
setcookie("firstName", "", time() - 3600, "", "", false, true);
setcookie("location", "", time() - 3600, "", "", false, true);
header ("Location: remember_me.php");
}
function displayPage () {
SfirstName = (isset($_COOKIE["firstName"])) ? $_COOKIE["firstName"] : "";
Slocation = (isset($_COOKIE["location"])) ? $_COOKIE["location"] : "";
?>

278

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Remembering user information with cookies</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>

<h2>Remembering user information with cookies</h2>

<?php if (S$firstName or S$location) { 2>
<p>Hi, <?php echo $firstName ? $firstName : "visitor" ?><?php echo
Slocation ? " in Slocation" : "" ?>1</p>

<p>Here's a little nursery rhyme I know:</p>

<p>Hey diddle diddle,

The cat played the fiddle,

The cow jumped over the moon.

The little dog laughed to see such sport,

And the dish ran away with the spoon.</p>

<p>Forget about me!</p>
<?php } else { ?>
<form action="remember_me.php" method="post">

<div style="width: 30em; ">
<label for="firstName">What's your first name?</label>

<input type="text" name="firstName" id="firstName" value="" />
<label for="location">Where do you live?</label>
<input type="text" name="location" id="location" value="" />

<div style="clear: both; ">
<input type="submit" name="sendInfo" value="Send Info" />
</div>
</div>
</form>

<?php } ?>
<?php
}

?>

</body>
</html>

279

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

@ Temereria

File Edit Wview History Bookmarks Tools Help

=] 3 c o |!Eﬂ' hitpfflocalhostrermember me php | > | “G|' '}

Remembering user information with cookies
Hi, Frank In Chicago!
Here's a lillle nursery rhyme | know;

Hey aliddle didale,

The cat played the fiddle,

The cow jumped over the moon.

The little dog laughed to see such sport,
And the dish ran away with the spoon.

Forget about me!

Done

Figure 10-2
How It Works

The script starts with the main decision-making logic. If the user details form was sent, it

calls storeInfo () to save the details in cookies. If the “Forget about me!” link was clicked, it calls
forgetInfo () to erase the cookies. If neither of those things occurred, the script calls
displayPage () to display the output to the visitor:

if (isset($_POST["sendInfo"])) {
storelInfo();

} elseif (isset($_GET["action"]) and $_GET["action"] == "forget") {
forgetInfol() ;

} else {
displayPage() ;

}

The storeInfo () function looks for the user info fields, firstName and location, in the $_POST
array. For each field, if it is found then a corresponding cookie is sent to the browser to store the field
value. Each cookie is given an expiry time of one year from today. Finally, the function sets a
Location: header to cause the browser to reload the remember_me . php script. Note that this
reloading will cause the browser to send the recently created cookies back to the script:

function storeInfo() {

if (isset($_POST["firstName"])) {
setcookie("firstName", $_POST["firstName"], time() + 60 * 60 * 24 * 365,
v, v, false, true);
}
if (isset($_POST["location"])) {
setcookie("location", $_POST["location"], time() + 60 * 60 * 24 *
365, "", "', false, true);
}

header("Location: remember_me.php");

280

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

The forgetInfo () function sets both the firstName and location cookies” expiry times to one hour
ago, effectively deleting them from the browser. It then sends a Location: header to reload the remember_
me . php script. The browser won’t send the cookies to the script because they’ve just been deleted:

function forgetInfo() {
setcookie("firstName", "", time() - 3600, "", "", false, true);
setcookie("location", "", time() - 3600, "", "", false, true);
header ("Location: remember_me.php");

}

The final function, displayPage (), displays the output to the visitor. It starts by creating two
variables to hold the values from the user info cookies (if any):

SfirstName = (isset($_COOKIE["firstName"])) ? $S_COOKIE["firstName"] : "";
$location = (isset($_COOKIE["location"])) ? $_COOKIE["location"] : "";

Next, after displaying the page header, the function looks at the values of $firstName and
$location. If either variable contains a non-empty value, the function displays a greeting page,
including the visitor info, a short nursery rhyme, and the “Forget about me!” link that links back to the
remember_me . php script. This link contains a query string, action=forget, to signal to the script
that the user wants to delete her information:

<?php if ($firstName or $location) { 2>
<p>Hi, <?php echo $firstName ? $firstName : "visitor" ?><?php echo
Slocation ? " in Slocation" : "" ?>1</p>

<p>Here's a little nursery rhyme I know:</p>

<p>Hey diddle diddle,

The cat played the fiddle,

The cow jumped over the moon.

The little dog laughed to see such sport,

And the dish ran away with the spoon.</p>

<p>Forget about me!</p>
However, if both $ firstName and $location are empty, the script instead displays the user info form:
<?php } else { ?>
<form action="remember_me.php" method="post">

<div style="width: 30em; ">
<label for="firstName">What's your first name?</label>

<input type="text" name="firstName" id="firstName" value="" />
<label for="location">Where do you live?</label>
<input type="text" name="location" id="location" value="" />

<div style="clear: both; ">
<input type="submit" name="sendInfo" value="Send Info" />
</div>
</div>
</form>

<?php } ?>

281

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

You can see from this example that cookies are a convenient way to store small amounts of data on a
semi-permanent basis. Because the cookies are stored in the browser, you don’t have to worry about
sending the data to the browser each time a page is viewed. You just set the cookies once then read
their values later as needed.

Using PHP Sessions to Store Data

Although cookies are a useful way to store data, they have a couple of problems. First of all, they aren’t
very secure. As with form data and query strings, an attacker can easily modify a cookie’s contents to
insert data that could potentially break your application or compromise security. Secondly, although you
can store a fair amount of state information in a cookie, remember that all the cookie data for a Web site
is sent every time the browser requests a URL on the server. If you have stored 10 cookies, each 4KB in
size, on the browser, then the browser needs to upload 40KB of data each time the user views a page!

Both of these issues can be overcome by using PHP sessions. Rather than storing data in the browser, a
PHP session stores data on the server, and associates a short session ID string (known as SID) with that
data. The PHP engine then sends a cookie containing the SID to the browser to store. Then, when the
browser requests a URL on the Web site, it sends the SID cookie back to the server, allowing PHP to
retrieve the session data and make it accessible to your script.

The session IDs generated by PHP are unique, random, and almost impossible to guess, making it very
hard for an attacker to access or change the session data. Furthermore, because the session data is stored
on the server, it doesn’t have to be sent with each browser request. This allows you to store a lot more
data in a session than you can in a cookie.

By default, PHP stores each session’s data in a temporary file on the server. The location of the
temporary files are specified by the session.save_path directive in the PHP configuration file. You
can display this value with:

echo ini_get("session.save_path");

The session files are often stored in /tmp on UNIX or Linux systems, and C: \WINDOWS \ Temp on
Windows systems.

ini_get () lets you access the value of most PHP confiquration directives, and ini_set () lets you
set directives. You find out more about ini_set () later in the chapter.

Although you can store a fair amount of data in a session, keep in mind that sessions are really only designed
to store temporary data relating to the user’s current interaction with your Web site. In fact, by default, PHP’s
session cookies are set to expire when the browser is closed. If you need to store data on a more permanent
basis, consider storing it in files (see the next chapter) or a database (see Chapters 12 through 14).

Creating a Session

Sessions in PHP are very easy to create. To start a PHP session in your script, simply call the session_
start () function. If this is a new session, this function generates a unique SID for the session and sends it

282

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

to the browser as a cookie called PHPSESSID (by default). However, if the browser has sent a PHPSESSID
cookie to the server because a session already exists, session_start () uses this existing session:

session_start();

There’s one gotcha though: because session_start () needs to send the PHPSESSID cookie in an HTTP
header when it creates a session, you must call it before you output anything to the browser, much like
you do with setcookie():

Hi there!
<?php

// Generates a "Cannot send session cookie - headers already sent" warning
session_start();
?>

Reading and Writing Session Data

Working with session data in PHP is also simple. You store all your session data as keys and values in
the $_SESSION[] superglobal array. So you might store the user’s first name using;:

$_SESSION["firstName"] = "John";

You could then display the user’s first name — whether in the same page request or during a later
request — as follows:

echo($_SESSION["firstName"]);

You can store any type of data in sessions, including arrays and objects:

SuserDetails = array("firstName" => "John", "lastName" => "Smith", "age" =>
34) ;

S_SESSION["userDetails"] = SuserDetails;

However, if storing objects make sure you include your class definitions (or class definition files) before

trying to retrieve the objects from the $_SESSION array, so that the PHP engine can correctly identify the
objects when they’re retrieved:

session_start();

class WebUser {
public $firstName;
public $lastName;
}

if (isset($_SESSION["user"])) {

// Make sure the WebUser class is defined by this point
print_r($_SESSION|["user"]);
} else {
echo "Creating user...";
Suser = new WebUser;

Suser->firstName = "John";
Suser->lastName = "Smith";
$_SESSION["user"] = Suser;

283

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

_ Create a Simple Shopping Cart

In this example, you use sessions to build a very simple shopping cart for an online store. There are
three products to choose from, and users can add any or all of the products to their cart, remove

products from the cart, and view the contents of the cart.

Save the following code as shopping_cart.php and run the script in your Web browser. Click the
Add Item links to add the items to your cart then click the Remove links to remove them again. Figure

10-3 shows the shopping cart in action.

<?php
session_start () ;

class Product {
private S$productId;
private S$SproductName;
private Sprice;

public function __ construct(S$productlId, S$productName,

Sthis->productId = S$productld;
Sthis->productName = S$productName;
Sthis->price = Sprice;

}

public function getId() {
return Sthis->productld;
}

public function getName () {
return S$this->productName;

}

public function getPrice() {
return S$this->price;

}
}

Sproducts = array (
1 => new Product(1, "SuperWidget", 19.99),
2 => new Product(2, "Megawidget", 29.99),
3 => new Product(3, "WonderWidget", 39.99)
) 5

if (!isset($_SESSION["cart"])) $_SESSION["cart"]

if (isset($_GET["action"]) and $_GET["action"]
addItem() ;

} elseif (isset($_GET["action"]) and $_GET["action"]

removeltem() ;
} else {
displayCart () ;

284

= array();

{

"removeItem"

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

function addItem() {
global S$products;
if (isset($_GET["productId"]) and $_GET["productId"] >= 1 and $_
GET["productId"] <= 3) {
SproductId = (int) S$_GET["productId"];
if (!isset($_SESSION["cart"][SproductId])) {

$_SESSION|["cart"] [SproductId] = S$products[$SproductId];

}

session_write_close() ;
header ("Location: shopping_cart.php");
}

function removeItem() {
global S$products;
if (isset($S_GET["productId"]) and $_GET["productId"] >= 1 and S$_
GET["productId"] <= 3) {
SproductId = (int) S$_GET["productId"];

if (isset($_SESSION["cart"][SproductId])) {
unset ($_SESSION["cart"] [$productId]);

}

session_write_close() ;
header ("Location: shopping_cart.php");

function displayCart () {
global S$products;
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>A shopping cart using sessions</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>

<hl>Your shopping cart</hl>
<dl>

<?php
StotalPrice = 0;
foreach ($_SESSION["cart"] as S$product) {
StotalPrice += S$product->getPrice();
?>
<dt><?php echo S$product->getName () ?></dt>
<dd>$<?php echo number_format (S$product->getPrice(), 2) ?>

285

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

<a href="shopping_cart.php?action=removeltem&productId=<?php echo
Sproduct->getId() ?>">Remove</dd>
<?php } ?>
<dt>Cart Total:</dt>
<dd>$<?php echo number_format(StotalPrice, 2) ?></
dd>
</dl>

<hl>Product list</hl>

<dl>
<?php foreach (Sproducts as Sproduct) { ?>
<dt><?php echo S$product->getName () ?></dt>
<dd>$<?php echo number_ format (Sproduct->getPrice(), 2) 2>
<a href="shopping_cart.php?action=addItem&productId=<?php echo
S$product->getId() ?>">Add Item</dd>
<?php } ?>
</dl>

<?php
}

?>

</body>
</html>

File Edit View History Bookmarks Tools Help

=] > c = ||5' hitp:flocalhostshopping cart.php | > | |G]' o

Your shopping cart

MegaWidget $20.90 Remove

Cart Total: $29.99

Product list

SuperWidget $19.99 Add ltem

MegaWidget $29.99 Add ltem

WonderWidget $39.99 Add ltem =

Done B
Figure 10-3

286

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

How It Works

The script starts by calling session_start () to create a new session, or pick up an existing session if
one exists for this user. Then the script defines a Product class to hold the products in the store, and a
global $products array containing three Product objects, keyed by the numeric product IDs of the
products. (In a real-world scenario you’d probably store the products in a database.)

The code then initializes the user’s cart to an empty array if it doesn’t yet exist. The array is stored as
an element, cart, inside the $_SESSION superglobal. As with the $products array, this array will
hold the products selected by the user, keyed by product ID:

if (!isset($_SESSION["cart"])) $_SESSION["cart"] = array();

The next few lines of code form the main decision logic of the script, calling addItem() if the user
chose to add an item to his cart, removeItem() if the user opted to remove a product, or
displayCart () if neither option was chosen by the user:

if (isset($_GET["action"]) and $_GET["action"] == "addItem") {
addItem() ;

} elseif (isset($_GET["action"]) and $_GET["action"] == "removeItem") {
removeltem() ;

} else {
displayCart () ;

}

The addrtem () function looks for a product1d field in the query string and, if present and valid,
adds the corresponding Product object to the user’s cart by inserting an array element into the
$_SESSION|["cart"] array, keyed by product ID. It then sends a Location: header to reload

the shopping cart:

function addItem() {

global $products;

if (isset($S_GET["productId"]) and $_GET["productId"] >= 1 and $_
GET["productId"] <= 3) {

SproductId = (int) S$_GET["productId"];
if (!isset($_SESSION["cart"][SproductId])) {
$_SESSION|["cart"] [$SproductId] = S$products[$SproductId];

}

session_write_close() ;
header ("Location: shopping_cart.php");

Note that the function calls the PHP function session_write_close () just before sending the
Location: header. This forces the data in the $_SESSION array to be written to the session file on the
server’s hard disk. Although PHP usually does this anyway when the script exits, it’s a good idea

to call session_write_close () before redirecting or reloading the browser to ensure that the
$_SESSION data is written to disk and available for the next browser request.

287

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

removeItem() does the opposite of addItem(): after verifying the productId field, it removes the
corresponding product from the user’s cart array, then refreshes the browser:

function removeItem() {
global S$products;
if (isset($S_GET["productId"]) and $_GET["productId"] >= 1 and $_
GET["productId"] <= 3) {
SproductId = (int) S$_GET["productId"];
if (isset($_SESSION["cart"][$productId])) {

unset ($_SESSION|["cart"] [$productId]);
}

session_write_close();
header ("Location: shopping_cart.php");

Finally, displayCart () displays the user’s cart, as well as the list of available products. After
displaying an XHTML page header, the function loops through each item in the cart, displaying the
product name, price, and a Remove link that allows the user to remove the product from his cart. It
also totals the prices of all the products in the cart as it goes, then displays the total below the cart:

<dl>

<?php

StotalPrice = 0;

foreach ($_SESSION["cart"] as S$product) {
StotalPrice += Sproduct->getPrice();

?>

<dt><?php echo S$product->getName () ?></dt>

<dd>$<?php echo number_format(S$product->getPrice(), 2) ?>

<a href="shopping_cart.php?action=removeltem&productId=<?php echo
Sproduct->getId() ?>">Remove</dd>
<?php } ?>

<dt>Cart Total:</dt>

<dd>$<?php echo number_format($totalPrice, 2) ?></dd>

</dl>

The displayCart () function then lists the available products, along with their prices. Each product
has a corresponding Add Item link that the shopper can use to add the product to his cart:

<dl>
<?php foreach ($products as S$product) { ?>
<dt><?php echo S$product->getName () ?></dt>
<dd>s$<?php echo number_format($product->getPrice(), 2) ?>
<a href="shopping_cart.php?action=addItem&productId=<?php echo
Sproduct->getId() ?>">Add Item</dd>
<?php } ?>
</dl>

288

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

In this simple example, the shopper can only add one of each product to his cart. Of course, in a real-
world situation, you'd probably allow the shopper to add more than one of each product.

Destroying a Session

As mentioned earlier, by default PHP sessions are automatically deleted when users quit their browser,
because the PHPSESSID cookie’s expires field is set to zero. However, sometimes you might want to
destroy a session immediately. For example, if a shopper has checked out and placed an order via your
online store, you might empty his shopping cart by destroying his session.

To destroy a session, you can simply call the built-in session_destroy () function:
session_destroy () ;

Note, however, that this merely erases the session data from the disk. The data is still in the $_SESSION
array until the current execution of the script ends. So to make sure that all session data has been erased,
you should also initialize the $_SESSION array:

$_SESSION = array();
session_destroy () ;

Even then, however, a trace of the session remains in the form of the PHPSESSID cookie in the user’s
browser. When the user next visits your site, PHP will pick up the PHPSESSID cookie and re-create the
session (though the session won’t contain any data when it’s re-created). Therefore, to really make sure
that you have wiped the session from both the server and the browser, you should also destroy the
session cookie:

if (isset($_COOKIE[session_name()])) {
setcookie(session_name(), "", time()-3600, "/");

}

$_SESSION = array();
session_destroy () ;

This code snippet makes use of another PHP function, session_name (). This function simply returns
the name of the session cookie (PHPSESSID by default).

PHP actually lets you work with more than one session in the same script by using session_name ()
to create different named sessions. This topic is outside the scope of this book, but you can find out more
in the “Session Handling” section of the PHP manual at http: //www.php.net/session.

Passing Session IDs in Query Strings

As you know, PHP session IDs are saved in cookies. However, what happens if a user has disabled
cookies in her browser? One obvious approach is to add some text to your page asking the user (nicely) to
turn on cookies. Another alternative is to pass the session ID inside links between the pages of your site.

289

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

PHP helps to automate this process with the built-in SID constant. If the browser supports cookies, this
constant is empty; however, if the session cookie can’t be set on the browser, SID contains a string similar
to the following;:

PHPSESSID=b8306b025a76a250£0428fc0efd20all
This means that you can code the links in your pages to include the session ID, if available:

<?php session_start() ?>
<a href="myscript.php?<?php echo SID; ?>">Home page

If the session ID was successfully stored in a browser cookie, the preceding code will output:
Home page
However, if PHP can’t create the session cookie, the code will output something along the lines of:

Home page

When the user clicks the link to view myscript .php, the PHPSESSID query string value is automatically
picked up by the PHP engine and the session data is made available to the script.

Note that you need to have called session_start () before trying to access the SID constant.

Convenient though this feature is, passing session IDs in URLSs is best avoided if possible. It’s easy for a
visitor to email a link — including her session ID — to a friend, thereby inadvertently giving the friend
access to her session! You can mitigate against this somewhat with short session cookie lifetimes (see the
next section), but generally it’s best to use only cookies if possible.

You can also retrieve the current session ID by calling the session_id () function. This allows you,

among other things, to embed the session ID in a hidden PHPSESSID field in a form, so that the session
can be propagated across form submissions.

Changing Session Behavior

You can alter PHP’s default session-handling behavior in a number of ways. The php. ini file contains
several configuration directives that you can alter:

290

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

Directive Description
session.cookie_ How long the session cookie should last for (in seconds). The
lifetime default is zero, which expires the cookie when the browser is quit.

Set it to a long value (for example, 1 year) to make a semi-
permanent session for storing data such as user preferences.
Alternatively, to increase security for sessions such as login
sessions, set it to a short value, such as 20 minutes. That way,
the session will time out if the user waits more than 20 minutes
between page requests.

session.cookie_path The path field for the session cookie. Defaults to " /" (the entire
site). Set this to a subdirectory of your Web site if you want to
limit the session to scripts inside that folder.

session.cookie_domain The domain field for the session cookie. Defaults to " " (the
current server). Change this if you want the session to be
available to more than one host in the same domain.

session.cookie_ The HttpOnly field for the session cookie. Defaults to false.
httponly Change this to true if you want to prevent JavaScript from
accessing the session cookie.

session.auto_start Defaults to false. Change it to true, and PHP automatically
starts a session the moment your script starts executing, saving
you from calling session_start (). Be careful though; if set to
true you cannot store objects in sessions (because your classes
won'’t be defined at the time the session data is loaded).

You can either alter these directives directly in your php. ini file, if you have access to it (see Appendix
B for details), or you can set them on a per-script basis using the ini_set () PHP function:

ini_set("session.cookie_lifetime", 1200); // Set session timeout to 20
minutes

As well as altering session behavior, you can even write your own custom code to store the session data
on the server. For example, instead of letting PHP store the data in temporary files, you might prefer to
store it in a database. How to do this is out of the scope of this book, but you can find out more by
reading http://www.php.net/manual/en/function.session-set-save-handler.php.

291

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

_ Create a User Login System

One common use of sessions is to allow registered users of your site to log in to the site in order to
access their account and carry out actions. For example, customers of your online store could log in
so that they could check their order history; similarly, users of a Web-based email system need to log
in to the system to check their email. In addition, once the users have finished using the system, they

need to log out.

Sessions are a relatively secure way to build login systems because the only piece of information

stored in the browser is the hard-to-guess session ID. Although the login username and password
need to be sent from the browser when the user logs in, this only occurs during the login process. For

every other request, only the session ID is sent by the browser.

The following script allows the user to log in with a predefined username (“john”) and password
(“secret”). It then displays a welcome message, along with the option to logout. Save it as 1ogin.php,
then run the script in your Web browser. At the login page (Figure 10-4), log in with the username and

password to view the welcome message (Figure 10-5), then log out to return to the login form.

<?php

session_start () ;

define("USERNAME", "john");
define("PASSWORD", "secret");

if (isset($_POST["login"])) {

login() ;
} elseif (isset($S_GET["action"]) and $_GET["action"] == "logout")
logout () ;
} elseif (isset($_SESSION["username"])) {
displayPage () ;
} else {
displayLoginForm() ;
}
function login() {
if (isset($_POST["username"]) and isset($_POST["password"])) {
if ($_POST["username"] == USERNAME and $_POST["password"] == PASSWORD)
$_SESSION["username"] = USERNAME;
session_write_close();
header ("Location: login.php");
} else {
displayLoginForm("Sorry, that username/password could not be found.
Please
try again.");
}
}
}

function logout () {
unset ($_SESSION["username"]);
session_write_close();
header ("Location: login.php");
}

292

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

function displayPage() {
displayPageHeader () ;
?>
<p>Welcome, <?php echo $_SESSION|["username"] ?>! You are
currently logged in.</p>
<p>Logout</p>

</body>
</html>
<?php
}
function displayLoginForm(Smessage="") {

displayPageHeader () ;
?>

<?php if (Smessage) echo '<p class="error">' . Smessage . '</p>' ?>

<form action="login.php" method="post">
<div style="width: 30em; ">
<label for="username">Username</label>

<input type="text" name="username" id="username" value="" />
<label for="password">Password</label>
<input type="password" name="password" id="password" value="" />

<div style="clear: both; ">
<input type="submit" name="login" wvalue="Login" />
</div>
</div>
</form>
</body>
</html>
<?php
}

function displayPageHeader () {
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>A login/logout system</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
.error { background: #d33; color: white; padding: 0.2em; }
</style>
</head>
<body>
<hl>A login/logout system</hl>
<?php
}

?>

293

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

File Edit Wview History Bookmarks Tools Help
& he e W B ||_§_' http:/flecalhostflogin.php |'] lv r a

A login/logout system

Username [

Password |

Login

Done

Figure 10-4

T T mogont em -

File Edit Wview History Bookmarks Tools Help
& > G S [l_;_' http:fflecalhostfogin.php |'] [IGl~| e,

A login/logout system
Welcome, john! You are currently logged in.

Logout

Done

Figure 10-5

How It Works

The script starts by creating a new session (or picking up an existing one) with session_start ().
Then it defines a couple of constants, USERNAME and PASSWORD, to store the predefined login details.
(In a real Web site you would probably store a separate username and password for each user in a
database table or text file.)

session_start();
define("USERNAME", "john");
define("PASSWORD", "secret");

Next the script calls various functions depending on user input. If the Login button in the login form
was clicked, the script attempts to log the user in. Similarly, if the Logout link was clicked, the user is

294

(c) ketabton.com: The Digital Library

Chapter 10: Preserving State With Query Strings

logged out. If the user is currently logged in, the welcome message is shown; otherwise the login form
is displayed:

if (isset($_POST["login"])) {
login();
} elseif (isset($_GET["action"]) and $_GET["action"] == "logout") {
logout () ;
} elseif (isset($_SESSION["username"])) {
displayPage() ;
} else {
displayLoginForm() ;

}

The login() function validates the username and password and, if correct, sets a session variable,
$_SESSION|["username"], to the logged-in user’s username. This serves two purposes: it indicates to
the rest of the script that the user is currently logged in, and it also stores the user’s identity in the
form of the username. (In a multi-user system this would allow the site to identify which user is
logged in.) The function then reloads the page. However, if an incorrect username or password was
entered, the login form is redisplayed with an error message:

function login() {
if (isset($_POST["username"]) and isset($_POST["password"])) {
if ($_POST["username"] == USERNAME and $_POST["password"] == PASSWORD) {
S_SESSION["username"] = USERNAME;

session_write_close();
header ("Location: login.php");
} else {
displayLoginForm("Sorry, that username/password could not be found. Please
try again.");
}
}

The logout () function simply deletes the $_SESSION["username"] element to log the user out, then
reloads the page:

function logout () {
unset ($_SESSION["username"]);
session_write_close() ;
header ("Location: login.php");
}

The final three functions are fairly self-explanatory. displayPage () displays the welcome message,
along with the Logout link. displayLoginForm() displays the login page, optionally displaying an
error message. Both these functions use a utility function, displayPageHeader (), to display the
markup for the page header that is common to both pages.

295

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Summary

PHP scripts start to become much more useful when they can store data on a semi-permanent basis. In
this chapter, you learned how to use three different techniques — query strings, cookies, and sessions —
to store data related to a particular user between page requests:

a

Query strings are simple to understand and use, but they are not at all secure so they’re best
used for transmitting innocuous information. You learned how to build query strings with
urlencode () and http_build_guery (), as well as how to read data from query strings, and
you created a simple example that uses query strings to create a paged display.

Cookies are a step up from query strings, because you don’t have to pass data between every
single page request. Cookies can even persist when the browser is closed and reopened. You
looked at the anatomy of a cookie, and learned how to create cookies, read cookies via the $_
COOKIE superglobal, and delete cookies. You also wrote a script that uses cookies to remember
details about a visitor.

Sessions have a couple of major advantages over cookies: they’re more secure, and they don’t
involve sending potentially large amounts of data to the server each time a page is viewed. You
explored PHP’s built-in session-handling functionality, including session_start (), the $_
SESSION superglobal, session_write_close(),and session_destroy (). You learned that,
though not advisable, you can pass session IDs in query strings in situations where the browser
doesn’t support cookies, and you looked at some ways to fine-tune PHP’s session behavior.
Finally, you used sessions to create a simple shopping cart and user login/logout system.

Now that you know how to save state, you can start to write more powerful, persistent Web applications
that can remember session information between page views.

In the next chapter you look at how to access the Web server’s file system from within your PHP scripts.
This means that you can store application data and other information in files on the server’s hard drive,
further expanding the capabilities of your Web applications.

Before you leave this chapter, take a look at the following two exercises, which test your knowledge of
cookie and session handling in PHP. You can find the solutions to these exercises in Appendix A.

Exercises

296

1.

2.

Write a script that uses cookies to remember how long ago a visitor first visited the page.
Display this value in the page, in minutes and seconds.

In Chapter 9 you created a three-step registration form using hidden form fields. Rewrite this
script to use sessions to store the entered form data, so users can come back to the form at
another time and continue where they left off. Remember to erase the entered data from the
session once the registration process has been completed.

(c) ketabton.com: The Digital Library

11

Working with Files and
Directories

As a server-side programming language, PHP allows you to work with files and directories stored
on the Web server. This is very useful, because it means your PHP scripts can store information
outside the scripts themselves.

Files are stored in directories on a hard drive, and because they retain their data after the computer
is shut down, they are a persistent storage mechanism, instead of temporary storage such as RAM.
Directories are a special kind of file made for storing other files. Directories are created
hierarchically inside other directories, starting with the root (top-level) directory and proceeding
down from there.

Files can contain any kind of data, and also can contain quite a bit of information about
themselves, such as who owns them and when they were created. PHP makes working with the
file system easy by including functions that allow you to obtain information about files, as well as
open, read from, and write to them.

This chapter is all about the PHP functions for working with the file system. You learn:

Q More about files and directories, and how to find out more information about them in
your scripts
How to open and close files, as well as how to read data from, and write data to, files

The concept of file permissions and how to work with them

How to copy, move, and delete files

U 00 U

All about working with directories, including reading their contents, creating them, and
deleting them

As well as learning the theory of file and directory handling, you get to write a script that can
move through a directory tree, listing all the files and directories it finds as it goes. You also create
a simple Web-based text editor to illustrate many of the points covered in the chapter.

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Understanding Files and Directories

Everything on your hard drive is stored as a file of one kind or another, although most folks think in
terms of files and directories. There are ordinary program files, data files, files that are directories, and
special files that help the hard drive keep track of the contents of folders and files. PHP has functions
that can work with any file type, but typically you'll be working with text files that contain data.

The terms “directory” and “folder” are used interchangeably in this book (and in the PHP community);
they mean exactly the same thing.

A file is nothing more than an ordered sequence of bytes stored on a hard disk or other storage media.
A directory is a special type of file that holds the names of the files and directories inside the folder
(sometimes denoted as subdirectories or subfolders) and pointers to their storage areas on the media.
Many differences exist between UNIX-based and Windows operating systems, one of them being the
way directory paths are specified. UNIX-based systems such as Linux use slashes to delimit elements in
a path, like this:

/home/matt/data/data.txt
Windows uses backslashes:

C:\MyDocs\data\data. txt
Fortunately, PHP on Windows automatically converts the former to the latter in most situations, so you
can safely use slashes in your script, regardless of the operating system that the script is running on.
Occasionally, though, backslashes are necessary. In this situation, you need to use two backslashes in a

row, because PHP interprets a backslash as escaping the following character:

"C:\\MyDocs\\data\\data.txt"

Getting Information on Files

PHP provides some functions that enable you to access useful file information. For example, you can use
file_exists () to discover whether a file exists before attempting to open it:

file_exists("/home/chris/myfile.txt")
file_exists () returns true if the file at the specified path exists, or false otherwise.

In a similar fashion, you can use the filesize () function to determine the size of a file on the hard
disk. Just as with file_exists (), this function takes a filename as an argument:

filesize("/home/chris/myfile.txt")

This returns the size of the specified file in bytes, or false upon error.

298

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

Time-Related Properties

Besides their contents, files have other properties that can provide useful information. The available
properties depend on the operating system in which the files are created and modified. On UNIX
platforms such as Linux, for example, properties include the time the file was last modified, the time it
was last accessed, and the user permissions that have been set on the file.

PHP provides three time-related file functions:

Q fileatime() — Returns the time at which the file was last accessed as a UNIX timestamp.
A file is considered accessed if its contents are read

Q filectime() — Returns the time at which the file was last changed as a UNIX timestamp.
A file is considered changed if it is created or written, or when its permissions have been
changed

QO filemtime () — Returns the time at which the file was last modified as a UNIX timestamp.

The file is considered modified if it is created or has its contents changed

A UNIX timestamp is an integer value indicating the number of seconds between the UNIX epoch
(midnight on January 1, 1970) and the specified time and date.

The getdate () function is very useful when working with UNIX timestamps. It returns an associative
array containing the date information present in a timestamp. The array includes such values as the year,
the month, the day of the month, and so on. For example, you can set a variable such as $myDate to the

value returned by getdate (), and then access the month component with $myDate ["month"].

Find out more about working with dates and times in Chapter 16.

Retrieving a Filename from a Path

It’s often very useful to be able to separate a filename from its directory path, and the basename ()
function does exactly that, taking a complete file path and returning just the filename. For example, the
following code assigns index.html to $filename:

Sfilename = basename("/home/james/docs/index.html");

You can specify a directory path instead, in which case the rightmost directory name is returned. Here’s
an example that assigns the value docs to $dir:

Sdir = basename("/home/james/docs");
Basically, basename () retrieves the last whole string after the rightmost slash.

If you don’t want the filename extension, or suffix, you can strip that off too by supplying the suffix as a
second argument to basename (). The following example assigns "myfile" to $filename:

Sfilename = basename("/home/james/docs/myfile.doc", ".doc");

299

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Opening and Closing Files

Usually, to work with a file from within your PHP script, you first need to open the file. When you open
a file, you create a file handle. A file handle is a pointer associated with the open file that you can then use
to access the file’s contents. When you've finished with the file, you close it, which removes the file
handle from memory.

File handles are resource data types. Data types were covered in Chapter 3.

Some PHP functions let you work directly with a file without needing to open or close it. You read about
these later in the chapter.

In the next sections you look at opening files with the fopen () function, and closing files with
fclose().

Opening a File with fopen()

The fopen () function opens a file and returns a file handle associated with the file. The first argument
passed to fopen () specifies the name of the file you want to open, and the second argument specifies
the mode, or how the file is to be used. For example:

Shandle = fopen("./data.txt", "r");
The first argument can be just a filename ("data. txt"), in which case PHP will look for the file in the
current directory, or it can be a relative (" . /data.txt") or absolute (" /myfiles/data.txt") path toa

file. You can even specify a file on a remote Web or FTP server, as these examples show:

Shandle = fopen("http://www.example.com/index.html", "r");
Shandle = fopen("ftp://ftp.example.com/pub/index.txt", "r");

A remote file can only be opened for reading — you can’t write to the file.

If you're not familiar with command-line file operations, you might be a little
confused by the concept of a current directory and the relative path notation.

Usually, the current directory is the same directory as the script, but you can change
this by calling chdir (). This is covered later in the chapter.

Within a relative path, a dot (.) refers to the current directory, and two dots (. .)
refer to the immediate parent directory. For example, . /data. txt points to a file
called data. txt in the current directory, and . . /data. txt points to a file called
data. txt in the directory above the current directory. . ./../../data. txt backs
up the directory tree three levels before looking for the data. txt file.

Meanwhile, an absolute path is distinguished by the fact that it begins with a / (slash),
indicating that the path is relative to the root of the file system, not to the current
directory. For example, /home/chris/website/index.php is an absolute path.

300

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

The second argument to fopen () tells PHP how you're going to use the file. It can take one of the
following string values:

Value Description

r Open the file for reading only. The file pointer is placed at the beginning of the file.

r+ Open the file for reading and writing. The file pointer is placed at the beginning of the file.
w Open the file for writing only. Any existing content will be lost. If the file does not exist,

PHP attempts to create it.

Wt Open the file for reading and writing. Any existing file content will be lost. If the file
does not exist, PHP attempts to create it.

a Open the file for appending only. Data is written to the end of an existing file. If the file
does not exist, PHP attempts to create it.

a+ Open the file for reading and appending. Data is written to the end of an existing file. If
the file does not exist, PHP attempts to create it.

The file pointer is PHP's internal pointer that specifies the exact character position in a file where the
next operation should be performed.

You can also append the value b to the argument to indicate that the opened file should be treated as a
binary file (this is the default setting). Alternatively, you can append t to treat the file like a text file, in
which case PHP attempts to translate end-of-line characters from or to the operating system’s standard
when the file is read or written. For example, to open a file in binary mode use:

Shandle = fopen("data.txt", "rb");

Although this flag is irrelevant for UNIX-like platforms such as Linux and Mac OS X, which treat text
and binary files identically, you may find the text mode useful if you're dealing with files created on a
Windows computer, which uses a carriage return followed by a line feed character to represent the end
of a line (Linux and the Mac just use a line feed).

That said, binary mode is recommended for portability reasons. If you need your application’s data files
to be readable by other applications on different platforms, you should use binary mode and write your
code to use the appropriate end-of-line characters for the platform on which you are running. (The PHP
constant PHP_EOL is handy for this; it stores the end-of-line character(s) applicable to the operating
system that PHP is running on.)

301

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

By default, if you specify a filename that isn’t a relative or absolute path (such as "data. txt"), PHP just
looks in the current (script) directory for the file. However, you can optionally pass the value true as a
third argument to fopen (), in which case PHP will also search the include path for the file.

Find out more about include paths in Chapter 20.

If there was a problem opening the file, fopen () returns false rather than a file handle resource.
Operations on files and directories are prone to errors, so you should always allow for things to go
wrong when using them. It’s good practice to use some form of error-checking procedure so that if an
error occurs (perhaps you don’t have necessary privileges to access the file, or the file doesn’t exist), your
script will handle the error gracefully. For example:

if (!'(Shandle = fopen("./data.txt", "r"))) die("Cannot open the file");

Rather than exiting with die (), you might prefer to raise an error or throw an exception. Find out more
about error handling in Chapter 20.

Closing a File with fclose()

Once you've finished working with a file, it needs to be closed. You can do this using fclose (), passing
in the open file’s handle as a single argument, like this:

fclose($handle);

Although PHP should close all open files automatically when your script terminates, it's good practice to
close files from within your script as soon as you're finished with them because it frees them up quicker
for use by other processes and scripts — or even by other requests to the same script.

Reading and Writing to Files

Now that you know how to open and close files, it’s time to take a look at reading and writing data in a
file. In the following sections you learn about these functions:

0 fread() — Reads a string of characters from a file

Q fwrite() — Writes a string of characters to a file

QO fgetc() — Reads a single character at a time

A feof () — Checks to see if the end of the file has been reached

QO fgets() —Reads a single line at a time

QO fgetcsv() — Reads a line of comma-separated values

QO file() — Reads an entire file into an array

0 file_get_contents () — Reads an entire file into a string without needing to open it

302

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

0 file_put_contents () — Writes a whole string to a file without needing to open it
Q fpassthru() — Displays the contents of an open file

Q readfile() — Displays the contents of a file without needing to open it

Q fseek() — Moves the file pointer to a specific location within an open file

QO ftell() — Returns the position of the file pointer

QO rewind() — Moves the file pointer to the start of the file

As you can see, PHP gives you many different ways to read and write to files, so you can always find a
function to suit your needs!

Reading and Writing Strings of Characters

The fread () function can be used to read a string of characters from a file. It takes two arguments: a file
handle and the number of characters to read. The function reads the specified number of characters (or
less if the end of the file is reached) and returns them as a string. For example:

Shandle = fopen("data.txt", "r");
Sdata = fread($handle, 10);

This code reads the first ten characters from data. txt and assigns them to $data as a string.

When working with binary files a character is always one byte long, so ten characters equals ten bytes.
Howeuver, this doesn’t apply when working with Unicode files, where each character may take up several
bytes. In this case, reading ten characters may in fact result in reading, say, twenty bytes from the file.

After fread () has finished, the file pointer, which holds the current position in the file, moves forward
in the file by the number of characters read. So after the previous example code runs, the file pointer
moves forward to ten characters after the start of the file. If you repeat the same call to fread (), you'll
get the next ten characters in the file. If there are less than ten characters left to read in the file, fread ()
simply reads and returns as many as there are. By the way, if you want to read only one character at a
time you can use the fgetc () function. fgetc () takes a single argument — a file handle — and returns
just one character from the file it points to; it returns false when it reaches the end of the file:

Sone_char = fgetc(Shandle);

However, fgetc () is slow when working with large files. It’s faster to read a bunch of characters at once
using fread (), or one of the other file-reading functions mentioned in this chapter.

You can use the fwrite () function to write data to a file. It requires two arguments: a file handle and a
string to write to the file. The function writes the contents of the string to the file, returning the number

of characters written (or false if there’s an error). For example:

Shandle = fopen("data.txt", "w");
fwrite(Shandle, "ABCxyz");

303

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

The first line opens the file data. txt for writing, which erases any existing data in the file. (If the file
doesn’t exist, PHP attempts to create it.) The second line writes the character string "ABCxyz" to the
beginning of the file. As with fread (), the file pointer moves to the position after the written string; if
you repeat the second line, fwrite () appends the same six characters again, so that the file contains the
characters "ABCxyzABCxyz".

You can limit the number of characters written by specifying an integer as a third argument. The
function stops writing after that many characters (or when it reaches the end of the string, whichever
occurs first). For example, the following code writes the first four characters of "abcdefghij" (thatis,
"abcd") to the file:

fwrite(S$handle, "abcdefghij", 4);

_ A Simple Hit Counter

One very popular use for Web scripts is a hit counter, which is used to show how many times a Web
page has been visited and therefore how popular the Web site is. Hit counters come in different forms,
the simplest of which is a text counter. Here’s a simple script for such a counter:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Hit counter</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>

<hl>A simple hit counter</hl>
<?php
ScounterFile = "./count.dat";

if (!'file_exists(ScounterFile)) {
if (!(Shandle = fopen(ScounterFile, "w"))) {
die("Cannot create the counter file.");
} else {
fwrite($handle, 0);
fclose(Shandle);

}

if (!(Shandle = fopen(S$counterFile, "r"))) {
die("Cannot read the counter file.");

}

Scounter = (int) fread(S$handle, 20);

fclose(S$handle);

Scounter++;

304

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

echo "<p>You're visitor No. Scounter.</p>";
if (!(Shandle = fopen(S$ScounterFile, "w"))){
die("Cannot open the counter file for writing.");

}

fwrite($handle, $counter);
fclose(Shandle) ;

?>

</body>
</html>

Save this script as hit_counter.php and give it a try. Figure 11-1 shows a sample run.

'& Tt Count ™Mozilla Hrefox Emm
File Edit Vview History Bookmarks Tools Help

& - a o |::9 http:fflocalhost/fhit counterphp | '| |G+ @

A simple hit counter

You're visilor No. 8.

Done

Figure 11-1

To start with, you'll see “You're visitor No. 1.” If you now reload the page, you'll see the counter
change to 2. Each time you reload, the counter increments by 1.

How It Works
After displaying a page header, the script stores the filename of the file that will hold the hit count:

ScounterFile = "./count.dat";

Next, the script checks to see if the counter file exists. If it doesn't, it is created by opening the file for
writing, writing a zero to it (thereby initializing the hit count to zero), then closing it:

if (!'file_exists(ScounterFile)) {
if (!'(Shandle = fopen(S$counterFile, "w"))) {
die("Cannot create the counter file.");
} else {

fwrite(Shandle, 0);
fclose(S$handle);

305

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Next the counter file is opened for reading:

if (!(Shandle = fopen(ScounterFile, "r"))) {
die("Cannot read the counter file.");

The script now uses the file handle to read the hit counter value from the open file. As you can see, the
script calls fread () to read up to 20 bytes from the data file (enough to store a very large integer):

Scounter = (int) fread(Shandle, 20);
Because fread () returns a string value, and the counter needs to be an integer value, the return value
is cast into an integer using (int). (See Chapter 3 for more on type casting.)
The call to fclose () closes the file referenced by the file handle $handle, freeing up the file for
reading or writing by other processes:

fclose(Shandle);

After closing the data file, the script increments the counter and tells the visitor how many times the
page has been accessed:

Scounter++;
echo "<p>You're visitor No. S$Scounter.</p>";

Next the script writes the new counter value back to the data file. To do this it opens the file in write
mode (w), then calls fwrite () to write the $counter variable’s value to the file, followed by
fclose () to close the open file again:

if (!'(Shandle = fopen($counterFile, "w"))){
die("Cannot open the counter file for writing.");

}

fwrite($handle, S$counter);
fclose(S$handle);

Testing for the End of a File

The feof () function serves a single, simple purpose: it returns true when the file pointer has reached the
end of the file (or if an error occurs) and returns false otherwise. It takes just one argument — the file
handle to test. Notice that feof () only returns true once the script has tried to read one or more
characters past the last character in the file:

// hello_world.txt contains the characters "Hello, world!"

Shandle = fopen("hello_world.txt", "r");

Shello = fread($handle, 13);

echo Shello . "
"; // Displays "Hello, world!"
echo feof(shandle) . "
"; // Displays "" (false)
$five more_chars = fread($handle, 5);

306

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

echo $five_more_chars . "
"; // Displays "" (or possibly a newline)
echo feof($handle) . "
"; // Displays "1" (true)
fclose(Shandle);

feof () is useful with fread () or f£getc () in a while loop when you don’t know how long the file is:

// hello_world.txt contains the characters "Hello, world!"

Shandle = fopen("hello_world.txt", "r");
Stext = "";
while (!feof($handle)) {
Stext .= fread($handle, 3); // Read 3 chars at a time
}
echo Stext . "
"; // Displays "Hello, world!"

fclose(Shandle);

Reading One Line at a Time

Often it’s useful to read text from a file one line at a time. A line is a nice manageable chunk of text to
process or display. For example, data files and configuration files often contain one chunk of information
per line, such as a data record or a configuration setting.

To read a line of text from an open file, call the £gets () function, passing in the file handle. The function
reads from the current file pointer to the end of the current line, and returns the read characters as a
string (or false if there was a problem, such as the end of the file being reached). Note that any end-of-
line character (or characters) at the end of the line is also included in the string.

You can limit the number of characters read by passing in a second, integer argument, in which case
fgets () stops when it reaches that number of characters minus one (unless the end of the line is
reached first). It’s a good idea to include this argument when reading large files that might not contain
line breaks.

The following example uses fgets () to read and display a three-line text file, one line at a time. The
while loop exits when fgets () returns false (which means it’s reached the end of the file):

/*
milton.txt contains:
The mind is its own place, and in it self
Can make a Heav'n of Hell, a Hell of Heav'n.
What matter where, if I be still the same,

*/

Shandle = fopen("milton.txt", "r");

$lineNumber = 1;

while ($line = fgets(S$handle)) {
echo $lineNumber++ . ": $line
";

}

fclose(S$handle);

307

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

The code produces the following output:

1: The mind is its own place, and in it self
2: Can make a Heav'n of Hell, a Hell of Heav'n.
3: What matter where, if I be still the same,

Reading CSV Files

If you've ever done any work with importing and exporting data, you probably know about the comma-
separated-value (CSV) data format. (CSV even has its own file extension: .csv.) In CSV files, each data
record sits on its own line, and the fields within each record are separated by commas. String values are
often enclosed within double quotes:

"John", "Smith", 45
"Anna", "Clark",37
"Bill", "Murphy", 32

To read CSV files, you can use £getcsv (). This function reads a line of CSV-formatted data from an
open file starting from the position of the file pointer, and puts the data it finds into an array, with one
field value per array element. Once you have an array of data you can easily manipulate it.

To call the fgetcsv () function, pass it the file handle of an open file. You can also optionally specify:

Q The maximum number of characters to read. You can leave this value out, or use 0, in which case
PHP reads as many characters as necessary to read the whole line. However, specifying a value
makes the function slightly quicker

Q The delimiter that is used to separate each data value. The default is the comma (,). If you're
reading a tab-separated-value (TSV) file, specify "\t" (the tab character) for this argument
instead

Q The character that is used to enclose string values. The default is the double quote (")
Q The character used to escape special characters. The default is the backslash (\)

fgetcsv () returns false if there was a problem reading the line, or if the end of the file has been
reached.

The following code snippet shows how you might retrieve three lines of data from a file in CSV format:

/*
people.csv contains:
"John", "Smith", 45
"Anna","Clark",b37
"Bill", "Murphy", 32

*/
Shandle = fopen("people.csv", "r");
while ($record = fgetcsv($handle, 1000)) {

echo "Name: {Srecord[0]} {Srecord[1l]}, Age: {Srecord[2]}
";
}

fclose($handle);

308

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

This code displays:

Name: John Smith, Age: 45
Name: Anna Clark, Age: 37
Name: Bill Murphy, Age: 32

PHP 5.3 introduces a new function, str_getcsv (), that reads CSV data from a string instead of from
a file. This is handy if you already have your CSV data in memory. For details see http: / /www .php
.net/manual/en/function.str-getcsv.php.

Reading and Writing Entire Files

Writing code to read a file line by line, or string by string, can be tedious. Fortunately, PHP provides you
with some functions that can access the complete contents of a file in one go. These include:
Q file() — For reading a whole file into an array, without needing to open it

QO file_get_contents() and file_put_contents () — For reading and writing the contents of
a file without needing to open it

Q fpassthru() — For displaying the contents of an open file
0 readfile() — For displaying the contents of a file without needing to open it
Because these functions read the entire file into memory in one go, they should really be used for

relatively small files (a few MB at most). If you're working with a 100MB text file, it’s probably best to
use fread () or fgets () to read and process the file in chunks.

file() reads the contents of a file into an array, with each element containing a line from the file. It
takes just one argument — a string containing the name of the file to read — and returns the array
containing the lines of the file:

Slines = file("/home/chris/myfile.txt");
The newline character remains attached at the end of each line stored in the array.

This function, like most of the others described in this section, doesn’t require you to specify a file

handle. All you need to do is pass in the filename of the file to read. The function automatically opens,

reads, and, once it's done, closes the file.

You can optionally specify some useful flags as the second parameter to file():

Flag Description

FILE USE_INCLUDE_PATH Look for the file in the include path (see Chapter 20 for more on
include paths)

FILE_IGNORE_NEW_LINES Remove newline characters from the end of each line in the array

FILE_SKIP_EMPTY_LINES Ignore empty lines in the file

309

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

As with other flags in PHP you can combine any of these flags with the bitwise OR operator (see Chapter 3
for details). For example, the following code looks for a file in the include path and, when found, reads
the file, ignoring any empty lines in the file:

$lines = file("myfile.txt", FILE_USE_INCLUDE_PATH | FILE_SKIP_EMPTY LINES);
As with fopen (), you can also use £ile () to fetch files on a remote host:

Slines = file("http://www.example.com/index.html");
foreach ($lines as $line) echo $line . "
";

Arelated function is file_get_contents (). This does a similar job to file (), but it returns the
file contents as a single string, rather than an array of lines. The end-of-line characters are included in
the string:

$fileContents = file_get_contents("myfile.txt");
If there was a problem reading the file, file_get_contents () returns false.

You can pass the FILE_USE_INCLUDE_PATH flag (described earlier) as the second argument to
file_get_contents().

You can also optionally pass in an offset and/or a length parameter to determine where you want the file
reading to start, and how many characters you want to read. For example, the following code reads 23
characters from myfile. txt, starting at character 17:

sfileContents = file_get_contents("myfile.txt", null, null, 17, 23);

The first null argument avoids setting the FILE_USE_INCLUDE_PATH flag, and the second null
argument avoids setting a context. Contexts are out of the scope of this book, but you can find out more
about them in the online manual at http: //www.php.net/manual/en/stream.contexts.php.

file_put_contents () is the complement to file_get_contents (). As you’'d imagine, it takes a
string and writes it to a file:

$numChars = file_put_contents("myfile.txt", S$myString);

The function returns the number of characters written, or false if there was a problem. You can affect the
behavior of the function by passing various flags as the third argument. file_put_contents () supports
the same flags as file_get_contents (), as well as two additional flags:

Flag Description

FILE_APPEND If the file already exists, append the string to the end of the file, rather than
overwriting the file.

LOCK_EX Lock the file before writing to it. This ensures that other processes can’t write to
the file at the same time.

310

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

You can also lock files that are opened using fopen (). To do this, use £lock (). See http: //www
.php.net/manual/en/function. £lock.php for more details.

fpassthru() and readfile () both take a file and output its unmodified contents straight to the Web
browser. fpassthru () requires the handle of an open file to work with:

$numChars = fpassthru($handle);
readfile() instead works on an unopened file:
SnumChars = readfile("myfile.txt");

As you can see, both functions return the number of characters read (or false if there was a problem).
fpassthru () reads from the current file pointer position, so if you've already read some of the file only
the remaining portion of the file will be sent.

You can make readfile () search the include path for the file by passing true as the second argument.
Incidentally, readfile () is handy for sending binary files — such as images and PDF documents — to
the Web browser for displaying or downloading. You see an example of this in Chapter 16.

Random Access to File Data

Using the functions you’ve met so far, you can only manipulate data sequentially, that is, in the same
order that it is arranged in the file. However, sometimes you need to skip around the contents of an open
file. For example, you might want to read a file once to search for a particular string, then return to the
start of the file in order to search for another string. Of course, this is easy if you've read the entire file
using, for example, file_get_contents (). However, this isn’t practical for large files.

Fortunately, it’s possible to move the file pointer around within an open file, so that you can start
reading or writing at any point in the file. PHP gives you three functions that let you work with the file

pointer:
Q fseek() — Repositions the file pointer to a specified point in the file
QO rewind() — Moves the file pointer to the start of the file
a ftell () — Returns the current position of the file pointer

311

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

To use £seek (), pass the handle of the open file, and an integer offset. The file pointer moves to the
specified number of characters from the start of the file (use zero to move the pointer to the first
character). For example, the following code moves the pointer to the eighth character in the file (that is,
seven characters after the first character) and displays the next five characters from that point:

// hello_world.txt contains the characters "Hello, world!"

Shandle = fopen("hello_world.txt", "r");
fseek($handle, 7);
echo fread($handle, 5); // Displays "world"

fclose($handle);

To specify how the offset is calculated, you can add a third optional argument containing one of the
following constants:

0 SEEK_SET — Sets the pointer to the beginning of the file plus the specified offset (the default
setting)

0 SEEK_CUR — Sets the pointer to the current position plus the specified offset

0 SEEK_END — Sets the pointer to the end of the file plus the specified offset (use with a negative
offset)

fseek () returns 0 if the pointer was successfully positioned, or -1 if there was a problem.

You can’t use this function with files on remote hosts opened via HTTP or FTP (for example,
fopen("http://www.example.com/")).

If you want to move the pointer back to the start of the file (a common occurrence), a handy shortcut is
the rewind () function. The following two lines of code both do the same thing;:

fseek(S$handle, 0);
rewind(Shandle);

The ftell () function takes a file handle and returns the current offset (in characters) of the
corresponding file pointer from the start of the file. For example:

Soffset = ftell($handle);

As you saw earlier, the fpassthru () function outputs file data from the current file position onward. If you
have already read data from an open file but want to output the file’s entire contents, call rewind () first.

Working with File Permissions

File system permissions determine what different users can do with each file and directory in the file
system. For example, whereas one user might have permission to read and write to a file, another user
may only be allowed to read the file. A third user might not even be allowed to do that.

312

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

Permissions generally won't affect you much when writing PHP scripts, because PHP usually does the
right thing behind the scenes. For example, if you create a new file for writing, PHP automatically gives
that file read and write permission for the user that’s running your PHP script (usually the Web server
user). If you create a new directory, PHP gives the directory read, write, and execute permission for all
users by default, meaning that anyone can create and delete files within that directory.

In this section you explore PHP’s chmod () function, which lets you change the mode (permissions) of a
file or directory. You also take a look at three PHP functions that let you determine if a file or directory is
readable, writable, or executable by the current user.

Changing Permissions

PHP’s chmod () function is used to change the mode, or permissions, of a file or directory. It functions
much like the UNIX chmod command.

This section applies mainly to UNIX-based Web servers such as Linux and Mac OS X. Windows
servers do not have a concept of file and directory modes. Instead, you use Windows Explorer to set
access permissions on files and folders by right-clicking the item, choosing Properties, then clicking the
Security tab. You need to be an administrator to make these changes. If you're running your PHP
scripts on a shared Windows server, and you need to set permissions on a certain file or folder, ask your
hosting company for help. Often they'll do it for you, or point you to a Web-based control panel where
you can do it yourself.

To change a file’s permissions with chmod (), pass it the filename and the new mode to use.
For example, to set a file’s mode to 644, use:

chmod ("myfile.txt", 0644);
The 0 (zero) before the 644 is important, because it tells PHP to interpret the digits as an octal number.

chmod () returns true if the permission change was successful, and false if it failed (for example,
you're not the owner of the file).

So how do file modes work? Here’s a quick primer.

File modes are usually expressed as octal numbers containing three digits. The first digit determines
what the file’s owner—usually the user that created the file — can do with the file. The second digit
determines what users in the file’s group — again, usually the group of the user that created the file —

can do with it. Finally, the last digit dictates what everyone else can do with the file.

The value of each digit represents the access permission for that particular class of user, as follows:

Digit Value Permission

0 Cannot read, write to, or execute the file
1 Can only execute the file

2 Can only write to the file

313

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Digit Value Permission

3 Can write to and execute the file

4 Can only read the file

5 Can read and execute the file

6 Can read and write to the file

7 Can read, write to, and execute the file

Here are some commonly used examples to make the concept of file modes clearer:

// Owner can read and write the file; everyone else can just read it:
chmod ("myfile.txt", 0644);

// Everyone can read and write the file:
chmod ("myfile.txt", 0666);

// Everyone can read and execute the file, but only the owner can write to it:
chmod ("myfile.txt", 0755);

// Only the owner can access the file, and they can only read and write to it:
chmod ("myfile.txt", 0600);

Note that you can only change the permissions of a file or directory if you own it, or if you're the
super-user (which is highly unlikely for PHP scripts running on a Web server).

So how do modes work with directories? Well, to read the files in a directory, you need to have both read
and execute permissions on that directory. Meanwhile, to create and delete files and subdirectories inside
the directory, you need to have write and execute permissions on the directory.

Checking File Permissions

Before you do something to a file in your script, it can be useful to know what kinds of things your script
can do with the file. PHP provides three handy functions to help you out.

To check if you're allowed to read a file, use is_readable (), passing in the filename of the file to check.
Similarly, you can check that you're allowed to write to a file with is_writable (), and see if you can
execute a file with is_executable (). Each function returns true if the operation is allowed, or false
if it’s disallowed. For example:

314

if (is_readable("myfile.txt") {
echo "I can read myfile.txt";

}

if (is_writable("myfile.txt") {

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

echo "I can write to myfile.txt";

}
if (is_executable("myfile.txt") {

echo "I can execute myfile.txt";

}

You can also use the fileperms () function to return an integer representing the permissions that are set
on a file or directory. For example, to print the octal value of the permissions on a file you might use:

chmod ("myfile.txt", 0644);

echo substr(sprintf("%o", fileperms("myfile.txt")), -4); // Displays
"0644"

(The call to substr () is used to return just the last four digits, because the other octal digits in the
returned value aren’t relevant.)

Copying, Renaming, and Deleting Files

PHP also lets you copy, rename, and delete files. The functions to perform these operations are copy (),
rename (), and unlink (), respectively.

The copy () function takes two string arguments: the first argument is the path to the file to copy,

and the second argument is the path to copy it to. It returns true if the file was successfully copied, or
false if there was a problem copying the file. The following example copies the source file copyme . txt
to the destination file copied. txt in the same folder:

copy("./copyme.txt", "./copied.txt");

The rename () function is used to rename (or move) a file. It works in much the same way as copy ().
For example, to rename a file within a folder you could use:

rename ("./address.dat", "./address.backup");
To move a file to a different folder, you might use:

rename ("/home/joe/myfile.txt", "/home/joe/archives/myfile.txt");
The unlink () function lets you delete files from the server. To use it, pass the filename of the file you
want to delete. For example, if you wanted to say adids to the file trash. txt in the current directory,
you could write:

unlink("./trash.txt");
copy (), rename (), and unlink () raise warning-level errors if the file or directory in question can’t be

found. Make sure the file or directory exists first (for example, by using file_exists()) to avoid such
errors.

315

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Working with Directories

PHP lets you work with directories in much the same way as files, using a variety of equivalent
functions. Some directory functions use a directory handle, whereas others use a string containing the
name of the directory with which you want to work. A directory handle is similar to a file handle; it’s a
special variable pointing to a directory, which you can obtain via the opendir () function:

Shandle = opendir("/home/james");
If there’s a problem opening the directory (for example, if the directory doesn’t exist), opendir ()
returns false instead of the directory handle. As you may have guessed, you can close a directory by
passing the directory handle to the function closedir ():

closedir(Shandle);

The readdir () function expects a directory handle for an opened directory, and returns the filename
of the next entry in the directory:

Sfilename = readdir(Shandle);

Each directory contains a list of entries for each of the files and subdirectories inside it, as well as entries
for . (representing the directory) and . . (the parent of the directory). PHP maintains an internal pointer
referring to the next entry in the list, just as a file pointer points to the position in a file where the next
file operation should occur.

_ List Directory Entries

Here’s how to set up a loop to get all the files and folders inside a specified directory. Save the
following script as dir_list.php in your document root folder. Now change the $dirpath variable
in the file so that it contains the path to a real directory on your Web server. Open the script’s URL in
your Web browser to test it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Listing the contents of a directory</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Listing the contents of a directory</hl>

<?php

$dirPath = "/home/matt/images";

if (!(Shandle = opendir(S$dirPath))) die("Cannot open the directory.");
?>

<p><?php echo S$dirPath ?> contains the following files and folders:</p>

316

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

<?php

while ($file = readdir(S$handle)) {
if ($file != "." && S$file != "..") echo "S$file</1i>";

}
closedir (S$handle);
?>

</body>
</html>

Figure 11-2 shows an example result.

@) et gL HE CONLENtS 0T I rECLOTY =M D218 HTe T 0)
File Edit Vview History Bookmarks Tools Help

=] > 6 = |:6' hitpyfocalhostdic list.php | '| |G~ : o4

Listing the contents of a directory
/home/mattimages contains the following files and folders:

* garden.jpg

* zack.jpg

s screenshotpng
* new photos

e lucky2.jpg

* lucky.jpg

Done

Figure 11-2

How It Works

After displaying the page header and storing the path to the directory to scan in the $dirPath
variable, the script gets a handle on the directory:

if (!'(Shandle = opendir(S$dirPath))) die("Cannot open the directory.");

If the directory was successfully opened, its name is displayed in the page and an unordered list (ul)
HTML element is started. Next the script uses readdir () to loop through each entry in the directory
and, as long as the entry isn’t ". " or ". . ", display it. The loop exits when readdir () returns false,
which occurs when the list of entries is exhausted:

while ($file = readdir($handle)) {
if ($file != "." && S$file != "..") echo "S$file</1i>";

}

Finally, the script calls closedir () to close the directory, then finishes off the markup for the list and
the page.

317

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

You can see that the returned filenames are not sorted in any way. To sort them, first read the entries
into an array:

$filenames = array();
while ($file = readdir($handle)) $filenames[] = S$file;
closedir($handle);

The $filenames array now contains every entry in the directory. Now you can call sort () to arrange
the array elements in ascending order, then loop through the array displaying all except the " . " and
".." entries:

sort($filenames);

foreach ($filenames as S$file) {
if ($file != "." && s$file !'= "..") {
echo "$file</1li>";
}
}

Other Directory Functions

Just as with files, PHP provides a range of ways to manipulate directories, including the following

functions:
O rewinddir () — Moves the directory pointer back to the start of the list of entries
QO chdir () — Changes the current directory
U mkdir() — Creates a directory
O rmdir () — Deletes a directory
QO dirname() — Returns the directory portion of a path

Resetting the Directory Pointer

The rewinddir () function resets PHP’s internal pointer back to the first entry in a given directory. This
function is the directory counterpart to the rewind () function for files. To use rewinddir (), pass an
open directory handle to it, as follows:

rewinddir (Shandle);

Changing the Current Directory

The chdir () function call changes the current directory to a new directory:

chdir("/home/matt/myfolder");

318

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

chdir () returns true if PHP managed to change to the specified directory, or false if there was an
error (such as the directory not being found).

The current directory is the directory where PHP first looks for files. If you specify a path that isn’t an
absolute or relative path, PHP looks for the file inside the current directory. So the following code

chdir("/home/matt/myfolder");
Shandle = fopen("myfile.txt");

opens the same myfile. txt file as:
Shandle = fopen("/home/matt/myfolder/myfile.txt");
The current directory is also used as the base directory for relative file paths. For example:

chdir("/home/joe/images");
Shandle = fopen("../myfile.txt"); // Looks for myfile.txt in /home/joe

Usually the current directory defaults to the directory containing the running script. You can retrieve the
current directory by calling getcwd ():

chdir("/home/matt/newfolder");
echo getcwd(); // Displays "/home/matt/newfolder"

Creating Directories
To create a new directory, call the mkdir () function, passing in the path of the directory you want to create:

mkdir("/home/matt/newfolder");

Note that the parent directory has to exist already (" /home/matt" in the example just shown) for the
function to work. mkdir () returns true if the directory was created, or false if there was a problem.

You can also set permissions for the directory at the time you create it by passing the mode as the second
argument. This works much like using chmod () — see the “Changing Permissions” section earlier in the
chapter for details. For example, the following code creates a directory with read, write, and execute
permissions granted to all users:

mkdir("/home/matt/newfolder", 0777);

File and directory modes only work on UNIX systems such as Linux and Mac OS; they have no effect
when used on Windows machines.

Deleting Directories

The rmdir () function removes a given directory. The directory must be empty, and you need
appropriate permissions to remove it. For example:

rmdir("/home/matt/myfolder");

If PHP can’t remove the directory — for example, because it’s not empty — rmdir () returns false;
otherwise it returns true.

319

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Getting the Directory Path

The dirname () function returns the directory part of a given path. It complements the basename ()
function, which returns the filename portion of a given path (see the section “Retrieving a Filename from
a Path” earlier in the chapter).

For example:

Spath = "/home/james/docs/index.html";
SdirectoryPath = dirname(S$path);
$filename = basename(S$path);

After running this code., $directoryPath contains " /home/james/docs", and $filename holds
"index.html".

Working with Directory Objects

PHP offers an alternative object-oriented mechanism for working with directories: the Directory class.
To use it, first create a Directory object by calling the dir () function with the name of the directory
you want to work with, as follows:

$dir = dir("/home/james/docs");

The Directory object provides two properties: handle and path. These refer to the directory handle
and the path to the directory, respectively:

echo $dir->handle . "
"; // Displays the directory handle
echo $dir->path . "
"; // Displays "/home/james/docs"

You can use the handle property with other directory functions such as readdir (), rewinddir (),
and closedir (), just as if you were using a regular directory handle.

The Directory object supports three methods — read (), rewind(), and close () — which are
functionally equivalent to readdir (), rewinddir (), and closedir (), respectively. For example, you
can rewrite the dir_1list.php script from earlier in the chapter using a Directory object:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Listing the contents of a directory</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Listing the contents of a directory</hl>

<?php

sdirPath = "/home/matt/images";
$dir = dir($dirPath);

?>

320

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

<p><?php echo S$dirPath ?> contains the following files and folders:</p>

<?php

while ($file = S$dir->read()) {
if ($file != "." && S$file != "..") echo "S$file</1li>";
}

Sdir->close() ;

?>

</body>
</html>

Telling a File from a Directory

Often you need to know whether a particular file is a regular file or a directory. For example, suppose
you want to write some code that travels down through a tree of folders. You’d need to detect when a
file was actually a folder, so you could enter the folder and continue working through the tree. By the
same token, if you want to display the files in a folder, you’d need to detect when a file is in fact a
regular file.

Remember: both directories and regular files are all essentially files, but directories are a special kind

of file.

PHP has two functions to help you test for a file or a directory:

Q is_dir() — Returns true if the given filename refers to a directory

Q is_file() — Returns true if the given filename refers to a regular file

Here’s a simple example that determines if a file called myfile is a file or a directory:

Sfilename = "myfile";

if (is_dir($filename)) {
echo "$filename is a directory.";
} elseif (is_file(S$filename)) {
echo "$filename is a file.";
} else {
echo "S$filename is neither a directory nor a file.";

321

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

_ Traversing a Directory Hierarchy

As you learned in Chapter 7, recursion is particularly useful when a script has to perform repetitive
operations over a set of data of unknown size, and traversing a directory hierarchy is a very good
example.

A directory may hold subdirectories as well as files. If you want to create a script that lists all the files
and subdirectories under a given directory — including subdirectories of subdirectories, and so on —
you need to write a recursive function, as follows:

1. Read the entries in the current directory.
2. Ifthe next entry is a file, display its name.

3. Ifthenext entry is a subdirectory, display its name, then call the function recursively to read the
entries inside it.

As you can see, the third step repeats the whole process by itself, when necessary. The recursion
continues until there are no more subdirectories left to traverse.

To try out this technique, first save the following script as directory_tree.php. Now change the
$dirPath variable at the top of the script to point to a folder on your Web server’s hard drive, and
open the script’s URL in your Web browser. You should see a page similar to Figure 11-3.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Listing the contents of a directory</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Listing the contents of a directory</hl>

<?php

SdirPath = "/home/matt/images";

function traverseDir($dir) {
echo "<h2>Listing $dir ...</h2>";

if (!($handle = opendir($dir))) die("Cannot open S$dir.");

Sfiles = array();

while ($file = readdir($handle)) {
if ($file != "." && S$file !'= "..") {
if (is_dir($dir . "/" . $file)) $file .= "/";
Sfiles[] = S$file;
}

}

sort($files);
echo "";
foreach ($files as S$file) echo "$file";

322

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

echo "";

foreach ($files as S$file) {
if (substr($file, -1) =

0), =ik)) 5

}

= "/") traverseDir("$dir/" . substr(S$file,

closedir ($handle);
}

traverseDir ($dirPath);
?>

</body>
</html>

File Edit Wview History Bookmarks Tools Help

@ = ° I ® ||3:: hitpucalhostdirectory Lree php | -] [E]- & @‘]

Listing the contents of a directory

Listing /home/matt/images ...

* garden.jpy

s |ucky.jpg

* |lucky2.jpg

s new_photos/
e screenshotpng
e zack jpg

Listing /home/matt/images/new_photos ...
s dscn0017.jpg
* dscn0019.jpg
® dscn0024 pg
* spain/
Listing /home/matt/images/new_photos/spain ...

* dscn0714.jpg
® dsen0719)pg

Done

Figure 11-3

323

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

How It Works

The traverseDir () recursive function traverses the whole directory hierarchy under a specified
directory. First, the function displays the path of the directory it is currently exploring. Then, it opens
the directory with opendir ():

if (!(S$handle = opendir($dir))) die("Cannot open $dir.");

Next the function sets up a $files array to hold the list of filenames within the directory, then uses
readdir () with a while loop to move through each entry in the directory, adding each filename to
the array as it goes (" . " and " . . " are skipped). If a particular filename is a directory, a slash (/) is
added to the end of the filename to indicate to the user (and the rest of the function) that the file is in
fact a directory:

$files = array();

while ($file = readdir($handle)) {
if ($file != "." && S$file != "..") {
if (is_dir($dir . "/" . S$file)) $file .= "/";
Sfiles[] = Sfile;
}
}

Now the array of filenames is sorted alphabetically to aid readability, and the filenames are displayed
in an unordered list:

sort(Sfiles);

echo "";

foreach ($files as $file) echo "$file";
echo "";

The last part of the function loops through the array again, looking for any directories (where the
filename ends in a slash). If it finds a directory, the function calls itself with the directory path (minus
the trailing slash) to explore the contents of the directory:

foreach ($files as S$file) {
if (substr($file, -1) == "/") traverseDir("S$dir/" . substr(S$file,
0, -1))

}

Finally, the directory handle is closed:

closedir($handle);
The last line of code in the script kicks off the directory traversal, starting with the path to the initial,
topmost directory:

traverseDir ($dirPath);

324

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

Building a Text Editor

With the basics of PHP’s file and directory handling capabilities under your belt, it’s time to create a
simple Web-based text file editor application. The editor will display a list of text files in a designated
folder, inviting the user to edit a file by clicking its name. The edit page will simply display the file’s
contents in an HTML text area field, with buttons for saving changes or canceling edits.

The user will also be able to create new text files to work with. For the sake of simplicity the editor will
only handle text files with the . txt filename extension.

The Text Editor Script

Here’s the code for the text editor. Save it as text_editor.php in your document root folder:

<?php
define("PATH_TO_FILES", "/home/matt/sandbox");
if (isset($_POST["saveFile"])) {
saveFile() ;
} elseif (isset($S_GET["filename"])) {
displayEditForm() ;
} elseif (isset($_POST["createFile"])) {
createFile() ;
} else {
displayFileList () ;
}
function displayFileList(Smessage="") {
displayPageHeader () ;
if (!'file_exists(PATH_TO_FILES)) die("Directory not found");
if (!'($dir = dir(PATH TO_FILES))) die("Can't open directory");
?>
<?php if (Smessage) echo '<p class="error">' . Smessage . '</p>' ?>

<h2>Choose a file to edit:</h2>
<table cellspacing="0" border="0" style="width: 40em; border: lpx solid

#666; ">
<tr>
<th>Filename</th>
<th>Size (bytes)</th>
<th>Last Modified</th>
</tr>
<?php
while ($filename = $dir->read()) {
sfilepath = PATH_TO_FILES . "/S$Sfilename";
if (Sfilename != "." && S$filename != ".." && !is_dir($filepath) &&
strrchr($filename, ".") == ".txt") {
echo '<tr><td><a href="text_editor.php?filename=' . urlencode (
$filename) . '">' . S$filename . '</td>';
echo '<td>' . filesize(S$filepath) . '</td>';

325

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

echo '<td>' . date("M j, Y H:i:s", filemtime($filepath))
'</td></tr>";
}
}

Sdir->close() ;
?>
</table>
<h2>...0r create a new file:</h2>
<form action="text_editor.php" method="post">
<div style="width: 20em; ">
<label for="filename">Filename</label>
<div style="float: right; width: 7%; margin-top: 0.7em;"> .txt</div>
<input type="text" name="filename" id="filename" style="width: 50%;"
value="" />
<div style="clear: both; ">
<input type="submit" name="createFile" value="Create File" />

</div>
</div>
</form>
</body>
</html>
<?php
}
function displayEditForm($filename="") {
if (!Sfilename) S$filename = basename($_GET["filename"]);
if (!$Sfilename) die("Invalid filename");
$filepath = PATH_TO_FILES . "/$filename";
if (!file_exists($filepath)) die("File not found");
displayPageHeader () ;
?>

<h2>Editing <?php echo S$filename ?></h2>
<form action="text_editor.php" method="post">
<div style="width: 40em; ">
<input type="hidden" name="filename" value="<?php echo $filename ?>"
<textarea name="fileContents" id="fileContents" rows="20" cols="80"
style="width: 100%; "><?php
echo htmlspecialchars(file_get_contents($filepath))
?></textarea>
<div style="clear: both; ">
<input type="submit" name="saveFile" value="Save File" />
<input type="submit" name="cancel" value="Cancel" style=
"margin-right: 20px;" />
</div>
</div>
</form>
</body>
</html>
<?php
}

function saveFile() {
$filename = basename($_POST["filename"]);

326

/>

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

sfilepath = PATH _TO_FILES . "/S$filename";
if (file_exists(Sfilepath)) {
if (file_put_contents($filepath, $_POST["fileContents"]) === false)
die("Couldn't save file");
displayFileList () ;
} else {
die("File not found");
}
}
function createFile() {
Sfilename = basename($_POST["filename"]);
$filename = preg_replace("/["A-Za-z0-9_\-]1/", "", $filename);
if (!$filename) {
displayFileList("Invalid filename - please try again");
return;
}
$filename .= ".txt";
Sfilepath = PATH _TO_FILES . "/Sfilename";
if (file_exists(S$filepath)) {
displayFileList("The file $filename already exists!");
} else {
if (file_put_contents($filepath, "") === false) die("Couldn't create
file");
chmod (S$filepath, 0666);
displayEditForm("$filename") ;
}
}
function displayPageHeader () {
?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>A simple text editor</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
.error { background: #d33; color: white; padding: 0.2em; }
th { text-align: left; background-color: #999; }
th, td { padding: 0.4em; }
</style>
</head>
<body>
<hl>A simple text editor</hl>
<?php
}

?>

327

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

Testing the Editor

To try out your text editor, first create a folder somewhere on your Web server’s hard drive to store the
text files. Give the Web server user permission to create files in this folder. To do this on Linux and Mac
OS X, open a terminal window, then change to the parent folder and use the chmod command on the text
file folder. For example, if your text file folder was /home /matt/sandbox, you could type:

$ cd /home/matt
$ chmod 777 sandbox

If you're running a Windows Web server, see the “Changing Permissions” section earlier in the chapter
for details on how to change permissions. However, it’s quite likely that you won’t need to change
permissions for the script to work on Windows.

Once you've created your text files folder and given it appropriate permissions, you need to tell the
script about the new folder. To do this, set the PATH_TO_FILES constant at the top of the script:

define("PATH_TO_FILES", "/home/matt/sandbox");

Now you're all set. Open the text editor script’s URL in your Web browser and you should see a page
like Figure 11-4 (though it won't list any files at this stage). Enter a new filename (minus the “.txt”
extension) in the text field, and click Create File. You'll see a form like the one shown in Figure 11-5
appear; enter your text and click Save File to save the changes to your new file. You can then reedit the
file by clicking its name in the list.

File Edit Wview History Bookmarks Tools Help

a & - ° ﬁ? ||3' hitp:flocalhosttext editor.php |'| |K_j|' @y

A simple text editor

Choose a file to edit:

recipe.txt 303 Mar 25, 2009 16:16:43
hello.txt 13 Mar 25, 2009 16:12:11
mytile txt 837 Mar 25, 2009 16:12:31

...Or create a new file:

Filename et
Create File

Done

Figure 11-4

328

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

e Edit view History Bookmarks Inols Help

@ - e o ||§'- hitp:filocalhostflext_editor.php?lilename=recipe.Lxt | '| |[G' : <‘q|

A simple text editor

Editing recipe.txt

Ingredienls

beans, flageolet
cheese, pecarinn
lettuce, iceberg
olives, green
potatoes
tomatoes

Method

Mix torn lettuce leaves. chopped tomatoes. pecorino cheese. whole green olives, flageolet
beans. and boiled sliced new potatoes together. add an oil & vinegar based dressing and
serve,

Done

Figure 11-5

Examining the Editor Code

The text editor demonstrates many of the functions you've learned in this chapter, and also illustrates
some useful coding techniques. In the following sections you explore the workings of each part of the
text editor script, and take a look at how the parts fit together to make the application work.

The Main Logic

The script kicks off by defining the path to the folder that will hold the text files. It does this using a
constant called PATH_TO_FILES:

define("PATH_TO_FILES", "/home/matt/sandbox");

The user will create and edit all his text files in this folder. For security reasons it’s important to make
sure that the user isn’t allowed to create or modify files outside this folder, and you see how this is done
in a moment.

329

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Next comes the main decision logic of the script. This code examines the $_P0OST and $_GET superglobal
arrays and, depending on what field it finds, it calls an appropriate function to handle the request:

if (isset($_POST["saveFile"])) {
saveFile() ;

} elseif (isset($_GET["filename"])) {
displayEditForm() ;

} elseif (isset($_POST["createFile"])) {
createFile() ;

} else {
displayFileList () ;

}

If the saveFile form field was submitted, the user wants to save his edits, so the saveFile () function
is called. If the filename field was found in the query string, the user has clicked a file to edit in the list;
displayEditForm() is called to let the user edit the file. If the createFile form field was found, the
user has clicked the Create File button to make a new file, so createFile () is called to create the new
file. Finally, if none of these fields exist, the file list is displayed by calling displayFileList ().

The displayFileList() Function

When the user first runs the application, displayFileList () is called to display the list of files to edit,
along with a form field to allow the user to add a new file (Figure 11-4). This function accepts one
optional argument, $message, containing any error message to display to the user in the form.

First the function calls the displayPageHeader () helper function (described in a moment) to generate
a standard page header. Next it checks that the text files directory exists (if not, the script exits with an
error message) and attempts to open the directory and retrieve a Directory object by calling the dir ()
function (again, if there’s a problem the script exits):

displayPageHeader () ;
if (!file_exists(PATH_TO_FILES)) die("Directory not found");
if (!'($dir = dir(PATH_TO_FILES))) die("Can't open directory");

After displaying any error message passed to the function, and kicking off an HTML table to display the
file list, the function uses a while construct along with calls to the $dir->read () method to loop
through the entries in the text files directory. For each entry, the script checks that the entry’s filename is
not ". " or "..", and that the file isn’t a directory and its filename extension is " . txt". If the entry
matches all these criteria, it is displayed as a row in the table. Notice that the loop stores the complete
path to each file in a temporary $£ilepath variable for convenience:

while ($filename = S$dir->read()) {
$filepath = PATH _TO_FILES . "/$filename";
if ($filename != "." && S$filename != ".." && !is_dir($Sfilepath) &&
strrchr($filename, ".") == ".txt") {
echo '<tr><td><a href="text_editor.php?filename=' . urlencode
($filename) . '">' . Sfilename . '</td>';

330

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

echo '<td>' . filesize(S$filepath) . '</td>';
echo '<td>' . date("M j, Y H:i:s", filemtime($filepath)) . '</td></
tr>"';
}
}

To display each file in the table, the script wraps a link around the filename to allow the user to edit the
file. The link’s URL includes the query string " ?filename=" followed by the name of the file to edit.
Notice that the filename is encoded in the query string by passing it through the urlencode ()
function. The script also displays the file’s size by calling the filesize () function. Finally, the file’s
“last modified” time is displayed by calling the filemtime () function and passing the resulting
timestamp to the date () function to format it.

Find out more about urlencode () in Chapter 10, and date () in Chapter 16.

Once the loop’s finished, the function closes the directory and displays the form for creating a new file.
The form includes a £ilename text field and a createFile submit button.

The displayEditForm() Function

When the user clicks a file to edit, the displayEditForm() function is called to display the file contents
for editing. This function can take an optional $ filename argument containing the filename of the file
to edit; if this isn’t passed, it looks up the filename in the query string, passing it through basename () to
ensure that no additional path information is in the filename; this is a good security measure, because it
thwarts any attempt to edit files outside the designated folder. Furthermore, if the filename is empty for
some reason, the script exits with an error:

function displayEditForm($filename="") {
if (!$fi1ename) $filename = basename($_GET["fi1ename"]),'
if (!$filename) die("Invalid filename");

Next the function stores the full path to the file in a $filepath variable (because this path is needed
many times in the function), and checks to make sure the file to edit actually exists — if it doesn’t, it exits
with a “File not found” message:

sfilepath = PATH _TO_FILES . "/$filename";
if (!file_exists($filepath)) die("File not found");

The rest of the function calls displayPageHeader () to output the standard page header markup, then
displays the name of the file being edited, as well as the HTML form for editing the file. The form
consists of a hidden field storing the filename of the file being edited; a text area for the file contents; and
Save File and Cancel buttons. The file’s contents are displayed in the text area simply by calling file_
get_contents () and outputting the result.

331

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Notice that the filename and fileContents field values are passed through PHP’s
htmlspecialchars () function to encode characters such as &, <, and > in the markup. This is a good
security measure to take:

<textarea name="fileContents" id="fileContents" rows="20" cols="80"
style="width: 100%; "><?php
echo htmlspecialchars(file_get_contents($filepath))
?></textarea>

You can find out more about htmlspecialchars (), and security in general, in Chapter 20.

The saveFile() Function

saveFile () is called when the user sends back the edit form containing the file contents. It reads the
filename from the form data — passing the filename through basename () to sanitize it — then stores the
full path to the file in $filepath:

$filename = basename($_POST["filename"]);
Ssfilepath PATH_TO_FILES . "/Sfilename";

Next the function checks that the file exists; if so, it writes the file contents to the file by calling file_
put_contents (), then redisplays the file list page by calling displayFileList (). If there was a
problem, an appropriate error message is displayed and the script exits. Notice that the function uses
the === operator to test if the return value of file_put_contents () exactly equals false. Merely
using the == or ! operator wouldn’t do the job. Why? Because file_put_contents () returns the
number of characters written if successful. Because this value will be zero if the file contents happen

to be empty, and 0 == false, using == or ! would incorrectly exit the script with an error in this
situation:
if (file_exists(sfilepath)) {
if (file_put_contents($filepath, $_POST["fileContents"]) === false)
die("Couldn't save file");
displayFileList () ;
} else {

die("File not found");

}

Find out more on true, false, and the === operator in Chapter 3.

The createFile() Function

If the user clicks the Create File button in the file list page, createFile () is called to attempt to create
the new file. The function reads and sanitizes the £ilename field sent from the form. If the filename is
empty, the file list page is redisplayed with an error message:

S$filename = basename($_POST["filename"]);
Sfilename = preg_replace("/["A-Za-z0-9_\- 1/", "", Sfilename);
if (!$Sfilename) {

332

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

displayFileList("Invalid filename - please try again");
return;

}

Notice that the function uses a reqular expression to strip all characters from the filename except letters,
digits, underscores, hyphens, and spaces. For security reasons it’s always good to restrict user input to a
set of known safe characters (without being too restrictive). You can find out more on regular
expressions in Chapter 18, and user input filtering and validation in Chapter 20.

Next the function appends a . txt extension to the end of the filename and sets the $filepath variable
to store the full path to the file:

sfilename .= ".txt";
$filepath = PATH _TO_FILES . "/$filename";

The file path is then checked to make sure the file doesn’t already exist; if it does, the user is warned
and the file isn’t created:

if (file_exists($filepath)) {
displayFileList("The file $filename already exists!");

If the file doesn’t exist, it is created by calling file_put_contents () with an empty string for the file
contents. (file_put_contents () automatically creates a file if it doesn’t already exist.) If file_put_
contents () returns exactly false (tested with the === operator), the file can’t be created and the script
exits with an error:

} else {
if (file_put_contents($filepath, "") === false) die("Couldn't create
file");

Once the file has been created its permissions are set so that anyone can read and write to the file. Finally,
displayEditForm() is called, passing in the name of the newly created file so the user can begin
editing it:

chmod ($filepath, 0666);
displayEditForm("$filename");

The displayPageHeader () Function

The displayPageHeader () utility function simply outputs the XHTML page header common to all
pages in the application. This saves having to include the markup more than once in the script. As well
as including the standard common. css style sheet from Chapter 2, the header defines some extra CSS
rules to style any error messages and the file list table:

<link rel="stylesheet" type="text/css" href="common.css" />

<style type="text/css">
.error { background: #d33; color: white; padding: 0.2em; }

333

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

th { text-align: left; background-color: #999; }
th, td { padding: 0O0.4em; }
</style>

This text editor has used many of the file-related functions described in the chapter, and has also
demonstrated some important concepts such as security and error handling. You can take many of these
concepts and apply them to other Web applications that you create.

Summary

In this chapter you learned how to work with files and explored PHP’s various file-handling functions.

You looked at:

QO How files and directories work, and the differences between file paths on UNIX-like servers and
Windows servers

O Retrieving information on files using file_exists(), filesize(), fileatime(),
filectime (), filemtime (), basename (), and dirname ()

Q Using fopen () and fclose () to open and close files for reading and writing

O Reading and writing to files using fread (), fwrite(), fgetc (), feof (), fgets (),
fgetcsv (), file(), file_get_contents(), file_put_contents (), fpassthru(),
readfile(), fseek(), ftell(), and rewind ()

Q Setting file permissions with chmod (), and checking permissions with is_readable(),
is_writable(),and is_executable ()

Q Copying files with copy (), renaming and moving files with rename (), and deleting files with
unlink ()

O Reading directories with opendir (), closedir (), readdir (), rewinddir (), and dir ()

QO Manipulating directories with chdir (), mkdir (), and rmdir ()

Q Testing for files and directories with is_file () and is_dir ()

Along the way you learned how to use recursion to move through a directory tree, and you also built a
simple text editor to illustrate many of the functions and concepts covered in the chapter.

Some functions rarely used in Web applications weren’t discussed. For a full list of PHP’s file and
directory functions, refer to the online PHP function list at: http: //www.php.net/manual/ref
.filesystem.php.

334

(c) ketabton.com: The Digital Library

Chapter 11: Working with Files and Directories

In the next chapter you are introduced to another popular way of storing application data: databases.
This is quite a big topic, so it’s spread over the next three chapters. Chapter 12 introduces the concept of
databases; Chapter 13 shows how to read data from a database; and Chapter 14 shows how to
manipulate data in a database.

Before leaving this chapter, try the following exercise to test your knowledge of file and directory
handling in PHP. You can find the solution to this exercise in Appendix A.

Exercise

Create a PHP application that can be used to find a particular directory by name when given a top-level
directory to search. Make the application look through the given directory, as well as all directories
under the given directory.

335

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

12

Introducing Databases
and SQL

In the last chapter you learned how your PHP scripts can use external files to store and retrieve
data. Although files do a great job in many circumstances, they’re pretty inflexible as data storage
solutions go. For example, if you need to filter or sort the data retrieved from a file, you have to
write your own PHP code to do it. Not only is this tiresome, but if you're working with large sets
of data — for example, hundreds of thousands of user records — your script will probably grind to
a halt. Not good if you're hoping to build a popular Web site.

Databases are specifically designed to get around this problem. With their capabilities of
organization and immaculate record keeping, they’re a bit like lending libraries staffed by super-
heroes. No more searching for hours through shelves of musty tomes; just a word at the front desk,
a blur of blue and red, and the last remaining copy of Love in the Time of Cholera appears — as if by
magic — on the desk in front of you.

This is the first in a series of three chapters in which you explore databases and learn how you can
use them to create powerful, efficient PHP applications. The next chapter shows you how to access
data in databases, and Chapter 14 looks at inserting, updating, and deleting data.

The aim of this chapter is to get you started with databases. In this chapter you:

Q Examine the general advantages of using databases rather than files to store your data

Q Learn about some of the popular databases that you're likely to come across, and how
they differ

0 Examine the idea of relational databases, and explore common concepts of relational
databases such as normalization and indexing

Q Find out how to configure MySQL, a database system that’s freely available and widely
used with PHP

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Q Learn how to use MySQL to create databases, as well as retrieve and modify the contents of a
database

0 Study the basics of connecting to and working with a MySQL database from within your
PHP scripts

By the time you finish this chapter you'll be well prepared to start using databases in earnest, which you
do in Chapters 13 and 14.

Deciding How to Store Data

Whenever you start work on a data-driven application, one of your first design decisions should be:
how will the application store and access its data? The answer will depend on the application’s
requirements. At the simplest level, you should be asking questions like:

How much data will the application use?

How often will it need access to the data?

How often will it need to modify the data?

How many users are likely to want access to the data at once?

U 00 o0 o

How much will the data grow over time?

QO How much do I stand to lose if the data is broken, stolen, or lost?

If the answer to any of these questions is “a lot,” you probably want to steer clear of using plain text files
to store your data. That’s not to say that text files are useless — in fact, if all you want to do is read a
large amount of unfiltered or unsorted data, text files can often be the fastest approach — but generally
speaking, if you need to store and access structured data quickly and reliably, plain text files aren’t a
good bet.

Often, the most efficient alternative to text files is to use a database engine — commonly known as a
Database Management System (DBMS) — to store, retrieve, and modify the data for you. A good database
engine serves as a smart go-between for you and your data, organizing and cataloging the data for quick
and easy retrieval.

So where does all the data go? Well, it depends to some extent on the database engine you're using.
Chances are, though, it'll end up being stored in a number of files — yes, files! Truth is you can’t really
get away from using files at some point. The trick is in finding ways to use them as efficiently as
possible, and a good database engine has many, many such tricks up its metaphorical sleeves.

This book, and developers in general, often use the word “database” to refer to the database engine, the
data itself, or both. Usually the exact meaning is clear from the context.

Database Architectures

Before you get going, you need to settle on a particular database with which to experiment, and that
means first deciding on the type of database architecture you're going to use. Broadly speaking, you
have two main options: embedded and client-server. Let’s take a quick look at both.

338

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Embedded Databases

An embedded database engine, as its name implies, sits inside the application that uses it (PHP in this
case). Therefore it always runs — and stores its data — on the same machine as the host application.

The database is not networked, and only one program can connect to it at any given time. Moreover, the
database can’t be shared between different machines because each one would simply end up storing and
manipulating its own separate version of the data.

On the plus side, embedded databases tend to be faster, easier to configure, and easier to work with.

Long-standing examples of embedded database engines include dBase and dbm, and PHP supports both
these engines in the form of PHP extensions. A more recent addition to the fold is SQLite, which is
bundled with the PHP engine itself, making it easy to install. It's well worth a look, and some impressive
performance stats certainly help back up its placement as the rising star of PHP database technologies.
You can learn more about SQLite in Appendix C.

Client-Server Databases

Client-server databases are, generally speaking, more powerful and flexible than embedded databases.
They are usually designed for use over networks, enabling many applications in a network to work
simultaneously with the same data. The database engine itself acts as a server, serving up data to its
clients (much like Web servers serve pages to Web browsers). In principle it can field requests from just
about anywhere with a network connection and a suitable client program. That said, there’s no reason
why you can’t run both server and client on the same machine; in fact this is a very common setup.

This is the kind of database you're more likely to find in a large company, where large quantities of data
need to be shared among many people, where access may be needed from all sorts of different locations,
and where having a single centralized data store makes important jobs like administration and backup
relatively straightforward. Any applications that need to access the database use specialized, lightweight
client programs to communicate with the server.

Most relational databases — including Oracle, DB2, and SQL Server — have a client-server architecture.
(You look at relational databases in a moment.)

Database Models

As well as the architecture of the database system, it’s worth thinking about the database model that you
want to use. The model dictates how the data is stored and accessed. Many different database models are
used today, but in this section you look at two common ones: the simple database model and the
relational database model.

Simple Databases

Simple database engines are, as the name implies, just about the simplest type of database to work with.
Essentially, the simple model is similar to an associative array of data. Each item of data is referenced by
a single key. It's not possible to define any relationships between the data in the database.

For smaller applications there can often be advantages to using a simple database model. For example, if
all you need to do is look up data based on keys, simple databases are lightning fast.

Common examples of simple-model databases include dbm and its variants, of which Berkeley DB is the
most popular these days.

339

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Relational Databases

Relational databases offer more power and flexibility than simple databases, and for this reason they
tend to be a more popular choice. They are also known as RDBMSs (Relational Database Management
Systems). You'll be concentrating on RDBMSs over the next three chapters.

RDBMSs are often expensive and complex to set up and administer. The widely acknowledged big three
in this field are Oracle, DB2 (from IBM), and SQL Server (from Microsoft). All three are massive, feature-
rich systems, seemingly capable of just about any kind of data storage and processing that a modern
business could need. The flip side of the coin is that these systems are big and expensive, and may
contain more functionality than you will ever require.

Fortunately, alternatives are available, such as PostgreSQL and MySQL, which are both open source
relational database systems that have proven very popular with PHP developers for many years. They're
fast, stable, easily meet the needs of most small-to-medium sized projects, and, to top it all off, they’re
free!

Choosing a Database

In principle, you can use any of these database systems in your PHP applications. You can even hook
one application up to several different database engines. To keep these chapters to a reasonable length,
however, you'll focus on just one database engine: MySQL.

Compared to the other choices, it offers several advantages:

Q It’s one of the most popular databases being used on the Web today
Q It’s freely available as a download to install and run on your own machine

Q It's easy to install on a wide range of operating systems (including UNIX, Windows, and Mac
0s X)

Q It’s available as a relatively cheap feature in many Web hosting packages
Q It’s simple to use and includes some handy administration tools
Q It’s a fast, powerful system that copes well with large, complex databases, and should stand you

in good stead when it comes to larger projects

If you're not too concerned about the last criterion (and particularly if you don’t want to pay extra for
database functionality on your Web hosting account!) you might well find that an embedded database
such as SQLite does a perfectly good job. PostgreSQL is also a great choice, and is similar in performance
and features to MySQL.

Although these three chapters focus on MySQL, many of the techniques you learn can easily be
transferred to other database systems.

You can find out more about using SQLite, PostgreSQL, and others in Appendix C.

340

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Understanding Relational Databases

In simple terms, a relational database is any database system that allows data to be associated and grouped
by common attributes. For example, a bunch of payroll records might be grouped by employee, by
department, or by date. Typically, a relational database arranges data into tables, where each table is
divided into rows and columns of data.

In database parlance, each row in a table represents a data record: a set of intrinsically connected pieces of
data, such as information relating to a particular person. Likewise, each column represents a field: a specific
type of data that has the same significance for each record in the table, such as “first name” or “age.”

The terms “row” and “record” are often interchangeable, as are “column” and “field.”
Here’s an example of a database table. Suppose that the manager of a football team sets up a database so

that she can track the matches in which her players compete. She asks each player to enter his details into
the database after each match. After two matches the manager’s table, called matchLog, looks like this:

playerNumber name phoneNumber datePlayed nickname
42 David 555-1234 03/03/04 Dodge

6 Nic 555-3456 03/03/04 Obi-d

2 David 555-6543 03/03/04 Witblitz
14 Mark 555-1213 03/03/04 Greeny

2 David 555-6543 02/25/04 Witblitz
25 Pads 555-9101 02/25/04 Pads

6 Nic 555-3456 02/25/04 Obi-d

7 Nic 555-5678 02/25/04 Nicrot

In this table, you can see that each row represents a particular set of information about a player who played
on a certain date, and each column contains a specific type of data for each person or date. Notice that each
column has a name at the top of the table to identify it; this is known as the field name or column name.

Normalization

The manager soon realizes that this matchLog table is going to be huge after everyone on the team has
played an entire season’s worth of games. As you can see, the structure of the table is inefficient because
each player’s details — number, name, phone number, and so on — are entered every time he plays a
match.

341

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Such redundancy is undesirable in a database. For example, say that the player with the number 6 keeps
dropping the ball, and his teammates decide to give him a new nickname (which won’t be mentioned
here). To update the table, every one of this player’s records would have to be modified to reflect his
new nickname.

In addition, every time a player enters his details after a match, all of that duplicate information is
consuming valuable space on the hard drive. Redundancy is terribly inefficient, wasting a great deal of
time and space.

Fortunately, in the early 1970s, Dr. E. F. Codd came up with a unique and powerful way to alleviate this
type of problem. He created a set of rules that, when applied to data, ensure that your database is well
designed. These are known as normal forms, and normalizing your data — that is, making sure it
complies with these normal forms — goes a long way to ensuring good relational database design. This
chapter doesn’t go into detail about normalization, which is quite a complex topic. However, the basic
idea is to break up your data into several related tables, so as to minimize the number of times you have
to repeat the same data.

The matchLog table contains a lot of repeating data. You can see that most of the repeating data is
connected with individual players. For example, the player with the nickname “Witblitz” is mentioned
twice in the table, and each time he’s mentioned, all of his information — his player number, name, and
phone number — is also included.

Therefore, it makes sense to pull the player details out into a separate players table, as follows:

playerNumber name phoneNumber nickname
42 David 555-1234 Dodge

6 Nic 555-3456 Obi-d
14 Mark 555-1213 Greeny

2 David 555-6543 Witblitz
25 Pads 555-9101 Pads

7 Nic 555-5678 Nicrot

You can see that each player has just one record in this table. The playerNumber field is the field that
uniquely identifies each player (for example, there are two Davids, but they have different
playerNumber fields). The playerNumber field is said to be the table’s primary key.

Now that the player fields have been pulled out into the players table, the original matchLog table

contains just one field — datePlayed — representing the date that a particular player participated in a
match.

342

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Here comes the clever bit. First, add the playerNumber column back into the matchlLog table:

playerNumber datePlayed
42 03/03/04
6 03/03/04
2 03/03/04
14 03/03/04
2 02/25/04
25 02/25/04
6 02/25/04
7 02/25/04

Now, by linking the values of the playerNumber fields in both the player and matchLog tables, you
can associate each player with the date (or dates) he played. The two tables are said to be joined by the
playerNumber field. The playerNumber field in the matchLog table is known as a foreign key, because it
references the primary key in the players table, and you can’t have a playerNumber value in the
matchLog table that isn’t also in the players table.

Because the only repeating player information remaining in the matchLog table is the playerNumber
field, you've saved some storage space when compared to the original table. Furthermore, it's now easy
to change the nickname of a player, because you only have to change it in one place: a single row in the
players table.

This type of connection between the two tables is known as a one-to-many relationship, because one
player record may be associated with many matchLog records (assuming the player plays in more than
one match). This is a very common arrangement of tables in a relational database.

You're probably wondering how to actually retrieve information from these two tables, such as the
nicknames of the players who played on March 3, 2004. This is where SQL comes in. You are introduced
to SQL in the next section.

Talking to Databases with SQL

SQL, the Structured Query Language, is a simple, standardized language for communicating with
relational databases. SQL lets you do practically any database-related task, including creating databases
and tables, as well as saving, retrieving, deleting, and updating data in databases.

As mentioned previously, this chapter concentrates on MySQL. The exact dialect of SQL does vary
among different database systems, but because the basic concepts are similar, the SQL skills you learn on
one system can easily be transferred to another. In this section you examine some basic features of SQL:
data types, indexes (keys), statements, and queries.

343

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

MySQL Data Types

When you create a database table — which you do later in the chapter — the type and size of each field
must be defined. A field is similar to a PHP variable except that you can store only the specified type and
size of data in a given field. For example, you can’t insert characters into an integer field. MySQL
supports three main groups of data types — numeric, date/time, and string — which are outlined in the
following sections.

The descriptions here are fine for everyday use, but they’re not complete. For full details see the MySQL
manual at http: //dev.mysqgl.com/doc/ .

This book assumes that you're using MySQL version 5 (the current version at the time of writing).

Numeric Data Types

You can store numbers in MySQL in many ways, as shown by the following table. Generally speaking, you
should pick the data type most suited for the type of numbers you need to store.

Numeric Data Type Description Allowed Range of Values

TINYINT Very small integer -128 to 127, or 0 to 255 if UNSIGNED

SMALLINT Small integer -32768 to 32767, or 0 to 65535 if
UNSIGNED

MEDIUMINT Medium-sized integer —-8388608 to 8388607, or 0 to 16777215
if UNSIGNED

INT Normal-sized integer —2147483648 to 2147483647, or 0 to
4294967295 if UNSTIGNED

BIGINT Large integer -9223372036854775808 to

9223372036854775807, or 0 to
18446744073709551615 if UNSIGNED

FLOAT Single-precision floating- Smallest non-zero value: +1.176 x 107%;
point number largest value: +3.403 x 10%

DOUBLE Double-precision floating- Smallest non-zero value: +2.225 x 10-%;
point number largest value: +1.798 x 10°%

DECIMAL (precision, Fixed-point number Same as DOUBLE, but fixed-point

scale) rather than floating-point. precision

specifies the total number of allowed
digits, whereas scale specifies how
many digits sit to the right of the
decimal point.

BIT Oorl Oorl

344

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Why not just always use the data types that can hold the biggest range of numbers, such as BIGINT and
DOUBLE? Well, the bigger the data type, the more storage space it takes up in the database. For example,
an INT field takes up four bytes, whereas a SMALLINT field only requires two bytes of storage. If you end
up storing millions of records, those extra two bytes can really make a difference! So use the smallest
data type that will comfortably hold the range of values you expect to use.

You can add the attribute UNSIGNED after a numeric data type when defining a field. An unsigned data
type can only hold positive numbers. In the case of the integer types, an unsigned type can hold a
maximum value that’s around twice the size of its equivalent signed type. For example, a TINYINT can
hold a maximum value of 127, whereas an unsigned TINYINT can hold a maximum value of 255.
However, for the unsigned FLOAT, DOUBLE, and DECIMAL fypes, the maximum values are the same as
for their signed equivalents.

Date and Time Data Types

As with numbers, you can choose from a range of different data types to store dates and times,
depending on whether you want to store a date only, a time only, or both:

Date/Time Data Type Description Allowed Range of Values

DATE Date 1 Jan 1000 to 31 Dec 9999

DATETIME Date and time Midnight, 1 Jan 1000 to 23:59:59, 31 Dec 9999

TIMESTAMP Timestamp 00:00:01, 1 Jan 1970 to 03:14:07, 9 Jan 2038, UTC
(Universal Coordinated Time)

TIME Time —838:59:59 to 838:59:59

YEAR Year 1901 to 2155

When you need to specify a literal DATE, DATETIME, or TIMESTAMP value in MySQL, you can use any of
the following formats:

YYYY-MM-DD / YY-MM-DD
YYYY-MM-DD HH:MM:SS / YY-MM-DD HH:MM:SS

YYYYMMDD / YYMMDD

U 0 0 U

YYYYMMDDHHMMSS / YYMMDDHHMMSS

345

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

String Data Types

MySQL lets you store text or binary strings of data in many different ways, as shown in the following table:

String Data Type Description Allowed Lengths

CHAR (n) Fixed-length string of n characters 0-255 characters

VARCHAR (1) Variable-length string of up to n 0-65535 characters
characters

BINARY (n) Fixed-length binary string of n 0-255 bytes

VARBINARY (n)

bytes

Variable-length binary string of up
to n bytes

0-65535 bytes

TINYTEXT Small text field 0-255 characters

TEXT Normal-sized text field 0-65535 characters

MEDIUMTEXT Medium-sized text field 0-16777215 characters

LONGTEXT Large text field 0-4294967295 characters

TINYBLOB Small BLOB (Binary Large Object) 0-255 bytes

BLOB Normal-sized BLOB 0-65535 bytes

MEDIUMBLOB Medium-sized BLOB 0-16777215 bytes (16MB)

LONGBLOB Large BLOB 0-4294967295 bytes (4GB)

ENUM Enumeration The field can contain one value from
a predefined list of up to 65,535
values

SET A set of values The field can contain zero or more

values from a predefined list of up
to 64 values

The difference between a CHAR and a VARCHAR field is that CHAR stores data as a fixed-length string no
matter how short the actual data may be, whereas VARCHAR uses exactly as many characters as necessary
to store a given value. Suppose you insert the string "dodge" into the following fields:

a char_field defined as CHAR (10)

a varchar_ field defined as VARCHAR (10)
They will store the same string slightly differently, as follows:

char_field: "dodge
varchar_field: "dodge"

" // Right-padded with five spaces
// No padding

346

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

So generally speaking, VARCHAR character fields save you disk space. Don’t be tempted to use VARCHAR
fields for storing every string, though, because that has drawbacks, too. The MySQL server processes
CHAR type fields much faster than VARCHAR type, for one thing, because their length is predetermined.

If your strings don’t vary in length much, or at all, you're better off using CHAR type fields. In fact, when
your strings are all the same length, VARCHAR takes up more disk space, because it has to store the length
of each string in one or two additional bytes.

With the character types — CHAR, VARCHAR, TEXT, and so on — the amount you can store may be less
than the maximum shown, depending on the character set used. For example, the UTF-8 (Unicode)
character set commonly uses up to 3 bytes per character, so a VARCHAR field may only be able to store up
to 21,844 UTF-8 characters.

Using Indexes and Keys

Inexperienced database designers sometimes complain about their database engines being slow — a
problem that’s often explained by the lack of an index. An index is a separate sorted list of the values in a
particular column (or columns) in a table. Indexes are also often called keys; the two words are largely
interchangeable. You can optionally add indexes for one or more columns at the time you create the
table, or at any time after the table is created.

To explain why indexing a table has a dramatic effect on database performance, first consider a table
without indexes. Such a table is similar to a plain text file in that the database engine must search it
sequentially. Rows in a relational database are not inserted in any particular order; the server inserts
them in an arbitrary manner. To make sure it finds all entries matching the information you want, the
engine must scan the whole table, which is slow and inefficient, particularly if there are only a few
matches.

Now consider an indexed table. Instead of moving straight to the table, the engine can scan the index for
items that match your requirements. Because the index is a sorted list, this scan can be performed very
quickly. The index guides the engine to the relevant matches in the database table, and a full table scan is
not necessary.

So why not just sort the table itself? This might be practical if you knew that there was only one field on
which you might want to search. However, this is rarely the case. Because it’s not possible to sort a table by
several fields at once, the best option is to use one or more indexes, which are separate from the table.

A primary key is a special index that, as you saw earlier, is used to ID records and to relate tables to one
another, providing the relational database model. Each related table should have one (and only one)
primary key.

You can also create an index or primary key based on combinations of fields, rather than just a single
field. For a key to be formed in this way, the combination of values across the indexed fields must be
unique.

Because an index brings about a significant boost in performance, you could create as many indexes as
possible for maximum performance gain, right? Not always. An index is a sure-fire way to increase the
speed of searching and retrieving data from a table, but it makes updating records slower, and also
increases the size of the table. This is because, when you insert a record into an indexed table, the
database engine also has to record its position in the corresponding index or indexes. The more indexes,
the slower the updating process and the larger the table.

347

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

So when creating indexes on a table, don’t create more than you need. Limit indexed columns to those
that will be searched or sorted frequently. If required, you can create additional indexes on a table as you
need them to increase performance.

Introducing SQL Statements

To actually work with databases and tables, you use SQL statements. Common statements include:

a SELECT — Retrieves data from one or more tables
QO INSERT — Inserts data into a table

0 REPLACE — Replaces data in a table. If the same record exists in the table, the statement
overwrites the record with the new data

QO upDATE — Updates data in a table

0O DELETE — Deletes data from a table
Other often-used statements create or modify tables and databases themselves, rather than manipulating
the data stored in a table:

O CcREATE — Creates a database, table or index

O ALTER — Modifies the structure of a table

QO DproP — Wipes out a database or table
You learn about most of these statements as you work through the next few chapters. Just to give you a
taste though, let’s take a look at the typical form of a MySQL SELECT statement, which retrieves records

from a table. Operations performed with SELECT are known as queries (hence the name “Structured
Query Language”):

SELECT fieldl, field2, ... , fieldn FROM table WHERE condition

A statement may expand to multiple lines. Here’s a simple example of a real multi-line SQL statement:
SELECT lastName, firstName
FROM users

WHERE firstName = 'John'

Take a closer look at the FROM and WHERE clauses in the query. The query returns any record from the
users table where the value of the firstName field is "John". Assuming there actually is a table
called users in the database, the query’s output might look like this:

Simpleton John
Smith John
Thomas John

The returned values are known as the result set. As you see later, you can loop through all the rows in a
result set within your PHP script. If your query finds no rows, NULL (discussed in the next section) is

returned instead.

Other SQL statements such as DELETE or INSERT don’t return a result set.

348

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Understanding the NULL Value

As well as the data types previously mentioned, MySQL can deal with another special value known
as NULL.

In a MySQL table, a NULL value for a field represents missing data in that field. NULL doesn’t belong to
any particular data type, but it can replace any value. Because it is not a data type, even though it can be
in a field, the concept of a NULL is often difficult to grasp. For example, a common mistake is to think of
NULL as zero, which is wrong because zero is a value; NULL is not. Strings filled with one or more blank
spaces, and strings of zero length, may also be mistaken for NULL. NULL is nothing, no data type, no data.

So what happens if the result set from one of your queries contains a NULL, and that result set is then
used in your PHP script in subsequent calculations? Generally speaking, NULL propagates throughout
the calculations. Any arithmetic operation involving a NULL returns NULL. After all, how could you
provide results when all the data needed to perform the calculation are not present?

Don’t worry if the concept of NULL seems a bit strange at first. It'll make sense once you start using it in
earnest.

Now let’s put all this theory into practice and have some fun with MySQL!

Setting Up MySQL

The MySQL database system comes with a number of different programs. The two important ones that
you learn about here are:

Q The MySQL server — This is the database engine itself. The program is usually called mysgld or
similar

QO The MySQL command-line tool — You can use this tool to talk directly to the MySQL server so
that you can create databases and tables, and add, view, and delete data. It’s handy for setting
up your databases and also for troubleshooting. The program name is simply mysqgl

Starting the MySQL Server

If you followed the instructions in Chapter 2 for installing PHP — using Synaptic on Ubuntu,
WampServer on Windows, or MAMP on Mac OS X — then the MySQL server and command-line tool
should already be installed on your computer. In fact, the MySQL server may already be running, but if
it’s not, here’s how to start it:

Q Ubuntu — Choose System => Administration = Services. In the dialog that appears, look for the
“Database server (mysql)” item in the list. If there’s a check mark to the left of the item, it should
already be running. If not, click Unlock, type your password, and click Authenticate. Now click
the checkbox to the left of the “Database server (mysql)” item. The MySQL database server
(mysqgld) should now be running

Q WampServer on Windows — Examine the WampServer icon in your taskbar. If the icon is black
and white, your Apache and MySQL servers should be running correctly. If the icon is part
yellow or part red, then one or both of the servers aren’t running. Click the icon to display the

349

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

WampServer menu, then choose the Start All Services or Restart All Services option to start both
the Apache and MySQL servers

Q MAMP on Mac OS X — Open the MAMP folder inside your Applications folder in Finder, then
double-click the MAMP icon to launch the application. If the MySQL server has a red light to the
left of it, click the Start Servers button to start up both the Apache and MySQL servers. Both
lights should now be green

Setting Up the MySQL root Password

Now that the MySQL database engine is running on your computer, it’s time to configure the MySQL
root user.

MySQL, like most networked systems, requires you to log in with a specific user account before doing
anything else. This is a fairly obvious security measure, and it limits access to the data by specifying
permissions for each account. For example, one user may only have permission to view existing data,
whereas another may have permission to add new data, and perhaps even change other users’
permissions.

root is the name traditionally given to a system’s most senior user, who automatically has permission to
view and modify all data and settings: a powerful position to be in. When MySQL installs, it creates the
root account automatically, but doesn’t set a password for it. This means that anyone can connect to
your server as root! So your pristine MySQL server could be wide open to use and abuse by anyone
with a MySQL client and a network connection to the server, and you need to do something about that.

The process of setting the root password can seem a bit long-winded, especially if you're unfamiliar
with MySQL, but it’s fairly straightforward, and you only have to do it once!

To set up a root password, follow these steps:

1. Bring up a shell prompt — On Ubuntu, choose Applications = Accessories & Terminal. On
Windows, choose Start &> All Programs => Accessories & Command Prompt. On the Mac, double-
click the Terminal icon inside your Applications/Utilities folder.

2. Change to the correct folder — In the Terminal or Command Prompt window, use cd to change to
the directory containing the MySQL command-line tool, mysgl. With WampServer on Windows,
this should be something like C: \wamp\bin\mysgl\mysgl5.0.51b\bin. So you'd type:

cd C:\wamp\bin\mysgl\mysgl5.0.51b\bin

and press Enter.

When using MAMP on Mac OS X, assuming you installed MAMP inside your Applications
folder, the correct directory should be /applications/MAMP/Library/bin. If you're using
Ubuntu, you should be able to skip this step, because mysql is usually installed in the standard
path /usr/bin.

3. Start the MySQL command-line tool — On Ubuntu and Windows, type

mysgl -u root

350

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

and press Enter. On Mac OS X, type:
./mysgl -u root

(that’s a period, then a slash, then mysqgl, followed by a space, a hyphen, the letter “u,” another
space, and the word root) and press Enter. You should see a message similar to the following
appear, indicating that you’re now running the mysql tool:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 671

Server version: 5.0.41 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysqgl>

If you get an error along the lines of "Access denied for user 'root'@'localhost’
(using password: NO) ", your MySQL server’s root account already has a password, and you'll
need to enter the password using -p (as shown in a moment). If you've forgotten the password, you can
reset it as described in a moment.

4. Inspect the current privileges — Enter the following at the mysqgl> prompt and press Enter:
SELECT Host, User, Password FROM mysqgl.user;

When entering SQL statements in the MySQL command-line program, you need to end each statement
with a semicolon.

You'll see a list of the current users and passwords in the MySQL system, presented as a table.
It'll probably look similar to the following:

o mm———m o mmm e +
| Host | User | Password |
o mm e to—mm mmmm +
localhost	root	
mattscomputer	root	
127.0.0.1	root	
localhost		
mattscomputer		
o mm e o Hmmmm +
)

5 rows in set (0.00 sec
mysqgl>

You should see one or more rows with root in the User column, and an empty Password
column. You need to add a password to each one of those rows.

351

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

5. Add passwords for the root users — Type the following lines, replacing mypass with the pass-
word you want to use and mattscomputer with the host name of your computer (shown in the
Host column in the table), and pressing Enter after each line:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('mypass') ;
SET PASSWORD FOR 'root'@'mattscomputer' = PASSWORD('mypass');
SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('mypass') ;

You only need to enter the lines that correspond to the root entries shown in the table. For example,
if your table doesn’t include the line with the 127.0.0. 1 host, you can omit the third SET PASSWORD line.

Make sure you choose a secure password. At a minimum, this should be at least 7 characters long, and
contain a mixture of letters and numbers.

6. Check that the passwords have been set — Retype the SELECT line from Step 4 and press Enter.
You should see that the three root users now have their Password columns set:

tomm e +-————- B e e +
| Host | User | Password |
o Fm————— B et et] +
localhost	root	*D8DECEC305209EEFEC43008E1D420E1AA06B19E0
mattscomputer	root	*D8DECEC305209EEFEC43008E1D420E1AA06B19ED
127.0.0.1	root	*D8DECEC305209EEFEC43008E1D420E1AA06B19E0Q
localhost		
mattscomputer		
o ——— +-———— o +

7. Exit the MySQL command-line tool — Type exit and then press Enter to return to the shell
prompt.

Now that you've added a password for the root account, your MySQL server is relatively secure. To test
the new password, run the mysql command again, but this time, add a -p (hyphen followed by "p")
to the end of the command line, as follows:

mysgl -u root -p # Ubuntu, Windows
./mysgl -u root -p # Mac OS X

MySQL will prompt you for the root password that you entered previously. Type it now, then press
Enter. If all goes well you should be back at the mysgl> prompt. Again, type exit and press Enter to exit
the program.

If you get an “Access denied” error, try again. If you still can’t get access, you may need to reinstall
your MySQL server. Alternatively you may be able to reset the root password. See the section titled
“How to Reset the Root Password” in the MySQL reference manual at http: //dev.mysqgl.com/
doc/refman/5.1/en/resetting-permissions.html.

You can now use this root user to create and work with databases in your MySQL system. The PHP
scripts you create later will also use the root user to connect to your MySQL database. Though this is
fine for development and testing purposes, you should not use the root user in your PHP scripts on a
live server. Instead, create a new MySQL user that has only the privileges that your script needs. (If
you're running your site on a shared server, your hosting company will probably give you a username
and password to use.)

352

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Creating additional MySQL users is outside the scope of this book, but you can find out how to do it in
the Account Management Statements section of the MySQL manual (http: //dev.mysqgl.com/doc/
refman/5.1/en/account-management-sql.html).

The mysql program stores a list of your most recently entered statements. (Press the Up key to move
back through the items in the list.) For security reasons, it’s a good idea to delete this list once you've set
the root password, because the password will appear in the SET PASSWORD FOR lines in this list. To do
this on Ubuntu and Mac OS X, exit the command-line tool and delete the .mysgl_history file in your
home directory (rm ~/.mysql_history). On Windows, simply exit the command-line tool then close
the Command Prompt window.

By the way, if you're not comfortable with the command-line tool, many graphical applications are
available that you can use to administer and talk to your MySQL server. Try the free MySQL
Administrator and MySQL Query Browser programs, available from http: //dev.mysqgl.com/
downloads/gui-tools/5.0.html. A good Web-based tool is phpMyAdmin (http: / /www
.phpmyadmin.net/), which also comes bundled with WampServer on Windows (click the
WampServer taskbar icon to access it).

A Quick Play with MySQL
Now that you've set up the MySQL root user, you can start working with databases. In the following
sections, you create a new database, add a table to the database, and add data to the table. You also learn
how to query databases and tables, update data in tables, and delete data, tables, and databases.
Most of the examples in the following sections show commands, statements, and other SQL keywords

being entered using all-uppercase letters. Though SQL keywords are traditionally in uppercase, MySQL
also lets you enter keywords in lowercase. So use lowercase if you prefer.

Creating a New Database

It’s easy to create a new MySQL database. First, fire up the MySQL command-line tool using the same
method that you used when changing the root password. Open a shell prompt, change to the correct
folder (if using Windows or Mac OS X), and then on Ubuntu or Windows type:

mysgl -u root -p
On the Mac type:

./mysgl -u root -p

Press Enter. Now enter the root password you specified earlier, and press Enter again. You should see the
prompt appear:

mysqgl>

To create a new database, all you have to do is use the CREATE DATABASE command. Type the following to
create a new database called mydatabase:

CREATE DATABASE mydatabase;

353

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Press Enter, and MySQL creates your new database. You can see a list of all the databases in the system —
including your new database — by typing the command SHOW DATABASES:

mysqgl> SHOW DATABASES;

e +
| Database |
e +
| information_schema |
| mydatabase |
| mysql |
T T +

3 rows in set (0.00 sec)
Don't forget to type a semicolon at the end of a command or statement before pressing Enter.

You can see that this system has three databases. information_schema and mysqgl are databases
connected with the operation of MySQL itself, and mydatabase is the database you just created.

Creating a Table

As you know, tables are where you actually store your data. To start with, you'll create a very simple
table, fruit, containing three fields: 1d (the primary key), name (the name of the fruit), and color (the

fruit’s color).

The first thing to do is select the database you just created. Once you've selected a database, any
database-manipulation commands you enter work on that database. Type the following;:

USE mydatabase;
Press Enter, and you should see:

Database changed
mysqgl>

Now create your table. Type the following at the mysgl> prompt:

mysql> CREATE TABLE fruit (

-> id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
-> name VARCHAR (30) NOT NULL,
-> color VARCHAR (30) NOT NULL,

-> PRIMARY KEY (id)
->)

Press Enter at the end of each line. Don’t enter the "->" arrows; MySQL displays these automatically
each time you press Enter, to inform you that your statement is being continued on a new line.

If all goes well, you should see a response similar to the following:

Query OK, 0 rows affected (0.06 sec)

354

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

You've now created your table. To see a list of tables in your database, use the SHOW TABLES command:

mysqgl> SHOW TABLES;

ey +
| Tables_in_mydatabase |
o +
| fruit |
o +

1 row in set (0.00 sec)
You can even see the structure of your newly created table by using the EXPLAIN command, as follows:

mysgl> EXPLAIN fruit;

o o +m—m— +m——— Fommm o +
| Field | Type | Null | Key | Default | Extra |
e o tm————— R Fmm e +
iad	smallint(5) unsigned	NO	PRI	NULL	auto_increment
name	varchar(30)	NO		NULL	
color	varchar(30)	NO		NULL	
Fommm o tm—m— o Fommm o mm e +

3 rows in set (0.00 sec)
You've created a table with the following three fields:

Q idis the primary key. It uniquely identifies each row of the table. You created the id field as
SMALLINT UNSIGNED, which means it can hold integer values up to 65,535 (which should be
enough for even the most ardent fruit fan). You used the keywords NOT NULL, which means that
NULL values aren’t allowed in the field. You also specified the keyword AUTO_INCREMENT. This
ensures that, whenever a new row is added to the table, the id field automatically gets a new,
unique value (starting with 1). This means you don’t have to specify this field’s value when
inserting data

Q name will store the name of each fruit. It’s created as VARCHAR (30), which means it can hold
strings of up to 30 characters in length. Again, the NOT NULL keywords specify that NULL values
aren’t allowed for this field

Q color was created in the same way as name, and will be used to store the color of each fruit
By the way, if you ever want to create a regular key (as opposed to a primary key) for a field in a table,
use the keyword KEY or INDEX instead of PRIMARY KEY. So if you wanted to add an index for the name

field (because your table contained a large number of fruit records and you frequently wanted to look up
fruit by name), you could use (again, don’t type the arrows):

mysqgl> CREATE TABLE fruit (

-> id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
-> name VARCHAR (30) NOT NULL,
-> color VARCHAR (30) NOT NULL,

-> PRIMARY KEY (id),
-> KEY (name)

355

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Adding Data to a Table

Now try adding some fruit to your table. To add a new row to a table, you use the SQL INSERT
statement. In its basic form, an INSERT statement looks like this:

INSERT INTO table VALUES (valuel, value2, ...);

This inserts values into each of the fields of the table, in the order that the fields were created.
Alternatively, you can create a row with only some fields populated. The remaining fields will contain
NULL (if allowed), or in the case of special fields such as an AUTO_INCREMENT field, the field value will be
calculated automatically. To insert a row of partial data, use:

INSERT INTO table (fieldl, field2, ...) VALUES (valuel, value2, ...);

So you can add three rows to the fruit table by inserting data into just the name and color fields (the
id field will be filled automatically):

mysgl> INSERT INTO fruit (name, color) VALUES ('banana', 'vyellow');
Query OK, 1 row affected (0.06 sec)

mysgl> INSERT INTO fruit (name, color) VALUES ('tangerine',6 'orange');
Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO fruit (name, color) VALUES ('plum', 'purple');
Query OK, 1 row affected (0.00 sec)

mysqgl>

Reading Data from a Table

To read data in SQL, you create a query using the SELECT statement. Thanks to the flexibility of SQL, it’s
possible to run very complex queries on your data (for example, “Give me a list of all transactions over
$500 sent from John Smith to Henry Hargreaves between 13 October and 17 November last year”). For
now, though, you'll stick with couple of simple examples.

To retrieve a list of all the data in your fruit table, you can use:

mysgl> SELECT * from fruit;

B TR tmmm +
| id | name | color |
fmmm e fmmm +
1	banana	yellow
2	tangerine	orange
3	plum	purple
B TR Fmmmm———— +
3 rows in set (0.00 sec)

356

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

(The asterisk means “all fields.”) You can also specify just the field or fields you want to retrieve:

mysgl> SELECT name, color from fruit;

o e +
| name | color

o mm e T +
banana	yellow
tangerine	orange
plum	purple
fmmmm o fmmmm e +

3 rows in set

(0.00 sec)

To retrieve a selected row or rows, you need to introduce a WHERE clause at the end of the SELECT
statement. A WHERE clause filters the results according to the condition in the clause. You can use
practically any expression in a WHERE condition. Here are some simple WHERE clauses in action:

mysgl> SELECT * from fruit WHERE name = 'banana’;

1 row in set (0.08 sec)

mysgl> SELECT * from fruit WHERE id >= 2;

s T TR D +
| id | name | color

Fmmm b B +
| 2 | tangerine | orange |
| 3 | plum | purple |
o m tmmm————— +
2 rows in set (0.06 sec)

You build more complex SELECT queries and WHERE clauses in the next chapter.

Updating Data in a Table

You change existing data in a table with the UPDATE statement. As with the SELECT statement, you can
(and usually will) add a WHERE clause to specify exactly which rows you want to update. If you leave out

the WHERE clause, the entire table gets updated.
Here’s how to use UPDATE to change values in your fruit table:

mysgl> UPDATE fruit SET name = 'grapefruit',6 color = 'yellow' WHERE id =
Query OK, 1 row affected (0.29 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysgl> SELECT * from fruit;

o m e Fommm +
| id | name | color |
i Fommm e +
1	banana	vyellow
2	grapefruit	yellow
3	plum	purple
i oo +
3 rows in set (0.00 sec)

2;

357

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Deleting Data from a Table

Deleting works in a similar way to updating. To delete rows, you use the DELETE statement. If you add a
WHERE clause, you can choose which row or rows to delete; otherwise all the data in the table are deleted

(though the table itself remains). Here’s an example:

mysgl> DELETE FROM fruit WHERE id = 2;
Query OK, 1 row affected (0.02 sec)

mysql> SELECT * from fruit;

|
i
|
plum | purple |
+
(

Deleting Tables and Databases

To delete a table entirely, use the DROP TABLE statement. Similarly, you can delete an entire database
with DROP DATABASE.

First, here’s how to use DROP TABLE:

mysgl> SHOW TABLES;

o +
| Tables_in_mydatabase |
o +
| fruit |
o +

mysgl> DROP TABLE fruit;
Query OK, 0 rows affected (0.25 sec)

mysgl> SHOW TABLES;
Empty set (0.00 sec)

DROP DATABASE works in a similar fashion:

mysqgl> SHOW DATABASES;

e +
| Database |
B e +
| information_schema |
| mydatabase |
| mysql |
e +

3 rows in set (0.40 sec)

mysqgl> DROP DATABASE mydatabase;
Query OK, 0 rows affected (0.14 sec)

358

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

mysgl> SHOW DATABASES;

o +
| Database |
o +
| information_schema |
| mysql |
s +

2 rows in set (0.00 sec)

Be careful with statements such as DELETE and DROP, because you can’t undo the deletion process.
Make sure you back up your MySQL databases regularly, and before carrying out any operation that
could potentially wipe a lot of data. For information on backing up, see the “Database Backups” section
of the MySQL manual at http: //dev.mysql.com/doc/refman/5.0/en/backup.html

You can also alter the definition of a table, even if it already has data within it. To do this, you use the ALTER
TABLE statement. You can find out more about ALTER TABLE in the "ALTER TABLE Syntax” section of
the MySQL manual at http: //dev.mysql.com/doc/refman/5.1/en/alter-table.html.

Connecting to MySQL from PHP

So far you've learned the theory behind relational databases and worked directly with MySQL thorough
the mysgl command-line tool. Now it’s time to get your PHP scripts talking to MySQL.

At the time of writing, PHP provides you with two main ways to connect to MySQL databases:

Q mysqli (MySQL improved) — This extension is specifically tied to MySQL, and provides the
most complete access to MySQL from PHP. It features both procedural (function-oriented) and
object-oriented interfaces. Because it has quite a large set of functions and classes, it can seem
overwhelming if you're not used to working with databases. However, if you know you're only
ever going to work with MySQL, and you want to squeeze the most out of MySQL’s power from
your PHP scripts, then mysqli is a good choice

Q PDO (PHP Data Objects) — This is an object-oriented extension that sits between the MySQL
server and the PHP engine. It gives you a nice, simple, clean set of classes and methods that you
can use to work with MySQL databases. Furthermore, you can use the same extension to talk to
lots of other database systems, meaning you only have to learn one set of classes and methods in
order to create applications that can work across MySQL, PostgreSQL, Oracle, and so on

Choosing between these two extensions can be a topic of religious debate among PHP developers, which
goes to show that both approaches have their strengths and weaknesses. This book uses PDO, mainly
because it’s easier and quicker to learn, but once you've learned PDO you should find that you can
transfer your skills to mysqli if needed.

If you've installed PHP and MySQL using Synaptic on Ubuntu, WampServer on Windows, or MAMP on
the Mac, you should find that both the mysqli and PDO extensions are already installed. (If you need to
install PDO manually, you can find instructions at http: / /www.php.net/manual/en/pdo
.installation.php.)

359

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Making a Connection

To make a connection to a MySQL database in your PHP script, all you need to do is create a new pDO
object. When you create the object, you pass in three arguments: the DSN, which describes the database
to connect to; the username of the user you want to connect as; and the user’s password. The returned
PDO object serves as your script’s connection to the database:

Sconn = new PDO(dsn, SSusername, S$password);
A DSN, or Database Source Name, is simply a string that describes attributes of the connection such as
the type of database system, the location of the database, and the database name. For example, the
following DSN can be used to connect to a MySQL database called mydatabase running on the same
machine as the PHP engine:
$dsn = "mysgl:host=localhost;dbname=mydatabase";

If host isn't specified, localhost is assumed.

So, putting it all together, you could connect to your mydatabase database as follows (replacing mypass
with your real root password of course):

Sdsn = "mysql:dbname=mydatabase";
Susername = "root";
Spassword = "mypass";

Sconn = new PDO(S$dsn, Susername, Spassword);
When you've finished with the connection, you should close it so that it’s freed up for other scripts to
use. Although the PHP engine usually closes connections when a script finishes, it’s a good idea to close

the connection explicitly to be on the safe side.

To close the connection, just assign null to your connection variable. This effectively destroys the PDO
object, and therefore the connection:

Sconn = null;

Handling Errors

Database errors can be notoriously difficult to track down and deal with. One of the nice things about
PDO is that you can get it to return MySQL errors in the form of highly descriptive PDOException
objects. You can then use the PHP keywords try and catch to handle these exceptions easily and deal
with them appropriately.

Exceptions are covered fully in Chapter 20, so you just learn the basics here.

To set PDO to raise exceptions whenever database errors occur, you use the PDO: : SetAttribute
method to set your PDO object’s error mode, as follows:

Sconn = new PDO(dsn, Susername, S$password);
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;

360

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Now you can capture any error that might occur when connecting to the database by using a try ...
catch code block. If you were writing a sophisticated application, you'd probably log the error message
to a file, and possibly send an email to the Webmaster informing him of the details of the error. For the
sake of these examples, though, you'll just display the error message in the Web page:

try {
Sconn = new PDO($dsn, Susername, Spassword);
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;
} catch (PDOException $e) {
echo "Connection failed: " . $e->getMessagel();

}

PHP runs the code within the try block. If an exception is raised by PDO, the catch block stores the
PDOException object in $e, then displays the error message with $e->getMessage ().

For example, if the $password variable in the script contained an incorrect password, you'd see a
message like this appear when you ran the script:

Connection failed: SQLSTATE[28000] [1045] Access denied for user
'root'@'localhost' (using password: YES)

Reading Data

Now that you've connected to your database in your PHP script, you can read some data from the
database using a SELECT statement. To send SQL statements to the MySQL server, you use the query
method of the PDO object:

Sconn->query ($sql);

If your SQL statement returns rows of data as a result set, you can capture the data by assigning the
result of $conn->query to a variable:

Srows = $conn->query ($sql);

The result returned by $conn->query is actually another type of object, called a PDOStatement object.
You can use this object along with a foreach loop to move through all the rows in the result set. Each
row is an associative array containing all the field names and values for that row in the table. For
example:

$sgl = "SELECT * FROM fruit";

$rows = $conn->query($sql);

foreach (Srows as $row) {
echo "name = " . Srow["name"] . "
";
echo "color = " . $row["color"] . "
";

361

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

_ Read a Database Table with PHP

This simple example shows you how to use PDO to connect to a MySQL server and database, read all
the rows of a table, and handle any errors that might occur.

First, you need a database and table to work with. This example assumes that you've already created
the database called mydatabase, and created and populated the table called fruit, as shown in
previous sections. If you haven’t, you can easily re-create the database and table by typing the
following into the MySQL command-line tool:

CREATE DATABASE mydatabase;
USE mydatabase;

CREATE TABLE fruit (

id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR (30) NOT NULL,
color VARCHAR (30) NOT NULL,

PRIMARY KEY (id)
) ;

INSERT INTO fruit (name, color) VALUES ('banana', 'yellow');
INSERT INTO fruit (name, color) VALUES ('tangerine', 'orange');
INSERT INTO fruit (name, color) VALUES ('plum',6 'purple');

Now save the following script as get_fruit.php in your document root folder, replacing mypass
with the password you set for the root user in MySQL, and run the script in your Web browser. You
should see a result similar to Figure 12-1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Fruit</title>
<link rel="stylesheet" type="text/css" href="common.css" />

</head>
<body>
<hl>Fruit</hl>

<?php
Sdsn = "mysql:dbname=mydatabase";
Susername = "root";
Spassword = "mypass";
try {

Sconn = new PDO(S$dsn, Susername, S$password);
Sconn->setAttribute(PDO: :ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;
} catch (PDOException S$e) {

362

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

echo "Connection failed: " . $Se->getMessage() ;

}
$sgl = "SELECT * FROM fruit";

echo "";

try {
Srows = Sconn->query($sqgl);
foreach (S$rows as S$row) {
echo "<1i>A " . Srow["nmname"] . " is " . Srow["color"] . "";
}
} catch (PDOException $e) {
echo "Query failed: " . Se->getMessage();
}

echo "";
Sconn = null;

?>
</body>
</html>

& Frult = Mozilla Hreton
Fle Edit ‘View Hislory Bookmarks Tools Help

- o a T | 8| httpyflocalhostiget_fruit.php |'| G~)

Fruit

« A bananais yellow
= A tangerine is orange
o A plum is purple

Done

Figure 12-1

How It Works
After displaying an XHTML page header, the script sets up the DSN, username, and password for
connecting to the MySQL database:

Sdsn = "mysql:dbname=mydatabase";
Susername = "root";
Spassword = "mypass";

363

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Next, the script uses PDO to open the database connection, trapping and displaying any error that
occurs:

try {
Sconn = new PDO($dsn, Susername, S$Spassword);
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;
} catch (PDOException Se) {
echo "Connection failed: " . Se->getMessage();
}

Now the SQL query is created and stored in a string variable, $sql. This query simply extracts all the
data from the fruit table:

$sgl = "SELECT * FROM fruit";

The main part of the script runs the query, and loops through the returned rows of data, displaying the
contents of each row in an HTML 11 element:

echo "";

try {
Srows = $conn->query($sqgl);
foreach (Srows as Srow) {
echo "<1i>A " . Srow["name"] . " is " . S$row["color"] . "</1li>";

}
} catch (PDOException Se) {

echo "Query failed: " . Se->getMessage();
}

echo "";

Notice that both the call to $conn->query and the looping code are within a try block to catch any
exceptions that might be caused by running the query. If an exception is thrown, it is handled by the
catch block, which displays the message “Query failed,” along with the error message.

Finally, the script closes the database connection and completes the XHTML page:
Sconn = null;
?>

</body>
</html>

That'’s the basics of using PDO to connect to a database from within your PHP scripts. In the next couple
of chapters you use PHP to build more advanced queries and commands for manipulating your data,
and construct some useful database-driven applications.

364

(c) ketabton.com: The Digital Library

Chapter 12: Introducing Databases and SQL

Summary

Though you can use text files for storing small amounts of data, many Web applications have a need to
store data in databases. In this chapter you were introduced to the concept of databases, and you learned
some basic techniques for working with databases in general, and MySQL in particular:

Q

You studied embedded, client-server, simple, and relational databases, and saw that a relational
database such as MySQL stores its data as rows and columns in tables. You discovered that by
splitting your data over more than one table, you can make your database more efficient — a
process known as normalization

In preparation for working with MySQL, you learned the basics of the SQL language, and
explored MySQL data types and indexes (keys). You also looked at the concept of NULL values

Putting theory into practice, you learned how to start your MySQL server, set up a root
password, create databases and tables, add data to tables, and read, update, and delete data in
tables. You also learned how to delete whole tables and databases

In the final section of the chapter, you took a quick look at connecting to MySQL from your PHP
scripts using the PDO extension. You learned how to set up a connection, how to handle errors,
and how to read data from a table

You build on these skills in the coming chapters, where you start to build some practical database-driven
PHP applications. The next chapter takes a look at how to retrieve MySQL data from within your PHP
scripts. Meanwhile, try the following two exercises to test your knowledge of SQL and of writing
MySQL-enabled PHP scripts. You can find the solution to these exercises in Appendix A.

Exercises

1.

Write out an SQL statement that creates a table called members in your mydatabase database to
store information about the members of a book club. Store the following data for each person:
first name, last name, age, and the date they joined the club. Create more SQL statements to
insert five imaginary people into this table:

O Jo Scrivener, aged 31, joined September 3, 2006
Marty Pareene, aged 19, joined January 7, 2007
Nick Blakeley, aged 23, joined August 19, 2007
Bill Swan, aged 20, joined June 11, 2007

Jane Field, aged 36, joined March 3, 2006

0O U0 0

Write a PHP script to query the table you created in Exercise 1, displaying the details of all club
members under 25 years of age.

365

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

13

Retrieving Data from
MySQL with PHP

Up to now, you've concentrated mainly on connecting to MySQL, either through the command-
line tool or through PHP’s PDO extension, and on creating tables and filling them with data. One
of the first SQL statements you came across in the last chapter was a basic SELECT query. There’s
quite a lot more you can do with SELECT, and this chapter focuses on the different ways you can
use queries in PHP scripts to get at the data stored in a MySQL database.

You start off by creating a couple of MySQL tables for a fictional book club database. These tables
are used in the examples and scripts throughout this chapter and the next.

You then take a close look at how to construct SQL SELECT statements so that they access the
data you want, arranged in the way you want. You learn how to:

Q Limit the number of results returned

Q Order and group results

Q Query multiple tables at once

Q Use various MySQL functions and other features to build more flexible queries

After exploring the theory of SELECT statements, you create a member viewer application that you
can use to access the book club tables you created at the start of the chapter.

Setting Up the Book Club Database

The example queries and scripts in this chapter and the next work with two tables: a members
table of book club members, and an accessLog table to track each member’s visits to the book
club Web site. So that you can work through these examples, first create these tables and a
database to hold them, in MySQL, and populate the tables with some sample data.

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

If you don’t fancy typing all these lines directly into the MySQL command-line tool, you can create a text
file — say, book_club.sgl — and enter the lines in there. Save the file in the same folder as you run the
MySQL command-line tool from. Run the tool, then type:

source book_club.sqgl;

This command reads the lines of the text file and executes them, just as if you’d manually entered the
SQL statements into the tool line-by-line.

Without further ado, here are the SQL statements to create and populate the two tables:

USE mydatabase;

CREATE TABLE members (

id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,

username VARCHAR (30) BINARY NOT NULL UNIQUE,

password CHAR (41) NOT NULL,

firstName VARCHAR (30) NOT NULL,

lastName VARCHAR (30) NOT NULL,

joinDate DATE NOT NULL,

gender ENUM('m', 'f') NOT NULL,

favoriteGenre ENUM('crime', 'horror', 'thriller', 'romance', 'sciFi',
'adventure', 'nmonFiction') NOT NULL,

emailAddress VARCHAR (50) NOT NULL UNIQUE,

otherInterests TEXT NOT NULL,
PRIMARY KEY (id)
) g

INSERT INTO members VALUES(1, 'sparky', password('mypass'), 'John',
'Sparks', '2007-11-13', 'm', 'crime', 'Jjsparks@example.com',6 'Football,
fishing and gardening');

INSERT INTO members VALUES(2, 'mary', password('mypass'), 'Mary', 'Newton',
'2007-02-06"', 'f', 'thriller', 'mary@example.com', 'Writing, hunting and
travel');

INSERT INTO members VALUES(3, 'jojo', password('mypass'), 'Jo', 'Scrivener',
'2006-09-03', 'f', 'romance', 'Jjscrivener@example.com',6 'Genealogy, writing,
painting');

INSERT INTO members VALUES(4, 'marty', password('mypass'), 'Marty',
'Pareene', '2007-01-07', 'm', 'horror', 'marty@example.com',6 'Guitar playing,
rock music, clubbing');

INSERT INTO members VALUES(5, 'nickb', password('mypass'), 'Nick',
'Blakeley', '2007-08-19', 'm', 'sciFi', 'nick@example.com', 'Watching movies,
cooking, socializing');

INSERT INTO members VALUES(6, 'bigbill', password('mypass'), 'Bill', 'Swan',
'2007-06-11"', 'm', 'monFiction', 'billswan@example.com', 'Tennis, judo,
music');

INSERT INTO members VALUES(7, 'janefield',K password('mypass'), 'Jane',
'Field', '2006-03-03', 'f', 'crime', 'Jjanefield@example.com',6 'Thai cookery,

gardening, traveling');

CREATE TABLE accessLog (

memberId SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
pageUrl VARCHAR (255) NOT NULL,
numVisits MEDIUMINT NOT NULL,

368

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

lastAccess TIMESTAMP NOT NULL,
PRIMARY KEY (memberId, pageUrl)
) &

INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(1, 'diary.php',

2)3

INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(3, 'books.php',
2)5

INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(3, 'contact
.php', 1);

INSERT INTO accessLog(memberId, pageUrl, numVisits) VALUES(6, 'books.php',
4);

Why is the password field exactly 41 characters long? Further down in the code, you can see that you
insert the members’ passwords in encrypted form by calling MySQL’s password () function. The
encrypted password strings returned by password () are always 41 characters long, so it makes sense to
use CHAR (41) for the password field.

A few new concepts in these SQL statements are worth exploring here: the BINARY attribute, the UNIQUE
constraint, the ENUM data type, and the TIMESTAMP data type.

The BINARY Attribute and Collations

All character data types have a collation that is used to determine how characters in the field are
compared. By default, a character field’s collation is case insensitive. This means that, when you sort the
column alphabetically (which you learn to do shortly), “a” comes before both “b” and “B”. It also means
that queries looking for the text “banana” will match the field values “banana” and “Banana”.

However, by adding the BINARY attribute after the data type definition, you switch the field to a binary
collation, which is case sensitive; when sorting, “a” comes before “b”, but “B” comes before “a” (because,
generally speaking, uppercase letters come before lowercase letters in a character set). Furthermore, this

means that matches are case sensitive too; “banana” will only match “banana”, not “Banana”.

In this case, you created the username field of the members table with the BINARY attribute, making it
case sensitive:

username VARCHAR (30) BINARY NOT NULL UNIQUE,

This ensures that there’s no ambiguity over the case of the letters in each user’s username; for example,
“john” is a different username than “John”. This is important because many people choose usernames
where the case of the username’s characters is significant to them. If they created their account with a
username of “john”, and later found out they could also login using “John”, they might wonder if they
were working with one account or two!

369

(c) ketabton.com: The Digital Library

Part Il

: Using PHP in Practice

The UNIQUE Constraint

You've already seen how you can use the keywords PRIMARY KEY to create an index on a column that
uniquely identifies each row in a table. The UNIQUE constraint is similar to PRIMARY KEY in that it
creates an index on the column and also ensures that the values in the column must be unique. The main
differences are:

Q

Q

You can have as many UNIQUE keys as you like in a table, whereas you can have only one
primary key

The column(s) that make up a UNIQUE key can contain NULL values; primary key columns
cannot contain NULLS

In the members table, you add UNIQUE constraints for the username and emailaddress columns
because, although they’re not primary keys, you still don’t want to allow multiple club members to have
the same username or email address.

You can also create a unique key for a column (or columns) by using the keywords UNIQUE KEY at the
end of the table definition. So:

CREATE TABLE members (

id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
username VARCHAR (30) BINARY NOT NULL UNIQUE,
emailAddress VARCHAR (50) NOT NULL UNIQUE,

PRIMARY KEY (id)

) ;

has exactly the same effect as:

CREATE TABLE members (

id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
username VARCHAR (30) BINARY NOT NULL,
emailAddress VARCHAR (50) NOT NULL,

PRIMARY KEY (id),

) ;

UNIQUE KEY (username),
UNIQUE KEY (emailAddress)

The ENUM Data Type

You briefly looked at ENUM columns when learning about data types in the last chapter. An ENUM
(enumeration) column is a type of string column where only predefined string values are allowed in the
field. For the members table, you created two ENUM fields:

gender ENUM('m', 'f'),
favoriteGenre ENUM('crime', 'horror', 'thriller', 'romance', 'sciFi',
'adventure', 'nonFiction'),

370

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

ENUM fields serve two purposes. First, by limiting the range of values allowed in the field, you're
effectively validating any data that is inserted into the field. If a value doesn’t match one of the values in
the predefined set, MySQL rejects the attempt to insert the value. Second, ENUM fields can save storage
space. Each possible string value — “crime”, “horror”, and so on — is associated with an integer, and
stored once in a separate part of the table. Each ENUM field can then be stored as an integer, rather than as
a string of characters.

As you can imagine, the ENUM data type is only useful in a situation in which there are a small number of
possible values for the field. Although you can define up to 65,535 allowed values for an ENUM type,
practically speaking, things start to get a bit unwieldy after 20 or so values!

The TIMESTAMP Data Type

You'll remember from the last chapter that MySQL lets you store dates and times using a number of
different data types, such as DATE, DATETIME, TIME, YEAR, and TIMESTAMP. A TIMESTAMP field is a

bit different from the other date/time types in that it can automatically record the time that certain
events occur. For example, when you add a new row to a table containing a TIMESTAMP column, the field
stores the time that the insertion took place. Similarly, whenever a row is updated, the TIMESTAMP field
is automatically updated with the time of the update.

The other point to remember about TIMESTAMP fields is that they store the date and time in the UTC
(Universal Coordinated Time) time zone, which is essentially the same as the GMT time zone. This
probably won't affect you much, because MySQL automatically converts TIMESTAMP values between
UTC and your server’s time zone as required. However, bear in mind that if you store a TIMESTAMP
value in a table, and you later change the server’s time zone, the value that you get back from the
TIMESTAMP field will be different.

A TIMESTAMP field is great for tracking things such as when a record was last created or updated,
because you don’t have to worry about setting or changing its value; it happens automatically. In this
example, you created a TIMESTAMP field in the accessLog table to track when the last access was made:

lastAccess TIMESTAMP NOT NULL,

Retrieving Data with SELECT

In the previous chapter, you took a brief look at SELECT statements, which let you extract data from a
database table. In the following sections you see how to use SELECT to build complex queries. You learn
how to:

O Limit the number of rows returned
Sort returned rows in any order
Use pattern matching
Summarize returned data

Eliminate duplicate rows

o 00U u o

Group results together

371

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Q Usejoins to extract data from multiple tables

Q Use various MySQL functions to further enhance the power of your queries

Along the way, you'll hone your skills using the MySQL command-line tool. Once you've finished
reading these sections, you'll be well on your way to creating complex data-driven PHP applications.

Limiting the Number of Rows Returned

You've already seen in the last chapter how to use a WHERE clause to limit the results of a query based on
field values:

mysgl> SELECT * from fruit WHERE name = 'banana’;

As well as (or instead of) using a WHERE clause, you can set an upper limit on the number of returned
rows by using the LIMIT keyword. For example, the following query returns the IDs and usernames for
just the first four members in the members table:

mysgl> SELECT id, username FROM members LIMIT 4;

e +
| id | username |
B e +
1	sparky
2	mary
3	jodo
4	marty
s T +

4 rows in set (0.00 sec)
The LIMIT clause always comes at the end of the query.

By default, LIMIT counts from the first row of the results. However, by including two numbers after the
LIMIT keyword, separated by a comma, you can specify both the row from which to start returning
results, as well as the number of results to return:

mysgl> SELECT id, username FROM members LIMIT 1, 2;

s T +
| id | username |
e T +
| 2 | mary |
| 3] jodo |
e T +

2 rows 1in set (0.00 sec)

Notice that the start row counts from zero, so 1 is actually the second row (mary).

372

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

You might be wondering what the point of LIMIT is, because you can always just loop through the result
set in PHP to extract only the rows you're interested in. The main reason to use LIMIT is that it reduces
the amount of data that has to flow between MySQL and your PHP script.

Imagine that you want to retrieve the first 100 rows of a million-row table of users. If you use LIMIT
100, only 100 rows are sent to your PHP script. However, if you don’t use a LIMIT clause (and your
query also contains no WHERE clause), all 1,000,000 rows of data will be sent to your PHP script, where
they will need to be stored inside a PDOStatement object until you loop through them to extract the first
100. Storing the details of a million users in your script will quickly bring the script to a halt, due to the
large amount of memory required to do so.

LIMIT is particularly useful when you're building a paged search function in your PHP application. For
example, if the user requests the second page of search results, and you display 10 results per page, you
LIMIT 10, 10 to retrieve the second page of results. You build a paging system
using LIMIT in the “Creating a Member Record Viewer” section later in the chapter.

can use SELECT

Sorting Results

One of the powerful features that really separate databases from text files is the speed and ease with
which you can retrieve data in any order. Imagine that you have a text file that stores the first and last
names of a million book club members, ordered by first name. If you wanted to retrieve a list of all the
members ordered by last name, you'd need to rearrange an awful lot of rows in your text file.

With SQL, retrieving records in a different order is as simple as adding the keywords ORDER BY to your
query, followed by the column you want to sort by:

mysqgl> SELECT
Fmmmmm e +
| username

| bigbill
| janefield
| jojo

| sparky
| marty
| mary
| nickb

rows in set

mysgl> SELECT

| nickb

| janefield
| mary

| marty

| jojo

| sparky

| bigbill

rows in set

username,

firstName

(0.00 sec)

username,

£

+
|

+
|
|
|
|
|
|
|

+

£

+—_——— + — +

irstName, lastName FROM members ORDER BY firstName;
——————————— +

lastName |

Pareene
Newton

|
|
|
Sparks |
|
|
Blakeley |

irstName, lastName FROM members ORDER BY lastName;

Blakeley |
Field |
Newton |
Pareene |
Scrivener |

|

|

373

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

You can even sort by more than one column at once by separating the column names with commas:

mysgl> SELECT favoriteGenre, firstName, lastName FROM members ORDER BY
favoriteGenre, firstName;

Fmmm e e e +
| favoriteGenre | firstName | lastName |
e fmmmm o fmmmm o +
| crime | Jane | Field |
| crime | John | Sparks |
| horror | Marty | Pareene

| thriller | Mary | Newton

romance	Jo	Scrivener
scifFi	Nick	Blakeley
nonFiction	Bill	Swan
Fmmm e Fmmmm e Fmmmm e +
7 rows in set (0.00 sec)

You can read this ORDER BY clause as: “Sort the results by favoriteGenre, then by firstName.” Notice
how the results are ordered by genre, but where the genre is the same (“crime”), the results are then
sorted by firstName (“Jane” then “John”).

By default, MySQL sorts columns in ascending order. If you want to sort in descending order, add the
keyword DESC after the field name. To avoid ambiguity, you can also add ASC after a field name to
explicitly sort in ascending order:

mysgl> SELECT favoriteGenre,

favoriteGenre DESC,

firstName, lastName FROM members ORDER BY

firstName ASC;

Fmmm e Fmmmm e Fmmmm +
| favoriteGenre | firstName | lastName |
oo Fmmm o Fmmm o +
nonFiction	Bill	Swan
scifFi	Nick	Blakeley
romance	Jo	Scrivener
thriller	Mary	Newton

| horror | Marty | Pareene

| crime | Jane | Field |
| crime | John | Sparks |
Fmmm Fmmmm e Fmmmm e +
7 rows in set (0.00 sec)

Remember that ORDER BY works faster on a column that has an index, because indexes are already
sorted in order.

Using Pattern Matching for Flexible Queries
So far, all the WHERE clauses you've looked at have been fairly precise:

SELECT * from fruit WHERE name 'banana’;
SELECT * from fruit WHERE id >= 2;

374

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

Although this approach is good if you know the exact column values you're after, sometimes it’s useful
to be a bit less specific in your queries. For example, say you wanted to get a list of book club members
that have travel among their interests. Each otherInterests field in the members table is free-form,
consisting of a plain-English list of topics. How can you find out which otherInterests fields contain
the word “travel”?

The answer is to use the LIKE operator. This operator allows you to specify a string in the form of a
pattern to search for, rather than an exact string:

SELECT ... WHERE fieldName LIKE pattern;

Within the pattern string, you can include the following wildcard characters in addition to regular
characters:

Q % matches any number of characters (including no characters at all)

O _ (underscore) matches exactly one character
So to retrieve a list of members that list travel as one of their interests, you could use:

mysgl> SELECT username, firstName, lastName, otherInterests FROM members
WHERE otherInterests LIKE '%travel%';

oo oo R T e +
| username | firstName | lastName | otherInterests |
o o S gy +
| mary | Mary | Newton | Writing, hunting and travel |
| janefield | Jane | Field | Thai cookery, gardening, traveling |
o mm o mm Fommm e +

2 rows in set (0.00 sec)

Notice how MySQL has picked up both the word “travel” and the word “traveling”. Both these strings
match the pattern '$travel%' (zero or more characters, followed by the word “travel”, followed by

zero or more characters).

By the way, there’s no requirement to include the column that you're comparing — otherInterests in
this case — in the list of column names to retrieve. This is only done here so that you can see that both
members’ interests include travel. The following SQL is equally valid:

mysgl> SELECT username FROM members WHERE otherInterests LIKE '$travel%®';
You can use the _ (underscore) wildcard character to match a single character — for example:

mysgl> SELECT firstName, lastName FROM members WHERE firstName LIKE 'Mar_vy';
tmmmm tmmmm—————— +

1 row in set (0.03 sec)

Notice that this query doesn’t bring back Mary Newton'’s record because the underscore matches exactly

one character, and there are no characters between the “r” and “y” of “Mary”.

375

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

You can reverse the sense of the comparison by using NOT LIKE instead of LIKE. The following example
displays a list of members who don’t include travel in their interests:

mysqgl> SELECT username, firstName, lastName, otherInterests FROM members
WHERE otherInterests NOT LIKE '$travel%';

Fmm e o o o +
| username | firstName | lastName | otherInterests |
A P P e +
sparky	John	Sparks	Football, fishing and gardening
jojo	Jo	Scrivener	Genealogy, writing, painting
marty	Marty	Pareene	Guitar playing, rock music, clubbing
nickb	Nick	Blakeley	Watching movies, cooking, socializing
bigbill	Bill	Swan	Tennis, judo, music
. Fommmmmmm o Fommmmmmm o o +
)

5 rows in set (0.05 sec

Summarizing Data

Just as PHP contains a large number of built-in functions, MySQL also gives you many functions to assist
you with your queries. In this section you look at some of MySQL's aggregate functions. Rather than
returning the actual data contained in a table, these functions let you summarize a table’s data in
different ways:

Q count () — Returns the number of rows selected by the query

QO sum() — Returns the total of all the values of a given field selected by the query

O min() — Returns the minimum value of all the values of a given field selected by the query
0O max() — Returns the maximum value of all the values of a given field selected by the query
QO avg() — Returns the average of all the values of a given field selected by the query

You can use count () in two slightly different ways:

O count(fieldname) — Returns the number of rows selected by the query where fieldname
isn’t NULL
QO count(*) — Returns the number of rows selected by the query, regardless of whether the

rows contain any NULL values
Here are a couple of count () examples. The first example counts all the rows in the members table:

mysgl> SELECT COUNT(*) FROM members;

o +
| COUNT(*) |
o +
| 7|
Fomm e ———— +

1 row in set (0.02 sec)

376

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

This example, on the other hand, counts only the number of women in the members table:

mysgl> SELECT COUNT(*) FROM members WHERE gender = 'f';
B e +
| COUNT(*) |
Fom +
| 3|
o m +

1 row in set (0.00 sec)

Notice that in both cases the MySQL tool reports that there is only one row in the result set. Although
the first example selects seven rows from the members table, the count () aggregate function takes those
seven rows and returns a single value (7). So the final result set only contains one row. Similarly, the
second count () query reduces the three-row result to a single value of 3.

The remaining aggregate functions work much as you’d expect. For example, this query returns the total
number of visits to the book club Web site across all members:

mysgl> SELECT SUM(numVisits) FROM accessLog;

o +
| SUM(numvisits) |
T +
| 9 |
o +

1 row in set (0.00 sec)

You can even use functions like min () and max () on dates. This query returns the date that the first
member joined the club:

mysgl> SELECT MIN(joinDate) FROM members;

- +
| MIN(joinDate) |
o e +
| 2006-03-03 |
o — +

1 row in set (0.02 sec)

Eliminating Duplicate Results

Occasionally a query returns more data than you actually need, even when using WHERE and LIMIT
clauses. Say your accessLog table contains the following data:

mysqgl> SELECT * FROM accessLog;

e o o e +
| memberId | pageUrl | numVisits | lastAccess |
o S W o= S +
1	diary.php	2	2008-11-03 14:12:38
3	books.php	2	2008-11-08 19:47:34
3	contact.php	1	2008-11-08 14:52:12
6	books.php	4	2008-11-09 11:32:44
e o tmmm o +

377

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Now, imagine you want to get a list of the IDs of users that have accessed the site since November 7. You
might create a query as follows:

mysgl> SELECT memberId FROM accessLog WHERE lastAccess > '2008-11-07';

Fmm o +
| memberId |
Fmmmmm +
| 3
| 3
| 6 |
T +

3 rows in set (0.00 sec)

Now there’s a slight problem: the value 3 appears twice in the result set. This is because there are two
rows in the accessLog table with a memberId of 3 and a lastAccess date later than November 7,
representing two different pages viewed by user number 3. If you were displaying this data in a report,
for example, user number 3 would appear twice. You can imagine what would happen if that user had

visited 100 different pages!
To eliminate such duplicates, you can place the keyword DISTINCT after SELECT in the query:

mysgl> SELECT DISTINCT memberId FROM accessLog WHERE lastAccess > '2008-11-07';

Fomm - +
| memberId |
Fmm +
| 3]
| 6 |
Fmm - +

2 rows in set (0.00 sec)

DISTINCT removes any rows that are exact duplicates of other rows from the result set. For example, the
following query still contains two instances of 3 in the memberId column, because the pageUrl column
is different in each instance:

mysgl> SELECT DISTINCT memberId, pageUrl FROM accessLog WHERE lastAccess >

'2008-11-07";

e o +
| memberId | pageUrl |
. e +
3	books.php
3	contact.php
6	books.php
o o e +

3 rows in set (0.00 sec)

Grouping Results

You've seen how to use functions such as count () and sum () to retrieve overall aggregate data from a
table, such as how many female members are in the book club. What if you wanted to get more fine-
grained information? For example, say you want to find out the number of different page URLs that each
member has viewed. You might try this query:

378

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

mysgl> SELECT count(pageUrl) FROM accessLog;

Bt it +
| count(pageUrl) |
e +
| 4 |
o +

1 row in set (0.00 sec)

That’s no good. All this query has given you is the total number of rows in the table! Instead, you need
to group the pageUrl count by member ID. To do this, you add a GROUP BY clause. For example:

mysgl> SELECT memberId, count(pageUrl) FROM accessLog GROUP BY memberId;

fomm - B e it +
| memberId | count(pageUrl) |
e e +
| 1 1
| 3 2|
| 6 | 1
fomm - fomm e +

3 rows in set (0.00 sec)

That’s better. By combining an aggregate function, count (), with a column to group by (memberId), you
can view statistics on a per-member basis. In this case you can see that members 1 and 6 have each
viewed one distinct page, whereas member 3 has visited two different pages.

You can combine GROUP BY and ORDER BY in the same query. Here’s how to sort the previous data so
that the member that has viewed the highest number of distinct pages is at the top of the table:

mysgl> SELECT memberId, count(pageUrl) FROM accessLog GROUP BY memberId
ORDER BY count (pageUrl) DESC;

R T T +
| memberId | count(pageUrl) |
S S +
| 3 2|
| 1 1
| 6 | 1
T T +

Pulling Data from Multiple Tables

So far, all your queries have worked with one table at a time. However, the real strength of a relational
database is that you can query multiple tables at once, using selected columns to relate the tables to each
other. Such a query is known as a join, and joins enable you to create complex queries to retrieve all sorts
of useful information from your tables.

379

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

In the previous examples that retrieved statistics from the accessLog table, your result sets contained a
list of integer member IDs in a memberId column. For instance, let’s say you want a list of all members
that have accessed the Web site:

mysgl> SELECT DISTINCT memberId FROM accessLog;

Fmm o +
| memberId |
Fom +
| 1
| 3]
| 6 |
Fmm o +

3 rows in set (0.00 sec)

Now, of course, the member ID on its own isn’t very helpful. If you want to know the names of the
members involved, you have to run another query to look at the data in the members table:

mysqgl> SELECT id, firstName, lastName FROM members;

o fom— - +
| id | firstName | lastName |
B T Fmmm +
1	John	sparks
2	Mary	Newton
3	Jo	Scrivener
4	Marty	Pareene
5	Nick	Blakeley
6	Bill	Swan
7	Jane	Field
s - +

7 rows in set (0.00 sec)

Now you can see that member number 1 is in fact John Sparks, member number 3 is Jo Scrivener, and
member number 6 is Bill Swan.

However, by using a join, you can combine the data in both tables to retrieve not only the list of member
IDs that have accessed the site, but their names as well, all in the one query:

mysgl> SELECT DISTINCT accessLog.memberId, members.firstName, members.lastName
FROM accessLog, members WHERE accessLog.memberId = members.id;

tmmm S S +
| memberId | firstName | lastName |
Fmmm mmm e mmm e +
1	John	Sparks
3	Jo	Scrivener
6	Bill	Swan
Fmmm e e +
)

Now that’s useful information! Take a look at how this query is built up. First of all, notice that the FROM
clause now contains two tables, separated by a comma:

FROM accessLog, members

380

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

You can pull data from as many tables as you like in this way. However, on its own, this FROM clause
would simply return all rows from the members table. This is why you need the WHERE clause that
creates the actual join:

FROM accessLog, members WHERE accessLog.memberId = members.id

By adding the WHERE clause, you tell MySQL to bring back a row from the members table only if its 1d
column matches one of the values in the list of member1d values returned by:

SELECT DISTINCT accessLog.memberId
In other words, if a members row’s id column isn’t 1, 3, or 6, ignore the row.

You probably noticed that this query specifies not just field names, but also the table that each field
belongs to:

accessLog.memberId, members.firstName, members.lastName

This is important when working with multiple tables at once, because it prevents ambiguity over field
names. For example, if your members table’s id column was actually called member1d, the following
query would be ambiguous:

SELECT DISTINCT memberId, firstName, lastName FROM accessLog, members WHERE
memberId = memberId;

Which table does the member1d column refer to in each case? There’s no way of knowing. By including
the table name before the column name (separated by a dot), you tell MySQL exactly which column
you're talking about.

If you don't prefix a column name by a table name, MySQL is smart enough to work out which table
you're talking about, provided the same column doesn’t exist in more than one table. However, it’s
generally good practice to include the table name to avoid ambiguity when reading the query. You see
how to use aliases to make your queries shorter and more readable in a moment.

This query is just a simple example of a join, but you'll use joins of this type many times if your database
contains several tables.

Using Aliases

As you start to work with many tables, things can start to get unwieldy. For example, in the preceding
section you used this query to retrieve a list of names of members who have accessed the Web site:

mysgl> SELECT DISTINCT accessLog.memberId, members.firstName, members.
lastName FROM accessLog, members WHERE accessLog.memberId = members.id;

381

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

There’s a lot of repetition of the table names accessLog and members in this query. Fortunately, SQL lets
you create short table aliases by specifying an alias after each table name in the FROM clause. You can
then use these aliases to refer to the tables, rather than using the full table names each time:

mysqgl> SELECT DISTINCT al.memberId, m.firstName, m.lastName FROM accessLog
al, members m WHERE al.memberId = m.id;

tmm - tmmm tmmm e +
| memberId | firstName | lastName |
o B T e +
1	John	Sparks
3	Jo	Scrivener
6	Bill	Swan
tmm - tmmm tmmm +
)

You can also use the AS keyword to create aliases for the columns returned by your query. Consider this
query that you looked at earlier:

mysgl> SELECT memberId, count(pageUrl) FROM accessLog GROUP BY memberId;

Fmm o oo +
| memberId | count(pageUrl) |
- o +
| 1 1
| 3 2|
| 6 | 1
Fmm o e +

Notice that the second column in the result set is called count (pageUrl). Not only is this not very
descriptive, but you'll find it’s awkward to refer to in your PHP script. Therefore, it’s a good idea to
rename this column to something more meaningful:

mysgl> SELECT memberId, count(pageUrl) AS urlsViewed FROM accessLog GROUP
BY memberId;

3 rows in set (0.00 sec)

Other Useful MySQL Operators and Functions

MySQL contains a wealth of operators and functions that you can use to build more complex queries.
You've already used a few of these in this chapter. Here you explore some other common operators and
functions. Bear in mind that this is nowhere near a complete list (you can find such a list in the MySQL
manual at http://dev.mysqgl.com/doc/).

382

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

Much like PHP, MySQL features various comparison operators that you can use to compare column
values and other expressions in your queries. Here are some common ones:

Comparison Operator

<=>

I= or <>

Description
equal to

NULL-safe version of equal
to

not equal to

less than

greater than

less than or equal to

greater than or equal to

Using a comparison operator results in a value of 1 (TRUE), 0 (FALSE), or NULL.

Most of these operators are self-explanatory. <=> is useful if you think either of the values you're
comparing might be NULL. Remember that NULL values propagate throughout an expression, so if any
value in an expression is NULL, the result will also be NULL. This isn’t very helpful when you're trying to
compare two values. For example:

mysgl> select 1 = 2;

1 row in set (0.00 sec)

mysqgl> select 2 = 2;

1 row in set (0.00 sec)

mysqgl> select 1 = NULL;

Fm—— +
| 1 = NULL |
+o—m——————— +
| NULL |
- +

1 row in set (0.00 sec)

383

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

By using the null-safe operator <=>, you ensure that any NULL value isn’t propagated through to the
result:

mysgl> select 1 <=> 2;

fomm oo +
| 1 <=> 2 |
fomm +
| 0 |
fommmmmmo +

1 row in set (0.00 sec)

mysgl> select 1 <=> NULL;

- +
| 1 <=> NULL |
o +
| 0|
o ———— +

1 row in set (0.00 sec)

mysgl> select NULL <=> NULL;

Fommm e +
| NULL <=> NULL |
o +
| 1
Fomm +

1 row in set (0.00 sec)

You can also use the Boolean operators AND, OR, and NOT to build more complex expressions. For
example:

mysgl> SELECT * FROM accessLog WHERE lastAccess > '2008-11-04' AND lastAccess
< '2008-11-09';

tmmm e Hmmmm e +
| memberId | pageUrl | numvisits | lastAccess |
Fmmm mmm e b mm e +
| 3 | books.php | 2 | 2008-11-08 19:47:34 |
| 3 | contact.php | 1 | 2008-11-08 14:52:12 |
Hmmm e o mm e e e +

MySQL's functions can be broken down into many categories. For example, there are many date and
time functions, such as now (), that retrieves the current date and time (useful when comparing dates
and times against the current moment). You can also use curdate () to retrieve just the date portion of
now (), and curtime () to getjust the time portion:

mysgl> SELECT now(), curdate(), curtime();

e - o +

| now () | curdate() | curtime()

o ommmmmm o mm +

| 2008-11-09 12:17:08 | 2008-11-09 | 12:17:08 |

e Fmm e fmmmmm +
)

384

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

String functions allow you to manipulate string values, much like MySQL'’s string functions:

mysgl> SELECT substring('Hello, world!', 2, 4);
o~ +
| substring('Hello, world!', 2, 4) |
ey +
| ello |
o +

1 row in set (0.00 sec)
(Note that character positions start from 1 in MySQL, rather than zero.)
MySQL also features many math functions:

mysgl> SELECT pow(pi(), 2);

1 row in set (0.03 sec)

You can see how, through the use of functions, operators, and other constructs, you can actually do a
great deal of data processing within MySQL itself. It’s not just about retrieving data.

Creating a Member Record Viewer

Now that you have a basic grounding in how to retrieve data via SQL, it’s time to write a data-driven
PHP application. Along the way, you'll delve deeper into the power of PDO, learn some more useful
MySQL features, and exercise your object-oriented programming skills.

This application is relatively simple. First, it displays a list of all the members of the book club as an
HTML table. The table includes columns for username, first name, and last name, and you can sort the
data by any of these columns. The member list is also paged, displaying only five members at once, and
features links at the bottom of the list to let you move forward and backward one page at a time.

Each member in the list includes a View Member link that you can click to view the complete member
record, including the date they joined, their gender, their favorite genre, their email address, their
interests, and the pages that they’ve viewed on the book club Web site.

The application is object-oriented, and creates classes to handle the retrieval of member and access log
records from the database. The application is also split across a number of small files. Generally
speaking, this approach is better than having a single large script file to hold all the application code,
because it makes it easier to locate and debug code.

385

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Figure 13-1 shows you an example of the member list generated by the application.

@ W el RO e A R AL AT

eslsifes)

File Edit ‘view History Bookmarks Tools Help

e o | 0| | http:fflocalhostibook clubpview members.php | - | ”Gv

View book club members

Displaying members 1 -5 of 7

‘ Username First name Last name
biabill Bill Swan
| [anefield Jane Fiekd
join Jo Scrivener
| marty Marty Pareene
mary Mary Newton
Mext page
Done
Figure 13-1

Creating the config.php File

The first application file you're going to create is a very simple one. It contains a lis
configure the application.

Save the following code as config.php. You might want to create a new folder in your document root
called book_club, and save the file in there. You're going to create quite a few files for this application,

and they’ll be easier to find if they’re all in one folder.

<?php

define("DB_DSN", "mysdgl:dbname=mydatabase") ;
define("DB_USERNAME", "root");

define("DB_PASSWORD", "mypass");

define("PAGE_SIZE", 5);

define("TBL_MEMBERS", "members");

define("TBL_ACCESS_LOG", "accessLog");

2>

As you can see, config.php’s job is simply to set up various constants that affect how the application

works:

0O DB_DSN defines the DSN that is used to connect to the MySQL database

t of constants that

QO DB_USERNAME holds the MySQL username to use when connecting to the database

0 DB_PASSWORD stores the MySQL password to use. Don’t forget to change “

MySQL root password

386

mypass” to your real

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

Q

PAGE_SIZE specifies how many member records are shown on any one page

TBL_MEMBERS holds the name of the members table in the database. It's a good idea to place
strings like this in constants, rather than hard-coding them in the application code, in case you
need to change table names at a later date

TBL_ACCESS_LOG holds the name of the access log table

In a live server environment, you should store the file containing your database username and password
outside your document root folder, if possible, to avoid any chance of the username and password being
viewed by a visitor to the site.

Creating the common.inc.php File

The second file to create is also simple. It contains common utility functions that are used throughout
this application. The functions are displayPageHeader (), which outputs the standard XHTML page
header for the application (including the page title, passed in as an argument), and
displayPageFooter (), which outputs the XHTML markup that appears at the bottom of each page.

Save this file as common . inc.php in your book_club folder.

<?php

function displayPageHeader (SpageTitle) {

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>
<title><?php echo SpageTitle?></title>
<link rel="stylesheet" type="text/css" href="../common.css" />

<style type="text/css">
th { text-align: left; background-color: #bbb; }
th, td { padding: 0.4em; }
tr.alt td { background: #ddd; }
</style>
</head>
<body>

<hl><?php echo S$pageTitle?></hl>

<?php

}

function displayPageFooter () {

?>

</body>

</html>
<?php

}

?>

387

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Creating the DataObject Class File

Now comes the first of the classes that are used in the application. DataObject is an abstract class from
which you can derive classes to handle database access and data retrieval. Because it’s an abstract class,
you can’t instantiate (create objects from) it directly. In a moment, you create classes to handle both
members and access log records that are based on the bataoObject class.

In OOP parlance, these types of classes are said to follow the active record design pattern, which means
that the object contains the data for the record to store in or retrieve from the database, as well as the
methods to carry out the actual storage and retrieval.

Save the following script as DataObject.class.php in the book_club folder:
<?php
require_once "config.php";
abstract class DataObject {

protected Sdata = array();

public function _ construct(Sdata) {
foreach ($data as Skey => S$value) {
if (array_key_exists(Skey, Sthis->data)) S$this->datal[Skey] =
Svalue;

}
}

public function getValue($field) {
if (array_key exists($field, Sthis->data)) {
return S$this->data[$field];
} else {
die("Field not found");
}
}

public function getValueEncoded($field) {
return htmlspecialchars(Sthis->getValue($field));

}

protected function connect () {

try {
$conn = new PDO(DB_DSN, DB_USERNAME, DB_PASSWORD) ;

Sconn->setAttribute(PDO::ATTR_PERSISTENT, true);
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;

} catch (PDOException Se) {
die("Connection failed: " . Se->getMessage());

}

return Sconn;

}

protected function disconnect(Sconn) {

388

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

Sconn = "";

}

?>

So how does this class work? First of all, the script includes the config.php file so that it can access the
database configuration constants:

require_once "config.php";

The PHP require_once () function imports another PHP script into the current script in a similar way to
require (), which you've used in previous chapters. The difference is that require_once () ensures that
the file is imported only once. This is important if you create a large application with lots of script files,
many of which need to include the same file, such as config.php. If you used require (), the PHP engine
would include config.php every time it encountered the require () function call, resulting in multiple
copies of the config.php file being included in the application (with, needless to say, chaotic results).

Find out more about require_once () and related functions in Chapter 20.

Next, the class declares a protected $data array to hold the record’s data. The fact that it’s protected
means that the classes that derive from this class will be able to use it, but it’s still hidden from the
outside world (as most properties should be).

The first method, __construct (), is the class’s constructor. It's called whenever a new object is created
based on a class that’s derived from this class. The constructor accepts an associative array of field names
and values ($data) and stores them in the protected $data array (assuming each field name exists in
$data). In this way it’s possible for outside code to create fully populated data objects.

The getvalue () method accepts a field name, then looks up that name in the object’s $data array. If
found, it returns its value. If the field name wasn’t found, the method halts execution with an error
message. getValue () enables outside code to access the data stored in the object.

getValueEncoded () is a convenience method that allows outside code to retrieve a field value that has
been passed through PHP’s htmlspecialchars () function. This function encodes markup characters
such as <and > as &1t; and > ;. Not only is this required when generating XHTML markup, but it’s
also a good security measure that can help to reduce the risk of malicious markup making its way into
your Web page.

The final two protected functions allow classes to create a PDO connection to the database, as well as
destroy a database connection. connect () creates a new PDO object and returns it to the calling code.
Along the way, it sets a couple of useful attributes:

Sconn->setAttribute(PDO::ATTR_PERSISTENT, true);
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;

Setting the PDO: : ATTR_PERSISTENT attribute to true allows PHP to keep the MySQL connection open
for reuse by other parts of the application (or other applications). With this attribute set to false, which
is the default setting, a new MySQL connection is opened every time a new PDO object is created in the
application. Because setting up a new MySQL connection takes both time and resources, setting this
attribute to true can help to improve performance.

389

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Setting the PDO: : ATTR_ERRMODE attribute to PDO: : ERRMODE_EXCEPTION tells PDO to throw exceptions
whenever a database error occurs, as you saw in the previous chapter.

The disconnect () function merely takes a PDO object, stored in $conn, and assigns an empty string to
$conn, thereby destroying the object and closing the connection to the MySQL database.

Building the Member Class

The Member class inherits from the DataObject class you just created. It’s responsible for retrieving
records from the members table in the database. The class is relatively straightforward, because a lot of
the work is delegated to the Dataobject class.

Save the following code as Member . class . php in your book_c1lub folder:
<?php
require_once "DataObject.class.php";
class Member extends DataObject {

protected $data = array(
gl == 00,
"username" => "",
"password" => "",
"firstName" => "",
"lastName" => "",
"joinDate" => "",
"gender" => "",
"favoriteGenre" => "",
"emailAddress" => "",
"otherInterests" => ""

) ;

private $_genres = array(
"crime" => "Crime",
"horror" => "Horror",
"thriller" => "Thriller",
"romance" => "Romance",
"sciFi" => "Sci-Fi",
"adventure" => "Adventure",
"nonFiction" => "Non-Fiction"

) 7

public static function getMembers(S$startRow, S$numRows, Sorder) {
Sconn = parent::connect () ;
$sgl = "SELECT SQL_CALC_FOUND_ROWS * FROM " . TBL_MEMBERS . " ORDER BY
Sorder LIMIT :startRow, :numRows";

try {
Sst = Sconn->prepare($sqgl);
$st->bindvalue(":startRow", $startRow, PDO::PARAM INT);
$st->bindvValue(":numRows", S$numRows, PDO::PARAM_INT) ;

$st->execute() ;

390

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

}

public static function getMember (

Smembers = array () ;
foreach ($st->fetchAll() as Srow) {
Smembers[] = new Member (Srow) ;
}
Sst = Sconn->query("SELECT found rows () AS totalRows");

Srow = $st->fetch();
parent: :disconnect (Sconn) ;
return array(Smembers, Srow["totalRows"]);

(PDOException Se) {
Sconn) ;
" . Se->getMessage ()

catch
parent: :disconnect (

die("Query failed:)7

$id) {

Sconn = parent::connect () ;

$sgl = "SELECT * FROM " TBL_MEMBERS " WHERE id = :id";
try {
$st = $Sconn->prepare($sgl);
$st->bindvalue(":id", $id, PDO::PARAM_INT) ;
$st->execute () ;
Srow = S$st->fetch();
parent: :disconnect (Sconn) ;
if (Srow) return new Member (Srow) ;
} catch (PDOException S$e) {
parent: :disconnect (Sconn) ;
die("Query failed: " Se->getMessage ());
}
}
public function getGenderString() {
return ($this->data["gender"] == "f") ? "Female" "Male";
}
public function getFavoriteGenreString() {
return (S$Sthis->_genres[Sthis->datal"favoriteGenre"]]);
}
}
?>

First the script includes the DataObject class file so that it can derive the Member class from
DataObject. Next the class sets up the $data array keys, initializing each value to an empty string. Not
only does this let you see at-a-glance the data that the Member class works with, but it also enables the
DataObject class’s __construct () method to validate each field name that’s passed to it when
creating the object. If a field name is passed that isn’t in the $data array, it’s rejected.

The class also creates a private array, $_genres, to map the ENUM values of the favoriteGenre field
in the members table (for example, "nonFiction") to human-readable strings (such as “Non-Fiction”).

391

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

The next two static methods, getMembers () and getMember (), form the core of the class.
getMembers () expects three arguments: $startRow, $numRows, and $order. It returns a list of
$numRows records from the members table, ordered by $order and starting from $startRow. The
records are returned as an array of Member objects.

After calling the DataObject class’s connect () method to create a database connection, the method
sets up the SQL statement to retrieve the rows:

$sqgl = "SELECT SQL_CALC_FOUND_ROWS * FROM " . TBL_MEMBERS . " ORDER BY
Sorder LIMIT :startRow, :numRows";

Much of this statement will be familiar to you. It’s selecting all columns (*) from the members table,
ordered by the $order variable, and limited to the range specified by the $startRow and $numRows
variables. However, there are a couple of concepts here that you haven’t seen before.

SQL_CALC_FOUND_ROWS is a special MySQL keyword that computes the total number of rows that
would be returned by the query, assuming the LIMIT clause wasn’t applied. So if the query would return
20 records, but the LIMIT clause limits the returned rows to five, SQL_CALC_FOUND_ROWS returns a value
of 20. This is useful because it enables you to display the records over several pages, as you see in a
moment.

:startRow and :numRows are called placeholders or parameter markers. They serve two purposes. First of
all, they let you prepare — that is, get MySQL to parse — a query once, then run it multiple times with
different values. If you need to run the same query many times using different input values — when
inserting many rows of data, for instance — prepared statements can really speed up execution.
Secondly, they reduce the risk of so-called SQL injection attacks. For example, an alternative to using
placeholders might be to write:

$sgl = "SELECT SQL_CALC_FOUND_ROWS * FROM " . TBL_MEMBERS . " ORDER BY
Sorder LIMIT S$startRow, S$SnumRows";

However, imagine that, due to insufficient checking of user input, a malicious user managed to set
$numRows to "1; DELETE FROM members". This would run the query as intended, but it would also
run the second statement, which would delete all records from your members table!

When you use placeholders, you pass data to the query via PDO (as you see shortly), not directly into
your query string. This allows PDO to check the passed data to ensure that it only contains what it’s
supposed to contain (integers in this case).

The next block of code is inside a try ... catch construct. This ensures that any PDO exceptions that
occur during the query are caught by the method. First, the method calls the prepare () method of the
PDO object, passing in the SQL string just created:

$st = Sconn->prepare($sqgl);
This sets up the query in the MySQL engine, and returns a PDOStatement object to work with (stored in
the $st variable). Next, the two : startRow and : numRow placeholders you created earlier are populated

with the actual data from the $startRow and $numRow variables:

$st->bindvValue(":startRow", $startRow, PDO::PARAM INT);
S$st->bindvalue(":numRows", S$numRows, PDO::PARAM_INT) ;

392

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

The PDOStatement : :bindvalue () method takes three arguments: the name of the placeholder to
bind, the value to use instead of the placeholder, and the data type of the value (PDO: : PARAM_INT, or
integer, in this case). By specifying the data type, PDO can ensure that the correct type of data is passed
to MySQL. In addition, PDO automatically escapes any quote marks and other special characters in the
data. (Failing to escape special characters is another common cause of SQL injection vulnerabilities.)

Some other common data types that you can use include:

Q PDO::PARAM_BOOL — A Boolean data type

Q PDO::PARAM NULL — The NULL data type

0 PDO::PARAM_STR — A string data type. (This is the default if you don’t specify a type.)
Q

PDO: : PARAM_LOB — A LOB data type, such as BLOB or LONGBLOB

Now that the statement has been prepared and the placeholders filled with actual values, it’s time to run
the query:

Sst->execute () ;

The next block of code loops through the record set returned by the query. For each row returned, it
creates a corresponding Member object to hold the row’s data, and stores the object in an array:

Smembers = array();
foreach ($st->fetchAll() as Srow) {
Smembers|[] = new Member (Srow);

}

PDOStatement: : fetchAll () is one of many ways that you can retrieve the result set returned from a
query. fetchall () grabs the whole result set in one go, and returns it as an array of associative arrays,
where each associative array holds a row of data. Though this is fine for relatively small result sets —
say, less than 100 records — be careful of using fetchall () with large result sets, because the entire
result set is loaded into your script’s memory in one go.

However, in this case fetchall () is ideal. The script loops through the returned array of rows, passing
each $row associative array into the constructor for the Member class. Remember that the constructor is
actually in the DataObject class, and it expects an associative array of field names and values, which
is exactly what each element of the array returned by fetchall () contains. The constructor then uses
this associative array to populate the Member object with the data.

Once the array of Member objects has been created, the method runs another query. Remember the sSQL_
CALC_FOUND_ROWS keyword in the original query? To extract the calculated total number of rows, you
need to run a second query immediately after the original query:

$st = $conn->query("SELECT found_ rows () AS totalRows");
Srow = $st->fetch();

The query calls the MySQL found_rows () function to get the calculated total, and returns the result as
an alias, totalRows. Notice that this is a regular query that uses PDO: : query (), rather than a prepared
statement as used by the first query. You don’t need to use placeholders because the query doesn’t need
to contain any passed-in values; hence there is no need to go to the trouble of creating a prepared
statement.

393

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Finally, the method closes the database connection, then returns the data to the calling code in the form
of a two-element array. The first element contains the array of Member objects, and the second element
contains the calculated total number of rows:

return array($members, S$row["totalRows"]);

Of course, after the try block comes the corresponding catch block. This simply closes the connection
and uses PHP’s die () function to abort the script with an error message.

The next method, getMember (), works in a similar fashion to getMembers (). It retrieves a single record
from the members table, as a Member object. The ID of the record to retrieve is specified by the argument
passed to the method.

This method creates a prepared statement, much like getMembers () did, to retrieve the record:
$sgql = "SELECT * FROM " . TBL_MEMBERS . " WHERE id = :id";
Next, the $id parameter’s value is bound to the : id placeholder, and the query is run:

Sst->bindvalue(":id", $id, PDO::PARAM_INT) ;
Sst->execute () ;

If the query returned a row, it is retrieved using the PDOStatement: : fetch () method, which retrieves
a single row from the result set as an associative array of field names and values. This associative array is
then passed to the Member constructor to create and populate a Member object, which is then returned to
the calling code after closing the connection:

Srow = S$Sst->fetch();

parent: :disconnect (Sconn);
if ($row) return new Member ($row);

The final two convenience methods are used to return the Member object’s gender and favoriteGenre
fields as human-friendly strings, ideal for displaying in a Web page. getGenderString () simply
returns “Female” if gender is set to "£", and “Male” otherwise. getFavoriteGenreString () looks up
the field value in the $_genres array property created at the start of the class in order to return a
human-readable form of the value.

Building the LogEntry Class

The LogEntry class is another data class, much like Member, although it’s a fair bit simpler. It retrieves
rows of data from the accessLog table.

Save the following script as LogEntry. class.php in the book_c1lub folder:
<?php
require_once "DataObject.class.php";
class LogEntry extends DataObject {

protected $data = array(

394

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

"memberId" => "",
"pageUrl" => nn,

"numVisits" => "",
"lastAccess" => ""
) 5
public static function getLogEntries(SmemberId) {
Sconn = parent::connect () ;
Ssgl = "SELECT * FROM " . TBL_ACCESS_LOG . " WHERE memberId = :memberId

ORDER BY lastAccess DESC";

try {
$st = $Sconn->prepare($sgl);
$st->bindvValue(":memberId", S$memberId, PDO::PARAM INT);
$st->execute () ;
$logEntries = array();
foreach ($st->fetchAll() as S$Srow) {
SlogEntries[] = new LogEntry(Srow);
}

parent: :disconnect (Sconn) ;
return $logEntries;
} catch (PDOException $e) {
parent: :disconnect (Sconn) ;
die("Query failed: " . Se->getMessage());

?>

As with Member, the LogEntry class derives from the DataObject abstract class. Its protected $data
array contains the field names from the accessLog table: memberId, pageUrl, numvisits, and
lastAccess.

LogEntry contains just one method, getLogEntries (), that retrieves a list of all accessLog records for
a particular member (specified by $memberId) as LogEntry objects. The query sorts the entries in
descending order of access date — that is, newest first:

$sgl = "SELECT * FROM " . TBL_ACCESS_LOG . " WHERE memberId = :memberId
ORDER BY lastAccess DESC";

The rest of the method is similar to Member : : getMembers (). The statement is prepared, the $memberId
parameter is bound to the :member1d placeholder, and the query is run. The record set is retrieved as an
array of associative arrays using PDOStatement : : fetchAll (), and each associative array is used to
create a new LogEntry object, which is then added to an array. The method then returns the array of
LogEntry objects to the calling code.

Creating the view_members.php Script

Now you've laid all the foundations for your member viewer application; in fact you've already done
most of the hard work. Now it’s just a case of writing two scripts: one to display the list of members, and
another to display details of an individual member.

395

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

First, the member list. Save the following code as view_members.php in your book_club folder:
<?php
require_once("common.inc.php");
require_once("config.php");

require_once("Member.class.php");

$start = isset($_GET["start"]) ? (int)$_GET["start"] : 0;
Sorder = isset($_GET["order"]) ? preg_replace("/["a-zA-Z]/", "",

$ GET["order"]) : "username";
list(Smembers, StotalRows) = Member::getMembers($start, PAGE_SIZE,
Sorder) ;

displayPageHeader ("View book club members");
?>

<h2>Displaying members <?php echo $start + 1 ?> - <?php echo min($start +
PAGE_SIZE, StotalRows) ?> of <?php echo S$totalRows ?></h2>

<table cellspacing="0" style="width: 30em; border: lpx solid #666; ">

<tr>
<th><?php if (Sorder != "username") { ?><a href="view_members.php?
order=username"><?php } ?>Username<?php if (Sorder != "username")
{ ?><?php } ?></th>
<th><?php if (Sorder != "firstName") { ?><a href="view_members.php?
order=firstName"><?php } ?>First name<?php if (Sorder != "firstName")
{ ?><?php } ?></th>
<th><?php if (Sorder != "lastName") { ?><a href="view_members.php?
order=lastName"><?php } ?>Last name<?php if (Sorder != "lastName")
{ ?><?php } ?></th>
</tr>
<?php
SrowCount = 0;
foreach (Smembers as Smember) {
SrowCount++;
2>
<tr<?php if (SrowCount % 2 == 0) echo ' class="alt"' ?>>
<td><a href="view_member.php?memberId=<?php echo S$Smember->
getValueEncoded("id") ?>"><?php echo $member->getValueEncoded("username")
?></td>
<td><?php echo S$member->getValueEncoded("firstName") ?></td>
<td><?php echo S$member->getValueEncoded("lastName") ?></td>
</tr>
<?php
}
?>
</table>

<div style="width: 30em; margin-top: 20px; text-align: center;">
<?php if ($Sstart > 0) { ?>
<a href="view_members.php?start=<?php echo max($start - PAGE_SIZE, 0)
?>& order=<?php echo S$order ?>">Previous page
<?php } ?>

396

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

<?php if ($Sstart + PAGE_SIZE < StotalRows) { ?>
<a href="view_members.php?start=<?php echo min(S$start + PAGE_SIZE,
StotalRows) ?>&order=<?php echo Sorder ?>">Next page
<?php } ?>
</div>

<?php
displayPageFooter () ;
2>

This script makes use of the Member class to retrieve the list of members from the database, then displays
the list in the page. It starts by retrieving two query string parameters — start, representing the record
position from which to start displaying the records in the page, and order, which specifies which
column to sort the data by — and storing the parameter values in two variables, $start and $order. If
either parameter wasn’t passed to the script, a default value is used. To improve security, the script filters
both parameters to make sure they contain valid values: $start is cast to int, whereas $order uses a
regular expression to remove any non-alphabetic characters (because only letters are used for the field
names in the members table).

You can find out more about regular expressions in Chapter 18.

Next, the script retrieves the list of members to display in the page. The code to do this is really simple,
because all the complexity is nicely hidden away in the Member class:

list(Smembers, S$totalRows) = Member::getMembers(S$start, PAGE_SIZE, Sorder);

Member : : getMembers () is called, passing in the row to start retrieving records from, the number of
records to retrieve, and the string to use for the ORDER BY clause. getMembers () dutifully returns a
two-element array. The first element — the list of Member objects — is stored in $members, and the
second element — the total number of members in the members table — is stored in $totalRows.

Now that the data is retrieved, it’s simply a case of displaying the list in the page. First,
displayPageHeader () is called with an appropriate page title to display the XHTML header. Then an
XHTML table element is started, with three header cells for username, first name, and last name:

<th><?php if (Sorder != "username") { ?><?php } ?>Username<?php if
(Sorder != "username") { ?><?php } ?></th>

<th><?php if (Sorder != "firstName") { ?><a href="view_members.php?
order=firstName"><?php } ?>First name<?php if (Sorder != "firstName")
{ ?><?php } ?></th>

<th><?php if (Sorder != "lastName") { ?><a href="view_members.php?
order=lastName"><?php } ?>Last name<?php if ($order != "lastName")

{ ?><?php } ?></th>

In each case, the column name is linked to a URL that, when visited, runs view_members . php again
with a new order query parameter to sort the data by that column. However, if the data is already
sorted by a particular column, that column’s name isn’t linked, in order to indicate that the data is sorted
by that column.

397

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Next, the data is output, one record per table row:

<?php
SrowCount = 0;
foreach (Smembers as Smember) {
SrowCount++;
?>
<tr<?php if ($SrowCount % 2 == 0) echo ' class="alt"' ?>>

<td><a href="view_member.php?memberId=<?php echo S$member->
getValueEncoded("id")

?>"><?php echo S$member->getValueEncoded("username") ?></td>
<td><?php echo S$member->getValueEncoded("firstName") ?></td>
<td><?php echo $member->getValueEncoded("lastName") ?></td>

</tr>

<?php

}

?>

For each row, the script displays the values of three fields — username, firstName, and lastName —
for the current member in individual table cells. For each cell, the Member object’s getValueEncoded ()
method is called to retrieve the appropriate field value with any special XHTML characters encoded. In
addition, the values in the username cells are linked to the view_member . php script (which you create
in a moment), passing in the ID of the member whose details should be displayed.

$rowCount is used to track the current row number. If the number is even, the table row’s CSS class is
set to alt, producing an alternating row effect as defined in the CSS in the page header.

The last section of the script produces the links to jump to the previous and next page of members:

<div style="width: 30em; margin-top: 20px; text-align: center;">
<?php if (Sstart > 0) { ?>
<a href="view_members.php?start=<?php echo max($start - PAGE_SIZE, 0)
?>& order=<?php echo $order ?>">Previous page
<?php } ?>

<?php if ($start + PAGE_SIZE < S$StotalRows) { ?>
<a href="view_members.php?start=<?php echo min($start + PAGE_SIZE,
StotalRows) ?>&order=<?php echo Sorder ?>">Next page
<?php } ?>
</div>

If the current page doesn’t begin at the start of the member list ($start > 0), the “Previous page” link
is created. This links to the same view_members. php script, passing in a new start value one page less
than the current value. (If the new start value should happen to be negative, it is set to zero.)

Similarly, if the current page isn’t the last page of the member list ($start + PAGE_SIZE <
$totalRows), the “Next page” link is created, setting start to one page greater than the current start

value (or $totalRows if start would end up being greater than $totalRows).

Notice that both links also pass through the order query string parameter, ensuring that the correct sort
order is preserved across pages.

398

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

Creating the view_member.php Script

The very last PHP file you need to create is the script to view an individual member’s details. Save the

following code as view_member . php in your book_c1lub folder:
<?php

"common.inc.php");
"config.php");
"Member.class.php");
"LogEntry.class.php"

require_once (
require_once (
require_once (
require_once () 7

SmemberId isset ($_GET["memberId"]) 2

if (!Smember Member: :getMember (SmemberId)
displayPageHeader ("Error");

echo "<div>Member not found.</div>";
displayPageFooter () ;

exit;

}

SlogEntries LogEntry: :getLogEntries (
displayPageHeader ("View member: "
"o Smember->getValueEncoded (

"lastName")

<dl style="width: 30em; ">
<dt>Username</dt>
<dd><?php echo $member->getValueEncoded (
<dt>First name</dt>
<dd><?php echo S$member->getValueEncoded (
<dt>Last name</dt>
<dd><?php echo Smember->getValueEncoded (
<dt>Joined on</dt>
<dd><?php echo $member->getValueEncoded (
<dt>Gender</dt>
<dd><?php echo S$member->getGenderString ()
<dt>Favorite genre</dt>
<dd><"?php
<dt>Email
<dd><?php
<dt>Other
<dd><?php
</dl>

address</dt>

echo Smember->getValueEncoded (
interests</dt>

echo S$Smember->getValueEncoded (

<h2>Access log</h2>

<table cellspacing="0"
<tr>
<th>Web page</th>
<th>Number of visits</th>
<th>Last visit</th>
</tr>
<?php

style="width:

(int) $_GET["memberId"]

echo S$Smember->getFavoriteGenreString ()

30em; border:

0;

) |

SmemberId) ;
Smember->getValueEncoded (

"firstName"

)

"username") ?></dd>

"firstName") ?></dd>
"lastName") ?></dd>
"joinDate") ?></dd>
?></dd>

?></dd>
"emailAddress") ?></dd>

"otherInterests") ?></dd>

lpx solid #666; ">

399

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

SrowCount = 0;

foreach ($logEntries as $logEntry) {

SrowCount++;
?>
<tr<?php if ($rowCount % 2 ==) echo ' class="alt"' ?>>
<td><?php echo $logEntry->getValueEncoded("pageUrl") ?></td>
<td><?php echo $logEntry->getValueEncoded("numVisits") ?></td>
<td><?php echo $logEntry->getValueEncoded("lastAccess") ?></td>
</tr>
<?php
}
?>
</table>
<div style="width: 30em; margin-top: 20px; text-align: center;">
Back
</div>
<?php
displayPageFooter () ;
2>

This script expects to be passed a memberId query string parameter specifying the member to be
displayed. This value is then passed to Member : : getMember () to retrieve the record as a Member object.
If nothing is returned from the call to getMember (), the member could not be found in the members
table, so an error message is displayed and the script exits.

Assuming the member was found and retrieved, the script then calls LogEntry: :getLogEntries (),
again passing in the member ID, in order to retrieve the rows in the accessLog table associated with
this member (if any).

Next, the script displays all of the member fields inside an HTML definition list (d1) element. Mostly this
is simply a case of calling Member : : getValueEncoded () for each field, passing in the name of the field
to retrieve, and displaying the returned value. For the special cases of gender and favorite genre, the
getGenderString () and getFavoriteGenreString () methods are called to display the field values
in a more human-friendly format.

After the member details come the access log entries. These are displayed in a similar way to the
members in the view_members . php script. For each log entry, the page URL, number of visits, and last
access date are displayed in a table row. Finally, at the end of the page, a JavaScript link is created to
allow the user to go back to the member list page.

Testing the Application

Now that you've created all the scripts for the application, it’s time to try it out. Open the view_
members . php script’s URL in your Web browser. You should see a page similar to Figure 13-1. Try
moving through the pages (there should be two) using the “Next page” and “Previous page” links, and
changing the sort order by clicking the column headings.

400

(c) ketabton.com: The Digital Library

Chapter 13: Retrieving Data from MySQL with PHP

Now click a username in the member list. You'll be taken to the view_member .php script, which should

look similar to Figure 13-2. Click the Back link to return to the members list.

File Edit view History Bookmarks Tools Help

=] > e = |55' httpfflocalhostibook clubpview memberphpTmembend=3

View member: Jo Scrivener

Username |ojo

First name Jo

Last name Scrivenar

Joined on 2006-09-03

Gender Female

Favorite genre Romance

Email address jscrivener@example.com
Other interests Cenealogy, writing, painting
Access log

‘Wabme Number of visits Last visit

books.php 2 2008-11-08 19:47:34
| contact. php 1 2008-11-08 14:52:12
Back
Done
Figure 13-2

You're now well on your way to writing complex, database-driven PHP applications. The next logical
step, of course, is to create applications that can write data to a database, rather than just retrieve data,

and you do this in the next chapter.

Summary

In this chapter you expanded on your knowledge of both MySQL and PDO, and learned how to create
PHP applications that are capable of reading data from database tables and displaying the data to the user:

Q First you set up the tables for an imaginary book club database that you used throughout the
chapter. Along the way, you explored the BINARY attribute and case-sensitivity; the UNIQUE
constraint for enforcing unique values in a column; the ENUM data type for creating fields with a
small number of possible values; and the TIMESTAMP data type for automatically recording

when records are created or updated

401

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Q

Next, you took a closer look at the SQL SELECT statement. You learned how to use LIMIT to
restrict the number of rows returned from a query, and how to sort the rows of a result set using
the ORDER BY clause. You saw how to make queries more flexible by using the LIKE and NOT
LIKE operators, and how to use functions such as count (), sum(), min(), max (), and avg () to
summarize columns in a table

Duplicate rows can be a problem in result sets, and you saw how to solve this issue by using the
DISTINCT keyword. You also learned how to group results by a specified column or columns
through the use of GROUP BY clauses

One of the main advantages of a relational database is that you can pull data from more than
one table at a time — a process known as joining tables. You learned how to do this, and also
how to use aliases to make both queries and result sets more readable

To round off the discussion on SELECT queries, you explored a few of the myriad MySQL
operators and functions that you can use to add even more power to your queries

In the second half of the chapter you built a member viewer application that was capable of listing all
the members in the fictional book club database, as well as viewing detailed information about each
member. In the process you worked with abstract classes, saw how to create classes to deal with database
table access, learned some more useful features of PDO such as prepared queries, and discovered how to
use MySQL’s SQL_CALC_FOUND_ROWS keyword to help you display table contents over several pages.

You now have a solid grounding in how to construct queries and communicate with MySQL from your
PHP scripts. The next chapter takes things further and looks at how to manipulate data in a database
from within PHP.

Meanwhile, try the following two exercises, which test both your SQL query skills and your PHP
programming skills. You can find the solutions to these exercises in Appendix A.

Exercises

402

1.

2.

Write an SQL query to calculate the total number of page views made by all male visitors to the
book club Web site, as well as the total page views from all female visitors.

Referring back to the member viewer application you created in this chapter, modify the Member
class’s getMembers () method to allow an optional fourth parameter, $interest. When this
parameter is specified, the method should only return members whose otherInterests fields
contain the string supplied in $interest.

(c) ketabton.com: The Digital Library

14

Manipulating MySQL Data
with PHP

This is the third and final chapter on the topic of building database-driven PHP applications. In
Chapter 12 you came to grips with the basics of MySQL and relational databases, and learned how
to use PDO (PHP Data Objects) to connect to MySQL databases from PHP. Chapter 13 explored the
concept of retrieving data from a database within your PHP scripts; you learned in detail how to
create SELECT queries, and you wrote a simple record viewer for displaying details of members in
a book club database.

In this chapter, you look at how to alter the data in a MySQL database using PHP. This involves:

O Inserting new records into tables using INSERT statements
O Changing field values within records with UPDATE statements

0 Deleting records using DELETE statements

You explore these three operations in detail, and learn how to perform them from within your PHP
scripts.

Once you understand how to manipulate data in a MySQL database, you build an application to
allow new members to register for your book club database and log in to a members-only area of
your Web site, and write some PHP code that you can use to log each member’s page views in the
members’ area. Finally, you extend the member record viewer you created in Chapter 13 to allow
you to edit and delete member records.

Inserting Records

You learned how to use SQL to add records to a table in Chapters 12 and 13. Remember that you
can insert a row of data with:

INSERT INTO table VALUES (valuel, value2, ...);

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

If you want to insert only some values, leaving NULLs or other default values in the remaining fields, use:
INSERT INTO table (fieldl, field2, ...) VALUES (valuel, value2, ...);

Though the first approach is compact, and perfectly valid if you want to populate all the fields in the
row, the second approach is generally more flexible and readable.

So how do you insert records using your PHP script? You pass INSERT statements to MySQL via PDO in
much the same way as you pass SELECT statements. If you don’t want to pass data from any PHP
variables, you can use the simpler PDO: : query () method — for example:

<?php

Sdsn = "mysql:dbname=mydatabase";
Susername = "root";

Spassword = "mypass";

try {

Sconn = new PDO(dsn, SSusername, S$password);
Sconn->setAttribute(PDO: :ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;
} catch (PDOException S$e) {

echo "Connection failed: " . $e->getMessage();
}
$sgl = "INSERT INTO members VALUES (8, 'derek', password('mypass'), 'Derek',
'Winter', '2008-06-25', 'm', 'crime', 'derek@example.com', 'Watching TV,

motor racing')";

try {
Sconn->query($sgl);
} catch (PDOException $e) {
echo "Query failed: " . $Se->getMessagel();

}

?>

Notice that, although the call to $conn->query () still returns a PDOStatement object, the object is
discarded in this case. There’s no result set to examine, so there’s no need to hold onto the
PDOStatement object.

However, chances are that you do want to insert data that is stored in PHP variables. For example, if a
member has just registered using a registration form, you’ll want to pass the form data to the INSERT
statement to add the member record. The safest way to do this is to create a prepared statement using
PDO: :prepare (), as you did with SELECT queries in the previous chapter. You can then use
placeholders in the query string for each of the field values that you want to insert, and pass the data
into the query using calls to PDOStatement: :bindvalue (). For example:

<?php

$dsn = "mysqgl:dbname=mydatabase";
Susername = "root";

Spassword = "mypass";

404

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

try {
Sconn =

new PDO (
Sconn->setAttribute (

Sdsn,

Susername, S$password) ;
PDO: : ATTR_ERRMODE, PDO: :ERRMODE_EXCEPTION) ;

} catch (PDOException $e) {
echo "Connection failed: " Se->getMessage () ;

}

sid = 8;

Susername = "derek";

Spassword = "mypass";

SfirstName = "Derek";

SlastName = "Winter";

$joinDate = "2008-06-25";

Sgender = "m";

SfavoriteGenre = "crime";

SemailAddress = "derek@example.com";

SotherInterests = "Watching TV, motor racing";

$sgl = "INSERT INTO members VALUES (:id, :username, password (:password),

:firstName, :lastName, :joinDate, :gender, :favoriteGenre, :emailAddress,

:otherInterests)";

try {
$st = $Sconn->prepare($sgl);
Sst->bindvalue(":id", $id, PDO::PARAM_ INT) ;
$st->bindvValue(":username", S$username, PDO::PARAM STR);
$st->bindvalue(":password", Spassword, PDO::PARAM STR);
Sst->bindvalue(":firstName", $firstName, PDO::PARAM STR) ;
$st->bindvalue(":lastName", $lastName, PDO::PARAM STR);
$st->bindvValue(":joinDate", S$joinDate, PDO::PARAM STR) ;
Sst->bindvalue(":gender", S$gender, PDO::PARAM STR);
$st->bindvalue(":favoriteGenre", S$favoriteGenre, PDO::PARAM STR);
$st->bindvValue(":emailAddress", SemailAddress, PDO::PARAM_STR) ;
Sst->bindValue(":otherInterests", S$SotherInterests, PDO::PARAM STR);

Sst->execute () ;

} catch (PDOException $e) {

echo "Query failed: " Se->getMessage () ;
}
?>

In this example, the variable values are hard-coded in the script. In a real-world application, you would
of course receive these values from outside the script, such as via submitted form values in the $_POST

superglobal array.

Remember that, although using prepared statements and placeholders gives you some protection against
SQL injection attacks, you should always check or filter user input before doing anything with it, such as
storing it in a database. You can find out more about this and other security-related issues in Chapter 20.

405

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Updating Records

As you saw in Chapter 12, you can alter the data within an existing table row by using an SQL UPDATE
statement:

mysgl> UPDATE fruit SET name = 'grapefruit', color = 'yellow' WHERE id = 2;

Query OK, 1 row affected (0.29 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * from fruit;

i R e +
| id | name | color |
Fmmm b mm o Fomm o +
1	banana	yellow
2	grapefruit	yellow
3	plum	purple
oo e +
3 rows in set (0.00 sec)

As with inserting new records, updating records via your PHP script is simply a case of using
PDO: :query () if you're passing literal values in the UPDATE statement, or PDO: : prepare () with
placeholders if you're passing variable values. For example, the following script changes the email
address field in the “Derek Winter” record that was added in the previous section:

<?php

$dsn = "mysqgl:dbname=mydatabase";
Susername = "root";

Spassword = "mypass";

try {

$conn = new PDO(dsn, SSusername, S$password);
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;
} catch (PDOException Se) {

echo "Connection failed: " . $e->getMessage();
}
sid = 8;
SnewEmailAddress = "derek.winter@example.com";
$sqgl = "UPDATE members SET emailAddress = :emailAddress WHERE id = :id";
try {
$st = $Sconn->prepare($sqgl);
$st->bindvalue(":id", $id, PDO::PARAM_INT) ;
$st->bindvalue(":emailAddress", S$newEmailAddress, PDO::PARAM_STR) ;

Sst->execute () ;
} catch (PDOException S$e) {
echo "Query failed: " . Se->getMessage();

?>

406

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

Deleting Records

Deleting rows of data via PHP is a similar process to updating. Chapter 12 showed you how to delete
rows from a table using the SQL DELETE keyword:

mysgl> DELETE FROM fruit WHERE id = 2;
Query OK, 1 row affected (0.02 sec)

To delete rows using PHP, you pass a DELETE statement directly via PDO: : query (), or create the statement
using PDO: : prepare () with placeholders, passing in values (such as the criteria for the WHERE clause)

with PDOStatement : :bindvValue () and running the query with PDOStatement: : execute ().

The following script deletes the member record with the ID of 8 from the members table:

<?php

Sdsn = "mysqgl:dbname=mydatabase";
Susername = "root";

Spassword = "mypass";

try {

Sconn = new PDO($dsn, Susername, S$password);
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;
} catch (PDOException $e) {

echo "Connection failed: " . S$Se->getMessage();
}
$id = 8;
$sgl = "DELETE FROM members WHERE id = :id";
try {
$st = $conn->prepare($sgl);
Sst->bindvalue(":id", $id, PDO::PARAM_ INT) ;

Sst->execute() ;
} catch (PDOException $e) {

echo "Query failed: " . Se->getMessage();
}

?>

Incidentally, rather than binding the value of a variable to a placeholder with PDOStatement : :
bindValue (), you can instead use PDOStatement : :bindParam () to bind the variable itself. If
you then change the value of the variable after the call to bindParam (), the placeholder value is
automatically updated to the new value (in other words, the variable is bound by reference rather than
by value). This can be useful if you're not sure what value you're going to pass in at the time you
prepare the statement. Find out more on bindParam () in the online PHP manual at http: / /www
.php.net/manual/en/pdostatement.bindparam.php.

407

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Building a Member Registration Application

Now that you know how to insert records into a MySQL table via PHP, you can write a script that

lets new members sign up for your book club. Rather than reinventing the wheel, you build on the
object-oriented member viewer application that you created in Chapter 13, extending the classes to add
new functionality and creating a script to register new members.

Adding More Common Code

First, add some extra code to the common . inc.php file that’s inside your book_c1lub folder. Open this
file in your editor.

Within this file, it makes sense to include the other common files that are used by the rest of the
application. That way, scripts only need to include common . inc.php, and the other files will be included
automatically. Add the following to the start of the common. inc . php file:

require_once("config.php");
require_once("Member.class.php");
require_once("LogEntry.class.php");

Now add the following line to the CSS declarations within the displayPageHeader () function:

<style type="text/css">
th { text-align: left; background-color: #bbb; }
th, td { padding: 0.4em; }
tr.alt td { background: #ddd; }

.error { background: #d33; color: white; padding: 0.2em; }
</style>

This line creates a CSS . error class that you'll use to highlight any problems with the registration form.

Finally, add three extra utility functions to help with displaying the registration form:

function validateField(S$fieldName, SmissingFields) {
if (in_array($fieldName, S$missingFields)) {
echo ' class="error"';

}
function setChecked(DataObject obj, SSfieldName, $fieldvalue) {

if (Sobj->getvValue($fieldName) == S$fieldvalue) {
echo ' checked="checked"';

}
function setSelected(DataObject $obj, $fieldName, Sfieldvalue) {

if (Sobj->getvValue($fieldName) == S$fieldvalue) {
echo ' selected="selected"';

408

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

You may recognize these functions from Chapter 9 (although they’ve been slightly modified).
validateField () checks to see if the supplied field name is within the list of fields that the user
forgot to fill in. If it is, a class="error" attribute is output, which highlights the missing field
in red.

Meanwhile, setChecked () and setSelected () output the markup to pre-check a checkbox and
pre-select an option in a menu, respectively. Both methods expect an object derived from the
DataObject class (such as a Member object), the name of the field to look up, and the value to
compare. If the supplied value matches the value of the field in the object, the markup is output.
These functions are used within the registration form to help prefill fields in the form, as you see in a
moment.

Enhancing the Member Class

The next thing to do is add some more functionality to your Member class. First, add a couple of extra
methods for retrieving Member objects from the database. getByUsername () retrieves the member with
the supplied username, and getByEmailAddress () retrieves the member with the given email address.
These will be used to ensure that a prospective member doesn’t accidentally register with a username or
email address that is already in the database.

Open up the Member . class.php file that you created in Chapter 13 and add the following code to the
file, after the existing getMember () method:

public static function getByUsername(Susername) {
Sconn = parent::connect () ;

$sgl = "SELECT * FROM " . TBL_MEMBERS . " WHERE username = :username";
try {

$st = $Sconn->prepare($sgl);

$st->bindValue(":username", Susername, PDO::PARAM STR);

$st->execute () ;
Srow = S$st->fetch();
parent: :disconnect (Sconn) ;
if ($Srow) return new Member (Srow) ;
} catch (PDOException $e) {
parent: :disconnect (Sconn) ;
die("Query failed: " . Se->getMessage());

}

public static function getByEmailAddress(SemailAddress) {
Sconn = parent::connect () ;

Ssgl = "SELECT * FROM " . TBL_MEMBERS . " WHERE emailAddress =
:emailAddress";
try {

409

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Sst = Sconn->prepare($sgl);
Sst->bindvValue(":emailAddress", SemailAddress, PDO::PARAM_STR);
$st->execute () ;
Srow = $st->fetch();
parent: :disconnect (Sconn) ;
if (Srow) return new Member(Srow);
} catch (PDOException Se) {
parent: :disconnect (Sconn) ;
die("Query failed: " . Se->getMessage());

These methods should be self-explanatory. You can see that they work in much the same way as
getMember (), which you created in the previous chapter.

Next, add a short method, getGenres (), that simply retrieves the values in the private $_genres array
property. This will be used for displaying a list of genres for the prospective member to choose from.
Insert it just below the existing getFavoriteGenreString () method in the class file:

public function getGenres() {
return $this->_genres;

}

So far the class contains methods for retrieving member records from the members table. Now you're
going to add a new method, insert (), that adds a new member to the table. Add the following code to
the end of the class file, just before the curly brace that closes the class:

public function insert() {
Sconn = parent::connect() ;
$sgl = "INSERT INTO " . TBL_MEMBERS . " (
username,
password,
firstName,
lastName,
joinDate,
gender,
favoriteGenre,
emailAddress,
otherInterests
) VALUES (
:username,
password (:password) ,
:firstName,
: lastName,
:joinDate,
:gender,
:favoriteGenre,
:emailAddress,
:otherInterests

try {

410

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

S$st = $Sconn->prepare($sgl);
Sst->bindvValue(":username", S$this->data["username"], PDO::PARAM STR);
Sst->bindvValue(":password", S$this->datal["password"], PDO::PARAM_STR) ;
Sst->bindvValue(":firstName", S$this->data["firstName"], PDO::PARAM STR);
$st->bindvalue(":lastName", S$this->data["lastName"], PDO::PARAM STR) ;
Sst->bindValue(":joinDate", S$this->datal["joinDate"], PDO::PARAM_STR) ;
$st->bindValue(":gender", S$Sthis->data["gender"], PDO::PARAM_STR) ;
$st->bindvValue(":favoriteGenre", S$Sthis->datal["favoriteGenre"],

PDO: : PARAM_STR) ;
$st->bindvValue(":emailAddress", S$this->data["emailAddress"],

PDO: : PARAM_STR) ;
Sst->bindvalue("
PDO: : PARAM_STR) ;
Sst->execute () ;
parent: :disconnect (Sconn) ;
} catch (PDOException $e) {
parent: :disconnect (Sconn) ;
die("Query failed: " . Se->getMessage());

:otherInterests", S$Sthis->data["otherInterests"],

If you’ve worked through the previous chapter and this chapter so far, there should be no surprises here.
insert () builds an SQL statement to insert the data stored in the current Member object into the
database. Notice that the statement doesn’t attempt to insert a value for the id field, because this is
generated automatically by MySQL.

Then the method prepares the statement with PDO: : prepare (), binds each of the placeholders to the
appropriate value in the Member object’s $data array property, and executes the statement by calling
PDOStatement: :execute (). If there were any problems with the insertion, the exception is caught and
displayed and the application exits.

Creating the Registration Script

Now that you've added the required functionality to your common code file and Member class file,
you're ready to build the registration script itself. Save the following code as register.php in your
book_club folder:

<?php

require_once("common.inc.php");

if (isset($_POST["action"]) and $_POST["action"] == "register") {
processForm() ;

} else {
displayForm(array (), array(), new Member (array()));

}

function displayForm($SerrorMessages, SmissingFields, Smember) {

displayPageHeader ("Sign up for the book club!");

if (SerrorMessages) {

411

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

412

foreach (SerrorMessages as SerrorMessage) {
echo SerrorMessage;
}
} else {

?>

<p>Thanks for choosing to join our book club.</p>

<p>To register, please fill in your details below and click Send
Details.</p>

<p>Fields marked with an asterisk (*) are required.</p>
<?php } ?>

<form action="register.php" method="post" style="margin-bottom: 50px; ">
<div style="width: 30em; ">

<input type="hidden" name="action" value="register" />

<label for="username"<?php validateField("username",

SmissingFields) ?>>Choose a username *</label>

<input type="text" name="username" id="username" value="<?php echo
Smember->getValueEncoded ("username") ?>" />

<label for="passwordl"<?php if (SmissingFields) echo '
class="error"' ?>>Choose a password *</label>

<input type="password" name="passwordl" id="passwordl" wvalue="" />

<label for="password2"<?php if (SmissingFields) echo '
class="error"' ?>>Retype password *</label>

<input type="password" name="password2" id="password2" wvalue="" />

<label for="emailAddress"<?php validateField("emailAddress",

SmissingFields) ?>>Email address *</label>
<input type="text" name="emailAddress" id="emailAddress" value="<?php
echo S$Smember->getValueEncoded("emailAddress") ?2>" />

<label for="firstName"<?php validateField("firstName",

SmissingFields) ?>>First name *</label>
<input type="text" name="firstName" id="firstName" value="<?php
echo Smember->getValueEncoded("firstName") ?>" />

<label for="lastName"<?php validateField("lastName",
SmissingFields) ?>>Last name *</label>

<input type="text" name="lastName" id="lastName" value="<?php echo
Smember->getValueEncoded("lastName") ?2>" />

<label<?php validateField("gender", SmissingFields) ?>>Your
gender: *</label>

<label for="genderMale">Male</label>

<input type="radio" name="gender" id="genderMale" value="m"<?php
setChecked(S$Smember, "gender", "m")?>/>

<label for="genderFemale">Female</label>

<input type="radio" name="gender" id="genderFemale"
value="f"<?php setChecked($member, "gender", "f")?> />

<label for="favoriteGenre">What's your favorite genre?</label>

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

<select name="favoriteGenre" id="favoriteGenre" size="1">

<?php foreach (Smember->getGenres () as Svalue => S$label) { ?>
<option value="<?php echo $value ?>"<?php setSelected(S$member,
"favoriteGenre", S$value) ?>><?php echo $label ?></option>
<?php } ?>
</select>

<label for="otherInterests">What are your other interests?</label>

<textarea name="otherInterests" id="otherInterests" rows="4"
cols="50"><?php echo $member->getValueEncoded("otherInterests")
?></textarea>

<div style="clear: both; ">
<input type="submit" name="submitButton" id="submitButton"
value="Send Details" />
<input type="reset" name="resetButton" id="resetButton"
value="Reset Form" style="margin-right: 20px;" />
</div>

</div>
</form>
<?php
displayPageFooter () ;

function processForm() {

SrequiredFields = array("username", "password", "emailAddress",
"firstName", "lastName", "gender");

SmissingFields = array() ;

SerrorMessages = array () ;

Smember = new Member (array (

"username" => isset($_POST["username"]) ? preg_replace
("/[* \-_a-zA-Z0-9]/", "", $_POST["username"]) : "",
"password" => (isset($_POST["passwordl"]) and isset
($S_POST["password2"]) and $_POST["passwordl"] == $_POST["password2"]) ?
preg_replace("/[~ \-_a-zA-7z0-9]/", "", $_POST["passwordl"]) : "",
"firstName" => isset($_POST["firstName"]) ? preg_replace
("/[~ \'\-a-zA-2z0-9]/", "", $_POST["firstName"]) : "",
"lastName" => isset($_POST["lastName"]) ? preg_replace
("/[" \'\-a-zA-20-9]/", "", $_POST["lastName"]) : "",

"gender" => isset($_POST["gender"]) ? preg_replace("/["mf]/",
nn , $_POST [llgender“]) B nn ,

"favoriteGenre" => isset($_POST["favoriteGenre"]) ? preg_replace
("/[~a-zA-2]/", "", $_POST["favoriteGenre"]) : "",

"emailAddress" => isset($_POST["emailAddress"]) ? preg_replace
("/[~ \e\.\-_a-zA-z0-9]/", "", $_POST["emailAddress"]) : "",

"otherInterests" => isset($_POST["otherInterests"]) ? preg replace
("/[~ \'\,\.\-a-zA-20-9]/", "", $_POST["otherInterests"]) : "",

"joinDate" => date("Y-m-d")
))

foreach (SrequiredFields as SrequiredField) {

413

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

if (!$Smember->getValue(SrequiredField)) {
SmissingFields[] = SrequiredField;
}
}
if (SmissingFields) {
SerrorMessages[] = '<p class="error">There were some missing fields

in the form you submitted. Please complete the fields highlighted below and
click Send Details to resend the form.</p>';
}

if (!isset($_POST["passwordl"]) or !isset($_POST["password2"]) or

1S _POST["passwordl"] or !S_POST["password2"] or ($_POST["passwordl"] !=
S_POST["password2"])) {

SerrorMessages[] = '<p class="error">Please make sure you enter your

password correctly in both password fields.</p>';

}

if (Member::getByUsername ($Smember->getValue("username"))) {
SerrorMessages|[] = '<p class="error">A member with that username
already exists in the database. Please choose another username.</p>';

}

if (Member::getByEmailAddress(Smember->getValue("emailAddress"))) {
SerrorMessages[] = '<p class="error">A member with that email address
already exists in the database. Please choose another email address, or
contact the webmaster to retrieve your password.</p>"';

}

if (SerrorMessages) {

displayForm(SerrorMessages, SmissingFields, Smember) ;
} else {

Smember->insert () ;

displayThanks () ;

function displayThanks () {
displayPageHeader ("Thanks for registering!");

?>
<p>Thank you, you are now a registered member of the book club.</p>
<?php
displayPageFooter () ;
}
?>

Again, you'll probably recognize the script’s general structure from the registration.php script in
Chapter 9. The main differences are that this script contains additional error checking, and it also creates
the new member record (the script in Chapter 9 merely displayed a thank-you message).

First the script includes the required common . inc. php file, then checks to see if the registration form has
been submitted. If it has, it calls processForm() to handle the form data. Otherwise, it displays the

414

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

form by calling displayForm(), passing in two empty arrays and an empty Member object. (You see
why it does this in a moment.)

The displayForm () function, as its name suggests, handles the displaying of the registration form. It
expects three arguments:

0 SerrorMessages is an array holding any error messages to display to the user
QO $missingFields is a list of any required fields that weren't filled in by the user

0 $member is a Member object holding any data entered by the user so far, used for prefilling the
form fields if an error needs to be displayed. (This gives you an idea of the flexibility of OOP —
the script uses the Member class not only for database access, but also to hold temporary
member data between form submissions.)

The function displays the page header and, if any error messages were contained in $errorMessages,
these are displayed at the top of the page. Otherwise a welcome message is displayed.

Next, the form itself is output. This works much like the registration.php form in Chapter 9. Each
field is displayed, calling validateField() if appropriate to highlight any missing required fields.

A field’s value is prefilled by calling $member->getvalueEncoded () to retrieve the previously entered
value stored in the $member object. In the case of the gender checkboxes, setChecked () is called to
pre-check the appropriate box. With the favoriteGenre () select menu, setSelected () is used

to pre-select the correct option.

The form also includes a hidden field, action, with the value of "register". This is used by the if
statement at the top of the script to determine if the form has been submitted.

After the form has been displayed, the page footer is output by calling displayPageFooter ().

processForm() deals with validating and storing the submitted form data. First the function sets up a
$requiredFields () array holding a list of the required form fields, and two empty arrays:
$missingFields () to hold any required fields that weren't filled in by the user, and $errorMessages
to store any error messages to display to the user.

Next, the function reads the nine form field values — username, passwordl, password2, firstName,
lastName, gender, favoriteGenre, emailAddress, and otherInterests — from the $_POST array
and stores them in a new Member object. For each field, it looks to see if the field exists in the $_pPOST
array; if it does, it is filtered through an appropriate regular expression to remove any potentially
dangerous characters, and stored in the Member object. If the field doesn’t exist, an empty string (" ") is
stored instead.

Find out about regular expressions in Chapter 18 and input filtering in Chapter 20.
For the passwordl and password2 fields, the script checks that both fields were filled in and that their
values match. If this is the case, passwordl’s value is stored in the password field of the Member object.
Otherwise, an empty string is stored:
"password" => (isset($_POST["passwordl"]) and isset($_POST["password2"])

and $_POST["passwordl"] == $_POST["password2"]) ? preg_replace("/[" \-_
a-zA-7z0-9]/", "", $_POST["passwordl"]) : "',

415

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Also, notice that the Member object’s joinDate field is set:
"joinDate" => date("Y-m-d")

PHP’s date () function is used to generate a string representing the current date in the format vyvyy-MM-DD.
This string is then stored in the joinDate field, reflecting the date that the member completed their
registration.

You can find out more about date () in Chapter 16.

Now that a Member object has been created and populated with the submitted form data, the script
performs various checks on the data. First, it runs through the list of required field names; if any
required field was not filled in, its field name is added to the $missingFields array:

foreach (S$SrequiredFields as SrequiredField)
if (!$member->getValue($SrequiredField))
SmissingFields[] = SrequiredField;

{
{

If any missing fields were encountered, an appropriate error message is added to the $errorMessages
array:

if (SmissingFields) {
SerrorMessages[] = '<p class="error">There were some missing fields in the
form you submitted. Please complete the fields highlighted below and click
Send Details to resend the form.</p>';

}

Error messages are also created if the entered passwords didn’t match, or if the entered username or
email address is already taken. For the username check, Member : : getByUsername () is called with the
entered username; if it returns a Member object, the script knows that the username is taken and
generates an error message. Similarly, for the email address, Member: : getByEmailAddress () is called
to determine if a member with the entered email address already exists in the database.

Finally, if any error messages were raised, the script calls displayForm() to redisplay the form to the
user, passing in the list of error messages, the list of missing fields (if any), and the populated Member
object containing the data already entered by the user, for redisplaying in the form. On the other hand, if
the submitted data was correct, the member record is created in the members table by calling the Member
object’s insert () method:

if (SerrorMessages) {

displayForm($SerrorMessages, SmissingFields, Smember);
} else {

Smember->insert () ;

displayThanks () ;

}

The final function in the script, displayThanks (), simply displays a thank-you message to thank the
member for registering.

416

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

Testing the Application

Once you've created your register. php script, open your Web browser and enter the URL of the script
to test the registration process. Try entering a few values in the form and submitting it to see what
happens. Figure 14-1 shows the script in action; in this example the user has forgotten to enter their
email address. Notice how the script also prompts them to reenter their password (it’s never a good idea
to redisplay an entered password in a form).

ple Edit view History Bookmarks Inols Help

éa -0

[@) | http:ocalhostbouk_clubfregisternphp I - l | - & Q.|

Sign up for the book club!

There were some missing fields in the torm you submitted. Please complete the fields highlighted below and click Send Details to

resend the form,

Choose a usermname fimbo |

[Gioosoapasmord-| |
e o | |
|

|

|

Emall address * ||

. '
First name * [james

Last name * [Bowen

Your gender: *
Male @®
Female o
What's your faverite [, yier ;]
genre?
What are your other [cycling, harse riding
interests?
[Reset Form | [Send Details | =
Done
Figure 14-1

You've now extended your book club application to allow new members to register for the club. Along
the way you learned how to add new member records to your members table using PHP and PDO.

Creating a Members’ Area

Now that members can sign up for your book club, you'll provide them with a members’ area within
your Web site that they can use to check out upcoming events, view the current reading list, and so on.
For the purposes of this chapter, your members’ area will just contain a few dummy pages, but hopefully

417

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

by the time you've finished reading the chapter you'll have the skills to add some real-world
functionality to the members’ area if desired.

Members need to log in to access the members’ area, so you'll create a script that lets them do just that.
The process involves displaying a login form, requesting their username and password. When they
submit the form, you check their details against their record in the members table. If they match, you
display a welcome page, welcoming them to the members’ area; otherwise you prompt them to check
their login details and try again.

Similarly, you'll create a script that allows members to logout from the members’ area.
For each page within the members” area, you'll include code to check that they are in fact logged in, and

redirect them to the login page if they’re not. At the same time, you'll enhance the LogEntry class so that
the application can log page views within the members’ area to the accessLog database table.

Adding an Authentication Method to the Member Class

First things first. For members to be able to log in to the members’ area, you need to add a method to the
Member class that checks a member’s supplied username and password to make sure they’re correct.
This method will be used later by the login script to authenticate members when they login.

Open your Member . class.php file and add the following authenticate () method to the end of the
class, just after the existing insert () method:

public function authenticate() {
Sconn = parent::connect () ;
$sgl = "SELECT * FROM " . TBL_MEMBERS . " WHERE username = :username

AND password = password (:password) ";

try {
Sst = Sconn->prepare($sgl);
Sst->bindvalue(":username", S$this->datal["username"], PDO::PARAM STR);
Sst->bindvValue(":password", S$this->datal["password"], PDO::PARAM STR) ;

Sst->execute () ;
Srow = $st->fetch();
parent: :disconnect ($conn) ;
if (Srow) return new Member(Srow);
} catch (PDOException Se) {
parent: :disconnect ($conn) ;
die("Query failed: " . Se->getMessage());

}

This method gets the username and password stored in the object’s username and password fields, and
looks for a record with that username and password in the members table. Notice that the query encrypts
the password with MySQL's password () function; the password stored in the table is encrypted, so the
plain-text password stored in the object needs to be encrypted so that it can be compared with the
password in the table.

If a record is found that matches the username and password, that record is returned as a new Member
object. Otherwise, nothing is returned.

418

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

Enhancing the LogEntry Class to Record Page Views

Each time a member views a page in the members’ area, you're going to record the event in the
accessLog table. To do this, you need to add a method to the LogEntry class. Open your LogEntry .
class.php file and add the following record () method to the end of the class, after the
getLogEntries () method:

public function record() {
Sconn = parent::connect () ;
Ssgl = "SELECT * FROM " . TBL_ACCESS_LOG . " WHERE memberId = :memberId
AND pageUrl = :pageUrl";

try {
$st = Sconn->prepare($sql);
$st->bindvalue(":memberId", $this->datal["memberId"], PDO::PARAM INT) ;
Sst->bindvalue(":pageUrl", Sthis->datal["pageUrl"], PDO::PARAM STR);

$st->execute () ;

if ($st->fetch()) {
Ssgl = "UPDATE " . TBL_ACCESS_LOG . " SET numVisits = numVisits + 1
WHERE memberId = :memberId AND pageUrl = :pageUrl";
Sst = Sconn->prepare($sgl);
Sst->bindvalue(":memberId", S$this->data["memberId"], PDO::PARAM INT) ;
Sst->bindvalue(":pageUrl", Sthis->datal["pageUrl"], PDO::PARAM_STR);
$st->execute () ;
} else {
$sgl = "INSERT INTO " . TBL_ACCESS_LOG . " (memberId, pageUrl,
numVisits) VALUES (:memberId, :pageUrl, 1)";

Sst = Sconn->prepare($sqgl);

Sst->bindvalue(":memberId", S$this->datal["memberId"], PDO::PARAM INT) ;
Sst->bindvalue(":pageUrl", Sthis->data["pageUrl"], PDO::PARAM_STR);
$st->execute () ;

}

parent: :disconnect (Sconn);
} catch (PDOException Se) {
parent: :disconnect (Sconn);
die("Query failed: " . Se->getMessage());

The record () method takes the member ID and page URL stored in the object’s memberId and
pageUrl data fields, and uses them to record the page view in the accessLog table. If there’s
already a row in the table for that particular member and page, its numvisits field is incremented
using an UPDATE statement. If the row doesn’t exist, it’s created using an INSERT statement, setting
numVisits to 1.

419

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Adding More Common Code

Because your members’ area pages will be in a subfolder inside your book club folder, you need to
modify the displayPageHeader () function inside common . inc.php to change the URL of the
common . css style sheet if called from a page within the members” area. Change the first line of
the function definition to:

function displayPageHeader (SpageTitle, SmembersArea = false) {

Now, within the function, change the line that includes the style sheet to:

<link rel="stylesheet" type="text/css" href="<?php if ($SmembersArea)

echo "../" ?>../common.css" />
This adds an extra " . . /" to the common.css URL if a second argument of true is passed to the
function.

Next, add a function to check that a member is logged in. This will be called from every page in the
members’ area. If a user who isn’t logged in attempts to access a page in the members” area, you want to
redirect them to the login page. Add the following checkLogin () function after the existing
setSelected() function in your common. inc.php file:

function checkLogin() {
session_start () ;
if (!S_SESSION["member"] or !S$S_SESSION["member"] = Member: :getMember
($S_SESSION["member"]->getValue("id"))) {
$_SESSION|["member"] = "";
header ("Location: login.php");
exit;
} else {
$logEntry = new LogEntry(array (
"memberId" => $_SESSION["member"]->getValue("id"),
"pageUrl" => basename($_SERVER["PHP_SELF"])

))
$logEntry->record() ;

This function makes sure a PHP session is active with session_start (), then checks to see if there’s a
Member object stored in the "member" element in the $_SESSION superglobal array; this indicates that

a member is logged in, as you see in the next section. If a Member object was found, it is reloaded from
the database by calling Member : : getMember (). This not only ensures that the data in the session is
current, but it also makes sure that the currently logged-in member does indeed exist in the members
table (for example, if the member was deleted while they were logged in, then they shouldn’t be allowed
to continue using the system).

If the $_SESSION element was not found, or the Member object it contained no longer exists in the
database, the $_SESSION element is cleared (to save having to look the member up again), the user is
redirected to the login page using the PHP header () function, and the application is exited with the
PHP exit command (this prevents any of the protected page content from being sent to the browser). If
the Member object was found, the page view is logged by creating a new LogEntry object, populating it
with the logged-in member’s ID and the current page URL, and calling the object’s record () method.

420

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

The page URL is retrieved from the "PHP_SELF" element in the $_SERVER superglobal array:
"pageUrl" => basename($_SERVER["PHP_SELF"])

$_SERVER is another useful superglobal, similar to the ones you encountered in Chapters 7 and 9. It
stores various values related to the Web server and script environment. The "PHP_SELF" element stores
the URL of the current page relative to the top level of the Web site. For example, if a PHP script at
http://www.example.com/myscripts/script.php is viewed, $_SERVER["PHP_SELF"] is set to
/myscripts/script.php. For the purposes of this application, you only want to store the filename of
the page — for example, diary.php — so you use PHP’s basename () function to remove the path
portion of the URL.

You looked at sessions in Chapter 10, and you look at the $_SERVER superglobal in more detail in
Chapter 16.

Writing the Login Page Script

Now that you've updated your classes and common code, you're ready to create the script to display
and handle the member login page. First, create a members folder within your book_c1lub folder; this
folder will hold not only the login script, but also the protected pages of the members’ area. Within this
members folder, create the following script and call it 1ogin.php:

<?php
require_once("../common.inc.php");
session_start () ;

if (isset($_POST["action"]) and $_POST["action"] == "login") {
processForm() ;

} else {
displayForm(array (), array(), new Member(array()));

}

function displayForm($SerrorMessages, SmissingFields, Smember) {

displayPageHeader ("Login to the book club members' area", true);

if (SerrorMessages) {
foreach (SerrorMessages as SerrorMessage) {
echo SerrorMessage;
}
} else {
?>
<p>To access the members' area, pleas enter your username and password
below then click Login.</p>
<?php } ?>

<form action="login.php" method="post" style="margin-bottom: 50px;">
<div style="width: 30em; ">

<input type="hidden" name="action" value="login" />

<label for="username"<?php validateField("username", SmissingFields)
?>>Username</label>

421

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

<input type="text" name="username" id="username" value="<?php
echo S$Smember->getValueEncoded("username") ?2>" />

<label for="password"<?php if (SmissingFields) echo ' class=
"error"' ?>>Password</label>
<input type="password" name="password" id="password" value="" />

<div style="clear: both; ">
<input type="submit" name="submitButton" id="submitButton"
value="Login" />
</div>
</div>
</form>
<?php
displayPageFooter () ;

function processForm() {
SrequiredFields = array("username", "password");
SmissingFields = array();
SerrorMessages = array();

Smember = new Member (array (

"username" => isset($_POST["username"]) ? preg_replace("/[~ \-_a-zA-
z0-91/", "", $ _POST["username"]) : "",
"password" => isset($_POST|["password"]) ? preg replace("/[~ \-_a-zA-
z0-91/", "", $_POST["password"]) : "",
))i
foreach (SrequiredFields as SrequiredField) {
if (!$Smember->getValue(SrequiredField)) {
SmissingFields[] = SrequiredField;
}
}
if (SmissingFields) {
SerrorMessages[] = '<p class="error">There were some missing fields in

the form you submitted. Please complete the fields highlighted below and
click Login to resend the form.</p>"';
} elseif (!$SloggedInMember = S$Smember->authenticate()) {
SerrorMessages[] = '<p class="error">Sorry, we could not log you in with
those details. Please check your username and password, and try again.</p>';
}

if (SerrorMessages) {

displayForm(SerrorMessages, SmissingFields, Smember) ;
} else {

S_SESSION|["member"] = $loggedInMember;

displayThanks () ;

function displayThanks () {

422

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

displayPageHeader ("Thanks for logging in!", true);
?>
<p>Thank you for logging in. Please proceed to the <a href="index.
php">members' area.</p>
<?php
displayPageFooter () ;
}

?>

The structure of this script is similar to the register. php script you created earlier. If the login form
was submitted, processForm () is called; otherwise, displayForm() is called. displayForm()
displays the login form, which comprises username and password fields, as well as a Login button. Any
error message is displayed at the top of the form, and any missing fields are highlighted in red.

processForm() checks the submitted login details and, if valid, logs the member in. First it creates a
new Member object populated with the supplied username and password (filtered to remove any invalid
characters). If either field was missing, an error message is generated. Otherwise, the script validates the
entered username and password by calling the Member object’s authenticate () method:

} elseif (!$loggedInMember = $member->authenticate()) {

Remember that this method returns a Member object representing the logged-in member if the username
and password matched; otherwise it returns nothing. So if $1oggedInMember is false, the login
failed and an error message is generated:

SerrorMessages|[] = '<p class="error">Sorry, we could not log you in with
those details. Please check your username and password, and try again.</p>';

If any error messages were generated, the form is redisplayed. Otherwise, all went well, so the logged-in
Member object is stored in the session, and a thank-you page is displayed:

if (SerrorMessages) {

displayForm(SerrorMessages, SmissingFields, S$member) ;
} else {

S_SESSION|["member"] = $loggedInMember;

displayThanks () ;
}

By storing a Member object representing the logged-in member in the $_SESSION array, other scripts in
the application can easily test if a member is currently logged in, and identify the logged-in member,
simply by looking in the session data.

The final function, displayThanks (), thanks the member for logging in and provides them with a link
to take them to the main page of the members’ area, index . php.

423

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Creating a Logout Function

As well as being able to log in to the members’ area, members need to be able to logout when they’ve
finished their session. To do this, create a simple script that clears the $_SESSION["member"] variable.
Save the following file as 1ogout . php in your members folder:

<?php
require_once("../common.inc.php");
session_start () ;
$_SESSION["member"] = "";
displayPageHeader ("Logged out", true);
?>
<p>Thank you, you are now logged out. Login

again.</p>
<?php

displayPageFooter () ;
?>

When viewed, this page immediately logs the member out, then displays a thank-you message, along
with a link inviting them to log in again.

Creating the Pages for the Members’ Area

You've now built the nuts and bolts of your members’ area. The only thing left to do is to create some
dummy pages for the members” area. Create the following four pages in the members folder that you
created earlier.

index.php:

<?php

require_once("../common.inc.php");

checkLogin () ;

displayPageHeader ("Welcome to the Members' Area", true);
?>

<p>Welcome, <?php echo $_SESSION["member"]->getValue("firstName") ?>!
Please choose an option below:</p>

Upcoming events
Current reading list</1li>
Contact the book club</1li>
Logout</1li>

<?php displayPageFooter(); ?>

424

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

books.php:

<?php

require_once("../common.inc.php");

checkLogin () ;

displayPageHeader ("Our current reading list", true);
2>

<dl>
<dt>Moby Dick</dt>
<dd>by Herman Melville</dd>
<dt>Down and Out in Paris and London</dt>
<dd>by George Orwell</dd>
<dt>The Grapes of Wrath</dt>
<dd>by John Steinbeck</dd>
</dl>

<p>Members' area home page</p>
<?php displayPageFooter(); ?>
contact.php:

<?php

require_once("../common.inc.php");

checkLogin () ;

displayPageHeader ("Contact the book club", true);
?>

<p>You can contact Marian, the organizer of the book club, on 187-
812-8166.</p>

<p>Members' area home page</p>
<?php displayPageFooter(); ?>

diary.php:

<?php

require_once("../common.inc.php");
checkLogin () ;

displayPageHeader ("Upcoming events", true);
?>

<dl>

<dt>September 23</dt>

<dd>Book reading by Billy Pierce</dd>

<dt>October 3</dt>

<dd>Club outing to Yellowstone</dd>

<dt>October 17</dt>

<dd>Book signing by Valerie Wordsworth at the local bookstore</dd>
</dl>

<p>Members' area home page</p>

<?php displayPageFooter(); ?>

425

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

These four pages are fairly simple. In each case, common. inc.php is included to load all the common
code and class files. Then, the checkLogin () function in common. inc.php is called to verify that the
user trying to view the page is in fact logged in as a member. Remember that, if the user isn’t logged in,
checkLogin () redirects to the login page and exits the application.

After calling checkLogin (), each script displays the XHTML page header by calling
displayPageHeader (), then outputs the page content, and finally outputs the page footer with
displayPageFooter ().

Notice that index . php also retrieves the logged-in member’s first name with $_SESSION["member"]->
getValue("firstName") and displays it. The logged-in member is stored in the PHP session, so the
member’s details are accessible from any script in the application. index . php also includes a Logout
menu option that simply links to the 1ogout . php script you created earlier.

Testing the Members’ Area

To try out your new password-protected members’ area, try visiting the book_club/members/index.
php page in your Web browser. If you're not logged in, you'll be redirected to the login form (Figure 14-2).
Enter a username (for example, “sparky”) and password (such as “mypass”) for a member stored in
your members table, and click the Login button. If you entered the correct details, you should see the
thank-you page appear, with a link to take you to the members” area. Click the link to view the members
area homepage, index.php, as shown in Figure 14-3.

’

=7 10511 £0 e DOPR EIUD Members area P MOZIAI-irero ey
File Edit Vview History Bookmarks Tools Help

& - e ﬁn‘ | o | httpijflocalhostfbook clubjmembersjlaginphp | "! |IGl~

Login to the book club members' area

To access the members’ area. pleas enter your username and password below then click Login.

Username [|

Password [|

Login

Done

Figure 14-2

426

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

Fle Edit ‘View History Bookmarks Tools Help

& ~ e W ® [E:;http:.Fﬂoca{hostfb0uk_clubfmembers,rindex.php |v] [@v Q‘]

Welcome to the Members' Area
Welcome. John! Please choose an option below:

« Upcoming events

« Current reading list

» Conlad lhe book club
« Logout

Done

Figure 14-3

Navigate around the various members’ area pages by clicking the links. Each time you view a page, the
access is logged in the accessLog table. You can prove this to yourself by running the view_members.
php script you created in the previous chapter, then clicking the username of the member you logged in
as to view their access log, as shown in Figure 14-4.

File Edit Wview History Bookmarks Tools Help
& > ° X | ﬁ II;': http:/flocalhostfbook clubjview member.php?memberid—1 l v] “@- 5o0gle %|
=
View member: John Sparks
Username sparky
First name John
Last name Sparks
Joined on 2007-11-13
Gender Male
Favorite genre Crime
Email address jsparks@example.com
Other interests Football, fishing and gardening
Access log
index.php 7 2008-11-24 17:14.08
books.php 2 2008-11-24 17:09:27
contact.php 1 2008-11-24 17:09:10
diary php 4 2008-11-24 17:09:04
Back I~
Done _
Figure 14-4

427

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

When you're finished browsing around the members’ area, return to the members’” area homepage, and
click the Logout link to return to the login page.

In the last few sections, you've expanded your knowledge of MySQL and PDO, and created a
password-protected members” area with access logging. Although this system is fairly simple, you can
adapt the principles you've learned to a wide variety of database-driven applications and membership
systems.

By the way, you've probably spotted an obvious security flaw in this application: anybody can run the
view_members.php and view_member .php script to view member information! In a real-world
situation, you could do the following:

1. Place the view_members.php and view_member .php scripts inside the members’ area, so you
need to be logged in to use them.

2. Create an additional BIT field, admin, in the members table. A value of 1 for this field signifies
that the member is an administrator; 0 signifies the member is a regular user.

3. From within the view members .php and view_member .php scripts, check the status of the
admin field for the currently logged-in member. If it’s set to 1, let them use the scripts;
otherwise, redirect them to the members” area homepage.

Creating a Member Manager Application

Your book club system can now register new members, allow members to log in to and log out of the
members’ area, and track page visits within the members’ area. What's more, by combining these scripts
with the member record viewer you created in the previous chapter, an administrator can view a list of
all members in the system, as well as the details and access log of each member.

There’s one more piece of the puzzle to build, and that’s a facility to let the administrator manage
members. In this section you enhance the view_member . php script to allow the administrator to edit
each member’s information, as well as remove members from the database.

Adding Update and Delete Methods to the Member Class

So that the administrator can edit and delete members, you need to add a couple of methods to your
Member class: update (), to allow a Member object’s details to be updated in the members table, and
delete (), for removing a Member object completely from the members table.

Open your Member . class. php file and add the following two methods after the insert () method:

public function update() {
Sconn = parent::connect () ;
SpasswordSgl = S$this->datal["password"] ? "password = password(:password),

[TR T
. ’

428

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

["password"],

PARAM_STR
PARAM_STR

PARAM_STR

} catch

$sgl = "UPDATE " TBL_MEMBERS . " SET
username = :username,
SpasswordSqgl
firstName = :firstName,
lastName = :lastName,
joinDate = :joinDate,
gender = :gender,
favoriteGenre = :favoriteGenre,
emailAddress = :emailAddress,
otherInterests = :otherInterests
WHERE id = :id";
try {
S$st = $Sconn->prepare($sgl);
S$st->bindvalue(":id", S$this->datal["id"], PDO::PARAM INT) ;
$st->bindvalue(":username", $this->data["username"], PDO::PARAM STR) ;

if (Sthis->datal["password"]) S$st->bindValue (Sthis->data

PDO: : PARAM_STR) ;

" :password",

$st->bindvalue(":firstName", $this->data["firstName"],
PDO: : PARAM_STR) ;
$st->bindvalue(":lastName", S$this->data["lastName"], PDO::PARAM STR) ;
Sst->bindValue(":joinDate", S$this->datal["joinDate"], PDO::PARAM_STR) ;
Sst->bindValue(":gender", S$Sthis->data["gender"], PDO::PARAM_STR) ;
$st->bindvValue(":favoriteGenre", S$Sthis->data["favoriteGenre"], PDO::
) 9
$st->bindvValue(":emailAddress", Sthis->data["emailAddress"], PDO::
) 5
Sst->bindvValue(":otherInterests", S$this->data["otherInterests"], PDO::
) g
$st->execute () ;
parent: :disconnect (Sconn) ;

(PDOException S$Se) {
parent: :disconnect (Sconn) ;

die("Query failed: " Se->getMessage ());

public function delete() {
Sconn = parent::connect () ;

Ssqgl =

"DELETE FROM " TBL_MEMBERS . " WHERE id = :id";

try {

Sst
Sst->bindvValue (
Sst->execute () ;
parent: :disconnect (Sconn) ;
catch (PDOException Se) {
parent: :disconnect (Sconn) ;
die("Query failed: " Se->getMessage ()

Sconn->prepare (
n :id" ,

$sql) ;
Sthis->data["id"],

PDO: : PARAM_INT) ;

)

429

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

update () creates an SQL UPDATE statement to set the field values of an existing record in the members
table to the values stored in the Member object. The password field is given special treatment: if it
contains a password, it’s encrypted and the relevant SQL is passed into the UPDATE statement via the
$passwordsql string variable:

SpasswordSgl = $this->datal["password"] ? "password = password(:password),

[TR T
. 7

In addition, the password field value is passed into the query with a call to bindvalue ():

if (S$this->datal["password"]) S$st->bindvValue(":password",
Sthis->data["password"], PDO::PARAM STR);

If instead the password field is blank, the method assumes the password doesn’t need updating, and it’s
left out of the UPDATE statement.

delete () simply deletes the member record with the ID stored in the Member object’s id field. To do
this, it creates an SQL DELETE statement with the member’s ID in a WHERE clause.

Adding a Deletion Method to the LogEntry Class

When a member is removed from the system, you also want to remove all their associated log entries
from the accessLog table. If you didn’t, your database would no longer have integrity because the
accessLog table would contain orphaned entries that point to a non-existent member record.

This is easily achieved by adding a method, deleteAllForMember (), to the LogEntry class. This
method expects to be passed the ID of the member in question. It then runs a DELETE statement to
remove the associated log entries.

Open your LogEntry.class.php file and add the following code after the existing record () method:

public static function deleteAllForMember ($SmemberId) {
Sconn = parent::connect() ;

$sgl = "DELETE FROM " . TBL_ACCESS_LOG . " WHERE memberId = :memberId";
try {

$st = S$Sconn->prepare(S$sqgl);

$st->bindvalue(":memberId", S$memberId, PDO::PARAM INT);

$st->execute () ;
parent: :disconnect ($conn) ;
} catch (PDOException Se) {
parent: :disconnect (Sconn) ;
die("Query failed: " . $Se->getMessage());

430

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

Tweaking the view_members.php Script

There’s one small change to make to the member list viewer, view_members.php. Open this file and
change the line highlighted in the following code snippet:

<tr<?php if (SrowCount % 2 == 0) echo ' class="alt"' ?>>
<td><a href="view_member.php?memberId=<?php echo S$member->getValue

Encoded("id") ?>&start=<?php echo S$start ?>&order=<?php echo
Sorder ?>"><?php echo $member->getValueEncoded("username") ?></td>

<td><?php echo S$Smember->getValueEncoded("firstName") ?></td>
<td><?php echo S$member->getValueEncoded("lastName") ?></td>
</tr>

The only change here is that the start and order query string parameters are now being passed
through to the view_member . php script. This is so that the administrator can easily return to the same
page in the members list, with the list still sorted by the correct column. You see how this is used in the
view_member .php script in a moment.

Creating the view_member.php Script

The last step to building your member manager is to create a new view_member . php script that allows the
administrator to edit and delete members. The script is based on the view_member . php file that you
created in the previous chapter. The main differences are that the member data is now displayed in a form,
allowing it to be edited, and that the script includes functions for saving edits and deleting a member.

Open your existing view_member .php file and replace its code with the following:
<?php

require_once("common.inc.php");
require_once("config.php");
require_once("Member.class.php");
require_once("LogEntry.class.php");

SmemberId = isset($_REQUEST["memberId"]) ? (int)$_REQUEST["memberId"] : 0;

if (!Smember = Member::getMember (SmemberId)) {
displayPageHeader ("Error");
echo "<div>Member not found.</div>";
displayPageFooter () ;
exit;

}

if (isset($_POST["action"]) and $_POST["action"] == "Save Changes") {
saveMember () ;

431

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

} elseif (isset($_POST["action"]) and $_POST["action"] == "Delete Member"
) {

deleteMember () ;
} else {

displayForm(array (), array(), Smember);

function displayForm($SerrorMessages, SmissingFields, Smember)

SlogEntries = LogEntry::getLogEntries(Smember->getValue("id"

)7

displayPageHeader ("View member: " . S$member->getValueEncoded (
"firstName") . " " . Smember->getValueEncoded("lastName"));
if (SerrorMessages) {
foreach (SerrorMessages as SerrorMessage) {
echo SerrorMessage;
}
}
Sstart = isset($_REQUEST["start"]) ? (int)$_REQUEST["start"] 0;
Sorder = isset($_REQUEST["order"]) ? preg replace("/[" a-zA-Z]/", "",
S_REQUEST["order"]) : "username";
?>

<form action="view_member.php" method="post" style="margin-bottom:

50px; ">
<div style="width: 30em; ">

<input type="hidden" name="memberId" id="memberId" value="<?php

echo Smember->getValueEncoded("id") ?2>" />

<input type="hidden" name="start" id="start" value="<?php echo

Sstart ?>" />

<input type="hidden" name="order" id="order" value="<?php echo

Sorder ?>" />

<label for="username"<?php validateField("username",
SmissingFields) ?>>Username *</label>

<input type="text" name="username" id="username" value="<?php echo

Smember->getValueEncoded("username") ?2>" />
<label for="password">New password</label>

<input type="password" name="password" id="password" value="" />
<label for="emailAddress"<?php validateField("emailAddress",

SmissingFields) ?>>Email address *</label>

<input type="text" name="emailAddress" id="emailAddress" wvalue="<?php

echo Smember->getValueEncoded("emailAddress") ?2>" />
<label for="firstName"<?php validateField("firstName",
SmissingFields) ?>>First name *</label>

<input type="text" name="firstName" id="firstName" value="<?php echo

Smember->getValueEncoded("firstName") ?2>" />
<label for="lastName"<?php validateField("lastName",
SmissingFields) ?>>Last name *</label>

<input type="text" name="lastName" id="lastName" value="<?php echo

432

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

Smember->getValueEncoded("lastName") ?>" />

<label for="joinDate"<?php validateField("joinDate",

SmissingFields) ?>>Joined on *</label>

<input type="text" name="joinDate" id="joinDate" value="<?php echo

Smember->getValueEncoded("joinDate") ?>" />

<label<?php validateField("gender", S$missingFields) ?>>Gender

*</label>

<label for="genderMale">Male</label>
<input type="radio" name="gender" id="genderMale" value="m"<?php

setChecked(S$Smember, "gender", "m")?>/>

<label for="genderFemale">Female</label>
<input type="radio" name="gender" id="genderFemale" value="f"<?php

setChecked(S$member, "gender", "f")?2> />

<label for="favoriteGenre">Favorite genre</label>

<select name="favoriteGenre" id="favoriteGenre" size="1">

<?php foreach (S$Smember->getGenres () as S$value => S$label) { ?>
<option value="<?php echo S$value ?>"<?php setSelected(S$member,

"favoriteGenre", S$value) ?>><?php echo $label ?></option>

<?php } ?>

</select>

<label for="otherInterests">Other interests</label>
<textarea name="otherInterests" id="otherInterests" rows="4"

cols="50"><?php echo S$member->getValueEncoded("otherInterests") ?></
textarea>

<div style="clear: both; ">
<input type="submit" name="action" id="saveButton" value="Save

Changes" />

<input type="submit" name="action" id="deleteButton" value="Delete

Member" style="margin-right: 20px;" />

</div>
</div>
</form>

<h2>Access log</h2>

<table cellspacing="0" style="width: 30em; border: 1lpx solid #666; ">
<tr>
<th>Web page</th>
<th>Number of visits</th>
<th>Last visit</th>
</tr>

<?php
SrowCount = 0;

foreach ($logEntries as $logEntry) {

SrowCount++;
?>
<tr<?php if (SrowCount % 2 == 0) echo ' class="alt"' ?>>
<td><?php echo S$logEntry->getValueEncoded("pageUrl") ?></td>
<td><?php echo S$logEntry->getValueEncoded("numVisits") ?></td>
<td><?php echo $logEntry->getValueEncoded("lastAccess") ?></td>
</tr>
<?php
}
2>

433

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

</table>

<div style="width: 30em; margin-top: 20px; text-align: center;">
<a href="view_members.php?start=<?php echo S$start ?>&order=<?php
echo Sorder ?>">Back
</div>

<?php
displayPageFooter () ;
}

function saveMember () {

SrequiredFields = array("username", "emailAddress", "firstName",
"lastName", "joinDate", "gender");

SmissingFields = array();

SerrorMessages = array();

Smember = new Member (array (

"id" => isset(S$_POST["memberId"]) ? (int) $_POST["memberId"] : "",

"username" => isset($_POST["username"]) ? preg_replace("/[~ \-_a-zA-
z0-9]/", "", $_POST["username"]) : "",

"password" => isset($_POST["password"]) ? preg_replace("/[" \-_a-zA-
z0-9]/", "", $_POST["password"]) : "",

"emailAddress" => isset($_POST["emailAddress"]) ? preg _replace("/["
\@\.\-_a-zA-z0-9]/", "", $_POST["emailAddress"]) : "",

"firstName" => isset($_POST["firstName"]) ? preg_replace("/[" \'\-a-
zA-70-9]/", "", $_POST["firstName"]) : "",

"lastName" => isset($_POST["lastName"]) ? preg_replace("/[" \'\-a-zA-
z0-91/", "", $_POST["lastName"]) : "",

"joinDate" => isset($_POST["joinDate"]) ? preg_replace("/[~\-0-9]/
", "", $_POST["joinDate"]) : "",

"gender" => isset($_POST["gender"]) ? preg replace("/["mfl/", "",
$_POST["gender"]) : "",

"favoriteGenre" => isset($_POST["favoriteGenre"]) ? preg_replace
"/[~a-zA-2]/", "", $_POST["favoriteGenre"]) : "",

"otherInterests" => isset($_POST["otherInterests"]) ? preg_replace

"/~ \'"\,\.\-a-zA-20-9]/", "", $_POST["otherInterests"]) : ""
))

foreach (SrequiredFields as SrequiredField) {
if (!Smember->getValue(SrequiredField)) {
SmissingFields[] = S$SrequiredField;
}
}
if (SmissingFields) {
SerrorMessages[] = '<p class="error">There were some missing fields in

the form you submitted. Please complete the fields highlighted below and
click Save Changes to resend the form.</p>';

}

if (SexistingMember = Member::getByUsername (Smember->getValue("username"
)) and SexistingMember->getValue("id") != Smember->getValue("id")) {

434

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

SerrorMessages[] = '<p class="error">A member with that username already
exists in the database. Please choose another username.</p>';
}
if (SexistingMember = Member::getByEmailAddress (S$Smember->getValue (
"emailAddress")) and S$SexistingMember->getValue("id") !=
Smember->getValue ("id")) {
SerrorMessages[] = '<p class="error">A member with that email address
already exists in the database. Please choose another email address.</p>';
}
if (SerrorMessages) {
displayForm(SerrorMessages, SmissingFields, S$member);
} else {
Smember->update () ;
displaySuccess () ;
}
}
function deleteMember () {
Smember = new Member (array (
"id" => isset($_POST["memberId"]) ? (int) $_POST["memberId"] : "",

))i
LogEntry: :deleteAllForMember ($Smember->getValue("id"));

Smember->delete () ;
displaySuccess () ;
}

function displaySuccess () {

Sstart = isset($_REQUEST["start"]) ? (int)S$_REQUEST["start"] : 0;

Sorder = isset($_REQUEST["order"]) ? preg_replace("/[" a-zA-Z]/", "",
S_REQUEST["order"]) : "username";

displayPageHeader ("Changes saved");
2>

<p>Your changes have been saved. <a href="view_members.php?start=<?php

echo S$start ?>&order=<?php echo Sorder ?>">Return to member list</p>
<?php

displayPageFooter () ;
}

?>

The script starts off much as before. It retrieves the supplied member ID from either the query string or
form post, then looks up the member in the database by calling Member : : getMember (). If the member
couldn’t be found, an error is displayed and the script exits. Otherwise, the member is stored in
Smember

435

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Next, the script makes a decision about which function to call. If the Save Changes button was
clicked, saveMember () is called to update the member record in the database. If Delete Member was
clicked, deleteMember () is called to remove the member from the database. Otherwise,
displayForm() is called to display the member details form and access log records. The script passes
the retrieved $member object to displayForm() so that its data can be displayed.

The displayForm () function works in a similar way to its counterpart in the register.php script you
created earlier in the chapter. First it retrieves the list of LogEntry objects pertaining to the member in
question, and stores them in a $1ogEntries array. After displaying the page header, the function
outputs any error messages at the top of the page.

Next, displayForm () retrieves the start and order parameters from either the query string or the
form post, and stores them in $start and $order. Then the form itself is displayed. The form includes
three hidden fields:

<input type="hidden" name="memberId" id="memberId" value="<?php echo S$member-
>getValueEncoded("id") ?2>" />

<input type="hidden" name="start" id="start" value="<?php echo S$start ?>" />
<input type="hidden" name="order" id="order" value="<?php echo Sorder ?>" />

memberId tracks the ID of the member being viewed or edited, and start and order propagate their
respective values from the member list page, so that the administrator can return to the same point in the
member list after viewing or editing the member.

The rest of the form works much like it does in register . php. Each form field is displayed, using

Member: :getValueEncoded (), setChecked (), and setSelected () to retrieve the data from the Member
object and display it. The bottom of the form contains a Save Changes button and a Delete Member button.
After the form, the access log details are displayed in the same way as the old view_member . php script.

The Back link at the bottom of the form works slightly differently than register.php. Because you
don’t know how many times the administrator has submitted the form, you can’t use a JavaScript
function call to move back one page to the members list page, as register.php did. So instead you
construct a new link to return to view_members.php, passing in the $start and $order values as
start and order query string parameters, in order to return the administrator to the same point in the
members list.

saveMember () checks the member data that was submitted in the form and, if valid, updates the
member record in the database. It works much like processForm() in register.php. A new Member
object is created that contains the filtered values sent from the form. If any required fields were missing,
or if the chosen username or email address is already used by another member, an error message is
generated, and the form is redisplayed by calling displayForm().

If all went well, the member record is updated by calling $member->update (), and a success message is
displayed by calling displaySuccess (). Note that, thanks to the design of the Member: :update ()
method, the administrator can leave the password field blank in order to retain the member’s existing
password.

436

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

deleteMember () simply creates a new Member object containing just the ID stored in the form’s
memberId hidden field, then calls the object’s delete () method to remove the member record from
the members table. It also calls the LogEntry: :deleteAllForMember () static method, passing in the
member ID, in order to delete any access log entries associated with this member.

Finally, the displaySuccess () function informs the administrator that the update or delete operation
was successful, and provides a link to return to the member list at the point the administrator left off.
It does this by passing the start and order parameters from the form post into the query string in
the link.

Testing the Member Manager

You've built your member manager, so now it’s time to test it. Navigate to your view_members.php
script inside your book_c1lub folder to view the list of members in the database (Figure 14-5). Click a
member’s username to view and edit their details (Figure 14-6). Try entering different values in the form,
then click Save Changes to update the member. You can then click the username again in the members
list to verify that the changes were indeed made. Click Delete Member to remove a member entirely
from the system.

@ LT s e leas b MO e 1T eT0% M

File Edit Vview History Bookmarks Tools Help

=] > e = |:':0 hitpyfocalhostybook clubpiew members php?start=0 ~ | |Gl = 2|

View book club members

Displaying members 1 -5 of 7

‘ Username First name Last name
bigbill Bill Swan
| anefieid Jane Field
] Jo Serivener
| marly Marly Pareene
mary Mary MNewton
Next page
Done
Figure 14-5

437

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

File Edit Vview History Bookmarks Tools Help

@ - & =

[@ | httpiflocalhostibock clubpview memberphp?memberid= 1&start=5&order- = |. ||C|'

) 2

View member: John Sparks

Username * [5oq o

New password [

Email address * [sparks@enample.com

Firsl name * lohn

Last name * [sparks

Joined on * [3007 1113

Gender *
Male @
Female O
Favorite genre [(rme <

Cther interests [Football, fishing and gardening

| Deleta Membar | | Save Changes |

Access log

Webpage Numberofvisits Lastvisit ‘

! index.php T 2008-11-24 17:114:08
| |
Done

Figure 14-6

Lol

Summary

This chapter concluded the three-chapter series on building database-driven applications with PHP and
MySQL. Whereas the last chapter concentrated on reading data from MySQL databases, in this chapter
you learned how to alter MySQL data.

First you explored the SQL INSERT, UPDATE, and DELETE statements and learned how to execute these
statements from within your PHP scripts using PDO.

The rest of the chapter concentrated on practical examples, showing you how to use PDO to manipulate
MySQL data:

Q First you wrote a script that allows new members to register for your fictional book club
database. This involved adding some utility functions to your common code file, creating
methods in your Member class to insert a member and check if a username or email address is
already taken, and, finally, creating the registration script itself. This script displays the
registration form and handles submissions from the form, checking the form data and, if valid,
adding the member to the members table.

438

(c) ketabton.com: The Digital Library

Chapter 14: Manipulating MySQL Data with PHP

You also created a members” area of the book club site, where members can log in, log out, and
view pages. This involved enhancing your Member class with an authenticate () method to
check login details, adding a record () method to the LogEntry class to track page views, and
adding a checkLogin () function to your common code to check that a member is logged in.
Then you created a login script to display and handle the login form, a logout script to log the
member out, and various sample pages within the members” area.

In the last part of the chapter, you extended your view_member . php script from the previous
chapter to allow the administrator to edit a member’s details, as well as delete members from
the members table. Along the way, you added update () and delete () methods to your
Member class, and wrote a LogEntry class method to delete all log entries for a particular
member.

Now that you've worked your way through these three chapters, you have the basic knowledge needed
to build rich, database-driven PHP applications. Although these chapters have covered the basics, there’s
a lot more to both MySQL and PDO than has been explored here. If you want to find out more, check out
the online MySQL manual at http: //dev.mysqgl.com/doc/#manual and the PDO section of the PHP
manual at http: //www.php.net/pdo. Have fun!

In the next chapter you move onto a new topic: PEAR. This is a huge library of free, ready-made PHP
scripts that can really help to speed up your application development process. Before you move on,
though, take a look at the following two exercises to cement your knowledge of SQL and database-
driven applications. You can find the solutions to these exercises in Appendix A.

Exercises

1.

2.

Write an SQL query that returns a list of favorite genres in the book club’s members table
ordered by popularity, most popular first.

Add a Clear Access Log button to your member editor script, view_member . php, that deletes all
records in the accessLog table pertaining to the member being viewed.

439

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

15

Making Your Job Easier
with PEAR

Once you start creating a few PHP Web applications, you'll find that your scripts often need to do
the same tasks again and again. For example, many applications require a login/logout
mechanism, and most Web applications display and process HTML forms at some point.

If you've written your applications in a modular way, using classes and functions to break them
down into specific chunks of functionality, you should find that you can reuse those classes or
functions across applications. For instance, the Member class you developed in Chapters 13 and 14
could easily be used to register, store, and retrieve members for any Web application.

Code reuse is important because it can save you hours of time. However, rather than reusing your
own code, why not reuse someone else’s? That way, you don’t even have to write the code in the
first place! This is where PEAR comes in. PEAR stands for the PHP Extension and Application
Repository, and it’s a big collection of high-quality, open-source code packages that you can freely
download and use in your own applications.

When using a PEAR package, make sure that you check its license. Some package licenses let you
use the package in practically any way you like; for example, you can include the code in an
application that you then sell as a product. Other licenses are more restrictive.

Each package is a separately maintained class, or set of classes, for achieving a specific goal. At the
time of writing, more than 500 packages are available, covering everything from database access
through to authentication, file handling, date formatting, networking and email, and even weather
forecasting. You can browse the full list at http: //pear.php.net/packages.php. Though many
packages can function independently, a package often requires one or more other packages to do
its job. These other packages are known as dependencies of the main package.

Before starting on any new project, it’s a good idea to check the PEAR repository to see if there are
any packages you can incorporate into your application. You may well find that half of your job
has already been done for you, saving you a huge amount of time.

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

In this chapter, you look closely at PEAR, and learn how to install and uninstall PEAR packages. You
explore some useful packages by writing some simple scripts that use them. By the end of the chapter,
you'll have written applications that can:

Q Detect the user’s browser

QO Generate HTML tables using pure PHP code

Q Create, validate, and process Web forms
In each case, you use PEAR packages to do most of the hard work, freeing you up to concentrate on the

application’s logic. By the end of the chapter you should have a good appreciation for the power of
PEAR packages, and of reusable code in general.

Installing PEAR Packages

To use a PEAR package, you need to install it on the same Web server as your PHP installation, so that
your PHP scripts can access it. Installing a PEAR package is easy, thanks to the PEAR package manager
that comes bundled with your PHP installation. The first thing to do, though, is find the name of the
package that you need to install. You can do this in one or more of the following ways:

O You can browse packages by category at http: //pear.php.net/packages.php

0 You can search package names and descriptions at http: //pear.php.net/search.php

0 You can view a full list of packages ordered by popularity — most downloaded first — at

http://pear.php.net/package-stats.php

Once you've found a package that you want to install, it’s time to run the PEAR package manager to
install it. First, though, it’s a good idea to test that the package manager is available and working. If your
PHP installation is on Ubuntu or Mac OS X, the PEAR package manager is already installed and
available. On Windows you need to set up the package manager first.

Testing the PEAR Package Manager on Ubuntu

To give the PEAR package manager a test drive on Ubuntu, simply open a Terminal window
(Applications => Accessories = Terminal) and type:

pear

Then press Enter. You should see a list of commands appear, as follows:

S pear

Commands :

build Build an Extension From C Source
bundle Unpacks a Pecl Package

channel-add Add a Channel

channel-alias Specify an alias to a channel name
channel-delete Remove a Channel From the List
channel-discover Initialize a Channel from its server
channel-info Retrieve Information on a Channel

442

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

channel-update
clear-cache
config-create
config-get
config-help
config-set
config-show
convert
cvsdiff
cvstag
download
download-all

info

install

list

list-all
list-channels
list-files
list-upgrades
login

logout
makerpm
package

package-dependencies
package-validate

pickle
remote-info
remote-list
run-scripts
run-tests
search
shell-test
sign
uninstall
update-channels
upgrade
upgrade-all

Usage: pear [options]

Update an Existing Channel

Clear Web Services Cache

Create a Default configuration file

Show One Setting

Show Information About Setting

Change Setting

Show All Settings

Convert a package.xml 1.0 to package.xml 2.0 format
Run a "cvs diff" for all files in a package
Set CVS Release Tag

Download Package

Downloads each available package from the default
channel

Display information about a package

Install Package

List Installed Packages In The Default Channel
List All Packages

List Available Channels

List Files In Installed Package

List Available Upgrades

Connects and authenticates to remote server
Logs out from the remote server

Builds an RPM spec file from a PEAR package
Build Package

Show package dependencies

Validate Package Consistency

Build PECL Package

Information About Remote Packages

List Remote Packages

Run Post-Install Scripts bundled with a package
Run Regression Tests

Search remote package database

Shell Script Test

Sign a package distribution file

Un-install Package

Update the Channel List

Upgrade Package

Upgrade All Packages

command [command-options] <parameters>

Type "pear help options" to list all options.
Type "pear help shortcuts" to list all command shortcuts.
Type "pear help <command>" to get the help for the specified command.

$

These are all the commands you can give the PEAR package manager. For example, install adds new
packages to your system, and uninstall removes packages.

Testing PEAR using Mac 0S X and MAMP

If you're using MAMP on Mac OS X, the process is similar, but you should make sure you're running the
version of the PEAR package manager that came with MAMBP, rather than the default Mac OS X one. So
first open a Terminal window (Applications = Utilities &> Terminal) and change to your MAMP
installation’s PHP binaries folder:

cd /Applications/MAMP/bin/php5/bin/

443

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

You can now run the PEAR package manager by typing
. /pear

and pressing Return. As with Ubuntu, you should see a list of commands appear.

Installing and Testing PEAR with WampServer
on Windows

If you're running WampServer on Windows, you first need to set up the PEAR package manager. To do
this, open a Command Prompt (Start => All Programs => Accessories = Command Prompt) and change
to the WampServer PHP folder — for example:

cd C:\wamp\bin\php\php5.2.6

A PHP 5.3 version of WampServer wasn’t available at the time of writing, so all the paths in this
section include a php5 . 2 . 6 folder. If your WampServer comes with PHP 5.3, change the path to
include phps . 3 . x rather than php5.2 . 6.

In that folder, you should have a file called go-pear.bat. Run this batch file by typing its name and
pressing Enter:

go-pear.bat

The batch file will ask you a few questions about configuring PEAR. Usually you can just press Enter
to accept the defaults. The batch program then installs and sets up PEAR, displaying messages similar to
the following:

C:\wamp\bin\php\php5.2.6>go-pear.bat

Are you installing a system-wide PEAR or a local copy?
(system|local) [system]

Below is a suggested file layout for your new PEAR installation. To
change individual locations, type the number in front of the
directory. Type 'all' to change all of them or simply press Enter to
accept these locations.

1. Installation base ($prefix) : C:\wamp\bin\php\php5.2.6

2. Temporary directory for processing : C:\wamp\bin\php\php5.2.6\tmp

3. Temporary directory for downloads : C:\wamp\bin\php\php5.2.6\tmp

4. Binaries directory : C:\wamp\bin\php\php5.2.6

5. PHP code directory ($Sphp_dir) : C:\wamp\bin\php\php5.2.6\
pear

6. Documentation directory : C:\wamp\bin\php\php5.2.6\
docs

444

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

7. Data directory : C:\wamp\bin\php\php5.2.6\
data

8. User-modifiable configuration files directory : C:\wamp\bin\php\php5.2.6\cfg

9. Public Web Files directory : C:\wamp\bin\php\php5.2.6\
WWW

10. Tests directory : C:\wamp\bin\php\php5.2.6\
tests

11. Name of configuration file : C:\WINDOWS\pear.ini

12. Path to CLI php.exe : C:\wamp\bin\php\php5.2.6

1-12, 'all' or Enter to continue:

Beginning install...

Configuration written to C:\WINDOWS\pear.ini...

Initialized registry...

Preparing to install...

installing phar://go-pear.phar/PEAR/go-pear-tarballs/Archive_Tar-1.3.2.tar...
installing phar://go-pear.phar/PEAR/go-pear-tarballs/Console_Getopt-
l1.2.3.tar...

installing phar://go-pear.phar/PEAR/go-pear-tarballs/PEAR-1.7.1.tar...
installing phar://go-pear.phar/PEAR/go-pear-tarballs/Structures_Graph-
1.0.2.tar...

pear/PEAR can optionally use package "pear/XML_RPC" (version >= 1.4.0)
install ok: channel://pear.php.net/Archive_Tar-1.3.2

install ok: channel://pear.php.net/Console_Getopt-1.2.3

install ok: channel://pear.php.net/Structures_Graph-1.0.2

install ok: channel://pear.php.net/PEAR-1.7.1

PEAR: Optional feature webinstaller available (PEAR's web-based installer)
PEAR: Optional feature gtkinstaller available (PEAR's PHP-GTK-based
installer)

PEAR: Optional feature gtk2installer available (PEAR's PHP-GTK2-based
installer)

PEAR: To install optional features use "pear install pear/PEAR#featurename"

** WARNING! 01d version found at C:\wamp\bin\php\php5.2.6, please remove it
or be sure to use the new c:\wamp\bin\php\php5.2.6\pear.bat command

The 'pear' command is now at your service at c:\wamp\bin\php\php5.2.6\pear
.bat

** The 'pear' command is not currently in your PATH, so you need to
** use 'c:\wamp\bin\php\php5.2.6\pear.bat' until you have added
** 'C:\wamp\bin\php\php5.2.6' to your PATH environment variable.

Run it without parameters to see the available actions, try 'pear list'
to see what packages are installed, or 'pear help' for help.

For more information about PEAR, see:

http://pear.php.net/faqg.php
http://pear.php.net/manual/

445

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Thanks for using go-pear!

* WINDOWS ENVIRONMENT VARIABLES *

For convenience, a REG file is available under C:\wamp\bin\php\php5.2.6\PEAR_
ENV.reg

This file creates ENV variables for the current user.

Double-click this file to add it to the current user registry.
Press any key to continue
C:\wamp\bin\php\php5.2.6>

As instructed by the batch file’s output, it’s a good idea to open Windows Explorer and double-click the
PEAR_ENV.reg registry file in the folder to set up various Windows environment variables. This will
make life easier when installing and using PEAR packages.

Now you can test your Windows PEAR installation by typing
pear

and pressing Enter. As with Ubuntu and Mac OS X, you should see a list of available commands appear
on the screen.

Installing a Package

Now that you've set up and verified PEAR, you can use the package manager to install a PEAR package.
Start by installing a simple package called Net_UserAgent_Detect; you can use this package to
identify the type and version of the browser used by each visitor to your Web site.

To install a package, run the package manager as described in the last few sections, adding the command
install on the command line, followed by the name of the package you want to install. For example,
on Ubuntu, just type:

pear install Net_UserAgent_Detect

Then press Enter. If all goes well, the package manager should download and install the package,
displaying output similar to the following:

$ pear install Net_UserAgent_Detect

downloading Net_UserAgent_Detect-2.5.0.tgz

Starting to download Net_UserAgent_Detect-2.5.0.tgz (11,343 bytes)
..... done: 11,343 bytes

install ok: channel://pear.php.net/Net_UserAgent_Detect-2.5.0

$

446

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

The PEAR packages are usually installed in folders in your PEAR path:

a /usr/share/php if you're running Ubuntu
QO C:\wamp\bin\php\php5.2.6\PEAR or similar if you're running WampServer

d /Applications/MAMP/bin/php5/1ib/php or similar if you're running MAMP

You should also find a doc folder inside this path. Most PEAR packages come with documentation and
examples, which you'll find inside this folder when the package has been installed. In addition, the
PEAR Web site contains documentation for the majority of packages; to access it, find the package page
and click the Documentation link in the page.

Depending on your setup and operating system, you may need to have access to the administrator or
root user to install PEAR packages. This is because the PEAR path is often only writable by a user with
administrative rights. On Ubuntu, Mac OS X, and other UNIX-like systems, you can usually use
sudo to install packages (for example, sudo pear install Net_UserAgent_Detect) if
administrative rights are required.

If you’re working on a shared server for which you don’t have root access, you can still install PEAR
packages into your shared Web space. If you have SSH access to the server, you can install PEAR that
way. If you only have FTP access, you can use an excellent tool called PEAR_RemoteInstaller
that installs packages via FTP. Find out how to install via SSH or PEAR_RemoteInstaller af
http://pear.php.net/manual/en/installation.shared.php.

Installing Dependencies

Some PEAR packages require other packages to do their work. These packages are known as
dependencies. By default, PEAR only installs the package (or packages) that you specify on the
command line. However, you can get PEAR to install any dependencies as well by adding an
--alldeps option to the command line. For example:

pear install --alldeps Net_UserAgent_Detect
--alldeps also installs optional packages that are related to the package you're installing, but that

are not required for the package to work. If you think this is more than you need, you can use
--onlyreqdeps fo install just the required dependencies.

Uninstalling Packages

Removing a PEAR package is just as easy as installing. Simply run the package manager with the
uninstall command, followed by the name of the package to uninstall:

$ pear uninstall Net_UserAgent_Detect
uninstall ok: channel://pear.php.net/Net_UserAgent_Detect-2.5.0
$

447

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Using a PEAR Package

To use a PEAR package in your script, you first need to include the package file in the script and then
access the package’s classes and methods as required.

As mentioned earlier, PEAR package files are installed in the PEAR path. Usually your PHP include path
contains the PEAR path, among others. This means that you can include a PEAR package simply by
referencing the path to the package file relative to the PEAR path.

For example, the Net_UserAgent_Detect package is accessed by including the file Net /UserAgent/
Detect.php:

require_once("Net/UserAgent/Detect.php");
You can then create a new Net_UserAgent_Detect object with:
Sdetect = new Net_UserAgent_Detect () ;

Generally speaking, to get the path to the package file, replace any underscores (_) in the package name
with slashes (/) and add . php to the end.

_ Detecting the Visitor's Browser

Now that you know how to install and access a PEAR package, try writing a script that uses a
package. In this example you use the Net_UserAgent_Detect package to write a simple “browser
sniffer” script that displays the user’s browser name and operating system name.

First, install the Net_UserAgent_Detect package, if you haven’t already, by following the
instructions in the previous section. For example:

pear install --alldeps Net_UserAgent_Detect
Now save the following script as browser_sniffer.php in your document root folder.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Browser Information</title>
<link rel="stylesheet" type="text/css" href="common.css" />
</head>
<body>
<hl>Browser Information</hl>

<?php
require_once("Net/UserAgent/Detect.php");

Sdetect = new Net_UserAgent_Detect () ;
echo "<p>You are running " . S$detect->getBrowserString() ;

448

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

echo ". Your operating system is " . Sdetect->getOSString() . ".</p>";
?>

</body>
</html>

Run the script by visiting its URL in your Web browser. You should see a result similar to Figure 15-1.

ﬂ Browser I

File Edit Vview History Bookmarks Tools Help

| - e e |i§' hitpfflocalhostbrowser snilfer,php | '| ”G"Iv &

Browser Information

You are running Firelox 3.x, Your operaling syslem is Linux/Unix.

Done

Figure 15-1

How It Works
This simple script kicks off with the standard XHTML page header, then includes the Net_
UserAgent_Detect package:

require_once("Net/UserAgent/Detect.php");
Next it creates a new Net_UserAgent_Detect object:
Sdetect = new Net_UserAgent_Detect () ;

The Net_UserAgent_Detect class contains a number of different methods for extracting browser
information. In this script, the getBrowserString () method is used to retrieve the visitor’s browser
name and version as a text string, and get0SString () is called to return the visitor’s operating
system as a string. These strings are then displayed in the page:

echo "<p>You are running " . $detect->getBrowserString();
echo ". Your operating system is " . $detect->getOSString() . ".</p>";

449

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Creating HTML Tables with the HTML_Table
Package

Now that you've installed and used a basic PEAR package, try something a little more involved. HTML_
Table is a package that lets you generate HTML tables programmatically, rather than directly outputting
HTML markup yourself. Not only does this result in neater PHP code, but it frees you up to concentrate
on the PHP side of things, without having to fiddle with HTML. It also makes it easy for your script to
go back and change the table at any time before it’s rendered; for example, you can add a new row or
column to the table at a later date.

The first thing to do is install the package. HTML_Table depends on another PEAR package, HTML_
Common, to do its work, so you'll need to make sure HTML_Common is installed too. The easiest way to do
that is to include the --alldeps option when installing HTML_Table.

Go ahead and install the HTML_Table and HTML_Common packages using the technique appropriate for
your setup, as described earlier in the chapter. For example:

$ pear install --alldeps HTML_Table

downloading HTML_Table-1.8.2.tgz

Starting to download HTML_Table-1.8.2.tgz (16,988 bytes)
...... done: 16,988 bytes

downloading HTML_Common-1.2.4.tgz

Starting to download HTML_Common-1.2.4.tgz (4,519 bytes)
...done: 4,519 bytes

install ok: channel://pear.php.net/HTML_Common-1.2.4
install ok: channel://pear.php.net/HTML_Table-1.8.2

$

You can find documentation for HTML_Table on the PEAR Web site (http: //pear.php.net/package/
HTML_Table/docs), and there should be a couple of example scripts that show how to use HTML_Table
in the doc/HTML_Table/docs folder in your PEAR path. Here’s a quick overview of HTML_Table’s
most important methods:

Method Description
HTML_Table($attrs, $tabOffset, The HTML_Table constructor. All three arguments
$useTGroups) are optional.

$attrs is an array of HTML attributes (as name/
value pairs) to add to the opening <table> tag.

$ tabOffset specifies how many tabs to indent the
markup for the table (the default is zero).

$useTGroups specifies whether to use thead,
tfoot, and tbody elements in the table (the default
is false, which means they’re not used).

450

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

Method Description

addRow ($contents, S$Sattrs, Adds a row of cells to the table.

stype, SinTR, Sbody) $contents holds the row data as an indexed array,

where each element is the data for a single cell. The
optional $attrs argument contains attributes to
apply to the row, and the optional $ type argument
can be either "th" (for header cells) or "td" (for
data cells) — the default is "td". Set the optional
$inTR argument to true to apply the attributes to
the tr element rather than the td/th elements (the
default). Finally, if you're using tbody elements,
specify the tbody group number as the $body
argument. (Use addBody () to add a new table body —
see the online documentation for details.)

addCol ($contents, $attrs, Adds a column of cells. The parameters work in the
Stype, $hody) same way as addRow () .

altRowAttributes($start, Allows you to set different attributes for every other
Sattrsl, $attrs2, $inTR, S$hody) table row, so you can create alternating row styles.

$start is the index of the row to start alternating,
and $attrsl and $attrs2 are associative arrays or
strings holding the attributes to apply to each
alternate row. The optional $inTR and $body
arguments work in the same way as those in

addRow () .
setCellContents($row, $col, Allows you to set or change the contents of an
$contents, Stype, $body) arbitrary cell in the table. The cell is specified by

$rowand $col (numeric indices starting from zero),
and $contents contains the string to place in the
cell. The optional $ type and $body arguments work
in the same way as those in addRow ().

setHeaderContents ($row, $col, Allows you to set or change a header cell. Works in a
Scontents, $bhody) similar way to setCellContents ().
setAutoGrow($grow, S$bhody) With $grow set to true, auto-grow is enabled. This

means that, whenever you use setCellContents ()
or setHeaderContents () to populate non-existent
cells, empty cells are created as necessary to fill in
the gap between the existing cells and the new cells.
The default value for $growis false. The optional
$body argument works like its counterpart in
addRow () .

451

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Method Description

setAutoFill($fill, $body) This function tells HTML_Table to pre-populate
newly created empty table cells with a string value.
$£i11 is the string to insert into empty cells when
they're created. The optional $body argument works
like its counterpart in addRow ().

toHtml () Returns the HTML markup to display the table. Call
this method once you've created your table to
retrieve the HTML for inserting into the Web page.

You can find a complete list of HTML_Table methods at http: //pear.php.net/manual/en/
package.html.html-table.php

To create a table, you first create a new HTML_Table object to store the table data and other settings, then
call various methods of that object to add data cells, format the table, and so on. When you're done, call
the object’s toHtml () method to retrieve the markup for displaying the table.

My itout | Displaying Fibonacci Numbers with HTML_Table

Chapter 4 featured a script that used looping to display the first few numbers of the Fibonacci
sequence. The numbers were displayed in an HTML table by outputting the HTML markup for the
table directly.

In this example, you rewrite this script to use HTML_Table to generate the markup. Save the following
script as fibonacci2. php in your document root folder.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Fibonacci sequence using HTML_Table</title>
<link rel="stylesheet" type="text/css" href="common.css" />
<style type="text/css">
th { text-align: left; background-color: #999; }
th, td { padding: 0.4em; }
tr.alt td { background: #ddd; }
</style>
</head>
<body>

<h2>Fibonacci sequence using HTML_Table</h2>
<?php
require_once("HTML/Table.php");
Sattrs = array("cellspacing" => 0, "border" => 0, "style" => "width: 20em;

border: 1lpx solid #666;");
Stable = new HTML_Table(S$Sattrs);

452

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

Stable->addRow (array("Sequence #", "Value"), null, "th");

Siterations = 10;

Snuml = 0;
Snum2 = 1;
Stable->addRow(array("F₀", "0"));
Stable->addRow (array("F_{1l}", "1"));

for ($i=2; $1 <= S$iterations; S$i++)

{

S$sum = $numl + $num2;

Snuml = Snum2;

Snum2 = Ssum;

Stable->addRow(array("F_{$i}", S$Snum2));
}

Sattrs = array("class" => "alt");
Stable->altRowAttributes(1, null, Sattrs, true);
echo Stable->toHtml () ;
2>

</body>
</html>

When you run the script, you should see a page more or less the same as the one produced by the
script in Chapter 4. Figure 15-2 shows the result.

File Edit view Higtory Bookmarks Tools Help
Ga - & 7 |8 hupocalhostfibonaceiz.php | -] @~ : Q)
Fibonacci sequence using HTML_Table
Sequences Vol
[F o |
| Fl 7
F2 1 ‘
Iﬂ =
.[4) ‘
Fh 5
E, 8 |
Fl 13
e 21 ‘
E 34
= 55 |
Done
Figure 15-2

453

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

How It Works
After creating an XHTML page header — including additional CSS rules to style the table — the script
includes the HTML_Table PEAR package:

require_once("HTML/Table.php");

Next, the script sets up an associative array of attributes for the opening <table> tag, then creates a
new HTML_Table object with these attributes:

Sattrs = array("cellspacing" => 0, "border" => 0, "style" => "width: 20em;
border: 1lpx solid #666;");
Stable = new HTML_Table(S$Sattrs);

The two-cell table header row is then created by calling the object’s addrRow () method, passing in an
array of cell data. Notice that the $ type argument is set to "th" to ensure that header cells are created:

Stable->addRow(array("Sequence #", "Value"), null, "th");
The rest of the script is much like the script in Chapter 4, with calls to HTML_Table methods replacing the
old HTML markup. After setting up the number of iterations and the two number variables, the first two

non-header rows of the table are created:

Stable->addRow (array("F₀", "0"));
Stable->addRow(array("F_{1l}", "1"));

Within the loop, new rows are added to the table, again by calling addRow ():
Stable->addRow(array("F_{$i}", $num2));

After the loop, the altRowAttributes () method is called to set up the alternate table rows. Counting
from the row after the header row, every second row is given a CSS class of "alt":

Sattrs = array("class" => "alt");
Stable->altRowAttributes(1, null, S$Sattrs, true);

Finally, it’s just a case of calling the table object’s toHtml () method to display the table markup:

echo Stable->toHtml () ;
You can see from this example how easy it is to create tables with HTML_Table. The resulting PHP
code is also clean and easy to modify. Furthermore, once you start using HTML_Table methods such as

setAutoGrow () and setCellContents () you can create — and modify — quite complex tables in
just a few lines of code.

454

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

Web Forms the Easy Way with
HTML_QuickForm

Just as HTML_Table lets you create HTML tables programmatically — thereby making your code clean
and flexible — the HTML_QuickForm package provides a class for creating Web forms without needing
to include a single line of HTML in your scripts. What’s more, HTML_QuickForm can process the forms it
creates, relieving you of the burden of writing (and testing) your own validation, filtering, and error-
reporting code.

In the following sections you take a brief look at the functionality available in the HTML_QuickForm
package, and then you create a membership form script using the power of HTML_QuickForm.

Installing HTML_QuickForm

Installation of HTML_QuickForm is much as you'd expect. On Ubuntu, for example, just run pear
install --alldeps HTML_QuickForm:

$ pear install --alldeps HTML_QuickForm

downloading HTML_QuickForm-3.2.10.tgz

Starting to download HTML_QuickForm-3.2.10.tgz (101,851 bytes)
....................... done: 101,851 bytes

downloading HTML_Common-1.2.4.tgz

Starting to download HTML_Common-1.2.4.tgz (4,519 bytes)
...done: 4,519 bytes

install ok: channel://pear.php.net/HTML_Common-1.2.4

install ok: channel://pear.php.net/HTML_QuickForm-3.2.10

$

Once installed, you should find that there are some example scripts in the doc/HTML_QuickForm/docs/
folder inside your PEAR folder. You can also read the full documentation for HTML_QuickForm at
http://pear.php.net/manual/en/package.html.html-quickform.php.

Working with HTML_QuickForm

To use HTML_QuickForm, you first create a new HTML_QuickForm object, and then call various methods to
add elements — such as fields and labels — to the form. You can also add validation rules to make sure
that the data entered for each field is correct, and filters to remove unacceptable data from each field. You
can then call various methods to validate the form, process the form, or display the form in the page
(including any error messages to display to the user).

455

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Here are some of the most useful methods of the HTML_QuickForm class:

Method

HTML_QuickForm

($formName, S$Smethod,
Saction, Starget, Sattrs,
StrackSubmit)

addElement ()

createElement ()

addGroup (Selements,
Sname, S$groupLabel,
Sseparator, SappendName)

Description

The HTML_QuickForm constructor. All arguments are
optional.

$ formName is the name of the form, included in the <form>
tag’s name attribute. $method is the form sending method
("get" or "post"; defaults to "post"). $actionis the form’s
action attribute — that is, the URL to send the form to.
Leave blank to send the form back to the current script.
$target is the target attribute, which lets you open the
form handler URL in a new window, for example. $attrsis
an array of HTML attributes (as name/value pairs) to add to
the opening <form> tag.

Finally, $ trackSubmit, if set to true, adds a hidden field
to the form to track if it’s been submitted or not. It defaults to
false.

Adds an element to the form, and returns the element object
that was created. The arguments that you need to pass in
depend on the element you're creating. For example, to add a
text input control with a name of "age" and a label of "Your
Age", you might write: $form->addElement ("text",
"age", "Your Age").You can also passin an HTML_
QuickForm_element object created with createElement ().

Creates and returns a form element as an HTML_QuickForm_
element object. You can then pass this element to
addElement () to add it to the form, or addGroup () to add it
to a group in the form. The exact arguments to pass in
depend on the type of element you're creating.

Adds a group of elements to the form. Element groups allow
you to treat a bunch of elements much like a single element.

They’re useful for visually grouping elements in a form, and
also for logical grouping (such as creating a group of related
radio buttons).

$elements is the array of elements to add. $name is the name
of the group, and $groupLabel is the label to display next

to the group in the form. $ separator is the markup to use to
separate elements in the group. Set $appendName to true

to include the group name in each element name in the group
(for example, "myGroup [myElement] " instead of just
"myElement"). This setting defaults to false.

All arguments except $elements are optional.

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

Method

addRule($Selement,
Smessage, Stype, S$format,
Svalidation, Sreset,
Sforce)

applyFilter (Selement,
Sfilter)

isSubmitted ()

validate ()

process (Scallback,
SmergeFiles)

toHtml ()

Description

Adds a validation rule to the form element with name $element.

$message is the error message to display next to the form
field if the entered data is invalid, and $ type is the rule type
to use (for example, "required" to check that the field
contains data, or "alphanumeric" to check that the data in
the field is alphanumeric). $ format is required by some rules
(for example, the "regex" type expects a regular expression
as the $ format argument).

$validationcanbe "server" or "client". Forms are
usually validated in the PHP script (that is, server-side). By
specifying "client" here, HTML_QuickForm also includes
JavaScript in the form for additional client-side validation.
$reset works in tandem with the "client" $validation
setting; if set to true, the form element is reset to its original
value if there was an error. (The default is false.)

Finally, $ force forces the validation rule to be applied even if
the element in question doesn’t exist in the form. The default
is false; set to true to force validation.

All arguments are optional except $element, $message,
and $ type (and $ format if required by the rule type).

Applies a filter to an element’s data. The filter is a callback
function. $element is the element to filter, and $ filteris
the callback name. For example, to trim whitespace from a
form field called "username", you could use $ form->
applyFilter ("username", "trim"). To run all fields
through a filter, use the special element name "__ALL__".

You can also write your own filter callback functions.

Returns true if the form has been sent back to the script by the user,
or false if this is the first time the form is being displayed. (Only
works if you created the form with $ trackSubmi t set to true.)

Runs all validation rules on the submitted form data, returning
true if the form is valid and false otherwise. In addition, error
messages are automatically inserted into the form, next to the
invalid form fields.

Processes the submitted form by passing the form data to the
function called $ callback. You need to create this function
yourself, and it should expect an associative array containing
the submitted form fields and values. Any uploaded files are
also passed to the callback function by default (turn this
feature off by setting $mergeFiles to false).

Returns the HTML markup to display the form. Call this
method once you've created your form to retrieve the HTML
for inserting into the Web page.

457

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

By default, HTML_QuickForm can work with 23 different element types. All elements derive from the
HTML_QuickForm_element class. Following is a list of the most common element types, along with code
showing how to add the elements to your form.

You can find a complete list of HTML_QuickForm element types at http: //pear .php.net/
manual/en/package.html.html-quickform.intro-elements.php.

Element Type Code to Add the Element to the Form

button Sform->addElement ("button", "field name", "field value", Sattrs);

checkbox Sform->addElement ("checkbox", "field name", "field label", "text
to display after checkbox", S$Sattrs);

file Sform->addElement ("file", "field name", "field label", Sattrs);

hidden Sform->addElement ("hidden", "field name", "field value", Sattrs);

image Sform->addElement ("image", "field name", "image URL", Sattrs);

password Sform->addElement ("password", "field name", "field label",
Sattrs);

radio Sform->addElement ("radio", "field name", "field label", "text
to display after button", "field value", Sattrs);

reset Sform->addElement ("reset", "field name", "field value", Sattrs);

select Sform->addElement ("select", "field name", "field label", array(
"optionlValue" => "optionlLabel", "option2Value" =>
"option2Label", ...), Sattrs);

submit Sform->addElement ("submit", "field name", "field value", S$attrs);

text Sform->addElement ("text", "field name", "field label", Sattrs);

textarea Sform->addElement ("textarea", "field name", "field label",
Sattrs);

The optional $attrs argument is a list of any attributes to add to the element tag. It can be in the form of
an associative array, or a simple string (such as 'name = "value"').

You can see that some elements are created with a value (such as buttons, where the value is the button
label), whereas other elements are created with a field label (displayed to the left of the field by default).
You can always set your own value or label for a field by calling the element object’s setvalue () or
setLabel () method after you've created the object — for example:

StextArea = S$form->addElement ("textarea", "field name", "field label",
Sattrs);
StextArea->setValue("Default text");

Here’s a simple example script that uses HTML_QuickForm to create a login form (without any validation
or filtering):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

458

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

<head>
<title>Simple HTML_QuickForm Example</title>
</head>
<body>
<hl>Simple HTML_QuickForm Example</hl>
<?php
require_once("HTML/QuickForm.php");
Sform = new HTML_QuickForm("", "post", "", "", null, true);
Sform->addElement ("text", "username", "Username");
Spassword = $form->addElement ("password", "password", "Password");
Spassword->setValue("");
Sbuttons = array();
Sbuttons[] = HTML_QuickForm: :createElement ("submit", "submitButton", "Send
Details");
Sbuttons[] = HTML_QuickForm: :createElement ("reset", "resetButton", "Reset
Form");

S$form->addGroup (Sbuttons, null, null, " ");

if ($form->isSubmitted()) {
echo "<p>Thanks for your details!</p>";
} else {

echo $form->toHtml () ;
}
?>

</body>
</html>

After displaying the page header, the script includes the HTML/QuickForm. php class file, then creates a
new HTML_QuickForm object with a blank name attribute, a method="post" attribute, empty action
and target attributes, no additional attributes, and the $trackSubmit property set to true so that the
script can detect when the form has been submitted:

require_once("HTML/QuickForm.php");
S$form = new HTML_QuickForm("", "post", "", "", null, true);

Next, the script adds a username text input field to the form, with a label of "Username":
Sform->addElement ("text", "username", "Username");

A password input field called password is also added, with a label of "Password". By storing the

returned element object in a variable, $password, the script can then set the field’s value to an empty

string:

$password = $form->addElement ("password", "password", "Password");
Spassword->setValue("");

It’s a good idea to do this to prevent the password being sent back to the browser — and therefore being
viewable in the page source — if the form is redisplayed.

459

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

Finally, two buttons are created: a submit button and a reset button. So that these two buttons appear
side by side, they are placed into an element group, separated by a non-breaking space:

Sbuttons = array();

Sbuttons[] = HTML_QuickForm: :createElement ("submit", "submitButton", "Send
Details");

Sbuttons|[] = HTML_QuickForm: :createElement("reset", "resetButton", "Reset
Form") ;

Sform->addGroup ($buttons, null, null,

"snbsp; ") ;

Now that the $ form object has been created and populated, the script checks if the form has been
submitted. If it has, a thank-you message is displayed; otherwise the form is displayed by calling the

toHtml () method and outputting the result:

if (Sform->isSubmitted()) {

echo "<p>Thanks for your details!</p>";

} else {
echo $form->toHtml () ;
}

Using Validation Rules

HTML_QuickForm comes with a number of built-in validation rule types, or you can create your own.
Here’s a list of the built-in rule types that you can use with the addrule () method (described in
“Working with HTML_QuickForm” earlier in the chapter):

Rule Type Value of $format Argument

required N/A

maxlength $max (integer)

minlength $min (integer)

rangelength array (Smin, Smax)
(integers)

regex $regex (string)

email $domainCheck (Boolean,
default: false)

lettersonly N/A

alphanumeric N/A

460

Description
The value must not be empty.

The value’s string length must not exceed
$max characters.

The value’s string length must be at least
$min characters.

The value’s string length must be between
$min and $max characters.

The value must match the regular
expression $regex.

The value must be a valid email address.
Set $domainCheck to true to verify the
email domain with the PHP checkdnsrr ()
function.

The value must contain only letters.

The value must contain only letters and/or
numbers.

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

Rule Type Value of $format Argument Description

numeric

nopunctuation

nonzero

compare

callback

uploadedfile

maxfilesize

mimetype

filename

N/A
N/A

N/A

ScomparisonType

$ functionName

N/A

Smax

$type

Sregex

The value must be a number.

The value must not contain punctuation
characters.

The value must be a number that doesn’t
begin with zero.

Compares two field values (pass a two-
element array of element names as the first
parameter to addRule ()). Good for
checking whether two password fields
match.

Allowed values for $comparisonType:

"eq" or "==":Values must be the same
(default setting)

"neq" or "!=":Values mustbe different

"gt" or ">":First value must be greater
than the second

"gte" or ">=":First value must be
greater than or equal to the second

"1t" or "<":First value must be less than
the second

"lte" or "<=":First value must be less
than or equal to the second

Runs a callback function called

$ functionName to do the check. The
function should expect the value to check
as an argument and return true if the
value passed the check, or false
otherwise.

The file must have been uploaded. (For file
upload fields.)

The uploaded file must not exceed $max
bytes in length. (For file upload fields.)

The uploaded file must be of MIME type
$ type. (For file upload fields.)

The uploaded file’s name must match the
regular expression $ regex. (For file upload
fields.)

461

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

For example, you could add a rule to check that the submitted username field is no longer than ten
characters:

Sform->addRule("username", "Username must be no longer than 10 characters",
'maxlength', 10);

_ A Registration Form using HTML_QuickForm

To show just how powerful and useful HTML_QuickForm is, in this example you rewrite the
register.php book club registration script from Chapter 14, using HTML_QuickForm to handle
the form display and validation.

Before you start, though, install an additional PEAR package called HTML_QuickForm_Renderer_
Tableless. By default, HTML_QuickForm outputs each form using an HTML table to hold the form
fields and labels. HTML forms created without using tables are more flexible and can be easier to
restyle. What’s more, the tables-based forms produced by HTML_QuickForm aren’t valid XHTML.
HTML_QuickForm_Renderer_Tableless is a renderer class that replaces the default HTML_
QuickForm renderer and generates XHTML-compliant, tables-free form markup.

At the time of writing, HTML_QuickForm_Renderer_Tableless is a beta package, which means it
can’t be installed using a default PEAR setup:

$ pear install --alldeps HTML_QuickForm_Renderer_Tableless

Failed to download pear/HTML_QuickForm_ Renderer_ Tableless within preferred
state "stable", latest release is version 0.6.1, stability "beta", use
"channel://pear.php.net/HTML_QuickForm_Renderer_Tableless-0.6.1" to install
Cannot initialize 'channel://pear.php.net/HTML_QuickForm_Renderer_Tableless',
invalid or missing package file

Package "channel://pear.php.net/HTML_QuickForm_ Renderer_ Tableless" is not
valid

install failed

$

By the time you read this you may find that the package is no longer in beta, in which case you can
install it in the normal way — that is, using pear install --alldeps HTML_QuickForm_Renderer_
Tableless. If the package is still in beta, you can install it by specifying the channel explicitly, as
follows:

$ pear install --alldeps channel://pear.php.net/HTML_QuickForm_Renderer_
Tableless-0.6.1

downloading HTML_QuickForm_Renderer_Tableless-0.6.1.tgz

Starting to download HTMIL_QuickForm_ Renderer_Tableless-0.6.1.tgz (6,828
bytes)

..... done: 6,828 bytes

install ok: channel://pear.php.net/HTML_QuickForm_Renderer_Tableless-0.6.1
$

Now you're ready to modify the book club application code. First, copy the book_club folder (and its
files) that you created in Chapter 14 to a new folder, book_club_2, in your document root. This will
preserve your original application files.

462

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

Next, open the common . inc. php file inside the book_club_2 folder and modify the CSS in the
displayPageHeader () function at the top of the file. This is necessary to make the CSS compatible
with the markup produced by HTML_QuickForm. Replace the old displayPageHeader () function with
the following:

function displayPageHeader (S$pageTitle, SmembersArea = false) {
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title><?php echo S$pageTitle?></title>
<link rel="stylesheet" type="text/css" href="<?php if (SmembersArea)
echo "../" ?>../common.css" />
<style type="text/css">
th { text-align: left; background-color: #bbb; }
th, td { padding: 0.4em; }
tr.alt td { background: #ddd; }
.error { background: #d33; color: white; padding: 0.2em; margin:
0.2em 0 0.2em 0; font-size: 0.9em; }
fieldset { border: none; }
ol {list-style-type: none; }
input, select, textarea { float: none; margin: lem 0 0 0; width:
auto; }
div.element { float: right; width: 57%; }
div.element label { display: inline; float: none; }
</style>
</head>
<body>

<hl><?php echo S$pageTitle?></hl>
<?php
}

Now, rewrite the register. php script in the book_club_2 folder to use HTML_QuickForm. Replace the
old code in the script with the following new code:

<?php

require_once("common.inc.php");
require_once("HTML/QuickForm.php");
require_once("HTML/QuickForm/Renderer/Tableless.php");

Sform = new HTML_QuickForm("", "post", "register.php", "",
array("style" => "width: 30em;"), true);
Sform->removeAttribute("name");

addElements($Sform);

addRules($form);

Sform->setRequiredNote("");

if ($form->isSubmitted() and S$Sform->validate()) {
Sform->process ("processForm") ;

463

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

displayThanks () ;
} else {
displayPageHeader ("Sign up for the book club!");
2>
<p>Thanks for choosing to join our book club.</p>
<p>To register, please fill in your details below and click Send
Details.</p>
<p>Fields marked with an asterisk (*) are required.</p>
<?php
Srenderer = new HTML_QuickForm_Renderer_ Tableless() ;
Sform->accept ($renderer);
echo S$Srenderer->toHtml () ;

displayPageFooter () ;
}
function addElements($form) {

Sform->addElement ("text", "username", "Choose a username");

Spasswordl = $form->addElement ("password", "passwordl", "Choose a
password");

$passwordl->setValue("");

Spassword2 = $form->addElement ("password", "password2", "Retype
password");

$password2->setValue("");

Sform->addElement ("text", "emailAddress", "Email address");

Sform->addElement ("text", "firstName", "First name");

Sform->addElement ("text", "lastName", "Last name");

SgenderOptions = array () ;

SgenderOptions[] = HTML_QuickForm: :createElement("radio", null,
null, " Male", "m");

SgenderOptions[] = HTML_QuickForm: :createElement("radio", null,
null, " Female", "f");

Sform->addGroup (SgenderOptions, "gender", "Your gender", " ");

Smember = new Member (array ());

Sform->addElement ("select", "favoriteGenre", "What's your favorite
genre?", Smember->getGenres());

Sform->addElement ("textarea", "otherInterests", "What are your
other interests?", array("rows" => 4, "cols" => 50));

Sbuttons = array() ;

Sbuttons[] = HTML_QuickForm: :createElement ("submit", "submitButton",
"Send Details");

Sbuttons[] = HTML_QuickForm: :createElement ("reset", "resetButton",

"Reset Form") ;
Sform->addGroup (Sbuttons, null, null, " ");

}
function addRules($form) {
Sform->addRule("username", "Please enter a username", "required");
Sform->addRule("username", "The username can contain only letters and
digits", "alphanumeric");
Sform->addRule("passwordl", "Please enter a password", "required");
Sform->addRule("passwordl", "The password can contain only letters and

464

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

digits", "alphanumeric");

Sform->addRule("password2", "Please retype your password", "required");

$form->addRule("password2", "The password can contain only letters and
digits", "alphanumeric");

Sform->addRule(array("passwordl", "password2"), "Please make sure you
enter your password correctly in both password fields.", "compare");

Sform->addRule("emailAddress", "Please enter an email address",
"required");

Sform->addRule("emailAddress", "Please enter a valid email address",
"email");

Sform->addRule("firstName", "Please enter your first name", "required");

Sform->addRule("firstName", "The First Name field can contain only
letters, digits, spaces, apostrophes, and hyphens", "regex",

/A1 \'\-a-zA-Z0-91+S/");

Sform->addRule("lastName", "Please enter your last name", "required");

Sform->addRule("lastName", "The Last Name field can contain only letters,
digits, spaces, apostrophes, and hyphens", "regex",

/AT \'\-a-zA-Z0-91+S/");

$form->addRule("gender", "Please select your gender", "required");

Sform->addRule("gender", "The Gender field can contain only 'm' or 'f'",
"regex", "/~[mf]ls/")

Smember = new Member (array ());

Sform->addRule("favoriteGenre", "The Favorite Genre field can contain
only allowed genre values", "regex", "/~ (" . implode (“|", array_keys
(Smember->getGenres())) . ")S/");

Sform->addRule("otherInterests", "The Other Interests field can contain
only letters, digits, spaces, apostrophes, commas, periods, and hyphens",
"regex", "/~[\'\,\.\-a-zA-720-9]1+$/");

Sform->addRule("username", "A member with that username already exists
in the database. Please choose another username.", "callback",
"checkDuplicateUsername") ;

Sform->addRule("emailAddress", "A member with that email address already
exists in the database. Please choose another email address, or contact the
webmaster to retrieve your password.", "callback",

"checkDuplicateEmailAddress");
}

function checkDuplicateUsername(S$Svalue) {
return ! (boolean) Member::getByUsername(S$Svalue) ;

function checkDuplicateEmailAddress(Svalue) {
return ! (boolean) Member::getByEmailAddress(Svalue) ;

function processForm($values) {
Svalues|["password"] = $Svalues|["passwordl"];
Svalues["joinDate"] = date("Y-m-4d");

Smember = new Member (Svalues) ;

465

(c) ketabton.com: The Digital Library

Part lll: Using PHP in Practice

Smember->insert () ;

}

function displayThanks () {
displayPageHeader ("Thanks for registering!");
?>
<p>Thank you, you are now a registered member of the book club.</p>
<?php
displayPageFooter () ;
}

?>

Test the register.php script by opening its URL in your Web browser. You can see from Figure 15-3

that the form looks and behaves much like the form in Chapter 14. The main difference is that
validation errors are displayed directly above the form fields, rather than at the top of the form.

Sign up For,

File Edit ‘View History Bookmarks Tools Help

@ > c ﬁ ||;": hitp:flocalhostbook club 2fregister.php | '] ||—1'

Sign up for the book club!
Thanks for choosing to Join our book club.
To register, please fill in your details below and click Send Detalls.

Fields marked with an asterisk (*) are required.

*Choose a username GalUGlEUEIR R RUETRVECTIETHLS T LATE Y
exisls in lhe dalabase. Please chouse
anulher useimane

*Choose a password Please maks sume you enler your
password comecily in both password

fieida,

*Retype password []

O
Email address [sparkymexample.com

“First name |;5hn |

W R - Fleass enteryour last name

*Your gender & Male O Female

What's your tavorite [cnme =]

Done

[«

Figure 15-3

How It Works

You can see that the structure of this register. php script is quite different than that of the Chapter 14

version. First of all, the script includes the common code file, along with the two PEAR packages,
HTML_QuickForm and HTML_QuickForm_Renderer_Tableless.

466

(c) ketabton.com: The Digital Library

Chapter 15: Making Your Job Easier with PEAR

It then creates a new HTML_QuickForm object with an empty name attribute, a method="post"
attribute, an action attribute that points the form back to the script (register.php), an empty
target attribute, no additional attributes, and the $trackSubmit property set to true so that the
script knows when the form data has been submitted. Once the HTML_QuickForm object has been
created, its empty name attribute is removed completely from the form element (this is to ensure that
the page is fully XHTML 1.0 compliant):

Sform = new HTML_QuickForm("", "post", "register.php", "", array("style" =>
"width: 30em;"), true);
Sform->removeAttribute("name");

Now the script calls two functions, addElements () and addRules (), that add several elements and
validation rules to the $ form object (you see how these work in a moment). It also calls the object’s
setRequiredNote () method to remove the default “* denotes required field” message; this is
because the script already displays its own, similar message in the Web page:

addElements ($form);
addRules ($form);
$form->setRequiredNote("");

The main decision-making logic of the script follows. If the form was submitted, and it passes
validation, it is processed by calling the $form object’s process () method, passing in the name of the
function that will handle the form data (processForm()). Then a thank-you message is displayed:

if ($form->isSubmitted() and S$Sform->validate()) {
sform->process("processForm");
displayThanks () ;

If the form was not submitted, or it was submitted but didn’t validate, the form is displayed. To do
this, the script first displays the page header by calling the displayPageHeader () function in the
common . inc . php file. Next, it creates a new HTML_QuickForm_Renderer_Tableless renderer
object, sets the $ form object’s renderer to this object by calling the $ form object’s accept () method,
and outputs the form by calling the toHtml () method of the renderer object, sending the returned
markup to the browser. Finally, it outputs the page footer by calling displayPageFooter ():

} else {
displayPageHeader ("Sign up for the book club!");
?>
<p>Thanks for choosing to join our book club.</p>
<p>To register, please fill in your details below and click Send
Details.</p>
<p>Fields marked with an asterisk (*) are required.</p>
<?php
Srenderer = new HTML_QuickForm_Renderer_Tableless() ;
Sform->accept ($renderer);
echo Srenderer->toHtml () ;
displayPageFooter () ;

Next comes the addElements () function to add the various form fields and controls to the $form
object. If you've read the previous few sections, most of this code should be self-explanatory. A couple
of the controls warrant special attention though. The two gender radio buttons are created with empty

467

(c) ketabton.com: The Digital Library

Part Ill: Using PHP in Practice

field names and labels, and the script specifies text (* Male" and " Female") to appear after each
button, as well as values for the fields ("m" and " £"). The two buttons are then added to an array:

$genderOptions = array();

SgenderOptions[] = HTML_QuickForm: :createElement("radio", null, null, "
Male" , Ilmll) ;

SgenderOptions[] = HTML_QuickForm::createElement("radio", null, null, "
Female", "f");

This array of buttons is then used to create an element group with a name of "gender" and a label of
"Your gender". HTML_QuickForm then sets each radio button’s field name to the group name of
"gender":

Sform->addGroup (SgenderOptions, "gender", "Your gender", " ");

To create the favoriteGenre select field, the script calls the Member : : getGenres () method to get
the associative array of genre names and values to pass to addElement (). The script needs to create

a temporary $member object in order to call Member : : getGenres (), because getGenres () isn’t a static
method:

$member = new Member (array ());
$form->addElement ("select", "favoriteGenre", "What's your favorite
genre?", Smember->getGenres());

The addRules () function uses the $ form object’s addrRule () method to add validation rules to most of
the fields in the form. All required fields are checked against the required rule, and the alphanumeric
rule is used on the username and both password fields to make sure they contain only letters and/or
digits. In addition, the compare rule is used to check that both password fields contain the same value:

Sf