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Preface

In a field like remote sensing image analysis, which changes so quickly, revising a
long-standing textbook is a challenge. It is important to incorporate contemporary
techniques, while not discarding procedures from the past which, while apparently
superseded by newer methods, nevertheless retain value and are often simpler to use.
Also, some processing operations from the past can become important again as data
types and volumes change. Streaming methods for clustering are an example with
the trend now to very large data sets.

As with the previous edition, judgements have had to be made about what to leave
out, what to retain and what to add. Those judgements have been made against the
intended purpose of the book. From the beginning, it has been designed as a teaching
text for the senior undergraduate and postgraduate student, and as a fundamental
treatment for those engaged in the application of digital image analysis in remote
sensing projects or in remote sensing image processing research.

The presentation level is for the mathematical non-specialist. Because most oper-
ational users of remote sensing come from the earth sciences communities, the text
is pitched at a level commensurate with their background. That is important because
the recognised authorities in digital image analysis and machine learning tend to
be from engineering, computer science and mathematics. Although familiarity with
a certain level of mathematics and statistics cannot be avoided, the treatment here
progresses through analyses carefully, withmany hand-worked examples, so that any
lack of depth in mathematical background should not take away from understanding
the important aspects of image analysis and interpretation.

Although the principal focus of the treatment is on digital image interpretation and
the analytical techniques that make that possible, the material is located within the
domain of remote sensing applications. That means project objectives are as impor-
tant as finding the best-performing algorithm. Algorithms need to be incorporated
into methodologies that can generate optimal results from a careful combination of
procedures, and in which the steps of choosing reference material to support the
process and for assessing accuracy, may be just as important as algorithm perfor-
mance. While algorithm performance is a key objective in the machine learning
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remote sensing research community, it is project outcomes that drive the remote
sensing applications specialist. That is a key emphasis of this book.

Although the chapters can be used individually, the material is presented in a
sequential manner. A person with little or no background in remote sensing image
interpretation can start with the early chapters in order to appreciate key concepts in
remote sensing and image formation, how errors arise in recorded imagery and how
they can be corrected. The remaining chapters then work progressively through the
major analytical methods fundamental to digital image analysis, finishing up with
means by which methodologies can be devised to tackle remote sensing projects.

Over the years, many people have either directly or indirectly contributed to this
book. The late David Landgrebe, to whom this edition is dedicated, was a friend and
colleague who did much to shape my thinking about the application of quantitative
methods in remote sensing. He pioneered many of the ideas that ended up in one
way or another in parts of this book.

My colleague Associate Professor Xiuping Jia has been a great collaborator over
the years, commencingwhen she undertook her Ph.D.Many of themethods presented
here have been the result of a fruitful research partnership for which I express my
sincere gratitude to her.

Dr. Terry Cocks, former Managing Director of HyVista Corporation Pty Ltd,
Australia, kindly made available HyMap hyperspectral imagery of Perth, Western
Australia, to allow many of the examples contained in this and the previous edition
to be generated.

I am indebted to Jason Brown of Capella Space with whose encouragement this
sixth edition was prepared; otherwise, it may not have happened. He also kindly
provided the radar imagery used in Chap. 1.

Lastly, I acknowledge the dedication, support and encouragement of my wife
Glenda. Her perseverance and understanding have been enormously important,
and have made the job of writing this new edition fulfilling and satisfying,
notwithstanding the demands it made on family time.

Canberra, Australia
June 2021

John A. Richards
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Chapter 1
Sources and Characteristics of Remote
Sensing Image Data

Abstract The wavelength ranges commonly used for imaging the earth’s surface
are discussed, including reflected sunlight, thermal emission from the earth itself
and the microwave radiation used in imaging radars. The idea of measuring energy
coming from the earth’s surface in a set of wavebands simultaneously is covered,
leading to the concept of a multispectral image, or a hyperspectral image if the
number of wavebands is very large. Remote sensing platforms and different sensor
types are covered, along with the earth surface characteristics that can be detected
with remote sensing instruments. Image scale is considered and the location of
remote sensing within the fields of geographic information systems and digital earth
models is introduced.

1.1 Energy Sources and Wavelength Ranges

In remote sensing energy coming up from the earth's surface is measured using a
sensor mounted on a spacecraft or other elevated platform. That measurement is
used to construct an image of the landscape beneath the platform, as depicted in
Fig. 1.1.

In principle, any energy coming from the earth’s surface can be used to form an
image. Most often it is reflected sunlight so that the image recorded is, in many
ways, similar to the view we would have of the earth’s surface from an aircraft,
even though the wavelengths used in remote sensing are often outside the range of
human vision. The upwelling energy could also be from the earth itself acting as a
radiator because of its own finite temperature. Alternatively, it could be energy that
is scattered up to a sensor having been radiated onto the surface by an artificial
source, such as a laser or a radar.

Provided an energy source is available, almost any wavelength could be used to
image the characteristics of the earth’s surface. There is, however, a fundamental
limitation, particularly when imaging from spacecraft altitudes. The earth’s atmo-
sphere does not allow the passage of radiation at all wavelengths. Energy at some
wavelengths is absorbed by the molecular constituents of the atmosphere.
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Wavelengths for which there is little or no atmospheric absorption form atmo-
spheric windows. Figure 1.2 shows the transmittance of the earth’s atmosphere on a
path between space and the earth over a very broad range of the electromagnetic
spectrum. The presence of a significant number of atmospheric windows in the
visible and infrared regions of the spectrum is evident, as is the almost complete
transparency of the atmosphere at radio wavelengths. The wavelengths used for
imaging in remote sensing are clearly constrained to these atmospheric windows.
They include the so-called optical wavelengths covering the visible and infrared,
the thermal wavelengths and the radio wavelengths that are used in radar and
passive microwave imaging of the earth’s surface.

Whatever wavelength range is used to image the earth’s surface, the overall
system is a complex one involving the scattering or emission of energy from the
surface, followed by transmission through the atmosphere to instruments mounted
on the remote sensing platform. The data is then transmitted to the earth’s surface,
after which it is processed into image products ready for application by the user.
That data chain is shown in Fig. 1.1. It is from the point of image acquisition
onwards that this book is concerned. We want to understand how the data, once
available in image format, can be interpreted.

We talk about the recorded imagery as image data, since it is the primary data
source from which we extract usable information. One of the important charac-
teristics of the image data acquired by sensors on aircraft or spacecraft platforms is

instrumenta�on

upwelling radia�on 
from the landscape

sensor

signal 
transmission 
to the ground

ground recep�on 
and processing

data in
image form 
ready for use

Fig. 1.1 Signal flow in a
remote sensing system
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that it is readily available in digital format. Spatially it is composed of discrete
picture elements, or pixels. Radiometrically—that is in brightness—it is quantised
into discrete levels.

Possibly the most significant characteristic of the image data provided by a
remote sensing system is the wavelength, or range of wavelengths, used in the
image acquisition process. If reflected solar radiation is measured, images can, in
principle, be acquired in the ultraviolet, visible and near-to-middle infrared ranges
of wavelengths. Because of significant atmospheric absorption, as seen in Fig. 1.2,
ultraviolet measurements are not made from spacecraft altitudes. Most common
optical remote sensing systems record data from the visible through to the near and
mid-infrared range: typically, that covers approximately 0.4–2.5 lm.

The energy emitted by the earth itself, in the thermal infrared range of wave-
lengths, can also be resolved into different wavelengths that help understand
properties of the surface being imaged. Figure 1.3 shows why these ranges are
important. The sun as a primary source of energy has a surface temperature of about
5950 K. The energy it emits as a function of wavelength is described theoretically
by Planck’s black body radiation law. As seen in Fig. 1.3 it has its maximal output
at wavelengths just shorter than 1 lm and is a moderately strong emitter over the
range 0.4–2.5 lm identified earlier.

The earth can also be considered as a black body radiator, with a temperature of
300 K. Its emission curve has a maximum in the vicinity of 10 µm as seen in Fig. 1.3.
As a result, remote sensing instruments designed to measure surface temperature

Fig. 1.2 The electromagnetic spectrum and the transmittance of the earth’s atmosphere, showing
the positions of the atmospheric windows used in optical remote sensing
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typically operate somewhere in the range of 8–12 lm. Also shown in Fig. 1.3 is the
blackbody radiation curve corresponding to a fire with a temperature of 1000 K. As
observed, itsmaximumoutput is in thewavelength range3–5 lm.Accordingly, sensors
designed to map burning fires on the earth’s surface typically operate in that range.

The visible, reflective infrared and thermal infrared ranges of wavelength rep-
resent only part of the story in remote sensing. We can also image the earth in the
microwave or radio range, typical of the wavelengths used in mobile phones,
satellite navigation systems, television, WiFi, Bluetooth and radar. While the earth
does emit its own level of microwave radiation, it is often too small to be measured
for most remote sensing purposes. Instead, energy is radiated from a platform onto
the earth’s surface. It is by measuring the energy scattered back to the platform that
image data is recorded at microwave wavelengths.1 Such a system is referred to as
active since the energy source is provided by the platform itself, or by a companion
platform. By comparison, remote sensing measurements that depend on an energy
source such as the sun or the earth itself are called passive.

Fig. 1.3 Relative levels of energy from black bodies when measured at the surface of the earth:
the magnitude of the solar curve has been reduced as a result of the distance travelled by solar
radiation from the sun to the earth; also shown are the boundaries between the different wavelength
ranges used in optical remote sensing

1 For a treatment of remote sensing at microwave wavelengths see J. A. Richards, Remote Sensing
with Imaging Radar, Springer, Berlin, 2009.
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1.2 Primary Data Characteristics

The properties of digital image data of importance in image processing and analysis
are the number and location of the spectral measurements (bands or channels), the
spatial resolution described by the pixel size, and the radiometric resolution. These
are shown in Fig. 1.4. Radiometric resolution describes the range and discernible
number of discrete brightness values. It is sometimes referred to as dynamic range
and is related to the signal-to-noise ratio of the detectors used. Frequently, radio-
metric resolution is expressed in terms of the number of binary digits, or bits,
necessary to represent the range of available brightness values. Data with an 8 bit
radiometric resolution has 256 levels of brightness, while data with 12 bit radio-
metric resolution has 4096 brightness levels.2

The size of the recorded image frame is also an important property. It is
described by the number of pixels across the frame or swath, or in terms of the
numbers of kilometres covered by the recorded scene. Together, the frame size of
the image, the number of spectral bands, the radiometric resolution and the spatial
resolution determine the data volume generated by a particular sensor. That sets the
amount of data to be processed, at least in principle.

Image properties like pixel size and frame size are related directly to the tech-
nical characteristics of the sensor that was used to record the data. The instanta-
neous field of view (IFOV) of the sensor is its finest angular resolution, as shown in
Fig. 1.5. When projected onto the surface of the earth at the operating altitude of the
platform, it defines the smallest resolvable element in terms of equivalent ground
metres, which is what we refer to as pixel size. Similarly, the field of view (FOV) of
the sensor is the angular extent of the view it has across the earth’s surface, again as

Fig. 1.4 Technical characteristics of digital image data

2 See Appendix B.
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seen in Fig. 1.5. When that angle is projected onto the surface it defines the swath
width in equivalent ground kilometres. Most imagery is recorded in a continuous
strip as the remote sensing platform travels forward. Generally, particularly for
spacecraft programs, the strip is cut up into segments, equal in length to the swath
width, so that a square image frame is produced. For aircraft systems, the data is
often left in strip format for the complete flight line flown in a given mission.

1.3 Remote Sensing Platforms

Remote sensing can be carried out using satellites, aircraft or drones as platforms to
carry the imaging instruments. In many ways those instruments have similar
characteristics but differences in the altitude and stability of the platform can lead to
differing image properties.

There are two broad classes of satellite program: those satellites that orbit at
geostationary altitudes above the earth’s surface, generally associated with weather
and climate studies, and those which orbit much closer to the earth and that are
generally used for earth surface and oceanographic observations. The low earth
orbiting satellites are usually in a sun-synchronous orbit. That means that the orbital
plane is designed so that it precesses about the earth at the same rate that the sun
appears to move across the earth’s surface. In this manner the satellite acquires data
at about the same local time on each orbit.

Low earth orbiting satellites can also be used for meteorological studies.
Notwithstanding the differences in altitude, the wavebands used for geostationary
and earth orbiting satellites, for weather and earth observation, are very comparable.
The major distinction in the image data they provide generally lies in the spatial
resolution available. Whereas data acquired for earth resources purposes has pixel

pixel size m 

swath width km 

IFOV mrad

FOV deg 

instrumentFig. 1.5 Definition of image
spatial properties, with
common units indicated
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sizes of the order of 1–10 m or so, that used for meteorological purposes (both at
geostationary and lower altitudes) has a much larger pixel size, often of the order of
1 km.

The imaging technologies used in satellite remote sensing programs have ranged
from traditional cameras to scanners that record images of the earth’s surface by
moving the instantaneous field of view of the instrument across the surface to
record the upwelling energy. Typical of the latter technique is that used in the
Landsat program in which a mechanical scanner records data at right angles to the
direction of satellite motion to produce raster scans of data. The forward motion of
the vehicle allows an image strip to be built up from the raster scans. That process is
shown in Fig. 1.6. A dispersion device, such as a prism or diffraction grating,
integrated with the sensor, separates the recorded signal into a number of wave-
bands by dispersing the radiation onto sets of detectors; there are as many separate
images recorded of the region of the earth’s surface as there are detectors and thus
wavebands.

Some weather satellites scan the earth’s surface using the spin of the satellite
itself while the sensor’s pointing direction is varied along the axis of the satellite.
The image data is then recorded in a raster scan fashion.

With the availability of reliable detector arrays based on charge coupled device
(CCD) technology, an alternative image acquisition mechanism utilises what is
commonly called a “push-broom” technique. In this approach a linear CCD imaging
array is carried on the satellite normal to the platform motion as shown in Fig. 1.7.
As the satellite moves forward the array records a strip of image data, equivalent in
width to the field of view seen by the array. Each individual detector records a strip in
width equivalent to the size of a pixel. Because the time over which energy ema-
nating from the earth’s surface per pixel can be larger with push broom technology
than with mechanical scanners, better spatial resolution is usually achieved.

Two dimensional CCD arrays are also available and find application in satellite
imaging sensors. However, rather than record a two-dimensional snapshot image of
the earth’s surface, the array is employed in a push broom manner; the second
dimension is used to record simultaneously a number of different wavebands for
each pixel via the use of a mechanism that disperses the incoming radiation by
wavelength. Such an arrangement is shown in Fig. 1.8. Often about 200 channels
are recorded in this manner so that the reflection characteristics of the earth’s
surface are well represented in the data. Such devices are often referred to as
imaging spectrometers and the data is described as hyperspectral, as against mul-
tispectral when of the order of 10 wavebands is recorded.

Aircraft scanners operate essentially on the same principles as those found with
satellite sensors. Both mechanical scanners and CCD arrays are employed.

The logarithmic scale used in Fig. 1.3 hides the fact that each of the curves
shown extends to infinity. If we ignore emissions associated with a burning fire, it is
clear that the emission from the earth at longer wavelengths far exceeds reflected
solar energy. Figure 1.9 re-plots the earth curve from Fig. 1.3 showing that there is
continuous emission of energy right out to the wavelengths we normally associate
with radio transmissions. In the microwave energy range, where the wavelengths

1.3 Remote Sensing Platforms 7



are between 1 cm and 1 m, there is, in principle, measurable energy coming from
the earth’s surface. As a result, it is possible to build remote sensing instruments
that form microwave images the earth. If those instruments depend on measuring
the naturally occurring levels shown in Fig. 1.9, then the pixels tend to be very
large because of the extremely low levels of energy available. Large pixels are
necessary to collect enough signal so that noise from the receiver electronics and
the environment does not dominate the information of interest.

pixel size

swath 
width

rota�ng or oscilla�ng 
scanning mirror

signals out at 
different 
wavelengths

scan

scanIFOV

FOV

Fig. 1.6 Image formation by mechanical line scanning, showing the received signal dispersed into
several different wavelengths (or wavebands)

Fig. 1.7 Image formation by push broom scanning
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More often, we take advantage of the fact that the very low naturally occurring
levels of microwave emission from the surface permits us to assume that the earth
is, for all intents and purposes, a zero emitter. That allows us to irradiate the earth’s
surface artificially with a source of microwave radiation at a wavelength of par-
ticular interest. In principle, we could use a technique not unlike that shown in
Fig. 1.6 to build up an image of the earth at that wavelength. Technologically,

Fig. 1.8 Image formation by push broom scanning with an array that allows the recording of
several wavelengths simultaneously

Fig. 1.9 Illustration of the level of naturally emitted energy from the earth in the microwave range
of wavelengths
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however, the principle of synthetic aperture radar is used to create the image. We
now describe that technique by reference to Fig. 1.10.

A pulse of electromagnetic energy at the wavelength of interest is radiated to the
side of the platform. It uses an antenna that produces a beam that is broad in the
across-track direction and relatively narrow in the along-track direction, as illus-
trated. The cross-track beamwidth defines the swath width of the recorded image.
Features are resolved across the track by the time taken for the pulse to travel from
the transmitter, via scattering from the surface, and back to the radar instrument.
Along the track, features are resolved spatially using the principle of aperture
synthesis, which entails recording many reflections from each spot on the ground
and using signal processing techniques to synthesise high spatial resolution from a
system that would otherwise record features at a detail too coarse to be of value.
The technical details of how the image is formed are beyond the scope of this
treatment but can be found in standard texts on radar remote sensing.3 What is
important here is the strength of the signal received back at the radar platform
because that determines the brightness values of the pixels that constitute the radar
image. As with optical imaging, the image properties of importance in radar
imaging include the spatial resolution, but now different in the along and cross track
directions, the swath width, and the wavebands at which the images are recorded.

Whereas there may be as many as 200 wavebands with optical instruments, there
are rarely more than three or four with radar at this stage of our technology.
However, there are other radar parameters. They include the angle with which the

Fig. 1.10 Synthetic aperture radar imaging; as the antenna beam travels over features on the
ground many echoes are received from the pulses of energy transmitted from the platform, which
are then processed to provide a very high resolution image of those features

3 See Richards, loc. cit., I. H. Woodhouse, Introduction to Microwave Remote Sensing, Taylor and
Francis, Boca Raton, Florida, 2006, F. M. Henderson and A. J. Lewis, eds, Principles and
Applications of Imaging Radar, Manual of Remote Sensing, 3rd ed., Volume 2, John Wiley and
Sons, N.Y., 1998, and F. T. Ulaby and D. G. Long, Microwave Radar and Radiometric Remote
Sensing, The University of Michigan Press, Ann Arbor, 2014.
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earth’s surface is viewed out from the platform (the so-called look angle) and the
polarisation of both the transmitted and received radiation. As a consequence, the
parameters that describe a radar image can be more complex than those that
describe an optical image. Nevertheless, once a radar image is available, the
techniques of this book become relevant to the processing and analysis of radar
image data. There are, however, some peculiarities of radar data that mean special
techniques more suited to radar imagery are often employed.4

1.4 What Earth Surface Properties Are Measured?

In the visible and infrared wavelength ranges all earth surface materials absorb
incident sunlight differentially with wavelength. Some materials detected by
satellite sensors show little absorption, such as snow and clouds in the visible and
near infrared. In general, though, most materials have quite complex absorption
characteristics. Early remote sensing instrumentation, and many current instru-
ments, do not have sufficient spectral resolution to be able to recognise the
absorption spectra in detail, compared with how those features might appear in
laboratory-recorded spectra. Instead, the wavebands available with some detectors
allow only a crude representation of the spectrum, but nevertheless one that is more
than sufficient for differentiating among most cover types. Even our eyes do a crude
form of spectroscopy by allowing us to differentiate earth surface materials by the
colours we see, even though the colours are composites of the red, green and blue
signals that reach our eyes after incident sunlight has scattered from the natural and
built environment.

More modern instruments record many, sufficiently fine spectral samples over
the visible and infrared range that we can get very good representations of reflec-
tance spectra, as we will see in the following.

1.4.1 Sensing in the Visible and Reflected Infrared Ranges

In the absence of burning fires, Fig. 1.3 shows that the upwelling energy from the
earth’s surface up to wavelengths of about 3 lm is predominantly reflected sun-
light. It covers the range from the ultraviolet, through the visible, and into the
infrared range. Since it is reflected sunlight the infrared is usually called reflected
infrared, although it is then broken down into the near-infrared, short wavelength
infrared and middle-infrared ranges. Together, the visible and reflected infrared
ranges are called optical wavelengths as noted earlier. The definitions and the

4 See Richards, loc. cit., for information on image analysis tools specifically designed for radar
imagery.
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ranges shown in Fig. 1.3 are not fixed; some variations will be seen over different
user communities.

Most modern optical remote sensing instrumentation operates somewhere in the
range of 0.4–2.5 µm. Figure 1.11 shows how the three broad surface cover types of
vegetation, soil and water reflect incident sunlight over those wavelengths. By
contrast, if we were to image a perfect reflector, the reflection characteristics would
be a constant at 100% reflectance over the range. The fact that the reflectance curves
of the three fundamental cover types differ from 100% is indicative of the selective
absorption characteristics associated with their biophysical and biochemical
compositions.5

It is seen in Fig. 1.11 that water reflects about 10% or less in the blue-green
range of wavelengths, a smaller percentage in the red and almost no energy at all in
the infrared range. If water contains suspended sediments, or if a clear body of
water is shallow enough to allow reflection from the bottom, then an increase in
apparent water reflection will occur, including a small but significant amount of
energy in the near infrared regime. That is the result of reflection from the sus-
pension or bottom material.

Soils have a reflectance that increases approximately monotonically with
wavelength, however with dips centred at about 1.4, 1.9 and 2.7 µm owing to
moisture content. Those water absorption bands are almost unnoticeable in very dry
soils and sands. In addition, clay soils have hydroxyl absorption bands at 1.4 and
2.2 µm.

The vegetation curve is more complex than the other two. In the middle infrared
range, it is dominated by the water absorption bands near 1.4, 1.9 and 2.7 µm. The
plateau between about 0.7 and 1.3 µm is dominated by plant cell structure, while in
the visible range of wavelengths plant pigmentation is the major determinant of
shape. The curve shown in Fig. 1.11 is for healthy green vegetation. That has
chlorophyll absorption bands in the blue and red regions leaving only green
reflection of any significance in the visible. That is why we see chlorophyll pig-
mented plants as green. If the plant matter has different pigmentation, then the shape
of the curve in the visible wavelength range will be different. If healthy green
vegetation dies the action of chlorophyll ceases and the absorption dips in the blue
and red fill up, particularly the red. As a result, the vegetation appears yellowish,
bordering on white when completely devoid of pigmentation.

Inspection of Fig. 11.1 shows why the wavebands for different remote sensing
missions have been located in the positions indicated. They are arranged so that
they detect those features of the reflectance spectra of earth surface cover types that
are most helpful in discriminating among the cover types and in understanding how
they respond to changes related to water content, disease, stage of growth and so
on. In the case of the Hyperion instrument the number of wavebands available

5 For an easily read and comprehensive treatment see R. M. Hofer, Biological and Physical
Considerations in Applying Computer-aided Analysis Techniques to Remote Sensor Data, Chap. 5
in P. H. Swain and S. M. Davis, eds, Remote Sensing: The Quantitative Approach, McGraw-Hill,
N.Y., 1978.
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allows an almost full laboratory-like reconstruction of the reflectance spectrum of
the earth surface material. We will see later that such a rendition allows scientific
spectroscopic principles to be used in analysing what the spectrum tells us about a
particular point on the ground.

It is important to recognise that the information summarised in Fig. 1.11 refers to
the reflection characteristics of a single pixel on the earth’s surface. With imaging
spectrometers such as Hyperion we have the ability to generate full reflectance
spectrum information for each pixel and, in addition, to produce a map showing the
spatial distribution of reflectance information because of the lines and columns of
pixels recorded by the instrument. With so many spectral bands available, we have
the option of generating the equivalent number of images, or of combining the
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Fig. 1.11 Spectral reflectance characteristics in the visible and reflective infrared range for three
common cover types, recorded over Perth Australia using the HyVista HyMap scanner; shown
also are the locations of the spectral bands of a number of common sensors, some of which also
have panchromatic bands and bands further into the infrared that are not shown here
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images corresponding to particular wavebands into a colour product that captures,
albeit in a summary form, some of the spectral information. We will see in
Chap. 3 how we cope with forming such a colour product.

Although our focus in this book will tend to be on optical remote sensing when
demonstrating image processing and analysis techniques, it is of value at this point
to note the other significant wavelength ranges in which satellite and aircraft remote
sensing is carried out.

1.4.2 Sensing in the Thermal Infrared Range

Early remote sensing instruments that contained a thermal infrared band, such as the
Landsat Thematic Mapper, were designed to use that band principally for mea-
suring the earth’s thermal emission over a broad wavelength range. Their major
applications tended to be in surface temperature mapping and in assessing prop-
erties that could be derived from such a measurement. If a set of spectral mea-
surements is available over the wavelength range associated with thermal infrared
emission, viz. 8–12 µm, thermal spectroscopic analysis is possible, allowing a
differentiation among cover types.

If the surface being imaged were an ideal black body described by the thermal
curve in Fig. 1.3 the upwelling thermal radiance measured by the satellite is pro-
portional to the energy given by Planck’s radiation law. The difference between the
radiation emitted by a real surface and that described by ideal black body behaviour is
described by the emissivity of the surface, which is a quantity equal to or less than
one, and is a function of wavelength, often with strong absorption dips that corre-
spond to diagnostic spectroscopic features. The actual measured upwelling radiance
is complicated by the absorbing and emitting properties of the atmosphere; in practice
they are removed by correction algorithms, as is the wavelength dependence of the
solar curve. That allows the surface properties to be described in terms of emissivity.

Figure 1.12 shows emissivity spectra in the thermal range for some common
substances. Also shown in the figure are the locations of the wavebands for several
remote sensing instruments that take sets of measurements in the thermal region. In
Fig. 1.13 two examples are shown of identification in the thermal range, in one case
using a thermal imaging spectrometer to detect fine detail.

1.4.3 Sensing in the Microwave Range

As noted earlier, microwave, or radar, remote sensing entails measuring the strength
of the signal scattered back from each resolution element (pixel) on the earth’s
surface after irradiation by an energy source carried on the platform. Because of the
wavelengths used, radar imaging can be carried out through cloud cover, and since
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it carries its own energy source, radar imaging can happen at any time of night or
day. The degree of scattering from earth surface features is determined largely by
two properties of the surface material: its geometric shape and its moisture content.
Further, because of the much longer wavelengths used in microwave remote
sensing compared with optical imaging, some of the incident energy can penetrate
beyond the outer surface of the cover types being imaged. We will now examine
some rudimentary scattering behaviours so that a basic understanding of radar
remote sensing can be obtained.

Smooth surfaces act as so-called specular (mirror-like) reflectors in that the
direction of scattering is predominantly away from the incident direction; as a
result, they appear dark to black in radar image data. Rough surfaces act as diffuse
reflectors in that they scatter the incident energy in all directions, including back
towards the remote sensing platform. Consequently, they appear light in image
data. Whether a surface is regarded as rough or not depends on the wavelength of
the radiation used and the angle with which the surface is viewed (look angle).
Table 1.1 shows the common frequencies and wavelengths used with radar imag-
ing. At the longer wavelengths many surfaces appear smooth whereas the same
surfaces can be diffuse at shorter wavelengths, as depicted in Fig. 1.14a. If the

Fig. 1.12 Some emissivity spectra in the thermal infrared range; not to scale vertically: the quartz
spectrum was constructed using data kindly provided by the ASTER science team, NASA Jet
Propulsion Laboratory, California Institute of Technology pers comm 2021; the gypsum curve was
constructed from raw data kindly provided by Yoshiki Nimomiya of the Geological Survey of
Japan, AIST pers comm 2021; the benzene spectrum was taken from D. Williams, Thermal
multispectral detection of industrial chemicals, pers comm 2010 and 2021
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surface material is very dry then the incident microwave radiation can penetrate,
particularly at long wavelengths, as indicated in Fig. 1.14b, making it possible to
form images of objects underneath the earth’s surface.

Another surface scattering mechanism is often encountered with manufactured
features such as buildings. That is the corner reflector effect seen in Fig. 1.14c,
which results from the right angle formed between a vertical structure such as a
fence, building or ship and a horizontal plane such as the surface of the earth or sea.
This gives a very bright response; the response is larger at shorter wavelengths.

Media such as vegetation canopies and sea ice exhibit volume scattering
behaviour, in that the backscattered energy emerges from many, hard-to-define sites
within the volume, as illustrated for trees in Fig. 1.14d. That leads to a light tonal
appearance in radar imagery, with the effect being strongest at shorter wavelengths.

Table 1.1 Typical radio wavelengths and corresponding frequencies7 used in radar remote
sensing, based on actual missions; only the lower end of the K band is currently used

Band Typical wavelength (cm) Frequency
P 66.7 450 MHz
L 23.5 1.28 GHz
S 12.6 2.38 GHz
C 5.7 5.3 GHz
X 3.1 9.7 GHz
Ku 2.16 13.9 GHz

Fig. 1.13 a Ammonia spectrum recorded by the AHI thermal imaging spectrometer6 compared
with a laboratory reference spectrum (reproduced with permission from D. Williams, Thermal
multispectral detection of industrial chemicals, pers comm 2010 and 2021) and b ASTER
multispectral thermal measurements of Algodones dunes in California compared with a laboratory
sample, constructed using data kindly provided by the ASTER science team, NASA Jet Propulsion
Laboratory, California Institute of Technology pers comm 2021

6 Airborne Hyperspectral Imager, Hawaii Institute of Geophysics and Planetology (HGIP) at the
University of Hawaii. This instrument has 256 bands in the range 8–12 lm.
7 Wavelength in metres and frequency in megahertz are related by the expression
f MHzð Þ ¼ 300=kðmÞ
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At long wavelengths vegetation offers little attenuation to the incident radiation so
that the backscatter is often dominated by the surface underneath the vegetation
canopy. Significant forward scattering can also occur from trunks when the vege-
tation canopy is almost transparent to the radiation at those longer wavelengths. As
a consequence, the tree trunk can form a corner reflector in the nature of that shown
in Fig. 1.14c.

The radar response from each of the geometric mechanisms shown in Fig. 1.14
is modulated by the moisture contents of the materials involved in the scattering
process. Moisture enters through an electrical property called complex permittivity
which determines the strength of the scattering from a given object or surface. The
angle with which the landscape is viewed also has an impact on the observed level
of backscatter. Scattering from relatively smooth surfaces is a strong function of
look angle, while scattering from vegetation canopies is weakly dependent on the
look angle. Table 1.2 summarises the appearance of radar imagery in the different
wavelength ranges.

It was mentioned earlier that the radiation used with radar has a property known
as polarisation. It is beyond the level of treatment here to go into depth on the nature
of polarisation, but it is sufficient for our purposes to note that the incident energy

Fig. 1.14 Common radar scattering mechanisms as a function of the wavelength of the irradiating
energy a surface, b sub-surface, c corner reflector, and d volume scattering
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can be called horizontally polarised or vertically polarised. Similarly, the reflected
energy can also be horizontally or vertically polarised. For each transmission
wavelength and each look angle, four different images can be obtained as a result of
polarisation differences. If the incident energy is horizontally polarised, depending
on the surface properties, the scattered energy can be either horizontally or verti-
cally polarised or both, and so on.

Another complication with the coherent radiation used in radar is that the images
exhibit a degree of “speckle”. That is the result of constructive and destructive
interference of the reflections from surfaces that have random spatial variations of
the order of one half a wavelength or so. Within a homogeneous region, such as a
crop field, speckle shows up as a salt-and-pepper like noise that overlays the actual
image data. It complicates significantly any analytical process we might devise for
interpreting radar imagery that depends on the properties of single pixels.

A high quality space-acquired radar image is seen in Fig. 1.15. Recorded just
north-west of Seville in Spain, it demonstrates a range of typical radar scattering
mechanisms.

1.5 Spatial Data Sources in General and Geographic
Information Systems

Other sources of spatial data exist alongside satellite or aircraft remote sensing
imagery, as outlined in Fig. 1.16. They include simple maps that show topography,
land ownership, roads and the like, and more specialised sources such as geological
maps and maps of geophysical measurements such as gravity anomalies and
magnetics. Spatial data sets like those are valuable complements to image data
when seeking to understand land cover and land use. They contain information not
available in remote sensing imagery and careful combinations of spatial data
sources often allow inferences to be drawn about regions on the earth surface not
possible when using a single source on its own.

Table 1.2 Some characteristics of radar imagery

Long wavelengths Medium wavelengths Short wavelengths
Little canopy response but

good tree response
because of corner
reflector effect involving
trunks; good contrast of
buildings and tree trunks
against background
surfaces, and ships at sea;
good surface
discrimination provided
wavelength not too long

Some canopy penetration;
good canopy
backscattering; fairly
good discrimination of
surface variations

Canopy response strong,
poor surface
discrimination because
diffuse scattering
dominates; strong
building response, but
sometimes not well
discriminated against
adjacent surfaces
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Fig. 1.15 X band HH SAR image recorded by Capella Space of the PS10 solar concentrator in
Seville Spain. The image was acquired at 1942 GMT on 22 March 2021 with a look angle of 34.1º.
Several different scattering types are identified on the image, which has a spatial resolution of
better than 1 m. © Capella Space Corp, All Rights Reserved

Fig. 1.16 A typical
registered spatial data set such
as might be found in a
geographic information
system; some data types are
inherently numerical while
others are often in the form of
labels
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In order to be able to process any spatial data set using the digital image
processing techniques treated in this book, the data must be available in discrete
form spatially and radiometrically. In other words, it must consist of or be able to be
converted to pixels, with each pixel describing the properties of a small region on
the ground. The value ascribed to each pixel must be expressible in digital form.
Also, when seeking to process several spatial data sets simultaneously they must be
in correct geographic relation to each other. Desirably, the pixels in imagery and
other spatial data should be referenced to the coordinates of a map grid, such as the
UTM grid system. When available in this manner the data is said to be geocoded.
Methods for registering and geocoding different data sets are treated in Chap. 2.

The amount and variety of data to be handled in a database that contains imagery
and other spatial data sources can be enormous, particularly if it covers a large
geographical region. Clearly, efficient means are required to store, retrieve,
manipulate, analyse and display relevant data sets. That is the role of the geographic
information system (GIS). Like its commercial counterpart, the management
information system (MIS), the GIS is designed to carry out operations on the data
stored in its data base according to a set of user specifications, without the user
needing to be knowledgeable about how the data is stored and what data handling
and processing procedures are utilised to retrieve and present the data.

Because of the nature and volume of data involved in a GIS attention has had to
be given to efficient coding techniques to facilitate searching through the large
numbers of maps and images often involved. That is often performed using the
procedure known collectively as data mining.8

To understand the sorts of spatial data manipulation operations of importance in
GIS one must take the view of the resource manager rather than the data analyst.
While the latter is concerned with image reconstruction, filtering, transformation
and interpretation, the manager is interested in operations such as those listed in
Table 1.3. They provide information from which management strategies and the
like can be inferred. To be able to implement many, if not most, of those, a
substantial amount of image processing is needed. It is expected, though, that the
actual image processing being performed would be largely transparent to the
resource manager; the role of the data analyst will often be in the design of the GIS
system.

8 There is a special section on data mining in IEEE Transactions on Geoscience and Remote
Sensing, vol. 45, no. 4, April 2007. The Introduction, in particular, gives a good description of the
field. A more recent treatment is B. K. Wylie, N. J. Pastick, J. J. Picotte and C. Deering, Geospatial
data mining for digital raster mapping, GIScience and Remote Sensing, vol. 56, no. 3, 2019,
pp. 406–429.
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1.6 Scale in Digital Image Data

Because of IFOV differences the images provided by different remote sensing
sensors are confined to application at different scales. As a guide, Table 1.4 relates
scale to spatial resolution. That has been derived by considering an image pixel to
be too coarse if it approaches 0.1 mm in size on a photographic product at a given
scale. Landsat ETM+ data is seen to be suitable for scales smaller than about
1:250,000 whereas MODIS imagery is suitable for scales below about
1:10,000,000.

1.7 Digital Earth

For centuries we depended on the map sheet as the primary descriptor of the spatial
properties of the earth. With the advent of satellite remote sensing in the late 1960s
and early 1970s we then had available for the first time wide scale and panoramic
earth views that supplemented maps as a spatial data source. Over the past four
decades or so, with increasing geometric integrity and spatial resolution, satellite
and aircraft imagery, along with other forms of spatial data, led directly to the
construction of the geographic information system, now widely used as a decision
support mechanism in many resource-related studies.

In twenty years the GIS notion has been generalised substantially through the
introduction of the concept of the virtual globe.9 This allows the user of spatial data
to roam over the whole of the earth’s surface and zoom in or out to capture a view at

Table 1.3 Some typical GIS data operations

Intersection and overlay of spatial data sets (masking)
Intersection and overlay of polygons (grid cells, local government regions, etc.) on spatial data
Identification of shapes
Identification of points in polygons
Area determination
Distance determination
Thematic mapping from single or multiple spatial data sets
Proximity calculations and route determination
Searching by metadata
Searching by geographic location
Searching by user-defined attributes
Similarity searching
Data mining

9 Perhaps the best-known examples are Google Earth and NASA’s World Wind. See also Digital
Earth Australia at http://www.ga.gov.au/dea.
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the scale of interest. Currently, there are significant technical limitations to the
scientific use of the virtual globe as a primary mapping tool, largely to do with the
radiometric and positional accuracy but, with further development, the current GIS
model will be replaced by a virtual globe framework in which, not only positional
and physical descriptor information will be available, but over which will be layers
of other data providing information on social, cultural, heritage and human factors.
Now known as digital earth, such a model puts spatial information and its
manipulation in the hands of any user. It also allows the non-scientific lay user the
opportunity to contribute to the information estate contained in the digital earth
model. Citizen contribution of spatial data goes under the name of crowdsourcing,
or sometimes neogeography, and will be one of the primary data acquisition
methodologies of the future.

When combined with the enormous number of ground-based and spaceborne/
airborne sensors, the digital earth10 concept promises to be an enormously powerful
management tool for almost all of the information of value to us both for scientific
and other purposes. The idea of the digital earth formed after a seminal speech
given by former US Vice-President Al Gore in 1998.11

The digital earth paradigm is illustrated in Fig. 1.17. To make that work many of
the image processing and analysis techniques presented in later chapters need to be
employed.

Table 1.4 Suggested maximum scales of hard copy products as a function of effective ground
pixel size (based on 0.1 mm displayed pixel size): pan = panchromatic, XS = multispectral

Scale Nominal
pixel (m)

Typical sensors with comparable pixel sizes

1:5000
1:10,000
1:50,000
1:100,000
1:250,000
1:500,000
1:5,000,000
1:10,000,000
1:50,000,000

0.5
1
5
10
25
50
500
1000
5000

WorldView2, 4 pan, Pléaides pan
Ikonos pan, SPOT Naomi pan
Ikonos XS, SPOT Naomi XS, SPOT HRG pan, TerraSAR-X
SPOT HRG XS, SPOT HRG pan, Alos PALSAR, AVNIR
Landsat ETM+, ASTER MIR, ALI, Landsat OLI
Landsat MSS, LISS
MODIS, OCTS
MODIS, NOAA AVHRR, GMS visible, Sentinel OCLI
GMS Thermal IR

10 See the special issue on the sensor web of the IEEE Journal of Selected Topics in Applied Earth
Observation and Remote Sensing, vol. 3, no. 4, December 2010.
11 The content of Gore’s speech is captured in A. Gore, The Digital Earth: Understanding our
planet in the twenty-first Century, Photogrammetric Engineering and Remote Sensing, vol. 65, no.
5, 1999, p. 528.
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1.8 How This Book Is Arranged

The purpose of this chapter has been to introduce the image data sources that are
used in remote sensing and which are the subject of the processing operations
described in the remainder of the book. It has also introduced the essential char-
acteristics by which digital image data is described. The remainder of the book is
arranged in a sequence that starts with the recorded image data and progresses
through to how it is utilised.

The first task that normally confronts the analyst, before any meaningful pro-
cessing can be carried out, is to ensure as much as possible that the data is free of
error, both in geometry and brightness. Chapter 2 is dedicated to that task along
with the associated operation of registering images together, or to a map base. At
the end of that chapter, we assume that the data has been corrected and is ready for
analysis.

Chapter 3 then starts us on the pathway to data interpretation. It is an overview
that considers the various ways that digital image data can be analysed, either
manually or with the assistance of a computer. Such an overview is important
because there is no single, correct method for undertaking image interpretation; it is
therefore important to know the options available before moving into the rest of the
book.

It is frequently important to produce an image from the recorded digital image
data, either on a display screen or in hard copy format. That is essential when
analysis is to be carried out using the visual skills of a human interpreter. Even
when machine analysis is to be performed the analyst will still produce image

Fig. 1.17 Digital earth, showing the types of data gathering, the dependence on computer
networks and social media, the globe as the reference framework, and the concept of inserting
value-added products back into the information base, either as free goods or commercially
available commodities
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products, most likely on a screen, to assist in that task. To make visual interpre-
tation and recognition as easy as possible it is frequently necessary to enhance the
visual appeal of an image. Chapter 4 looks at methods for enhancing the radio-
metric (brightness and contrast) properties of an image. It also looks at how we
might join images side-by-side to form a mosaic in which it is necessary to min-
imise any brightness differences across the join.

The visual impact of an image can be also improved through operations on
image geometry. Such procedures can be used to enhance edges and lines, or to
smooth noise, and are the subject of Chap. 5. In that chapter we also look at
geometric processing operations that assist image interpretation.

In Chap. 6 we explore a number of transformations that generate new versions of
images from the image data recorded by remote sensing platforms. Chief among
these is the principal components transformation, well-regarded as a fundamental
operation in image processing.

Several other transformations are covered in Chap. 7. The Fourier transform and
the wavelet transform are two major tools that are widely employed to process
image data in a range of applications. They are used to implement more sophisti-
cated filtering operations than are possible with the geometric procedures covered in
Chap. 5, and to provide means by which imagery can be compressed into more
efficient forms for storage and transmission.

At this stage the full suite of so-called image enhancement operations has been
covered and the book moves its focus to automated means for image interpretation.
Many of the techniques now to be covered come from the field of machine learning.

Chapter 8 is central to the book. It is a large chapter because it covers the range
of machine learning algorithms commonly encountered in remote sensing image
interpretation. Those techniques are used to produce maps of land cover, land type
and land use from the data recorded by a remote sensing mission. At the end of this
chapter the reader should understand how data, once corrected radiometrically and
geometrically, can be processed into viable maps by making use of a small number
of pixels for which the appropriate ground label is known. Those pixels are called
training pixels because we use them to train the machine learning technique we
have chosen to undertake the full mapping task. The techniques treated come under
the name of supervised classification.

On occasions the user does not have available known samples of ground cover
over which the satellite data is recorded—in other words there are no training
pixels. Nevertheless, it is still possible to devise machine learning techniques to
label satellite data into ground cover types. Chapter 9 is devoted to that task and
covers what are called unsupervised classification and clustering.

Frequently we need to reduce the volume of data to be processed, generally by
reducing the number of bands. That is necessary to keep processing costs in bounds,
or to ensure some analysis algorithms operate effectively. Chapter 10 presents the
techniques commonly used for that purpose. Two approaches are presented: one
involves selecting optimal subsets of the existing bands, while the other entails
transforming the data beforehand in an endeavour to make the task of discarding
less useful (transformed) bands easier.
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Chapter 11 brings together much of the material on classification and machine
learning into a set of methodologies that are used to produce reliable classification
and mapping results. Included here are the methods used to assess the accuracy of a
classification exercise.

In Chap. 12 we look at techniques for performing a classification when several
different types of image or spatial data are available. Those procedures can be
numerical or statistical and can also be based on expert system methodologies.

A set of Appendices is given to provide supplementary material, including
background mathematics and statistics.

1.9 Bibliography on Sources and Characteristics
of Remote Sensing Image Data

This book is principally about the computer processing of remote sensing image
data and is not a detailed treatment of remote sensing as a field. Should more
background in remote sensing be needed then standard treatments include

F. Sabins, Remote Sensing: Principles and Interpretation, 3rd ed., Waveland, Long
Grove IL, 1997

T. Lillesand, R.W. Kiefer and J. Chipman, Remote Sensing and Image Interpretation, 7th
ed., J. Wiley and Sons, N.Y., 2015

Highlighted below are a number of image processing and analysis texts that will
add further detail to the coverage in this book, often at a higher mathematical level.
One of the first comprehensive texts on the computer processing of remotely sensed
imagery is

P.H. Swain and S.M. Davis, eds., Remote Sensing: the Quantitative Approach,
McGraw-Hill, N.Y., 1978

Even though much of the material has now been superseded, this standard book still
has one of the best chapters on the spectral reflectance characteristics of earth
surface cover types, information that is essential to understand when carrying out
image interpretation.

A coverage of thermal remote sensing will be found in

C. Kuenzer and S. Dech, eds, Thermal Infrared Remote Sensing, Springer Science +
Business Media, Dordrecht, 2013.

For examples of thermal spectral emission properties and spectra see

Y. Ninomiya and B. Fu, Regional lithological mapping using ASTER-TIR data: Case study
for the Tibetan Plateau and the surrounding area, Geosciences, vol. 6, no. 3, 2016, pp. 39ff,
https://doi.org/10.3390/geosciences6030039
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Y. Ninomiya and B. Fu, Thermal infrared multispectral remote sensing of lithology and
mineralogy based on spectral properties of materials, Ore Geology Reviews, vol. 108, 2019,
pp. 54–72

D.J. Williams, A.N. Pilant, D.D. Worthy, B. Feldman, T. Williams and P. Lucey, Detection
and identification of toxic air pollutants using airborne LWIR hyperspectral imaging, SPIE
4th Int. Asia-Pacific Environmental Remote Sensing Symposium, Honolulu, Hawaii, 8–11
November 2004, vol. 5655, pp. 1–8, 2005

G.C. Hulley and S.J. Hook, Generating consistent land surface temperature and emissivity
products between ASTER and MODIS data for earth science research, IEEE Transactions
on Geoscience and Remote Sensing, vol. 49, no. 4, April 2011, pp. 1304–1315

A standard treatment on the image enhancement procedures, both radiometric and
geometric, is

R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th ed., Pearson Prentice-Hall,
Upper Saddle River, N.J., 2018.

A simpler treatment of digital image processing techniques will be found in

K.R. Castleman, Digital Image Processing, 2nd ed., Prentice-Hall, Upper Saddle River,
N.J., 1996.

for which a solutions manual is also available.

Like digital image processing there are many specialised and general texts on the
pattern recognition or machine learning techniques that are fundamental to remote
sensing image interpretation. Perhaps the most commonly used, with a broad
coverage of techniques, is

R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons,
N.Y., 2001.

A more recent and mathematically detailed treatment is

C.M. Bishop, Pattern Recognition and Machine Learning, Springer Science+Business
Media LLC, N.Y., 2006.

When the number of spectral bands recorded by a sensor exceeds about 100 there
are special challenges for computer image interpretation. A book devoted to that
problem is

D.A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, John Wiley &
Sons, Hoboken, N.J., 2003.

For a treatment of radar remote sensing that assumes little prior knowledge see

J.A. Richards, Remote Sensing with Imaging Radar, Springer, Berlin, 2009.
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A good mathematical companion on matrix methods is

K.B. Petersen and M.S. Pedersen, The Matrix Cookbook, which can be found on a number
of university web sites through web searching. It’s original URL of matrixcookbook.com
seems now to be incorrect but is recorded here for historical purposes.

1.10 Problems

1:1. Suppose a given set of image data consists of just two bands, one centred on
0.65 µm and the other centred on 1.0 µm wavelength. Suppose the corre-
sponding region on the earth’s surface consists of water, vegetation and soil.
Construct a graph with two axes, one representing the brightness of a pixel in
the 0.65 µm band and the other representing the brightness of the pixel in the
1.0 µm band. Show on this graph (which we might call the spectral space or
spectral domain) where you would expect to find vegetation pixels, soil pixels
and water pixels. Indicate how straight lines could, in principle, be drawn
between the three groups of pixels so that, if a computer had the equations of
those lines stored in its memory, it could use them to identify every pixel in
the image.
Repeat the exercise for an image data set with bands centred on 0.95 and
1.05 µm.

1:2. Assume a frame of image data consists of a segment along the track of the
satellite as long as the swath is wide. Compute the data volume of a single
frame from each of the following sensors and produce a graph of average data
volume per band versus pixel size.

NOAA AVHRR
Aqua MODIS
Landsat ETM+
SPOT HRG multispectral
GeoEye multispectral.

1:3. Determine a relationship between swath width and orbital repeat cycle for a
polar orbiting satellite at an altitude of 800 km, assuming that adjacent swaths
overlap by 10% at the equator.

1:4. A particular geosynchronous satellite is placed in orbit over the poles, rather
than over the equator. How often does it appear over the same spot on the
earth’s surface, and where is that?

1:5. Geostationary satellites, with time, wander from the equatorial plane and have
to be repositioned; this is called station keeping. If you could see the satellite
overhead (for example, through a powerful telescope) what would the satellite
path look like before correction?

1:6. Reconsider Problem 1.1 but instead of drawing lines between the classes in the
spectral domain consider instead how you might differentiate them by com-
puting the mean position of each class.
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1:7. Imagine a scanner of the type shown in Fig. 1.6 is carried on an aircraft. In
flight the aircraft can unintentionally but slowly change altitude and can be
subject to cross winds. The pilot would normally compensate for the cross
wind by steering into it. Describe the effect of these two mechanisms on the
geometry of the recorded image data.

1:8. Using the results in Appendix A calculate the frame acquisition time for the
following satellite sensors.

SPOT HRG
NOAA AVHRR
WorldView Pan.

1:9. Most remote sensing satellites are in orbits that pass over the regions being
imaged at about mid-morning. Why is that important?

1:10. Derive a relationship between repeat cycle and swath width for a remote
sensing satellite with an orbital period of 90 min, assuming a near-polar orbit.
Choose swath widths between 50 and 150 km. For a swath width of 100 km
how could a repeat cycle of 10 days be achieved? Would several satellites be a
solution?

1:11. By examining Figs. 1.11 and 1.14 discuss how the combination of optical and
radar imagery might improve the recognition of ground cover types.

1:12. Discuss the relative advantages of satellite and aircraft platforms for remote
sensing image acquisition.

1:13. A particular satellite at an altitude of 800 km in near polar orbit carries a high
resolution optical sensor with 1 m spatial resolution. If the orbit is arranged so
that complete earth coverage is possible, how long will that take if there are
2048 pixels per swath width? See Appendix A for the relationship between
altitude and orbital period.

1:14. A particular sensor records data in two wavebands in which the radiometric
resolution is just 2 bits (see Appendix B). What is the theoretical maximum
number of cover types that can be differentiated with the sensor?
If a sensor has c channels and a radiometric resolution of b bits show that the
total number of sites in the corresponding spectral domain (see Problem 1.1) is
2bc. How many different sites are there for the following sensors?

SPOT HRV
Landsat ETM+
EO-1 Hyperion
Ikonos.

For an image of 512 � 512 pixels how many sites, on the average, will be
occupied for each of these sensors?

1:15. Why is earth imaging from satellites not carried out at wavelengths of about
1 mm?

1:16. What imaging wavelengths would you use to map a fire burning on the earth’s
surface, superimposed on general landscape features?
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1:17. Discuss the concept of map scale in the context of a virtual globe in the digital
earth paradigm.

1:18. Many general purpose radar satellites operate at C band. Why?
1:19. Remote sensing satellites take about 90 min to orbit the earth and yet cover the

whole earth in about one or two weeks. Is that possible because

(a) the earth is rotating under the satellite,
(b) the orbital plane is shifted after each completed orbit, or
(c) both (a) and (b)?

1:20. Satellites are the preferred remote sensing platforms when (choose one and
justify)

(a) we want greatest control over the region being imaged,
(b) we want cost-effective imaging over large areas, or
(c) we want to minimise the effect of the atmosphere on the recorded

imagery?

1:21. Suppose a particular sensor was capable of imaging in the following
wavebands:

1. 0.45–0.52 lm (blue)
2. 0.52–0.60 lm (green)
3. 0.63–0.69 lm (red)
4. 0.76–0.90 lm (near IR)
5. 1.40–1.45 lm (mid IR).

Which single band would be most effective for each of the following tasks?

(a) Noting the loss of chlorophyll resulting from dying vegetation
(b) Monitoring the loss of moisture from soil
(c) Discriminating between vegetation and water
(d) Monitoring the condition of vegetation
(e) Discriminating between soil vegetation.
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Chapter 2
Correcting and Registering Images

Abstract Sources of error and distortion in the recorded brightness values and in
the geometry of remote sensing imagery are presented, along with detailed methods
for their correction. Particular attention is given to the effect of the earth’s atmo-
sphere on recorded image data and those atmospheric constituents that have most
influence. The use of control points and mapping functions to correct geometric
errors is covered in detail, including as a means for registering images to a map base
and to register sets of images to each other geographically. Mathematical models
for common sources of geometric distortion are also treated. Examples of the main
methods for correction and registration are given.

2.1 Introduction

When image data is recorded by sensors on remote platforms it can contain errors in
geometry, and in the measured brightness values of the pixels. The latter are
referred to as radiometric errors and can result from (i) the instrumentation used to
record the data, (ii) the wavelength dependence of solar radiation and (iii) the effect
of the atmosphere.

Geometric errors can also arise in several ways. The relative motions of the
platform, its scanners and the earth can lead to errors of a skewing nature in an
image product. Non-idealities in the sensors themselves, the curvature of the earth,
and uncontrolled variations in the position, velocity and attitude of the remote
sensing platform can all lead to geometric errors of varying degrees of severity.

It is usually important to correct errors in image brightness and geometry. That is
certainly the case if the image is to be as representative as possible of the scene
being recorded. It is also important if the image is to be interpreted manually. If an
image is to be analysed by machine, using the algorithms to be described in
Chaps. 8 and 9, it is not always necessary to correct the data beforehand; that
depends on the analytical technique being used.

Some schools of thought recommend against correction when analysis is based
on machine learning methods, because correction will not generally improve
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performance; rather the (minor) discretisation errors that can be introduced into
image data by correction procedures may lead to unnecessary interpretation errors
and geometric correction could always be applied to the interpreted product after
analysis is complete. With modern image data, this precaution is no longer as
important, and most analysts would correct data before analysis. Also, commercial
suppliers of image data regularly correct their products for errors in brightness and
geometry before it is sold to the client.

Automated interpretation based on library searching or other similarity-based
methods will always require radiometric correction. Generally, radiometric cor-
rection is also required before data fusion operations and when several images of
the same region taken at different times are to be compared.

It is the purpose of this chapter to discuss the nature of the radiometric and
geometric errors commonly encountered in remote sensing images and to develop
computational procedures that can be used for their compensation. The methods to
be presented also find more general application, such as in registering together sets
of images of the same region but at different times, and in performing operations
such as scale changing and zooming (magnification).

We commence with examining sources of radiometric errors, and methods for
their correction, and then move on to problems in image geometry.

2.2 Sources of Radiometric Distortion

Mechanisms that affect the measured brightness values of the pixels in an image can
lead to two broad types of radiometric distortion. First, the distribution of brightness
over an image in a given band can be different from that in the ground scene.
Secondly, the relative brightness of a single pixel from band to band can be dis-
torted compared with the spectral reflectance character of the corresponding region
on the ground. Both types can result from:

• instrumentation errors
• the spectral dependence of solar radiation
• the presence of the atmosphere as a transmission medium through which radi-

ation must travel from its source to the sensors.

We now consider each of these and their correction mechanisms.

2.3 Instrumentation Errors

2.3.1 Sources of Distortion

Because the sensors used in remote sensing instruments often use sets of detectors
within a band and, obviously, between bands, radiometric errors can arise from
calibration differences among the detectors. An ideal radiation detector has a
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transfer characteristic such as that shown in Fig. 2.1a. It should be linear, so that
there is a proportionate increase or decrease of signal level with detected radiation.
Real detectors will have some degree of non-linearity. There will also be a small
signal out, even when there is no radiation in. Historically that is known as dark
current and is the result of residual electronic noise present in the detector at any
temperature other than absolute zero. In remote sensing it is usually called a detector
offset. The slope of the detector curve is called its gain, or sometimes transfer gain.

Most imaging devices used in remote sensing are constructed from sets of
detectors. In the case of the Landsat ETM+ there are 16 per band. Each will have
slightly different transfer characteristics, such as those depicted in Fig. 2.1b. Those
imbalances will lead to striping in the across swath direction similar to that shown
in Fig. 2.2a.

Fig. 2.1 a Ideal linear
radiation detector transfer
characteristic, and
b hypothetical mismatches in
detector characteristics

a

b 

Fig. 2.2 Reducing sensor
induced striping noise in a
Landsat MSS image:
a original image, and b after
destriping by matching sensor
statistics
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For push broom scanners, such as the SPOT HRG, there are as many as 12,000
detectors across the swath in the panchromatic mode of operation, so that longi-
tudinal striping could occur if the detectors were not well matched. For monolithic
sensor arrays, such as the charge coupled devices used in the SPOT instruments,
that is rarely a problem, compared with the line striping that can occur with
mechanical across track scanners that employ discrete detectors.

Another common instrumentation error is the loss of a complete line of data
resulting from a momentary sensor or communication link failure, or the loss of
signal on individual pixels in a given band owing to instantaneous drop out of a
sensor or signal link. Those mechanisms lead to black lines across or along the
image, depending on the sensor technology used to acquire the data, or to individual
black pixels.

2.3.2 Correcting Instrumentation Errors

Errors in relative brightness, such as the within-band line striping referred to above
and as shown in Fig. 2.2a for a portion of a Landsat Multispectral Scanner
(MSS) image, can be rectified to a great extent in the following way. First, it is
assumed that the detectors used for data acquisition in each band produce signals
statistically similar to each other. In other words, if the means and standard devi-
ations are computed for the signals recorded by each of the detectors over the full
scene then they should almost be the same. This requires the assumption that
statistical detail within a band doesn’t change significantly over a distance equiv-
alent to that of one scan covered by the set of the detectors (474 m for the six scan
lines of Landsats 1, 2, 3 MSS for example). For most scenes this is usually a
reasonable assumption in terms of the means and standard deviations of pixel
brightness, so that differences in those statistics among the detectors can be
attributed to the gain and offset mismatches illustrated in Fig. 2.1b.

Sensor mismatches of this type can be corrected by calculating pixel mean
brightness and standard deviation within a band by using lines of image data known
to come from a single detector. In the case of Landsat MSS that will require the data
on every sixth line to be used. In a like manner five other measurements of mean
brightness and standard deviation are computed for the other five MSS detectors.
Correction of radiometric mismatches among the detectors can then be carried out
by adopting one detector as a standard and adjusting the brightness values of all
pixels recorded by each of the other detectors so that their mean brightnesses and
standard deviations match those of the standard detector. That operation, which is
commonly referred to as destriping, can be implemented by the operation

y ¼ rd
ri

xþmd � rd
ri

mi ð2:1Þ
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where x is the original brightness for a pixel and y is its new (destriped) value in the
band being corrected; md and rd are the reference values of mean brightness and
standard deviation, usually those of a chosen band, and mi and ri are the signal
mean and standard deviation for the detector under consideration. Sometimes an
independent reference mean and standard deviation is used. That allows a degree of
contrast enhancement to be imposed during the destriping operation.

Figure 2.2 shows the result of applying (2.1) to the signals of the remaining five
detectors of a Landsat Multispectral Scanner (MSS) image, after having chosen one
as a reference. As seen, the result is good but not perfect, partly because the signals
are being matched only on the basis of first and second order statistics. A better
approach is to match the detector histograms using the methodology of Sect. 4.5.1 It
is also possible to correct errors in an observed image by using optimisation to
match it to an assumed error-free image model,2 and to use sub-space methods
when the dimensionality is high.3 More complex methods, however, are generally
less suitable with large numbers of detectors.

Correcting lost lines of data or lost pixels can be carried out by averaging over
the neighbouring pixels—using those on the lines on either side for line drop outs or
the set of surrounding pixels for pixel drop outs. This is called infilling or some-
times in-painting.

2.4 Effect of the Solar Radiation Curve
and the Atmosphere on Radiometry

We now examine the effect of environmental conditions on the radiometric char-
acter of recorded image data. To help focus on the important aspects, consider a
hypothetical surface which will reflect all of the incident sunlight at all wave-
lengths. Assume, further, that there is no atmosphere above the surface, as depicted
in Fig. 2.3a. A detector capable of taking many spectral samples will record the
solar spectrum as shown.4

1 This approach is demonstrated in M. P. Weinreb, R. Xie, I. H. Lienesch and D. S. Crosby,
Destriping GOES images by matching empirical distribution functions, Remote Sensing of
Environment, vol. 29, 1989, pp. 185–195, and M. Wegener, Destriping multiple sensor imagery by
improved histogram matching, Int. J. Remote Sensing, vol. 11, no. 5, May 1990, pp. 859–875.
2 See H. Shen and L. Zhang, A MAP-based algorithm for destriping and in painting of remotely
sensed images, IEEE Transactions on Geoscience and Remote Sensing, vol. 47. no. 5, May 2009,
pp. 1492–1502, and M. Bouali and S. Ladjal, Towards optimal destriping of MODIS data using a
unidirectional variance model, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no.
8, August 2011, pp. 2924–2935.
3 See N. Acito, M. Diani and G. Corsini, Subspace-based striping noise reduction in hyperspectral
images, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 4, April 2011,
pp. 1325–1342.
4 If the spectral resolution of the detector were sufficiently fine then the recorded solar spectrum
would include the Fraunhofer absorption lines associated with the gases in the solar atmosphere:
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Now suppose there is a normal terrestrial atmosphere in the path between the
sun, the surface and the detector. The spectrum recorded will be modified by the
extent to which the atmosphere selectively absorbs the radiation. There are
well-known absorption features caused mainly by the presence of oxygen, carbon
dioxide and water vapour in the atmosphere, and they appear in the recorded data as

Fig. 2.3 Distortion of the surface material reflectance spectrum by the spectral dependence of the
solar curve and the effect of the atmosphere: a detection of the solar curve from a perfectly
reflecting surface in the absence of an atmosphere, b effect of the atmosphere on detecting the solar
curve, c detection of the real surface spectrum distorted by the atmosphere and the solar curve

See P. N. Slater, Remote Sensing: Optics and Optical Systems, Addison Wesley, Reading Mass.,
1980.
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shown in Fig. 2.3b. The atmosphere also scatters the solar radiation, further com-
plicating the signal received at the sensor. This reduces the solar energy that strikes
the surface and travels to the sensor; energy also scatters from the atmosphere itself
to the sensor superimposing onto the desired signal. We consider those additional
complications in Sect. 2.6.

Figure 2.3c shows how the reflectance spectrum of a real surface might appear.
The spectrum recorded is a combination of the actual spectrum of the real surface,
modulated by the influence of the solar curve and distorted by the atmosphere. In
order to be able to recover the true radiometric character of the image we need to
correct for those effects.

2.5 Compensating for the Solar Radiation Curve

The wavelength dependence of the solar radiation falling on the earth’s surface can
be compensated by assuming that the sun is an ideal black body and able to be
described by the behaviour of the Planck radiation law shown in Figs. 1.3 and 2.4a.
For broad spectral resolution sensors that is an acceptable approach. For images
recorded by instrumentation with fine spectral resolution it is important to account
for departures from black body behaviour, effectively modelling the real emissivity
of the sun, and using that to normalise the recorded image data. Most radiometric
correction procedures compensate for the solar curve using the actual wavelength
dependence measured above the atmosphere, such as that shown in Fig. 2.4b.

µ

µ
Fig. 2.4 a Showing the impact of the solar radiation curve at remote sensing wavelengths, and
b the measured solar spectral irradiance of the sun above the earth’s atmosphere,5 over the
wavelength range common in optical remote sensing

5 Plotted, at lower spectral resolution, from the data in F. X. Kneizys, E. P. Shettle, L. W. Abreu,
J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby and S. A. Clough, Users Guide to
LOWTRAN 7, AFGL-TR-0177, Environmental Research Paper No. 1010, 1988.
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2.6 Influence of the Atmosphere

We now examine how solar irradiation produces the measured signal from a single
pixel, using the mechanisms identified in Fig. 2.5. It is important, first, to define
radiometric quantities in order to allow the correction equations to be properly
formulated.

The sun is a source of energy that emits at a given rate of joules per second, or
watts. That energy radiates through space in an inverse square law fashion so that at
a particular distance the sun’s emission can be measured as watts per square metre
(Wm−2), given as the power emitted divided by the surface area of a sphere at that
distance. This power density is called irradiance, a property that can be used to
describe the strength of any emitter of electromagnetic energy.

The power density scattered from the earth in a particular direction is defined by
density per solid angle. This quantity is called radiance and has units of watts per
square metre per steradian (Wm−2sr−1). If the surface is perfectly diffuse then the
incident solar irradiance is scattered uniformly into the upper hemisphere, i.e., equal
amounts are scattered into equal cones of solid angle.

The emission of energy by bodies such as the sun is wavelength dependent, as
seen in Figs. 1.3 and 2.4, so that the term spectral irradiance can be used to
describe how much power density is available in incremental wavebands across the
wavelength range; that is actually the quantity plotted in Fig. 2.4b. Spectral irra-
diance is measured in Wm−2lm−1. Similarly, spectral radiance is measured in
Wm−2lm−1sr−1.

Fig. 2.5 Effect of the atmosphere on solar radiation illuminating a pixel and reaching a sensor
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Suppose in the absence of the atmosphere the solar spectral irradiance at the earth
is Ek. If the solar zenith angle (measured from the normal to the surface) is h as shown
in Fig. 2.5 then the spectral irradiance (spectral power density) at the earth’s surface
is Ek cos h. This gives an available irradiance between wavelengths k1 and k2 of

Eos ¼
Zk2
k1

Ek cos hdkWm�2

For most instruments the wavebands used are sufficiently narrow that we can
assume

Eos ¼ EDk cos hDk ¼ E kð Þ cos hWm�2 ð2:2Þ

in which Dk ¼ k2 � k1 and EDk is the average spectral irradiance over that band-
width, centred on the wavelength k ¼ ðk2 þ k1Þ=2. EðkÞ ¼ EDkDk is the solar
irradiance above the atmosphere at wavelength k.

Suppose the surface has a reflectance R kð Þ in that narrow band of wavelengths,
which describes the proportion of the incident irradiance that is scattered. If the
surface is diffuse then the total radiance L scattered into the upper hemisphere, and
available for measurement, is

L ¼ E kð Þ cos hR kð Þ=p Wm�2sr�1 ð2:3Þ

in which the divisor p accounts for the upper hemisphere of solid angle. This
equation relates to the ideal case of no atmosphere.

When an atmosphere is present there are two effects which must be taken into
account that modify (2.3). They are the scattering and absorption by the particles in
the atmosphere, for which compensation is needed when correcting imagery.

Absorption by atmospheric molecules is a selective process that converts
incoming energy into heat; molecules of oxygen, carbon dioxide, ozone and water
attenuate the radiation very strongly in certain wavebands.

There are two broad scattering mechanisms. The first is scattering by the air
molecules themselves. That is called Rayleigh scattering, which has an inverse
fourth power dependence on wavelength. The other is called aerosol or Mie scat-
tering and is the result of the scattering of radiation from larger particles such as
those associated with smoke, haze and fumes. Those particulates are of the order of
one tenth to ten wavelengths. Mie scattering is also wavelength dependent,
although not as strongly as Rayleigh scattering; it is approximately inversely pro-
portional to wavelength. When the atmospheric particulates become much larger
than a wavelength, such as those common in fogs, clouds and dust, the wavelength
dependence disappears.

In a clear ideal atmosphere Rayleigh scattering is the only mechanism present. It
accounts for the blueness of the sky. Because the shorter (blue) wavelengths are
scattered more than the longer (red) wavelengths, we are more likely to see blue
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when looking in any direction in the sky. Likewise, the reddish appearance of sunset
is also caused by Rayleigh scattering. That is the result of the long atmospheric path
the radiation has to follow at sunset during which most short wavelength radiation is
scattered away from direct line of sight, relative to the longer wavelengths.

Fogs and clouds appear white or bluish-white owing to the (almost)
non-selective scattering caused by the larger particles. Figure 2.6 shows the typical
scattering characteristics of different atmospheres.

We are now in the position to include the effect of the atmosphere on the
radiation that ultimately reaches a sensor. We will do this by reference to the
mechanisms shown in Fig. 2.5, commencing with the incoming solar radiation.
They are identified by name in the following.

Transmittance and Aerosol Optical Thickness (AOT). In the absence of an at-
mosphere, transmission of the available solar irradiance to the surface at any
wavelength is 100%. However, because of scattering and absorption, not all of the
solar radiation reaches the ground. The amount that does, relative to that for no
atmosphere, is called the transmittance. Let this be denoted Th in which the sub-
script indicates its dependence on the zenith angle of the source, which determines
the path length through the atmosphere. In a similar way there is an atmospheric
transmittance T/, between the point of reflection and the sensor. Transmittance has
a value between 0 and 1, although it is sometimes quoted as a percentage.

Transmittance can be written in terms of the Aerosol Optical Thickness (AOT),
or Aerosol Optical Depth (AOD) s of the atmosphere which is related to its scat-
tering and absorbing properties at the time an image was recorded. Transmittance
and optical thickness are related by

T ¼ exp �s sec hð Þ ð2:4Þ

For an AOT near zero the transmittance is close to 1 (100% transmission through
the atmosphere), whereas at a zenith angle of 90° the transmittance drops to 0.007
(less than 1%) if the AOT is 5.

Fig. 2.6 Atmospheric and
particulate scattering
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AOT and thus transmittance are generally wavelength dependent.
Sky irradiance. Because the radiation is scattered on its travel down through the

atmosphere, a particular pixel will be irradiated by energy on the direct path in
Fig. 2.5 and by energy scattered from atmospheric constituents. The path for the
latter is undefined and diffuse, and is referred to as sky irradiance component 1.
A pixel can also receive energy that has been reflected from surrounding pixels and
then scattered downwards by the atmosphere. That is the sky irradiance component
2 shown in Fig. 2.5. We call the total sky irradiance at the pixel ED.

Path radiance. Again, because of scattering, radiation can reach the sensor from
adjacent pixels and also via diffuse scattering of the incoming radiation directly to
the sensor by atmospheric constituents before it reaches the ground. Those two
components constitute path radiance, which is denoted as Lp.

Having defined these mechanisms, we are now in the position to determine how
the radiance measured by the sensor is affected by the presence of the atmosphere.
First, the total irradiance at the earth’s surface now becomes, instead of (2.2),

EG ¼ E kð ÞTh kð Þ cos hþED Wm�2

where, for simplicity, it has been assumed that the diffuse sky irradiance ED is not a
function of wavelength in the waveband of interest. The radiance resulting from this
total irradiance of the pixel is thus

L ¼ E kð ÞTh kð Þ cos hþEDf gR kð Þ=p Wm�2sr�1

Emerging from the atmosphere the total radiance detected by the sensor is com-
posed of that term, reduced by atmospheric transmittance on the upward path, plus
the path radiance Lp, to give

L ¼ T/ kð Þ E kð ÞTh kð Þ cos hþEDf gR kð Þ=pþ Lp Wm�2sr�1 ð2:5Þ

This equation gives the relationship between the radiance measured at the sensor L
and the reflectance of the surface material R kð Þ in a given waveband, assuming all
the other quantities can be modelled or measured. Sometimes the path radiance term
is written as Lp ¼ EðkÞRA=p in which RA is called the reflectance of the
atmosphere.6

If the diffuse sky irradiance term ED is neglected (2.5) becomes

L kð Þ ¼ T kð ÞR kð ÞE kð Þ cos h=pþ Lp kð Þ Wm�2sr�1 ð2:6Þ

6 See ACORN 4.0 Users Guide, Stand Alone Version, Analytical Imaging and Geophysics LLC,
Boulder, Colorado, 2002.
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E kð Þ is the available solar irradiance in the channel of interest, T kð Þ is the
transmittance of the total atmospheric path, LðkÞ is the radiance at the detector and
LpðkÞ is the path radiance. Equation (2.6) is used in many atmospheric correction
procedures (see Sect. 2.9).

Image data products are expressed in digital numbers on a scale set by the
radiometric resolution of the sensor7; 8 bit data is in the range 0–255, 10 bit data is
in the range 0–1023 and 12 bit data is in the range 0–4095. The relationship
between the detected radiance and the corresponding digital number (DN) in the
image product can be expressed

L ¼ jDN þ Lmin Wm�2sr�1 ð2:7aÞ

in which the sensor gain term j is

j ¼ ðLmax � LminÞ=DNmax Wm�2sr�1per digital value ð2:7bÞ

DNmax is the highest possible digital count for the sensor. Values for Lmax; Lmin and
DNmax in each waveband are usually available from the sensor operator, allowing
the digital data to be expressed in radiance. This is a necessary step before the
correction of atmospheric errors.

2.7 Effect of the Atmosphere on Remote Sensing Imagery

The result of atmospheric distortion of the signal recorded by a sensor depends, to
an extent, on the spectral resolution of the instrument. We consider broad waveband
systems first, such Landsat ETM+ and SPOT HRG.

One effect of scattering is that fine detail in image data will be obscured.
Consequently, in applications where the analyst depends on the limit of sensor
resolution, it is important to take steps to correct for atmospheric effects.

It is important also to consider the effects of the atmosphere on systems with
wide fields of view in which there will be an appreciable difference in atmospheric
path length between nadir and the extremities of the swath. That will be significant
with satellite missions such as NOAA.

Finally, and perhaps most importantly, because both Rayleigh and Mie scat-
tering are wavelength dependent, the effects of the atmosphere will be different in
the different wavebands of a given sensor system. In the case of the Landsat
Thematic Mapper the visible blue band (0.45–0.52 lm) can be affected appreciably
by comparison to the middle infrared band (1.55–1.75 lm). That leads to a loss in
calibration over the set of brightness values for a particular pixel.

7 See Appendix B.
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In high spectral resolution systems, such as hyperspectral sensors, the effect of
the atmosphere is complicated by the presence of the absorption lines superimposed
by water vapour and other atmospheric constituents. We examine suitable correc-
tion mechanisms in Sect. 2.9.

2.8 Correcting Atmospheric Effects in Broad Waveband
Systems

Correcting images from broad waveband sensors (typically multispectral) to
remove as much as possible the degrading effects of the atmosphere requires
modelling of the scattering and gross absorption processes to see how they deter-
mine the transmittances of the signal paths, and the components of sky irradiance
and path radiance. When those quantities are available, they can be used in (2.5) or
(2.6), and (2.7) to relate the digital numbers DN for the pixels in each band of data
to the true reflectance R of the surface being imaged. An instructive example of how
this can be done is given by Forster8 for the case of Landsat MSS data; he also gives
source material and tables to assist in the computations.

Forster considers the case of a Landsat 2 MSS image in the wavelength range
0.8–1.1 lm (near infrared; then called band 7) acquired at Sydney, Australia on
14th December 1980 at 9:05 am local time. At the time of overpass, the atmo-
spheric conditions were.

Temperature 29 °C
relative humidity 24% measured at 30 m above sea level
atmospheric pressure 1004 mbar
visibility 65 km

Based on the equivalent mass of water vapour in the atmosphere (computed from
temperature and humiditymeasurements) the absorbing effect of water molecules was
computed. That is the only molecular absorption mechanism considered significant
over the broad waveband involved. The measured value for visibility was used to
estimate the effect of Mie scattering. That was combined with the known effect of
Rayleigh scattering at that wavelength to give the total normal optical thickness of the
atmosphere. Its value for this example is s = 0.15. Using this, with a solar zenith angle
of 38° (at overpass) and a nadir viewing satellite we find from (2.4) that

Th ¼ 0:827

T/ ¼ 0:861

8 B. C. Forster, Derivation of atmospheric correction procedures for Landsat MSS with particular
reference to urban data. Int. J. Remote Sensing, vol. 5. 1984, no. 5, pp. 799–817.
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In the waveband of interest Forster shows that the solar irradiance at the earth’s
surface in the absence of an atmosphere is E0 = 256 Wm−2. He further computes
the total global irradiance at the earth’s surface as 186.6 Wm−2. Noting in (2.5) that
the term in brackets is the global irradiance, and using the relevant values of Th and
cos h, this gives the total diffuse sky irradiance as 19.6 Wm−2—i.e., about 10% of
the global irradiance for this example.

Using correction algorithms given by Turner and Spencer,9 which account for
Rayleigh and Mie scattering and atmospheric absorption, Forster computes the path
radiance for this example as

Lp ¼ 0:62Wm�2sr�1

so that (2.5) becomes for band 7

L7 ¼ 0:274� 186:6R7 þ 0:62Wm�2sr�1

i:e:; L7 ¼ 51:5R7 þ 0:62Wm�2sr�1
ð2:8Þ

At the time of overpass, it was established that for the band 7 sensor on Landsat 2
Lmax ¼ 39:1 Wm−2sr−1 and Lmin ¼ 1:1 Wm−2sr−1, while DNmax = 63 (6 bit data)
so that, from (2.7b)

j ¼ 0:603Wm�2sr�1per digital value

From (2.7a) we thus have

L7 ¼ 0:603DN7 þ 1:1Wm�2sr�1

which, when combined with (2.8), gives the corrected reflectance in band 7 as

R7 ¼ 0:0118DN7 þ 0:0094

or, as a percentage, R7 ¼ 1:18DN7 þ 0:94%

Similar calculations for the visible red band (band 5) give

R5 ¼ 0:44DN5 þ 0:5%

9 R. E. Turner and M. M. Spencer, Atmospheric model for the correction of spacecraft data, Proc.
8th Int. Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, 1972, pp. 895–
934.
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Methods such as this have now been operationalized in several large systems for
multispectral satellite image production and distribution such as FORCE,10

LaSRC11 and MACCS.12

2.9 Correcting Atmospheric Effects in Narrow Waveband
Systems

Correcting image data from narrow waveband sensors (hyperspectral) requires careful
modelling of the differential absorption characteristics of atmospheric constituents and
their scattering effects, and compensating for the solar curve as discussed inSect. 2.5. The
high spectral resolution means that fine atmospheric absorption features will be detected
and may be confused with those of the ground cover type being imaged if not removed.

Correction in these cases consists of the following steps:

1. Conversion of raw recorded DN values to radiance, unless the product supplied
is already in radiance form.

2. Compensating for the shape of the solar spectrum as outlined in Sect. 2.5. The
measured radiances are divided by solar irradiances above the atmosphere to
obtain the apparent reflectances of the surface.

3. Compensating for atmospheric gaseous transmittances, and molecular and
aerosol scattering, by determining the aerosol optical thickness (AOT).
Simulating these atmospheric effects allows the apparent reflectances to be
converted to scaled surface reflectances.

4. Converting scaled surface reflectances to real surface reflectances after consid-
ering any topographic effects. If topographic data is not available, real reflectance
is taken to be identical to scaled reflectance under the assumption that the surfaces
of interest are Lambertian; that is the assumption made by many correction pro-
cedures although more recent approaches do allow for other surface behaviours.

We need now to consider how the third step can be performed. To do so we use
the simplified expression of (2.6), which requires information on the absorptive and
scattering properties of significant atmospheric constituents. Absorption enters via
the transmittance T kð Þ and scattering via both the transmittance T kð Þ and the path
radiance term Lp.

10 D. Frantz, A. Roder, M. Stellmes and J. Hill, An operational radiometric Landsat pre-processing
framework for large-area time series applications, IEEE Transactions on Geoscience and Remote
Sensing, vol. 54, no. 7 2016, pp. 3928–3943.
11 E. Vermote, J-C Roger, B. Franch and S. V. Skakun, LaSRC (Land Surface Reflectance Code):
Overview, application and validation using MODIS, VIIRS, Landsat and Sentinel-2 data, Proc.
International Geoscience and Remote Sensing Symposium, Valencia, July 2018, pp. 8173–8176.
12 B. Petrucci, M. Huc, T. Feuvrier, C. Ruffel, O. Hagolie, V. Lonjou and C. Dejardins, MACCS:
Multi-Mission Atmospheric Correction and Cloud Screening tool for high-frequency revisit data
processing, Proc. SPIE 9643, Image and Signal Processing for Remote Sensing XXI, 964307,
October 2015, https://doi.org/10.1117/12.2194797.
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Over the years several data bases listing specific absorption characteristics of
atmospheric gaseous components have been compiled. The most extensive, and that
which is used by several atmospheric correction models in remote sensing, is
HITRAN. Although its heritage can be traced back to 1973, successive refinements
have led to an extensive compilation of the effects of a great number of important
and less significant atmospheric constituents13; detailed information on the use of
HITRAN and its development is available separately.14 An on-line version of
HITRAN is available and users can carry out their own analysis of the data sup-
plied, via the HITRAN Application Programming Interface, HAPI.

Not all of the molecular constituents covered in HITRAN are significant when
correcting high spectral resolution remote sensing imagery. The most important in
the range relevant to optical remote sensing, 0.4–2.5 lm, are H2O, CO2, O3, N2O,
CO, CH4 and O2.

15 Their transmission characteristics (referred to as transmission
spectra) are illustrated in Fig. 2.7.

Fig. 2.7 Indicative transmission spectra of the seven most significant atmospheric constituents16;
the water vapour curve is for a tropical atmosphere

13 L. S. Rothman and 42 others, The HITRAN 2008 molecular spectroscopic database,
J. Quantitative Spectroscopy and Radiative Transfer, vol. 110, 2009, pp. 533–572.
14 See www.cfa.harvard.edu/HITRAN/ accessed April 2021.
15 B. C. Gao, K. B. Heidebrecht and A. F. H. Goetz, Derivation of scaled surface reflectance from
AVIRIS data, Remote Sensing of Environment, vol. 44, 1993, pp. 165–178.
16 Adapted from Figs. 2 and 3 of B. Gao, K. B. Heidebrecht and A. F. H. Goetz, ibid; used with
permission of Elsevier.

46 2 Correcting and Registering Images

http://www.cfa.harvard.edu/HITRAN/


Apart from ozone, which varies with latitude and season, but which can be
modelled as a constant effect for a given image, all of CO2, N2O, CO, CH4, O2 can
be considered relatively constant from image to image, and their absorption char-
acteristics modelled17 and used to correct for their absorbing effects on hyper-
spectral imagery.

Correction for the effects of water vapour is more complex because water in the
atmosphere changes with humidity and can vary across a scene. Ideally it would be
good to estimate the water vapour in the atmospheric path for each individual pixel
so that each pixel can have its reflectivity corrected for water vapour absorption and
scattering separately. Fortunately, with fine spectral resolution systems, that turns
out to be possible through examining the resonant water absorption dips evident in
Fig. 2.7 and reproduced in Fig. 2.8 with further relevant information added.

The depths of the minima at wavelengths of 0.94 and 1.14 lm depend on the
amount of water vapour in the atmospheric path (column) for the relevant pixel. We
can assess the quantity of water in the column by comparing the depths of either of
those minima (as averages of a set of bands around those wavelengths) with the
100% transmission level shown; 100% transmission occurs in the water vapour
windows near 0.865, 1.025 and 1.23 lm, so bands, or averages over sets of bands,
near those wavelengths can be used to provide the 100% reference levels. Once the
depth of a water absorption minimum has been estimated, usually by taking the
ratio of the radiance at the minimum to the average radiance of the 100% trans-
mission bands either side, a model is used to generate the water content in the path
from the sun to the sensor, via the respective pixel. That allows the corresponding
transmission coefficient to be derived and the path radiance contributed by the
atmospheric water content to be determined.

Several packages are available that implement radiometric correction based on
the processes just described. One of the earliest was ATREM (Atmosphere
Removal) developed at the University of Colorado.18 It accounts for the seven
atmospheric constituents noted above, using the ratio technique of Fig. 2.8 to
correct for atmospheric water vapour. Atmospheric scattering is incorporated using
the 5S and 6S radiative transfer codes.19 A version of 6S is now available that

17 Many correction methodologies use the narrow band transmittance model in W. Malkmus,
Random Lorentz band model with exponential-tailed S line intensity distribution function,
J. Optical Society of America, vol. 57, 1967, pp. 323–329.
18 Atmosphere Removal Program (ATREM), Version 3.1 Users Guide, Centre for the Study of
Earth from Space, University of Colorado, 1999.
19 D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morchrette, J. Perbos and P. Y. Deschamps,
Simulation of the Satellite Signal in the Solar Spectrum (5S) Users Guide, Laboratoire d’Optique
Atmospherique, Universitat S. T. de Lille, 1986, E. F. Vermote, D. Tanre, J. L. Deuze, M.
Herman, J-J Morc and J-J Morcretee, Second simulation of the satellite signal in the solar spec-
trum, 6S: An overview, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no.
3 1997, pp. 675–686, and https://salsa.umd.edu/6spage.html (the 6S users site).
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accounts for polarization effects and surfaces other than Lambertian.20 The vege-
tation spectrum for a pixel that has been atmospherically corrected using ATREM is
shown in Fig. 2.9.

ATREM is no longer available. Current correction programs tend to be based on,
and are refinements of, MODTRAN4.21 MODTRAN4, unlike ATREM allows the
sky irradiance term 2 and path radiance term 2 in Fig. 2.5 to be incorporated into
the atmospheric correction process. Two other approaches that build on
MODTRAN4 are ACORN22 (Atmospheric Correction Now) and FLAASH23 (Fast
Line-of-Sight Atmospheric Analysis of Hyperspectral Cubes). A comparison of

Fig. 2.8 Using absorption features in the water spectrum of Fig. 2.7 to estimate atmospheric water
content; the average signal at D is divided by the averages over the ranges A and B, and the
average signal at E is divided by the averages of the ranges B and C to give two measurements for
estimating water content

20 S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, Jr, Validation of a vector
version of the 6S radiative transfer code for atmospheric correction of satellite data, Part 1: path
radiance, Applied Optics, Vol. 45, Issue 26, 2006, pp. 6762–6774 and S. Y. Kotchenova and E.
F. Vermote, Validation of a vector version of the 6S radiative transfer code for atmospheric
correction of satellite data, Part 2: Homogeneous, Lambertian and anisotropic surfaces, Applied
Optics, Vol. 46, Issue 20, 2007, pp. 4455–4464.
21 A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S.
M. Adler-Golden, J. H. Chetwynd, Jr., S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and
M. L. Hoke, MODTRAN4 Radiative Transfer Modeling for Atmospheric Correction, Proc. SPIE
Optical Stereoscopic Techniques and Instrumentation for Atmospheric and Space Research III,
vol. 3756, July 1999.
22 ACORN 4.0 Users Guide, Stand Alone Version, loc. cit.
23 S. M. Alder-Golden, M. W. Matthew, L. S. Bernstein, R. Y. Levine, A. Berk, S. C. Richtsmeier,
P. K. Acharya, G. P. Anderson, G. Felde, J. Gardner, M. Hike, L. S. Jeong, B. Pukall, J. Mello, A.
Ratkowski and H. H. Burke, Atmospheric correction for short wave spectral imagery based on
MODTRAN4, Proc. SPIE Imaging Spectrometry, vol. 3753, 1999, pp. 61–69.
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these packages will be found in Kruse,24 while Gao et al.25 review developments in
correction algorithms and indicate where improvements are required.

2.10 Empirical, Data Driven Methods for Atmospheric
Correction

Several approximate techniques are available for atmospheric correction that
depend directly on measurements on the recorded image data. These are important
when detailed data on the atmosphere, and particularly the water vapour content,
are not available. The most common are considered here.

evidence of water 
vapour correction 

evidence of 
correction for 
atmospheric 
scattering 

complete absorption 
(cannot compensate) 

Fig. 2.9 Correction of the raw spectrum of a vegetation pixel in which key features are evident;
underlying diagram reprinted, with permission from Elsevier, from B. C. Gao, K. B. Heidebrecht
and A. F. H. Goetz, Derivation of scaled surface reflectance from AVIRIS data, Remote Sensing of
Environment, vol. 44, 1993, pp. 165–178

24 F. A. Kruse, Comparison of ATREM, ACORN and FLAASH atmospheric corrections using
low-altitude AVIRIS data of Boulder, CO, Proc. 13th JPL Airborne Geoscience Workshop,
Pasadena, CA, 2004.
25 B. C. Gao, M. J. Montes, C. O. Davis and A. F. H. Goetz, Atmospheric correction algorithms for
hyperspectral remote sensing data of land and oceans, Remote Sensing of Environment,
Supplement 1, Imaging Spectroscopy Special Issue, vol. 113, 2009, pp. S17–S24.
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2.10.1 Haze Removal by Dark Subtraction

Frequently, detailed correction for the scattering and absorbing effects of the
atmosphere is not required in broad waveband systems. Neither can detailed cor-
rection be implemented when the necessary ancillary information, such as visibility
and relative humidity, is not readily available. In those cases, if the effect of the
atmosphere is judged to be a problem, approximate correction can be carried out in
the following manner. Effectively, it just corrects for the path radiance term Lp in
(2.5); some commercial image processing software systems use this method to
account for path radiance before other procedures are applied to compensate for
atmospheric absorption effects.

It makes the assumption that each band of data for a given scene should contain
some pixels at or close to zero brightness value but that atmospheric effects, and
especially path radiance, has added a constant level to each pixel in each band.
Consequently, if histograms are taken of the bands (graphs of the number of pixels
as a function of brightness value) the lowest significant occupied brightness value
will be non-zero as shown in Fig. 2.10. Also, because path radiance varies as k−a

(with a between 0 and 4 depending upon the extent of Mie scattering) the lowest
occupied brightness value will be further from the origin for the shorter wave-
lengths, as depicted. Approximate correction requires, first, identifying the amount
by which each histogram is apparently shifted in brightness from the origin and then
subtracting that amount from each pixel brightness in that band.

It is clear that the effect of atmospheric scattering as implied in the histograms of
Fig. 2.10 is to lift the overall brightness value of an image in each band. In the case
of a colour composite product (see Sect. 3.2.1) this will appear as a whitish-bluish
haze. Following correction in the manner just described—often called dark sub-
traction—the haze will be removed and the dynamic range of image intensity will
be improved. Consequently, this approach is also frequently referred to as haze
removal.

2.10.2 The Flat Field Method

The Flat Field method26 depends on locating a large, spectrally uniform area in an
image, such as sand or clouds, (a “spectrally” flat field) and computing its average
radiance spectrum. It is assumed that the recorded shape and absorption features
present in that spectrum are caused by solar and atmospheric effects since, in their
absence, the spectrum should be flat. The reflectance of each image pixel is then

26 D. A. Roberts, Y. Yamaguchi and R. J. P. Lyon, Comparison of various techniques for cali-
bration of AIS data, Proc. 2nd AIS Workshop, JPL Publication 86–35, Jet Propulsion Laboratory,
Pasadena CA, 1986.
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corrected by dividing the spectrum of the pixel by the average radiance spectrum of
the flat field.

2.10.3 The Empirical Line Method

In this approach27 two spectrally uniform targets in the image, one dark and one
bright, are identified; their actual reflectances are then determined by field or lab-
oratory measurements. The radiance spectra for each target are extracted from the
image and then mapped to the actual reflectances using linear regression techniques.
The gain and offset so derived for each band are then applied to all pixels in the
image to calculate their reflectances, as illustrated in Fig. 2.11. While this is an
appealing technique and the computational load is manageable, it does require field
or laboratory reflectance data to be available.

Fig. 2.10 Illustrating the
effect of path radiance
resulting from atmospheric
scattering

27 D. A. Roberts, Y. Yamaguchi and R. J. P. Lyon, Calibration of Airborne Imaging Spectrometer
data to percent reflectance using field spectral measurements, Proc. 19th Int. Symposium on
Remote Sensing of Environment, Ann Arbor, Michigan, 21–25 October 1986.
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2.10.4 Log Residuals

This method is based on an assumed linear relationship between radiance and
reflectance of the form28

xi;n ¼ InSiRi;n ð2:9Þ

where xi;n (i ¼ 1. . .K; n ¼ 1. . .N) is the radiance for pixel i in waveband n and Ri;n

is the reflectance to be found. Si accounts for the effect of topography, different for
each pixel but assumed to be constant for all wavelengths. In accounts for wave-
length dependent illumination, including the solar curve and atmospheric trans-
mittance, which is assumed to be independent of pixel. K and N are the total
number of the pixels in the image and the total number of bands, respectively.

For reasons which will become clear shortly divide the measured radiance xi;n by
its geometric mean over the wavebands and its geometric mean over the pixels.
Here we denote the geometric mean of a quantity x with respect to the index n by
Gn xð Þ so that we have

Fig. 2.11 Illustrating the
empirical line method

28 A. A. Green and M. D. Craig, Analysis of Airborne Imaging Spectrometer data with logarithmic
residuals, Proc. 1st AIS Workshop, JPL Publication 85–41, Jet Propulsion Laboratory,
Pasadena CA, 8–10 April 1985, pp. 111–119.
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zi;n ¼ xi;n
Gn xi;n
� �Gi xi;n

� � ð2:10Þ

Substituting from (2.9), this becomes

zi;n ¼ InSiRi;n

Gn Inð ÞSiGn Ri;n
� �

InGi Sið ÞGi Ri;n
� �

i:e:; zi;n ¼ Ri;n

Gn Inð ÞGi Sið ÞGn Ri;n
� �Gi Ri;n

� � ð2:11Þ

Now Gn Inð Þ is independent of pixel and thus is a constant in (2.11); likewise, Gi Sið Þ
is independent of band and is also a constant. Therefore, to within a multiplicative
constant, zi;n defined on the basis of measured radiance in (2.10) is an expression
involving surface reflectance which is of the same form as that involving measured
radiance and is independent of both the illumination conditions and the effect of
topography. Accordingly, if we used (2.10) then the result can be considered to be a
scaled reflectance.

We now take the logarithm of (2.10), to give

logzi;n ¼ logxi;n � logGn xi;n
� �� logGi xi;n

� �

i:e:; log zi;n ¼ log xi;n � 1
N

XN
n¼1

log xi;n � 1
K

XK
i¼1

log xi;n

This is the expression used for the log residuals method. It produces the logarithm
of an expression equivalent to scaled reflectance and is thus independent of topo-
graphic and illumination effects.

2.11 Sources of Geometric Distortion

There are potentially many more sources of geometric distortion in images than
radiometric distortion, and their effects can be quite severe. Some are more
important with aircraft and drone platforms whereas others are a greater problem for
satellites. They can be related to a number of factors, including

• the rotation of the earth during image acquisition
• variations in platform altitude, attitude and velocity
• the wide field of view of some sensors
• the curvature of the earth
• the finite scan rate of some sensors
• sensor non-idealities.
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In the following sections we discuss the nature of the distortions that arise from
these effects and means by which they can be compensated.

To appreciate why geometric distortion occurs and its manifestation in imagery,
it is important to envisage how an image is formed from sequential lines of image
data. If one imagines that a particular sensor records L lines of M pixels each then it
would be natural to form the image by laying the L lines down successively one
under the other. If the IFOV of the sensor has an aspect ratio of unity—i.e., the
pixels are the same size along and across the scan—then this is the same as
arranging the pixels for display on a square grid, such as that shown in Fig. 2.12.
The grid intersections are the pixel positions and the spacing between the grid
points is determined by the sensor’s IFOV.

2.12 The Effect of Earth Rotation

Sensors that record one line of data at a time across the image swath will incur
distortion in the recorded image product as a result of the rotation of the earth
during the finite time required to record a full scene. During the frame (or scene)
acquisition time the earth rotates from west to east so that a pixel imaged at the end
of the frame would have been further to the west when recording started. Therefore,
if the lines of pixels recorded were arranged for display in the manner of Fig. 2.12
the later lines would be erroneously displaced to the east in terms of the terrain they
represent. To give the pixels their correct positions relative to the ground it is
necessary to offset the bottom of the image to the west by the amount by which the
ground has moved during image acquisition, with all intervening lines displaced
proportionately as depicted in Fig. 2.13. The amount the image has to be skewed to
the west at the end of the frame depends on the relative velocities of the satellite and
earth, and the length of the image frame recorded.

An example is presented here for Landsat 7. The angular velocity of the satellite
is xo ¼ 1:059mrad s�1 so that a nominal L ¼ 185 km frame on the ground is
scanned in

Fig. 2.12 The display grid
used to build up an image
from the digital data stream of
pixels generated by a sensor
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ts ¼ L
xore

¼ 27:4 s

where re is the radius of the earth (6.37816 Mm). The surface velocity of the earth
is

ve ¼ xerecosu

in which u is latitude and xe is the earth rotational velocity of 72.72 l rad s−1. At
Sydney, Australia u ¼ 33:8� so that

ve ¼ 385:4ms�1

During the frame acquisition time the surface of the earth at Sydney moves to the
east by

Dxe ¼ vets ¼ 10:55 km

This is 6% of the 185 km frame, which is quite severe and certainly noticeable.
Since the satellite does not pass directly north–south, this figure has to be adjusted
by the path inclination angle. At Sydney for Landsat 7 this is approximately 11° so
that the effective sideways movement of the earth is actually

Dx ¼ Dxe cos 11o ¼ 10:34 km

If steps are not taken to correct for the effect of earth rotation during Landsat 7
image acquisition the image will exhibit about 6% skew distortion to the east.

Fig. 2.13 Effect of earth rotation on image geometry when data is acquired as scan lines: a image
constructed according to Fig. 2.12 in which the pixels are arranged on a square grid, b offset of
successive groups of lines to the west to correct for earth rotation during image acquisition
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2.13 The Effect of Variations in Platform Altitude,
Attitude and Velocity

Variations in the elevation or altitude of a remote sensing platform lead to a scale
change at constant angular IFOV and field of view; the effect is illustrated in
Fig. 2.14a for an increase in altitude with travel at a rate that is slow compared with
a frame acquisition time. Similarly, if the platform forward velocity changes, a scale
change occurs in the along-track direction. That is depicted in Fig. 2.14b again for a
change that occurs slowly. For a satellite platform, orbit velocity variations can
result from orbit eccentricity and the non-sphericity of the earth.

Platform attitude changes can be resolved into yaw, pitch and roll during forward
travel. These lead to image rotation, along track and across track displacement as
noted in Fig. 2.14c–e. The effects in the recorded imagery can be understood by
again referring to Fig. 2.12 while looking at the diagrams in Fig. 2.14. For
example, while Fig. 2.14a shows that the field of view of a sensor broadens with
rising platform height, mapping the recorded pixels onto the grid of Fig. 2.12 will
lead to an apparent compression of detail compared with that at lower altitudes.

Attitude variations in aircraft remote sensing systems can be quite significant
owing to the effects of atmospheric turbulence. Those variations can occur over a
short time, leading to localised distortions in aircraft scanner imagery.29 Aircraft
roll can be partially compensated in the data stream. That is made possible by
having a data window that defines the swath width; the window is made smaller
than the complete scan of data over the sensor field of view. A gyroscope mounted
on the sensor is then used to move the position of the data window along the total
scan line as the aircraft rolls. Pitch and yaw are generally not corrected unless the
sensor is mounted on a three-axis stabilized platform.

While these variations can be described mathematically, at least in principle, a
knowledge of the platform ephemeris is needed for their magnitudes to be
computed.

2.14 The Effect of Sensor Field of View: Panoramic
Distortion

For scanners used on spacecraft and aircraft remote sensing platforms the angular
IFOV is constant. As a result, the effective pixel size on the ground is larger at the
extremities of the scan than at nadir, as illustrated in Fig. 2.15. If the IFOV is b and
the pixel dimension at nadir is p then its dimension in the scan direction at a scan
angle h as shown is

29 For an extreme example see Fig. 3.1 in G. Camps-Valls and L. Bruzonne, eds., Kernel Methods
for Remote Sensing Data Analysis, John Wiley & Sons, Chichester UK, 2009.
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ph ¼ bh sec2 h ¼ p sec2 h ð2:12Þ

where h is altitude. Its dimension across the scan line is p sec h. For small values of
h distortion in pixel size is negligible. For Landsat 7 the largest value of h is
approximately 7.5° so that ph ¼ 1:02p. The effect can be quite severe for systems
with larger fields of view, such as MODIS and aircraft scanners. For an aircraft
scanner with FOV = 80° the distortion in pixel size along the scan line is
ph ¼ 1:70p, i.e., the region on the ground measured at the extremities of the scan is
70% larger laterally than the region sensed at nadir. When the image data is
arranged to form an image, as in Fig. 2.12, the pixels are all written as the same
pixel size on a display device. While the displayed pixels are equal across the scan
line the equivalent ground areas covered are not. This gives a compression of the
image data towards its edges.

There is a second, related distortion introduced with wide field of view systems
concerned with pixel position across the scan line. The scanner records pixels at
constant angular increments and these are displayed on a grid of uniform centres, as
in Fig. 2.12. However, the spacings of the effective pixels on the ground increase
with scan angle. For example, if the pixels are recorded at an angular separation
equal to the IFOV of the sensor then at nadir the pixels centres are spaced p
apart. At a scan angle h the pixel centres will be spaced p sec2 h apart as can be
found from Fig. 2.15. By placing the pixels on a uniform display grid, the image
will suffer an across track compression. Again, the effect for small angular field of
view systems will be negligible in terms of the relative spacing of adjacent pixels.
However, when the effect is aggregated to determine the location of a pixel at the
swath edge relative to nadir the error can be significant. This can be determined by
computing the arc SN in Fig. 2.15, S being the position to which the pixel at T
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velocity 

roll 

pitch 
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a�tude 

Fig. 2.14 Effect of platform
position and attitude
variations on the region of the
earth being imaged for
variations that are slow
compared with image
acquisition
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would appear to be moved if the data is arrayed uniformly. It can be shown readily
that SN/TN = h= tan h that being the degree of across track scale distortion. In the
case of Landsat 7 ðh= tan hÞmax ¼ 0:9936. This indicates that a pixel at the swath
edge (92.5 km from the sub-nadir point) will be 314 m out of position along the
scan line compared with the ground, if the pixel at nadir is in its correct location.

Fig. 2.15 Effect of scan angle on pixel size at constant angular instantaneous field of view

a b 
ground scene image 

Fig. 2.16 Along scan line compression incurred in constant IFOV and constant scan rate sensors,
leading to S bend distortion
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These panoramic effects lead to an interesting distortion in the geometry of large
field of view systems. To see this, consider the uniform mesh shown in Fig. 2.16a
which represents a region being imaged. The cells in the grid could be considered to
be large fields on the ground. Because of the compression caused by displaying
equal-sized pixels on a uniform grid as discussed above, the uniform mesh will
appear as shown in Fig. 2.16b. Recall that image pixels are recorded with a constant
IFOV and at a constant angular sampling rate. The number of pixels recorded over
the outer grid cells in the scan direction will be smaller therefore than over the fields
near nadir. In the along-track direction there is no variation of pixel spacing or
density with scan angle as this is established by the forward motion of the platform,
although pixels near the swath edges will contain some information in common
owing to the overlapping IFOV.

Linear features such as roads at an angle to the scan direction shown in Fig. 2.16
will appear bent in the displayed image because of the across scan compression
effect. Owing to the change in shape, the distortion is frequently referred to as
S-bend distortion and can be a common problem with aircraft line scanners.
Clearly, not only linear features are affected; rather all of the detail near the swath
edges is distorted.

2.15 The Effect of Earth Curvature

Aircraft and drone scanning systems, because of their low altitude and thus small
absolute swath width, are usually not affected by earth curvature. Neither are small
FOV spacecraft such as Landsat and SPOT, again because of the narrowness of
their swaths. However wide swath width spaceborne imaging systems are affected.
For MODIS, with a swath width of 2330 km and an altitude of 705 km, it can be
shown that the deviation of the earth’s surface from a plane amounts to less than 1%
over the swath, which seems insignificant. However, it is the inclination of the
earth’s surface over the swath that causes the greater effect. At the edges of the
swath the area of the earth’s surface viewed at a given angular IFOV is larger than if
the curvature of the earth were ignored; that exaggerates the panoramic effect
treated in the previous section. The increase in pixel size can be computed by
reference to the geometry of Fig. 2.17. The pixel dimension in the across track
direction normal to the direction of the sensor is b hþ re 1� cos/ð Þ½ � sec h as
shown. The effective pixel size on the inclined earth’s surface is then

pc ¼ b hþ re 1� cos/ð Þ½ � sec h sec hþ/ð Þ ð2:13Þ

where bh is the pixel size at nadir and / is the angle subtended at the centre of the
earth. Note that this expression reduces to (2.12) as / ! 0, i.e., if earth curvature is
negligible.

Using the NOAA satellite as an example h ¼ 54� at the edge of the swath and
/ ¼ 12�. Equation (2.12) shows that the effective pixel size in the along scan
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direction is 2.89 times larger than that at nadir when earth curvature is ignored but,
from (2.13), is 4.94 times that at nadir when the effect of earth curvature is included.
Thus, earth curvature introduces a significant additional compressive distortion in
the image data acquired by satellites such as NOAA when an image is constructed
on the uniform grid of Fig. 2.12. The effect of earth curvature in the along-track
direction is negligible.

2.16 Geometric Distortion Caused by Instrumentation
Characteristics

Depending on its style of operation, the sensor used for image acquisition can also
introduce geometric distortion into the recorded image data. Here we look at three
typical sources of distortion encountered with instruments that build up an image by
scanning across the flight line, such as with Landsat, AVHRR, MODIS and some
aircraft scanners.

Fig. 2.17 Effect of earth curvature on the size of a pixel in the across track direction
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2.16.1 Sensor Scan Nonlinearities

Line scanners that make use of rotating mirrors, such as the MODIS and AVHRR,
have a scan rate across the swath that is constant, to the extent that the scan motor
speed is constant. Systems that use an oscillating mirror, such as the Landsat
Thematic Mapper, incur some nonlinearity near the swath edges in their scan angle
versus time characteristic owing to the need for the mirror to slow down and change
direction. That will lead to a displacement distortion of the recorded pixel data in
the along-track direction.30

2.16.2 Finite Scan Time Distortion

Mechanical line scanners require a finite time to scan across the swath. During this
time the satellite is moving forward, skewing the recorded image data in the
along-track direction. As an illustration of the magnitude of the effect, the time
required to record one Landsat MSS scan line of data is 33 ms. In this time the
satellite travels forward by 213 m at its equivalent ground velocity of 6.461 kms−1.
The end of the scan line is advanced by that amount compared with its start. The
Landsat Thematic Mapper compensates for this error source by using a scan skew
corrector mirror.

2.16.3 Aspect Ratio Distortion

The aspect ratio of an image—its scale vertically compared with its scale hori-
zontally—can be distorted by over-sampling or under-sampling across a scan line.
In other words, samples of surface reflectance are taken at a rate not commensurate
with the IFOV of the sensor. The most notable example of this in the past occurred
with the Landsat Multispectral Scanner. By design, samples were taken across a
scan line “too quickly” compared with the IFOV. That led to pixels having 56 m
centres even though sampled with an IFOV of 79 m. Consequently, the effective
pixel size in MSS imagery is 79 m � 56 m rather than square. As a result, if the
pixels recorded by the Multispectral Scanner are displayed on the square grid of
Fig. 2.12 the image will be too wide for its height when related to the corre-
sponding region on the ground. The magnitude of the distortion is 79/56 = 1.411
which is quite severe and must be corrected for most applications. Similar distortion

30 For Landsat multispectral scanner products this can lead to a maximum displacement in pixel
position compared with a perfectly linear scan of about 395 m; see P. Anuta, Geometric correction
of ERTS-1 digital MSS data, Information Note 103073, Laboratory for Applications of Remote
Sensing, Purdue University West Lafayette, Indiana, 1973.
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can occur with aircraft scanners if the velocity of the aircraft is not matched to the
scanning rate of the sensor. Either under-scanning or over-scanning can occur
distorting the along-track scale of the image.

2.17 Correction of Geometric Distortion

There are two techniques that can be used to correct the various types of geometric
distortion present in digital image data. One is to model the nature and magnitude of
the sources of distortion and use the model to establish correction formulas. That
approach is effective when the types of distortion are well characterised, such as
that caused by earth rotation. The second method depends on establishing mathe-
matical relationships between the addresses of pixels in an image and the corre-
sponding coordinates of those points on the ground (via a map).31 Those
relationships can be used to correct image geometry irrespective of the analyst’s
knowledge of the sources and types of distortion. This approach will be treated first
since it is the most commonly used and, as a technique, is independent of the
platform used for data acquisition. Correction by mathematical modelling is dis-
cussed later. Note that each band of image data has to be corrected. Since it can
usually be assumed that the bands are well registered to each other, steps taken to
correct one band, can be used on all remaining bands.

2.18 Use of Mapping Functions for Image Correction

An assumption made in this procedure is that there is available a map of the region
covered by the image, which is correct geometrically. We then define two Cartesian
coordinate systems as shown in Fig. 2.18. One describes the location of points in
the map x; yð Þ and the other defines the location of pixels in the image u; vð Þ.
Suppose that the two coordinate systems can be related via a pair of mapping
functions, such that

u ¼ f x; yð Þ ð2:14aÞ

v ¼ g x; yð Þ ð2:14bÞ

If these functions were known, then we could locate a point in the image knowing
its position on the map. In principle, the reverse is also true. With this knowledge

31 For a comprehensive treatment of image correction and registration see J. Le Moigne, N.
S. Netanyahu and R. D. Eastman, eds., Image Registration for Remote Sensing, Cambridge
University Press, Cambridge, 2011.
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we could build up a geometrically correct version of the image in the following
manner. First, we define a grid over the map to act as the grid of pixel centres for
the corrected image. This grid is parallel to, or could be, the map coordinate grid
described by latitudes and longitudes, UTM coordinates, and so on. For simplicity
we will refer to that grid as the display grid; by definition it is geometrically correct.
We then move over the display grid pixel centre by pixel centre and use the
mapping functions above to find the pixel in the image corresponding to each
display grid position. Those pixels are then placed on the display grid. At the
conclusion of the process, we have a geometrically correct image built up on the
display grid using the original image as a source of pixels.

While the process is straightforward there are some practical matters that we
must address. First, we do not know the explicit form of the mapping functions in
(2.14). Secondly, even if we did, for a given display grid location they may not
point exactly to a pixel in the image. In such a case some form of interpolation will
be required.

2.18.1 Mapping Polynomials and the Use of Ground
Control Points

Since explicit forms for the mapping functions in (2.14) are not known they are
usually approximated by polynomials of first, second or third degree. In the case of
second degree (or order)

u ¼ a0 þ a1xþ a2yþ a3xyþ a4x
2 þ a5y

2 ð2:15aÞ

v ¼ b0 þ b1xþ b2yþ b3xyþ b4x
2 þ b5y

2 ð2:15bÞ

Fig. 2.18 Map and image coordinate systems, and the concept of ground control points
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Sometimes orders higher than three are used but care must be taken to avoid the
introduction of errors worse than those to be corrected. That will be discussed later.

If the coefficients ai and bi in (2.15) were known then the mapping polynomials
could be used to relate any point in the map to its corresponding point in the image,
as in the discussion above. At present, however, those coefficients are unknown.
Values can be estimated by identifying sets of features on the map that can also be
identified on the image. Those features, referred to as ground control points (GCPs)
or just control points (CPs), are well-defined and spatially small. They could be
road intersections, street corners, airport runway intersections, sharp bends in rivers,
prominent coastline features and the like. Enough are chosen, as pairs on the map
and image as depicted in Fig. 2.18, so that the coefficients in (2.15) can be esti-
mated by substituting the coordinates of the control points into those mapping
polynomials to yield sets of equations in ai and bi.

Equations (2.15) show that the minimum number of control points required for
second order polynomial mapping is six. Likewise, a minimum of three is required
for first order mapping and ten for third order mapping. In practice, significantly
more than those minimums are chosen and the coefficients are evaluated using least
squares estimation. In that manner any control points that contain significant
positional errors, either on the map or in the image, will not have an undue
influence on the estimated polynomial coefficients.

2.18.2 Building a Geometrically Correct Image

Having specified the mapping polynomials completely by the use of ground control
points, the next step is to find points in the image that correspond to each location in
display grid. The spacing of that grid is chosen according to the pixel size required
in the corrected image and need not be the same as that of the original, geomet-
rically distorted version. For the moment suppose that the points located in the
image correspond exactly to image pixel centres, even though that rarely happens in
practice. Then those pixels are simply transferred to the appropriate locations on the
display grid to build up the rectified image. That is the case illustrated in Fig. 2.19.

Fig. 2.19 Using mapping functions to locate points in the image corresponding to particular
display grid (map) positions
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2.18.3 Resampling and the Need for Interpolation

As is to be expected, grid centres from the map-defined display grid will not usually
project to exact pixel centre locations in the image. This is indicated in Fig. 2.20;
some decision now has to be made about what pixel brightness value should be
chosen for placement on the new grid.32 Three principal techniques are used for this
purpose.

Nearest neighbour resampling simply chooses the actual pixel that has its centre
nearest to the point located in the image, as illustrated in Fig. 2.20a. That pixel

a

b

c

Fig. 2.20 Determining a pixel brightness value for the display grid by a nearest neighbour
resampling, b bilinear interpolation and c cubic convolution interpolation; i; j etc. are discrete
values of u; v

32 In some treatments this is referred to as a radiometric transformation; see Le Moigne et al., loc.
cit.
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value is transferred to the corresponding display grid location. This is the preferred
technique if the new image is to be classified because it consists only of original
pixel brightnesses, simply rearranged in position to give the correct image geom-
etry. The method is only acceptable when the new and old pixel sizes and spacings
are not too different.

Bilinear interpolation uses three linear interpolations over the four pixels sur-
rounding the point found in the image projected from a given display grid position.
The process is illustrated in Fig. 2.20b. Two linear interpolations are performed
along the scan lines as shown to find the interpolants

/ i; jþ j0ð Þ ¼ j0/ i; jþ 1ð Þþ 1� j0ð Þ/ i; jð Þ
/ iþ 1; jþ j0ð Þ ¼ j0/ iþ 1; jþ 1ð Þþ 1� j0ð Þ/ iþ 1; jð Þ

where / is pixel brightness and iþ i0; jþ j0ð Þ is the position at which the interpo-
lated value for brightness is required. Position is measured with respect to i; jð Þ and,
for convenience, assumes a grid spacing of unity in both directions. The final step is
to carry out a linear interpolation over / i; jþ j0ð Þ and / iþ 1; jþ j0ð Þ to give

/ iþ i0; jþ j0ð Þ ¼ 1� i0ð Þfj0/ i; jþ 1ð Þþ 1� j0ð Þ/ i; jð Þg
þ i0 j0/ iþ 1; jþ 1ð Þþ 1� j0ð Þ/ iþ 1; jð Þf g ð2:16Þ

Cubic convolution interpolation uses the surrounding sixteen pixels to generate a
value for the pixel to be placed on the display grid. Cubic polynomials are fitted
along the four lines of four pixels surrounding the point in the image, as shown in
Fig. 2.20c to form four interpolants. A fifth cubic polynomial is then fitted through
the interpolants to synthesise a brightness value for the corresponding location in
the display grid.

The actual form of polynomial that is used for the interpolation is derived from
considerations in sampling theory and by constructing a continuous function (an
interpolant) from a set of samples.33 The algorithm that is generally used to perform
cubic convolution interpolation is34

/ I; jþ 1þ j0ð Þ ¼ j0 j0f j0 / I; jþ 3ð Þ � / I; jþ 2ð Þþ/ I; jþ 1ð Þ � / I; jð Þ½ �ð
þ / I; jþ 2ð Þ � / I; jþ 3ð Þ � 2/ I; jþ 1ð Þþ 2/ I; jð Þ½ �Þ
þ / I; jþ 2ð Þ � / I; jð Þ½ �gþ/ I; jþ 1ð Þ

ð2:17aÞ

33 An excellent treatment of the problem has been given by S. Shlien, Geometric correction,
registration and resampling of Landsat imagery, Canadian J. Remote Sensing, vol. 5, 1979,
pp. 74–89. He discusses several possible cubic polynomials that could be used for the interpolation
process and demonstrates that the interpolation is a convolution operation.
34 Based on the choice of interpolation polynomial in T. G. Moik, Digital Processing of Remotely
Sensed Images, NASA, Washington, 1980.

66 2 Correcting and Registering Images



with I ¼ iþ n; n ¼ 0; 1; 2; 3 for the four lines of pixels surrounding the point for
which the value is required. Note in Fig. 2.20c we have, for convenience, redefined
the address of the i; j pixel to be one line and column earlier. The four values from
(2.17a) are interpolated vertically to give the estimate required

/ iþ 1þ i0; jþ 1þ j0ð Þ ¼ i0 i0f i0 / iþ 3; jþ 1þ j0ð Þ � / iþ 2; jþ 1þ j0ð Þ½ð
þ/ iþ 1; jþ 1þ j0ð Þ � / i; jþ 1þ j0ð Þ�
þ / iþ 2; jþ 1þ j0ð Þ � / iþ 3; jþ 1þ j0ð Þ½
�2/ iþ 1; jþ 1þ j0ð Þ þ 2/ i; jþ 1þ j0ð Þ�Þ
þ / iþ 2; jþ 1þ j0ð Þ � / i; jþ 1þ j0ð Þ½ �g
þ/ iþ 1; jþ 1þ j0ð Þ

ð2:17bÞ

Cubic convolution interpolation, or resampling, yields a rectified image that is
generally smooth in appearance and is used if the fina1 product is to be analysed
visually. However, since it gives pixels on the display grid with brightness values
that are interpolated from the original data, it is not recommended if classification is
to follow since the new brightness values may be slightly different from the actual
radiances measured by the sensors.

The three interpolation methods just treated are not the only choices, although
they are the most common; any effective two dimensional interpolation procedure
could be used.35

2.18.4 The Choice of Control Points

When rectifying an image, enough well-defined control point pairs must be chosen
to ensure that accurate mapping polynomials are generated. Care must also be given
to the locations of the points. A general rule is that there should be a distribution of
control points around the edges of the image to be corrected, with a scattering of
points over the body of the image. That is necessary to ensure that the mapping
polynomials are well-behaved over the scene. This concept can be illustrated by
considering an example from curve fitting. While the nature of the problem is
different, the undesirable effects that can be generated are similar. A set of data
points is illustrated in Fig. 2.21 through which first order (linear), second order and
third order curves are shown. As the order increases the curves pass closer to the
actual points. If it is presumed that the data would have existed for larger values of
x; with much the same trend as apparent in the points plotted, then the linear fit will
extrapolate moderately acceptably. By contrast, the cubic curve can deviate
markedly from the trend when used as an extrapolator. This is essentially true in

35 For other methods see Le Moigne et al., loc. cit.
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geometric correction of image data: while higher order polynomials may be more
accurate in the vicinity of the control points, they can lead to significant errors, and
thus distortions, for regions of an image outside the range of the control points. That
will be seen in the example of Fig. 2.24.

2.18.5 Example of Registration to a Map Grid

To illustrate the techniques treated above a small segment of a Landsat MSS image
of Sydney, Australia was registered to a map of the region.

It is important that the map has a scale not too different from the scale at which
the image data is considered useful. Otherwise, the control point pairs may be
difficult to establish. In this case a map at 1:250,000 scale was used. The relevant
segment is shown reproduced in Fig. 2.22, along with the portion of image to be
registered. Comparison of the two demonstrates the geometric distortion of the
image. Eleven control points pairs were chosen for the registration, with the
coordinates shown in Table 2.1.

Second order mapping polynomials were generated from the set of control
points. To test their effectiveness in transferring pixels from the raw image grid to
the map display grid, the UTM coordinates of the control points can be computed
from their pixel coordinates in the image. They are compared with the actual UTM
coordinates and the differences (residuals) calculated in both directions.36 The root
mean square of all the residuals is then computed in both directions (easting and
northing) as shown in Table 2.1, giving an overall impression of the accuracy of the
mapping process. In this case the control points lead to an average positional error
of 56 m in easting and 63 m in northing, which is smaller than a pixel size in
equivalent ground metres and thus would be considered acceptable.

Fig. 2.21 Illustration from
curve fitting to emphasise the
potentially poor behaviour of
higher order polynomials
when used to extrapolate

36 This registration exercise was carried out using the Dipix Systems Ltd R-STREAM Software.
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Fig. 2.22 a Map, b segment of a Landsat MSS image exhibiting geometric distortion, and c the
result of registering the image to the map, using second order mapping polynomials and cubic
convolution resampling to correct the geometry

Table 2.1 Control points used in the image to map registration example

GCP Image
pixel

Image
line

Map
easting
actual

Map
easting
estimate

Map
easting
residual

Map
northing
actual

Map
northing
estimate

Map
northing
residual

1 1909 1473 432,279 432,230.1 49.4 836,471 836,410.1 60.7
2 1950 1625 431,288 431,418.0 −130.1 822,844 822,901.4 −56.9
3 1951 1747 428,981 428,867.9 112.6 812,515 812,418.2 96.8
4 1959 1851 427,164 427,196.9 −33.2 803,313 803,359.4 −46.7
5 1797 1847 417,151 417,170.3 −18.9 805,816 805,759.3 57.1
6 1496 1862 397,860 397,871.6 −11.2 808,128 808,187.2 −59.6
7 1555 1705 404,964 404,925.8 38.6 821,084 820,962.6 121.6
8 1599 1548 411,149 411,138.5 10.5 833,796 833,857.3 −61.1
9 1675 1584 415,057 415,129.0 −72.4 829,871 829,851.1 19.8
10 1829 1713 422,019 421,986.6 32.7 816,836 816,884.5 −48.1
11 1823 1625 423,530 423,507.8 22.0 824,422 824,504.8 −83.2
Standard error in easting = 55.92 m
Standard error in northing = 63.06 m
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At this stage the table can be inspected to see if any individual control point has
residuals that are unacceptably high. That could be the result of poor placement; if
so, the control point coordinates would be re-entered and the polynomials recal-
culated. If re-entering the control point leaves the residuals unchanged it may be
that there is significant local distortion in that particular region of the image.
A choice has to be made then as to whether the control point should be used to give
a degree of local correction, that might also influence the remainder of the image, or
whether it should be removed and leave that part of the image in error.

Cubic convolution resampling was used in this illustration to generate the image
on a 50 m � 50 m grid shown in Fig. 2.22c.

Once an image has been registered to a map coordinate system its pixels are
addressable in terms of map coordinates rather than pixel and line numbers. Other
spatial data types, such as geophysical measurements, can also be registered to the
map thus creating a geo-referenced integrated spatial data base of the type used in a
geographic information system. Expressing image pixel addresses in terms of a map
coordinate base is referred to as geocoding.

2.19 Mathematical Representation and Correction
of Geometric Distortion

If a particular distortion in image geometry can be represented mathematically then
the mapping functions in (2.14) can be specified explicitly. That removes the need
to choose arbitrary polynomials as in (2.15) and to use control points to determine
the polynomial coefficients. In this section some of the more common distortions
are treated from this point of view. Rather than commence with expressions that
relate image coordinates u; vð Þ to map coordinates x; yð Þ it is simpler conceptually to
start the other way around, i.e., to model what the true (map) positions of pixels
should be, given their positions in an image. This expression can then be inverted, if
required, to allow the image to be resampled onto the map grid.

2.19.1 Aspect Ratio Correction

The easiest source of geometric error to model is the distortion in aspect caused
when the sampling rate across a scan line does not precisely match the IFOV of the
sensor. A typical example is that caused by the 56 m ground spacing of the 79 m �
79 m pixels in the Landsat multispectral scanner. As noted in Sect. 2.16.3 that leads
to an image that is too wide for its height by a factor of 1.411. Consequently, to
produce a geometrically correct image either the vertical dimension has to be
expanded by this amount or the horizontal dimension must be compressed. We
consider the former. That requires the pixel axis horizontally to be left unchanged
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(i.e., x ¼ u), but the axis vertically to be scaled (i.e., y ¼ 1:411v). These can be
expressed conveniently in matrix notation as

x
y

� �
¼ 1 0

0 1:411

� �
u
v

� �
ð2:18Þ

One way of implementing this correction would be to add extra lines of pixel data
to expand the vertical scale which, for the multispectral scanner, could be done by
duplicating about four lines in every ten. Alternatively, and more precisely, (2.18)
can be inverted to give

u
v

� �
¼ 1 0

0 0:709

� �
x
y

� �
ð2:19Þ

As with the techniques of the previous section, a display grid with coordinates x; yð Þ
is defined over the map and (2.19) is used to find the corresponding location in the
image u; vð Þ. The interpolation techniques of Sect. 2.18.3 are then used to generate
brightness values for the display grid pixels.

2.19.2 Earth Rotation Skew Correction

To correct for the effect of earth rotation it is necessary to implement a shift of
pixels to the left with the degree of shift dependent on the particular line of pixels,
measured with respect to the top of the image. Their line addresses (v) are not
affected. Using the results of Sect. 2.12 the corrections are implemented by

x
y

� �
¼ 1 a

0 1

� �
u
v

� �

with a ¼ �0:056 for Sydney, Australia. Again, this can be implemented in an
approximate sense for multispectral scanner data by making one pixel shift to the
left every 17 lines of image data measured down from the top, or alternatively the
expression can be inverted to give

u
v

� �
¼ 1 �a

0 1

� �
x
y

� �
¼ 1 0:056

0 1

� �
x
y

� �
ð2:20Þ

which again is used with the interpolation procedures from Sect. 2.18.3 to generate
display grid pixels.
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2.19.3 Image Orientation to North–South

Although not strictly a geometric distortion it is inconvenient to have an image that
is correct for most major effects but is not oriented vertically in a north–south
direction. It will be recalled for example that Landsat orbits are inclined to the
north–south line by about 9�, dependent on latitude. To rotate an image by an angle
f in the counter- or anticlockwise direction (as required in the case of Landsat) it is
easily shown that37

x
y

� �
¼ cos f sin f

� sin f cos f

� �
u
v

� �

so that

u
v

� �
¼ cos f � sin f

sin f cos f

� �
x
y

� �
ð2:21Þ

2.19.4 Correcting Panoramic Effects

The discussion in Sect. 2.14 notes the pixel positional error that results from
scanning with a fixed IFOV at a constant angular rate. In terms of map and image
coordinates the distortion can be described by

x
y

� �
¼ tan h=h 0

0 1

� �
u
v

� �

where h is the instantaneous scan angle, which in turn is related to x or u by
x ¼ h tan h; u ¼ hh, where h is altitude. Consequently, resampling can be carried
out according to

u
v

� �
¼ h cot h 0

0 1

� �
x
y

� �
¼ ðh=xÞ tan�1 x=hð Þ 0

0 1

� �
x
y

� �
ð2:22Þ

2.19.5 Combining the Corrections

Any exercise in image correction usually requires several distortions to be rectified.
Using the techniques in Sect. 2.18 it is assumed that all sources are rectified
simultaneously. When employing mathematical modelling, a correction matrix has

37 K. R. Castleman, Digital Image Processing, 2nd ed., Prentice Hall, N.J., 1996.
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to be devised for each separate source considered important, as in the preceding
sub-sections, and the set of matrices combined. For example, if the aspect ratio of a
Landsat MSS image is corrected first, followed by correction for the effect of earth
rotation, the following single linear transformation can be established for
resampling.

x
y

� �
¼ 1 a

0 1

� �
1 0
0 1:411

� �
u
v

� �

¼ 1 1:411a
0 1:411

� �
u
v

� �

which, for a ¼ �0:056 at Sydney, gives

u
v

� �
¼ 1 0:056

0 0:079

� �
x
y

� �

2.20 Image to Image Registration

Many applications in remote sensing require two or more scenes of the same
geographical region, acquired at different times or by different sensors, to be pro-
cessed together. Such a situation arises, for example, when changes are of interest in
which case registered images allow a pixel-by-pixel comparison to be made, or
when data is to be fused to help interpretation.

Two images can be registered to each other by registering each to a map
coordinate base separately in the manner demonstrated in Sect. 2.18. Alternatively,
and particularly if georeferencing is not important, one image can be chosen as a
master, or reference, to which the other, known as the slave, is registered. Again,
the techniques of Sect. 2.18 are used. However, the coordinates x; yð Þ are now the
pixel coordinates in the master image rather than the map coordinates. As before
u; vð Þ are the coordinates of the image to be registered (the slave). A benefit in
image to image registration is that only one registration step is required, by com-
parison to two if both are taken back to a map base. Also, spatial correlation
algorithms can be used to assist in accurate co-location of control point pairs, as
discussed in Sect. 2.20.1.

2.20.1 Refining the Localisation of Control Points

In many applications control points are chosen manually in both the master and
slave images. More recently, the trend has been towards automated techniques for
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control point identification38 in order to minimise the need for analyst intervention.
The method outlined in this section was developed initially as an aid to localising
control points manually but is indicative of some of the procedures developed for
automatic control point identification.

Usually, we want to check the chosen control point pairs to make sure that they
are spatially matched as well as possible. Several means are available for assessing
their correspondence, most of which involve selecting a rectangular sample, or
window, of pixels surrounding the designated control point in the slave image, and
moving and checking it against the master image, as illustrated in Fig. 2.23.

Because of the spatial properties of the pair of images near the control points, the
best match should occur when the slave window is located exactly over its coun-
terpart region in the master, in which case the master location of the control point is
identified. Obviously, it is not necessary to move the slave window over the
complete master image since the user knows approximately where the control point
should occur in the master. It is only necessary to specify a search region in the
neighbourhood of the approximate location.

Control point matching procedures of this sort are usually called sequential
similarity detection algorithms (SSDA).39 There are several means by which the
match between the window and search region can be computed. Classically, the two
could be correlated.40 If we denote a pixel in the master image as R i; jð Þ, and a pixel
in the slave image as S i; jð Þ then their correlation over a window of pixels, defined
about the control point in the master image, can be expressed

m i; jð Þ ¼
X
m

X
n

R mþ i; nþ jð ÞS m; nð Þ,R⋇S

where m; n are the pixel coordinates referred to the window. Frequently, this
expression is squared and normalised by the autocorrelations over the master and
slave to give the similarity measure:

SSDA ¼ ðR⋇SÞ2
R⋇Rð Þ S⋇Sð Þ ð2:23Þ

38 See Le Moigne et al., loc. cit. and T. T. Nguyen, Optimal ground control points for geometric
correction using genetic algorithm with global accuracy, European J. Remote Sensing, vol. 47, no.
1, 2015, pp. 101–120 (which contains a review of automated techniques).
39 See D. I. Barnea and H. F. Silverman, A class of algorithms for fast digital image registration,
IEEE Transactions on Computers, vol. C-21, no. 2, February 1972, pp. 179–186, and R.
Bernstein, Image Geometry and Registration, in R. N. Colwell, ed., Manual of Remote Sensing,
2nd ed., Chap. 21, American Society of Photogrammetry, Falls Church, Virginia, 1983.
40 See P. E. Anuta, Spatial registration of multispectral and multitemporal digital imagery using
fast Fourier transform techniques, IEEE Transactions on Geoscience Electronics, vol. GE-8, no. 4,
October 1970, pp. 353–368.

74 2 Correcting and Registering Images



which is in the range (0,1). When the window is best matched to the control point in
the master image this measure will be high; for a poor mismatch it will be low.

The operation in (2.23) is computationally demanding so simpler matching
processes are used in practice. One is based on accumulating the absolute differ-
ences in brightness between the master and slave pixels in the window. In principle,
when a match is achieved the accumulated difference should be a minimum. This
measure is expressed

m i; jð Þ ¼
X
m

X
n

R mþ i; nþ jð Þ � S m; nð Þj j ð2:24Þ

Clearly, measures such as those in (2.23) and (2.24) work well only when the
contrast differences over the pixels in the vicinity of the control point are not too
different in the master and slave images. If there are significant differences in the
distributions of brightness values between the two images, owing to seasonal or
noise effects for example, then SSDA techniques will suffer. Alternative procedures
include those based on Fourier transforms and the concept of mutual information.41

Most commercial image processing systems, however, still rely on matching pro-
cesses such as that in (2.24).

2.20.2 Example of Image to Image Registration

To illustrate image to image registration, and also to see clearly the effect of control
point distribution and the significance of the order of the mapping polynomials used
in registration, two segments of Landsat Multispectral Scanner infrared image data

Fig. 2.23 Precisely locating
control point pairs by using a
window of pixels from the
slave image to compare
against the master image over
a specified search region

41 See Le Moigne et al., loc. cit.
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from the northern suburbs of Sydney were chosen. One was acquired on 29th
December 1979 and was used as the master. The other was acquired on 14th
December 1980 and was used as the slave image. Both are shown in Fig. 2.24;
careful inspection shows the differences in image geometry.

Two sets of control points were chosen. In one, the points are distributed as
nearly as possible in a uniform manner around the edge of the image segment as
shown in Fig. 2.24a, with some points located across the centre of the image. This
set would be expected to give reasonable registration of the images. The second set
of control points was chosen injudiciously, closely grouped around one particular
region, to illustrate the resampling errors that can occur. They are shown in
Fig. 2.24b. In both cases the control point pairs were co-located with the assistance
of the sequential similarity detection algorithm in (2.24). This worked well par-
ticularly for those control points around the coastal and river regions where the
similarity between the images is unmistakable. To minimise tidal influences on the
location of control points, those on water boundaries were chosen as near as pos-
sible to be on headlands, and never at the ends of inlets.

Fig. 2.24 Control points used in the image to image registration example: a good distribution
b poor distribution
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Fig. 2.25 a Registration of
1980 image (green) with 1979
image (red) using the control
points of Fig. 2.24a, and third
order mapping polynomials
b registration of 1980 image
(green) with 1979 image
(red) using the control points
of Fig. 2.24b, and third order
mapping polynomials
c registration of 1980 image
(green) with 1979 image
(red) using the control points
of Fig. 2.24b, and first order
mapping polynomials
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For both sets of control points third order mapping polynomials were used, along
with cubic convolution resampling. As expected, the first set of points led to an
acceptable registration of the images whereas the second set gave a good regis-
tration in the immediate neighbourhood of the control points but beyond that
neighbourhood it produced gross distortion.

The adequacy of the registration process can be assessed visually if the master
and resampled slave images are superimposed in different colours. Figures 2.25a
and b show the master image in red with the resampled slave image superimposed
in green. Where good registration has been achieved the result is yellow, with the
exception of regions of gross dissimilarity in pixel brightness—in this case asso-
ciated with fire burns. Misregistration shows quite graphically as a red-green sep-
aration. This is particularly noticeable in Fig. 2.25b where the poor extrapolation
obtained with third order mapping is demonstrated.

The exercise using the poor set of control points in Fig. 2.25b was repeated.
However, this time first order mapping polynomials were used. While they will not
remove non-linear differences between the images, and will give poorer matches at the
control points themselves, they are well behaved in extrapolation beyond the vicinity
of the control points and lead to an acceptable registration as seen in Fig. 2.25c.

2.21 Other Image Geometry Operations

While the techniques of the previous sections have been devised for treating errors
in image geometry, and for registering sets of images, they can also be used for
performing intentional changes to image geometry. Image rotation and scale
changing are chosen here as illustrations.

2.21.1 Image Rotation

Rotation of an image by an angle about the pixel grid can be useful for a number of
applications. Most often it is used to align the pixel grid, and thus the image, to a
north–south orientation as treated in Sect. 2.19.3. However, the transformation in
(2.21) is perfectly general and can be used to rotate an image in an anticlockwise
sense by any specified angle f.

2.21.2 Scale Changing and Zooming

The scales of an image in both the vertical and horizontal directions can be altered
by the transformation
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x
y

� �
¼ a 0

0 b

� �
u
v

� �

where a and b are the desired scaling factors. To resample the scaled image onto the
display grid we use the inverse operation to locate pixel positions in the original
image corresponding to each display grid position, viz.

u
v

� �
¼ 1=a 0

0 1=b

� �
x
y

� �

Interpolation is used to establish the actual pixel brightness values to use, since u; v
will not normally fall on exact pixel locations.

Frequently a ¼ b so that the image is simply magnified. This is called zooming.
If the nearest neighbour interpolation procedure is used in the resampling process
the zoom implemented is said to occur by pixel replication and the image will look
progressively blocky for larger zoom factors. If cubic convolution interpolation is
used there will be a change in magnification but the image will not take on the
blocky appearance. Often this process is called interpolative zoom.

2.22 Bibliography on Correcting and Registering Images

A good general discussion on the effects of the atmosphere on the passage of
radiation in the range of wavelengths important to optical remote sensing will be
found in

P.N. Slater, Remote Sensing: Optics and Optical Systems, Addison-Wesley, Reading,
Mass., 1980.

An introduction to the radiometric distortion problem facing high spectral resolu-
tion imagery, such as that produced by imaging spectrometers, is given, along with
correction techniques, in

B.C. Gao, K. B. Heidebrecht and A.F.H. Goetz, Derivation of scaled surface reflectance
from AVIRIS data, Remote Sensing of Environment, vol. 44, 1993, pp. 165–178

B. C. Gao, M.J. Montes, C.O. Davis and A.F.H. Goetz, Atmospheric correction algorithms
for hyperspectral remote sensing data of land and oceans, Remote Sensing of Environment,
Supplement 1, Imaging Spectroscopy Special Issue, vol. 113, 2009, pp. S17–S24

A very helpful comparison of the more common correction procedures will be
found in

F.A. Kruse, Comparison of ATREM, ACORN and FLAASH atmospheric corrections using
low-altitude AVIRIS data of Boulder, Colorado, Proc. 13th JPL Airborne Geoscience
Workshop, Pasadena, CA, 2004
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Techniques for correcting errors in image geometry are discussed in many standard
image processing treatments in remote sensing. More recently, the range of oper-
ational procedures and new research directions in geometric correction and image
registration are covered in

J. Le Moigne, N. S. Netanyahu and R. D. Eastman, eds., Image Registration for Remote
Sensing, Cambridge University Press, Cambridge, 2011, and

J. Le Moigne, Introduction to remote sensing image registration, Proc. IEEE 2017
Geoscience and Remote Sensing Symposium, 23–28 July 2017, Fort Worth, Texas,
pp. 2565–2568.

T.T. Nguyen, Optimal ground control points for geometric correction using genetic algo-
rithm with global accuracy, European J. Remote Sensing, vol. 47, no. 1, 2015, pp. 101–120

A treatment of experimental fully automated image registration, including a review
of available techniques, is given in

H. Gonçalves, L. Corte-Real and J.A. Gonçalves, Automatic image registration through
image segmentation and SIFT, IEEE Transactions on Geoscience and Remote Sensing, vol.
49, no. 7, July 2011, pp. 2589–2600

while the use of wavelet-based approaches will be found in

J.M. Murphy, K. Le Moigne and D.J. Harding, Automatic image registration of
multi-modal remotely sensed data, IEEE Transactions on Geoscience and Remote Sensing,
vol. 54, no. 3, 2016, pp. 1685–1704.

Some earlier treatments should not be overlooked as they provide good insight into
the problem of correcting geometry and are still relevant. They include

S. Shlien, Geometric correction, registration and resampling of Landsat imagery, Canadian
J. Remote Sensing, vol. 5, 1979, pp. 74–89, and

F. Orti, Optimal distribution of control points to minimise Landsat registration errors,
Photogrammetric Engineering and Remote Sensing, vol. 47, 1980, pp. 101–110.

Finally, books on computer graphics also contain very good material on image
geometry correction and transformation, perhaps one of the most notable being

J.F. Hughes, A. van Dam, M. McGuire, D.F. Sklar, J.D. Foley, S.K. Feiner and K. Akeley,
Computer Graphics: Principles and Practice, 3rd ed., Addison-Wesley, Boston, 2014.

2.23 Problems

2:1 (a) Consider a region on the ground consisting of a square grid. For
simplicity suppose the grid lines are 79 m in width and the grid spacing
is 790 m. Sketch how the region would appear in Landsat multispectral
scanner imagery before any geometric correction has been applied.
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Include only the effects of earth rotation and the 56 m horizontal
spacing of the 79 m � 79 m ground resolution elements.

(b) Develop a pair of linear mapping polynomials that will correct the
image in (a). Assume the “lines” on the ground have a brightness of 100
and that the background brightness is 20. Resample onto a 50 m grid
and use nearest neighbour interpolation. You will not want to compute
all the resampled pixels unless a computer is used for the exercise.
Instead, simply consider some significant pixels in the resampling to
illustrate the accuracy of the geometric correction.

2:2 A sample of pixels from each of three cover types present in the
Landsat MSS scene of Sydney, Australia, acquired on 14th December 1980
is given in Table 2.2a. Only the brightnesses (digital numbers) in the visible
red band (0.6–0.7 lm) and the second of the infrared bands (0.8–1.1 lm) are
given. For this image Forster42 has computed the following relations between
reflectance (R) and digital number (DN), where the subscript 7 refers to the
infrared data and the subscript 5 refers to the visible red data:

R5 ¼ 0:44DN5 þ 0:5

R7 ¼ 1:18DN7 þ 0:9

Table 2.2 b shows samples of MSS digital numbers for a second scene of
Sydney recorded on 8th June 1980. For this image Forster has determined

R5 ¼ 3:64DN5 � 1:6

R7 ¼ 1:52DN7 � 2:6

Compute the mean digital count value for each cover type in each scene and
plot these, along with bars at �1 standard deviation, in a spectral domain that
has the infrared values on the ordinate and the visible red values along the
abscissa. Now produce the same plots after converting the data to reflec-
tances. Comment on the effect that correction of the raw digital numbers to
reflectance data, in which atmospheric effects have been removed, has on the
apparent separation of the three cover types in the spectral domain.

2:3 Aircraft line scanners frequently use a rotating mirror that sweeps out lines of
data at right angles to the fuselage to acquire imagery. In the absence of a
cross wind, scanning will be orthogonal to the aircraft ground track. Often
scanning is carried out in the presence of a cross wind. The aircraft fuselage
then maintains an angle to the ground track so that scanning is no longer
orthogonal to the effective forward motion, leading to a distortion referred to
as crabbing. Discuss the nature of this distortion when the image pixels are

42 See B. C. Forster, loc. cit.
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displayed on a square grid. Remember to take account of the finite time
required to scan across a line of pixels.
Push broom scanners are also used on aircraft. What is the nature of the geo-
metric distortion incurred with those sensors in the presence of a cross wind?
Complete frames of pixels can also be captured from aircraft and drone
platforms, effectively using digital cameras. What geometric distortion would
be incurred with such a sensor in the presence of a cross wind?

2:4 Compute the skew distortion resulting from earth rotation in the case of
Landsat 7 and SPOT.

2:5 For a particular application suppose it was necessary to apply geometric
correction procedures to an image prior to classification (see Chap. 3 for an
overview of classification). What interpolation technique would you prefer to
use in the resampling process? Why?

2:6 Destriping Landsat multispectral scanner images is often performed by
computing six modulo-6 line histograms and then either (i) matching all six
to a standard histogram or (ii) choosing one of the six as a reference and

Table 2.2 Digital numbers for a set of pixels from three cover types; note band 5 covers the
wavelength range 0.6–0.7 lm and band 7 covers the range 0.8–1.1 lm

(a) Landsat MSS image of Sydney 14th December 1980

Water Vegetation Soil

Band 5 Band 7 Band 5 Band 7 Band 5 Band 7
20 11 60 142 74 66
23 7 53 130 103 82
21 8 63 140 98 78
21 7 52 126 111 86
22 7 34 92 84 67
19 3 38 120 76 67
17 1 38 151 72 67
20 4 38 111 98 71
24 8 31 81 99 80
19 4 50 158 108 71

(b) Landsat MSS image of Sydney 8th June 1980

Water Vegetation Soil

Band 5 Band 7 Band 5 Band 7 Band 5 Band 7
11 2 19 41 43 27
13 5 24 45 43 34
13 2 20 44 40 30
11 1 22 30 27 19
9 1 15 22 34 23
14 4 14 26 36 26
13 4 21 27 34 27
15 5 17 38 70 50
12 4 24 37 37 30
15 4 20 27 44 30
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matching the other five to it. Which method is to be preferred if the image is
to be analysed by photointerpretation or by classification?

2:7 In a particular problem you have to register five images to a map. Would you
register each image to the map separately, register one image to the map and
then the other four images to that one, or image 1 to the map, image 2 to
image 1, image 3 to image 2 etc.?

2:8 (This requires a background in digital signal processing and sampling theory—
see Chap. 7). Remote sensing digital images are uniform two dimensional
samples of the ground scene. One line of image data is a regular sequence of
samples. The spatial frequency spectrum of a line of data will therefore be
periodic as depicted in Fig. 2.26; the data can be recovered by low passfiltering
the spectrum, using the ideal filter indicated in the figure. Multiplication of the
spectrum by this ideal filter is equivalent to convolving the original line of
samples by the inverse Fourier transform of the filter function. From the theory
of the Fourier transform, the inverse of the filter function is

s xð Þ ¼ 2d
p
sin x
x

with x ¼ f=2d in which f is a spatial variable along lines of data, and d is the
inter-pixel spacing. s xð Þ is known generally as an interpolating function.
Determine some cubic polynomial approximations to this function. These
could be determined from a simple Taylor series expansion or could be
derived from cubic splines.43

2:9 A scanner has been designed for aircraft operation. It has a field of view
(FOV) of �35� about nadir and an instantaneous field of view (IFOV) of
2 mrad. The sensor is designed to operate at a flying height of 1000 m.

(i) Determine the pixel size, in metres, at nadir.
(ii) Determine the pixel size at the edge of a swath compared with that at

nadir.
(iii) Discuss the nature of the distortion in image geometry encountered if

the pixels across a scan line are displayed on uniform pixel centres.

2:10 Determine the maximum angle of the field of view (FOV) for an airborne
optical sensor with a constant instantaneous field of view (IFOV), so that the
pixel dimension along the scan line at the extremes is less than 1.5 times that
at nadir (ignore the earth curvature effect).

2:11 Consider the panoramic along scan line distortion of an airborne optical
remote sensing system with a constant instantaneous field of view (IFOV);
sketch the image formed for the ground scene shown in Fig. 2.27 and explain
why it appears as you have sketched it.

43 For some examples see Shlien, loc. cit.
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2:12 Compare the flat field, empirical line and log residuals methods for radio-
metric correction from the point of view of ease of use compared with the
nature of the result.

2:13 Following the development in Sect. 2.19 find a single matrix that describes
the transformation from map coordinates to image coordinates for each of the
following instruments, taking into account only earth rotation and orbital
inclination at the equator.

SPOT HRG
AQUA MODIS
Ikonos.

2:14 Plot a graph of pixel size across the swath, as a function of pixel size at nadir,
for look angles out to 70°; locate on the graph individual results for
SPOT HRG, SPOT Vegetation, TERRA MODIS and EO-1 ALI.

2:15 Suppose a geostationary satellite carries a simple imager in the form of a
digital camera. If the camera’s field of view were such that it imaged a square
area on the earth’s surface with 5 km sides, discuss any distortions that might
be present in the image and how they would appear in the final image
product.

Fig. 2.26 Idealised spatial frequency spectrum of line samples (pixels)

Fig. 2.27 Ground scene
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2:16 Is the wavelength dependence of atmospheric scattering strongest when
(a) the atmosphere is foggy,
(b) the atmosphere is clear, or
(c) when there is a light haze with scattered clouds?

2:17 In the range of wavelengths commonly used in remote sensing, is the most
significant absorbing constituent in the atmosphere

(a) ozone,
(b) carbon dioxide, or
(c) water vapour?

2:18 Choose the correct answer below. One of the problems with nearest neigh-
bour resampling is that

(a) It can take a long time to compute, compared with other resam-
pling methods

(b) It can produce a blocky (pixelated) final product if the output scale
is very different from the scale of the recorded image data

(c) It requires more control points.

2:19 If you think the distribution of control point is poor is it best to
(a) use a high degree mapping polynomial, such as a cubic,
(b) use a first degree mapping polynomial, or
(c) use any order (degree) since the degree of the polynomial is

irrelevant?

2:20 In general, would you expect a smoother looking geometrically corrected
image if you used

(a) nearest neighbour resampling,
(b) linear interpolation re-sampling, or
(c) cubic convolution resampling?
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Chapter 3
Interpreting Images

Abstract An introduction to the various methods for analysing remote sensing
images is provided as the basis for the detailed treatments given in later chapters.
Means for the creation of colour image products are described and used as the basis
for photointerpretation—image interpretation by a skilled human analyst. The
concept of machine assisted interpretation, referred to as quantitative analysis or
classification, is presented as a means for producing a map of labels for image
pixels, showing what they represent on the ground. Such a map is called a thematic
map. The ideas of a pixel vector and spectral space are presented as the fundamental
description of image data that underpins the mathematical models developed later.
Statistical and geometric approaches to classification are summarised and the
important distinction between information (on the ground) and spectral classes (in
the data) is emphasised.

3.1 Introduction

With few exceptions the reason we record images of the earth in various wavebands
is so that we can build up a picture of features on the surface. Sometimes we are
interested in particular scientific goals but, even then, our objectives are largely
satisfied if we can create a map of what is seen on the surface from the remotely
sensed data available.1 The principal focus of this book is on methods for analysing
digital imagery and for creating maps from that analysis.

There are two broad approaches to image interpretation. One depends entirely on
the skills of a human analyst—a so-called photointerpreter. The other involves
computer assisted methods for analysis, in which various machine learning algo-
rithms are used to automate what would otherwise be an impossibly tedious task. In
this chapter we present an overview of the analytical methods used when

1 In some cases, near sub-surface features can be seen in surface expressions in optical data. With
radar, if the surface material is particularly dry, it is sometimes possible to image several metres
under the surface.
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interpreting imagery; this provides the context for the remainder of the book. We
commence with an overview of photointerpretation and then move on to machine
assisted analysis.

Although much of what is to be presented is regularly applied to radar imagery
as much as to optical image data, the peculiarities of radar image data means that
special analytical processes have been devised. They will be found in texts on radar
remote sensing.2

3.2 Photointerpretation

A skilled photointerpreter extracts information from image data by visual inspection
of an image product composed from the data. The analyst generally notes
large-scale features and, in principle, is not concerned with the spatial and radio-
metric digitisations present. Spatial, spectral and temporal cues are used to guide the
analysis, including the spatial properties of shape, size, orientation and texture.
Roads, coastlines, river systems, fracture patterns and lineaments are usually readily
identified by their spatial properties. Temporal cues are given by changes in a
particular object or cover type from one date to another and assist in discriminating,
for example, deciduous or ephemeral vegetation from perennial types. Spectral
clues are based on the analyst’s knowledge of, and experience with, the spectral
reflectance characteristics of typical cover types including, if relevant, their radar
scattering properties, and how those characteristics are sampled by the sensor on the
platform used to acquire the image data.

Because photointerpretation is carried out by a human analyst it generally works
at a scale much larger than the individual pixel in an image. It is a good approach
for spatial assessment in general but is poor if the requirements of a particular
exercise demand accurate quantitative estimates of the areas of particular cover
types. It is also poor if the information required depends on detail in the spectral and
radiometric properties of a particular image. By contrast, because humans reason at
a higher level than computers, it is relatively straightforward for a photointerpreter
to make decisions about context, proximity, shape and size, characteristics which
challenge machine learning. It is in applications requiring those types of decision
that photointerpretation is the preferred method for analysis.

2 See J.A. Richards, Remote Sensing with Imaging Radar, Springer, Berlin, 2009 and F.T. Ulaby
and D.G. Long, Microwave Radar and Radiometric Remote Sensing, University of Michigan
Press, Ann Arbor, 2014.
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3.2.1 Forms of Imagery for Photointerpretation

In order to carry out photointerpretation an image product has to be available, either
in hard copy form or on a display device. That product can be a black and white
image of an individual band or can be a colour image created from sets of bands. In
the early days of remote sensing creating a colour image product presented little
challenge because the number of bands of data recorded was not many more than
the three primary colours of red, green, blue needed to form a display. With sensors
now recording regularly more than 10 or so bands, and in the case of imaging
spectrometers generating of the order of 100 bands, serious decisions have to be
made about which bands to use when creating a colour product. In Chap. 6 we will
address this problem by seeking to transform the recorded bands into a new
compressed format that makes better use of the colour primaries for display. Here,
however, we will focus on the simple task of selecting a set of the
originally-recorded bands to create a colour product.

Essentially the task at hand is to choose three of the recorded bands and display
them using the red, green and blue primary colours. It is conventional to order the
chosen bands by wavelength in the same sequence as the colour primaries.3 In other
words, the shortest of the selected wavebands is displayed as blue and the longest is
displayed as red.

Two simple considerations come to mind when seeking to select the wavebands
to use. One is to create a colour product that is as natural in its colour as possible to
that of the landscape being imaged. To do so entails choosing a band recorded in
the blue part of the spectrum to display as blue, a band recorded in the green part of
the spectrum to display as green, and a band recorded in the red part of the spectrum
to display as red.

The other approach is to choose a set of wavebands that give better visual
discrimination among the cover types of interest. When we look at spectral
reflectance characteristics such as those shown in Fig. 1.11, it is clear that the red
part of the spectrum will provide good discrimination among vegetated and bare
cover types, while the infrared regime will give good separation from water and is
also good for discriminating among vegetation types and condition. A popular
colour product over many decades, therefore, has been one in which a green band
has been displayed as blue, a red band has been displayed as green, and a near
infrared band has been displayed as red. That has gone by several names, the most
common of which is colour infrared. It is a product in which good healthy vege-
tation appears as bright red in the display. Of course, with other applications in
mind, particularly in geology, choosing bands in the middle or thermal infrared
ranges may be more appropriate. In those cases, user expertise will guide the choice
of bands to display, but the principle of displaying the chosen bands in wavelength
order is still maintained.

3 In order of increasing wavelength, the additive colour primaries are blue, green and red.
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Figure 3.1 shows a set of alternative displays for a portion of a HyVista HyMap
image recorded over Perth in Western Australia. Similar displays can be created
from mixed data sets such as that depicted in Fig. 1.15. For example, two of the
display colours might be used to show bands of optical imagery with the third used
to overlay synthetic aperture radar data.

When viewing image products like those shown in Fig. 3.1 it is important to
know that the original bands of data have usually been enhanced in contrast before
the colour composite image has been formed. As a result, it is sometimes difficult to
associate accurately the colours observed with the spectral reflectance characteris-
tics shown in Fig. 1.11. For example, in the colour infrared image a region of soil
should appear reddish if the infrared band is displayed as red. Yet in Fig. 3.1 sparse
vegetation and soils appear as blue-green. That is almost always the case in that
type of imagery and is a direct result of each of the individual bands being
expanded in contrast to cover the full range of brightness available before colour
composition. Why is that necessary? Sensors are designed so that they can respond
to features on the ground that have brightness values ranging from black (extreme
shadows) to white (clouds, sand and snow). That means that the more common
cover types such as vegetation and soils have about mid-range brightnesses and
would thus appear dull if displayed as recorded. Consequently, the brightness
values are stretched out over the available brightness range before display, using the
techniques we cover in Chap. 4. If the bands were not contrast enhanced before-
hand, the colour composite image would have a general reddish appearance for both
vegetation and soil.

It is easy to see why the colour relativity is affected by changing the spread of
brightness values in the individual bands before they are composed into the colour
product. The simple illustration in Fig. 3.2 provides the explanation. A skilled
photointerpreter takes this type of information into account when interpreting the
colours seen in the image data. Not infrequently, the photointerpreter will also have
available black and white images of significant bands so that the contrast differences
within a band over different cover types can be taken into account during analysis.

3.2.2 Computer Enhancement of Imagery
for Photointerpretation

While expanding the brightness range in an image is often performed to make a
colour product potentially more attractive as illustrated in Fig. 3.2, a range of other
image enhancement techniques can be applied to imagery to assist the photoint-
erpretation task, as discussed in Chap. 4. New types of imagery can also be created
by applying mathematical transformations to the original data set. In addition,
image data can be processed geometrically, in which noise is smoothed or reduced,
and features of particular significance, such as lines and edges, are enhanced. Those
geometric processing methods are covered in Chap. 5 while Chaps. 6 and 7 cover
image transformations.
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3.3 Quantitative Analysis: From Data to Labels

In order to allow a comparison with photointerpretation it is of value to consider
briefly the fundamental nature of classification before a more detailed discussion of
computer assisted interpretation is presented. Essentially, classification is a map-
ping from the spectral measurements acquired by a remote sensing instrument to a
label for each pixel that identifies it with what’s on the ground. Sometimes, several
labels for a given pixel are generated, with varying degrees of likelihood, and
sometimes mixtures of labels are given for each pixel. Those alternative cases will
become evident later in this book. For the present, however, we will focus on
obtaining a single name for a pixel in terms of known ground cover types.

band 15 (664nm)

band 15 (664nm)band 6 (527nm)

band 6 (527nm)band 2 (466nm)

band 29 (877nm)

band 29 (877nm)

band 104 (2153nm)
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Fig. 3.1 Colour image products formed by different combinations of recorded bands, in the
sequence from top to bottom displayed respectively as red, green and blue: the image (which has
north to the right) was recorded by the HyMap sensor over the city of Perth, Western Australia and
shows how different band combinations highlight cover type variations
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Figure 3.3 summarises the process of classification. Starting with the set of
measurements, a computer processing algorithm is used to provide a unique label,
or theme, for all the pixels in the image. Once complete, the operation has produced
a map of themes on the ground from the recorded image data. The map is called a
thematic map and the process of generating it is called thematic mapping. Once
they have all been labelled, it is possible to count the pixels of a given cover type
and note their geographic distributions. Knowing the size of a pixel in equivalent
ground metres allows accurate estimates of the area of each cover type in the image
to be produced. Because we are able to quantify the cover types in this manner, and
because the procedures we use are inherently numerical and statistical, classification
is often referred to as quantitative analysis.
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3.4 Comparing Quantitative Analysis
and Photointerpretation

We are now in the position to do a meaningful comparison of photointerpretation
and classification, as the two principal means by which image understanding is
carried out. Photointerpretation is effective for global assessment of geometric
characteristics and for the general appraisal of ground cover types. It is, however,
impracticable to apply at the pixel level unless only a handful of pixels is of interest.
As a result, it is of limited value for determining accurate estimates of the area of an
image corresponding to a particular ground cover type, such as the hectarage of a
crop. Further, since photointerpretation is based on the ability of the human analyst
to assimilate the data, only three or so of the complete set of spectral components of
an image can easily be used. Yet there are of the order of 10–100 bands available in
modern remote sensing image data sets. It is not that all of these would necessarily
be needed in the identification of a pixel. However, should all, or a large subset,
require consideration, analysis by photointerpretation is clearly limited. By com-
parison, if a machine can be used for analysis, as outlined in the previous section, it
can work at the individual pixel level. Also, even though we have yet to consider
specific algorithms for classification, we can presume from a knowledge of machine
assisted computation in general, that it should be possible to devise approaches that
handle as many bands as necessary to obtain an effective label for a pixel.

There is another point of difference between the ability of the photointerpreter
and that of a machine. The latter can exploit the full radiometric resolution available
in the image data. By comparison, a human’s ability to discriminate levels of grey is
limited to about 16, which again restricts the nature of the analysis able to be
performed by a photointerpreter.

the measured brightness values in 
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recorded wavebands

Fig. 3.3 Classification as a mapping from measurement or spectral space to a set of labels
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Table 3.1 provides a more detailed comparison of the attributes of photointer-
pretation and quantitative analysis. From this it can be concluded that photointer-
pretation, involving direct human interaction and high-level decisions, is good for
spatial assessment but poor in quantitative accuracy. By contrast, quantitative
analysis, requiring some but little human interaction, in general has poor spatial
reasoning ability but high quantitative accuracy. Its poor spatial properties come
from the relative difficulty with which decisions about shape, size, orientation and,
to a lesser extent, texture can be made using standard sequential computing
techniques.

The interesting thing about the comparison in Table 3.1 is that each approach has
its own strengths and, in several ways, they are complementary. In practice it is
common to find both approaches employed when carrying out image analysis. As
we will see shortly, photointerpretation is often an essential companion step to
quantitative analysis because to make machine-assisted approaches work effectively
some knowledge from the analyst has to be fed into the algorithms used.

3.5 The Fundamentals of Quantitative Analysis

3.5.1 Pixel Vectors and Spectral Space

We now look at the manner in which machine-assisted classification of remote
sensing image data can be performed. Recall that the data recorded consists of a
large number of pixels, with each pixel characterised by up to several hundred
spectral measurements. If there is a sufficiently large number of fine bandwidth
samples available, it is possible to reconstruct the reflectance spectrum for a pixel as
seen by the sensor. Figure 3.4 shows a typical vegetation spectrum recorded by the
HyMap imaging spectrometer. Provided such a spectrum has been corrected for the
effects of the atmospheric path between the sun, the earth and the sensor, and the
shape of the solar emission curve, then a skilled spectroscopist should, in principle,
be able to identify the cover type, and its properties, from the measurements. While
that approach is technically feasible, more often than not a pixel spectrum is
identified by reference to a library of previously recorded spectra. We will have
more to say about spectroscopic and library searching techniques in Chap. 11.

Table 3.1 Comparison of photointerpretation and quantitative analysis

Photointerpretation (human analyst) Quantitative analysis (computer)
On a scale large compared with pixel size
Less accurate area estimates
Limited ability to handle many bands
Can use only a limited number of brightness

values in each band (about 16)
Shape determination is easy
Spatial information is easy to use in general

Can work at the individual pixel level
Accurate area estimates are possible
Full multi-band analysis is possible
Can use the full radiometric resolution

available (256, 1024, 4096, etc.)
Shape determination is complex
Spatial decision making in general is
challenging
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Although the hyperspectral data sets provided by imaging spectrometers allow
scientific methods of interpretation, often the smaller number of spectral mea-
surements per pixel from many sensors makes that approach not feasible. The
remaining spectra in Fig. 3.4 illustrate just how selectively the spectrum is sampled
with some instruments. Nevertheless, while they do not fully replicate the spectrum,
it is clear that the number and placement of the spectral samples should still be

wavelength µm

2.50.5 1.0 1.5 2.0

HyMap spectrum

Spot HRG spectrum

Landsat ETM+ spectrum

Ikonos spectrum

2.50.5 1.0 1.5 2.0

Fig. 3.4 Typical single pixel vegetation spectrum recorded by the HyVista HyMap imaging
spectrometer compared with the spectra for the same cover type that would be recorded by a
number of other instruments; the latter have been estimated from the HyMap spectrum for
illustration
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sufficient to permit some form of identification of the cover type represented by the
pixel. What we want to do now is devise an automated analytical approach that
works with sets of samples and which, when required, can be extended to work with
the large number of spectral samples recorded by imaging spectrometers.

The first thing we have to do is to decide on a model for describing the data.
Because each pixel is characterised by a set of measurements a useful summary tool
is to collect those measurements together into a column called a pixel vector which
has as many elements as there are measurements. By describing the pixel in this
manner, we will, later on, be able to use the very powerful field of vector and matrix
analysis when developing classification procedures.4

We write the pixel vector with square brackets in the column form:

x ¼
x1
x2
..
.

xN

2
6664

3
7775

The elements listed in the column are the numerical measurements (brightness
values) in each of bands 1 through to N, and the overall vector is represented by the
lower-case character in bold. Because we will be using concepts from the field of
mathematical pattern recognition and machine learning, the vector x is also
sometimes called a pattern vector.

To help visualise the concepts that follow it is of value now to introduce the
concept of the spectral space or spectral domain. In the terminology of pattern
recognition, it is called a pattern space. This is a coordinate system with as many
dimensions as there are measurements in the pixel vector. A particular pixel in an
image will plot as a point in the spectral space according to its brightness along each
of the coordinate directions.

Although the material to follow both here and in the rest of this book is designed
to handle pixel vectors with as many measurements as necessary, it is helpful
visually to restrict ourselves to just two measurements at this stage so that the
spectral domain has only two coordinates. Figure 3.5 illustrates the idea of using
measurements in the visible red portion of the spectrum and the near infrared.

As observed, sets of pixel vectors for different cover types appear in different
regions of the spectral domain. Immediately, we can see that an effective way of
labelling pixels as belonging to different cover types is to assess in what part of the
spectral space they lie. Note that the different cover types will only be differentiated
in the spectral domain if the wavebands of the sensor have been chosen to provide
discrimination among the cover types of interest. The measurements chosen in
Fig. 3.5 do provide separation between what we will now call classes of data: the
vegetation class, the water class, and the soil class. Because this is the information

4 See Appendix C for a summary of the essential elements of vector and matrix algebra.
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we are interested in obtaining from the remotely sensed data we commonly refer to
classes of this type as information classes.

Suppose we knew beforehand the information classes associated with a small
group of pixels in an image. We could plot the corresponding remote sensing
measurements in the spectral domain to help identify where each of those classes is
located, as shown in Fig. 3.5. We could then draw lines between the classes to
break up the spectral domain into regions that could have information class labels
attached to them. Having done that, we could take an unknown pixel and plot it in
the spectral domain according to its measurements. We then label it as belonging to
one of the available information classes, by reason of where it falls compared with
the class boundaries.

the pairs of measurements for each cover type 
plot as points in spectral space; pixels of each 
type tend to group or cluster

boundaries can be drawn 
that separate the groups

vegetation
0.4 0.6 0.8 1.0 1.2 1.4

in
fr

ar
ed

vi
sib

le
 re

d

soil
0.4 0.6 0.8 1.0 1.2 1.4

in
fr

ar
ed

vi
sib

le
 re

d

water
0.4 0.6 0.8 1.0 1.2 1.4

in
fr

ar
ed

vi
sib

le
 re

d

vegetation

soil

water

vegetation class

soil class

water class

cover types in a recorded image which has just two 
wavebands – red and infrared

select some samples from the image 
corresponding to each cover type

each pixel point is described by 
a column vector

Fig. 3.5 Pixels in a spectral space with coordinates that correspond to the spectral measurements
made by a sensor; provided those measurements are well located spectrally the pixel points
corresponding to different cover types will be separated in the spectral space, even though there
will be natural variability within the spectral responses for each cover type, as illustrated
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What we have just described is the basis of supervised classification. There are
many ways of separating the spectral domain into information classes. Those
techniques form much of what we are going to look at in the remainder of this book.
Irrespective of the particular technique, the basic principle is the same: we use
labelled data, which we will call training data, to find out where to place bound-
aries between information classes in the spectral domain. Thereafter, having found
those boundaries, we can label any unknown pixel. While some techniques will
depend explicitly on finding inter-class boundaries, others will use statistical and
related methods to achieve the purpose of separating pixels into the different
information classes of interest. Sometimes we will even allow the classes to overlap
across boundaries.

3.5.2 Linear Classifiers

One of the simplest supervised classifiers places linear separating boundaries
between the classes, as just noted. In two dimensions the boundaries will be straight
lines. In a pattern space with many dimensions the separating boundaries will be a
generalisation of straight lines and surfaces; those higher order surfaces are called
hyperplanes. A very straightforward method for finding appropriate hyperplanes is
to use the training data to find the mean position (mean vector) of the pixels in each
class, and then find those hyperplanes that are the perpendicular bisectors of the
lines between the mean vectors. Such a classifier, which is treated in Chap 8, is
referred to as the minimum distance classifier.

The field of pattern recognition essentially commenced using linear classifier
theory of that nature.5 Linear classification also forms the basis of the two most
common machine learning approaches of the past two decades: the support vector
machine (SVM), and the neural network, including its popular derivative the
convolutional neural network. These are treated in Chap. 8.

One of the powerful features of the support vector machine approach is the
ability to introduce data transformations that effectively turn the linear separating
hyperplanes into more flexible, and thus more powerful, hypercurves.

The neural network can implement many decision boundaries that are piecewise
linear in nature, allowing much more flexible class separation.

3.5.3 Statistical Classifiers

The original supervised classification procedure widely used in remote sensing
since the 1970s is based on the assumption that the distribution of pixels in a given

5 See N.J. Nilsson, Learning Machines, McGraw-Hill, N.Y., 1965.
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class or group can be described by a probability distribution in spectral space. The
probability distribution most often used is the multidimensional normal distribution;
the technique is called maximum likelihood classification because a pixel previously
unseen by the classifier algorithm is placed in the class for which the probability is
the highest of all the classes.

When using a normal distribution model for each class the dispersion of pixels in
the spectral space is described by their mean position and their multidimensional
variance, or standard deviation. That is not unreasonable since it would be expected
that most pixels in a distinct cluster or class would lay towards the centre and would
decrease in likelihood for positions away from the class centre where the pixels are
less typical.

It is important to recognise that the choice of the multidimensional normal, or
Gaussian, distribution does not rest on the fact that the classes are actually normally
distributed in nature; we will have more to say about that in Sect. 3.6 following.
Instead, the reason we use the normal distribution as a class model is that its
properties are well known for any dimensionality, its parameters are easily esti-
mated, and it is robust in the sense that the accuracy of prediction when producing a
thematic map is not overly sensitive to violations of the assumption that the classes
are normal.

A two-dimensional spectral space with the classes modelled as normal distri-
butions is shown in Fig. 3.6. The decision boundaries shown, which are the
equivalent to the straight-line decision boundaries in Fig. 3.5, represent those points
in the spectral space where a pixel has equal chance of belonging to either of two
classes. Those boundaries partition the space into regions associated with each
class; because of the mathematical form of the normal distribution, the boundaries
are multidimensional quadratic functions.

In Chap. 8 we will look in detail at the mathematical form of the multidimen-
sional normal distribution. Here it is sufficient to use the shorthand notation:

p xjxið Þ�N m;Cð Þ

which says that the probability of finding a pixel from class xi at the position x in
the spectral domain is given by the value of a normal distribution which is
described by a mean vector position m and whose spread is described by the
covariance matrix C. For the data sketched in Fig. 3.6 there are three such normal
distributions, one for each of the classes. Therefore, there will be three different sets
of the pair of parameters m and C.

The multidimensional normal distribution is completely specified by its mean
vector and covariance matrix. As a result, if the mean vectors and covariance
matrices are known for all classes then it is possible to compute the set of proba-
bilities that describe the relative likelihoods of a pixel at a particular location in
spectral space as belonging to each of those classes. A pixel is allocated to the class
for which the probability is highest. Before that can be done m and C have to be
estimated for each class from representative sets of pixels—i.e., training sets of
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pixels that the analyst knows belong to each of the classes of interest. Estimation of
m and C from a training set is referred to as supervised learning. Based on this
statistical approach, supervised classification therefore consists of three broad steps:

• A set of training pixels is selected for each class. That could be done using
information from ground surveys, aerial photography, black and white and
colour hard copy products of the actual image data, topographic maps, or any
other relevant source of reference data.

• The mean vector and covariance matrix for each class are estimated from the
training data. That completes the learning phase.
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Fig. 3.6 Two-dimensional spectral space with the classes represented by Gaussian probability
distributions; note the unusual distribution of the soil class in this illustration, a problem that would
be resolved by the application of thresholds (see Sect. 8.3.5)
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• The classification phase follows in which the relative likelihoods for each pixel
in the image are computed and the pixel labelled according to the highest
likelihood.

Since the approach to classification considered here involves estimation of the
parameter sets m and C, the method goes under the general name of a parametric
procedure. Other methods such as linear classifiers, support vector machines and
neural networks are often referred to as non-parametric because there are no
parameters that require estimation, despite the fact that they still require the esti-
mation of certain constants during training.

3.6 Sub-classes and Spectral Classes

There is a significant assumption in the manner by which we have represented the
clusters of pixels from given cover types in Figs. 3.5 and 3.6. We have shown the
pixels from a given class as belonging to a single group or cluster. In practice, that
is often not the case. Because of differences in soil types, vegetation condition,
water turbidity, and similar, the information classes of one particular type often
consist of, or can be conveniently represented as, collections of sub-classes. Also,
when using the normal distribution model of the previous section, we have to face
the realisation that sets of training pixels rarely fall into groups that can be
well-represented by single normal distributions. Instead, the pixels are distributed in
a fashion which is often significantly not normal. To apply a classifier based on a
multidimensional normal model successfully we have to represent the pixels from a
given information class as a set of normal distributions—again, effectively
sub-classes—as illustrated in Fig. 3.7. If we assume that the subclasses are iden-
tifiable as individual groupings, or as representative partitions of the spectral space,
we call them spectral classes to differentiate them from the information classes that
are the ground cover type labels known to, and sought by, the analyst. Sometimes
they are called data classes.

For most real image data, it is difficult to identify very many distinct information
or spectral classes. To illustrate this point, Fig. 3.8 shows a two-dimensional
spectral plot of the pixel points from the portion of imagery shown. In this diagram,
which is called a scatter plot in general, the near infrared versus visible red data
values of the pixels are seen mostly to form a continuum, with just a few groups
that might be easily be ascribed to identifiable cover types. In the main, however,
even though there are quite a few individual classes present in the image itself,
those classes do not show up as distinct groups in the two-dimensional scatter plot.

To achieve a successful classification of the image data using any of the methods
covered later in this book, it is important to recognise that the data space often is of
the form of a continuum. The trick to making classification work well is to ensure
that the data space is segmented in such a way that the properties of the chosen
classifier algorithm are properly matched to the data. For linear classifiers we need
to ensure that the separating boundaries appropriately segment the continuum; for
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statistical classifiers we need to ensure that the portions of the continuum corre-
sponding to a given information class are resolved into an appropriate set of
Gaussian spectral classes. Essentially, the spectral classes are the viable groups into
which the pixels can be resolved in order best to match the properties of the
classification algorithm being used. We will have a lot to say about spectral classes
in Chap. 11 when we consider overall methodologies for performing classification
and thematic mapping.
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3.7 Unsupervised Classification

The supervised approach to classification outlined in the previous sections is not the
only manner in which thematic maps can be created. There is a class of algorithm
called unsupervised that also finds widespread use in the analysis of remote sensing
image data.

Unsupervised classification is a method by which pixels are assigned to spectral
(or information) classes without the user having any prior knowledge of the exis-
tence or names of those classes. It is most often performed using clustering
methods, which are the topic of Chap. 9. Those procedures can be used to deter-
mine the number and location of the spectral classes into which the data naturally
falls, and then to find the spectral class for each pixel in the image. The output from
such an analysis is generally a map of symbols—a cluster map—that depict the
class memberships of the pixels without the analyst yet knowing what those
symbols represent, apart from the fact that pixels of a given symbol fall into the
same spectral class or cluster. The statistics of the spectral classes are also generally
available from the application of a clustering algorithm. Once the cluster map is
available the analyst identifies the classes or clusters by associating a sample of
pixels from the cluster map with the available reference data, which could include
other maps and information from ground visits.

Clustering procedures are generally computationally expensive, yet they are
central to the analysis of remote sensing imagery. While the information classes for
a particular exercise are known, the analyst is usually totally unaware of the spectral
classes, or subclasses, beforehand. Unsupervised classification is often useful for
determining a spectral class decomposition of the data prior to detailed analysis by
the methods of supervised classification.

3.8 Bibliography on Interpreting Images

The field of image analysis has a rich history, covering many fields. The text which
has become a standard treatment is

R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons,
N.Y., 2001.

There are many treatments now available that have a remote sensing focus,
including

R.A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed.,
Academic, Burlington, Mass., 2006.

B. Tso and P.M. Mather, Classification Methods for Remotely Sensed Data, 2nd ed., CRC
Press, Taylor and Francis Group, Boca Raton, Florida, 2016.
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J.R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.,
Prentice-Hall, Upper Saddle River, N.J, 2015.

J.R. Shott, Remote Sensing: The Image Chain Approach, 2nd Ed., Oxford UP, N.Y., 2007.

Even though this book is concerned with image processing and analysis it is
important not to overlook the principles of the application domain of remote
sensing in which that work is located. It makes little sense processing data blind,
without some appreciation of the requirements of a given application and an
understanding of the fundamental principles of remote sensing. Accordingly, the
following books might also be consulted. Although the first is now a little dated in
some respects, it still has one of the best chapters on the spectral reflectance
characteristics of ground cover types and contains good overview discussions on
the objectives and execution of an image analysis exercise.

P.H. Swain and S.M. Davis, eds, Remote Sensing: The Quantitative Approach,
McGraw-Hill, N.Y., 1978.

T. Lillesand, R.W. Kiefer and J. Chipman, Remote Sensing and Image Interpretation, 7th
ed., J. Wiley and Sons, N.Y., 2015.

J.B. Campbell and R.H. Wynne, Introduction to Remote Sensing, 5th ed., Guildford, N.Y.,
2011.

F.F. Sabins and J.M. Ellis, Remote Sensing: Principles and Interpretation and
Applications, 4th ed., Waveland, Long Grove, IL., 2020.

The following is an introductory treatment which also covers geographic infor-
mation systems:

J.G. Liu and P.J. Mason, Image Processing and GIS for Remote Sensing: Techniques and
Applications, Wiley-Blackwell, N.J., 2016.

3.9 Problems

3:1 For each of the following applications would photointerpretation or quanti-
tative analysis be the most appropriate analytical technique? Where necessary,
assume spectral discrimination is possible.

• creating maps of land use
• mapping the movement of floods
• determining the area of crops
• mapping lithology in geology
• structural mapping in geology
• assessing forest condition
• mapping drainage patterns
• creating bathymetric charts.
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3:2 Can contrast enhancing an image beforehand improve its discrimination for
machine analysis? Could it impair machine analysis by classification methods?

3:3 Prepare a table comparing the attributes of supervised and unsupervised
classification. You may wish to consider problems with collecting training
data, the cost of processing, the extent of analyst interaction and the deter-
mination of spectral classes.

3:4 A problem with using probability models to describe classes in spectral space
is that atypical pixels can be erroneously classified. For example, a pixel with
low red brightness might be wrongly classified as soil even though it is more
reasonably vegetation. This is a result of the positions of the decision
boundaries as seen in Fig. 3.6. Suggest a means by which this situation can be
avoided (see Sect. 8.3.5).

3:5 The collection of brightness values for a pixel in a given image data set is
called a vector. Each of the components of the vector can take on a discrete
number of brightness values determined by the radiometric resolution of the
sensor. If the radiometric resolution is 8 bits the number of brightness values is
256. If the radiometric resolution is 10 bits the number of brightness values is
1024. How many distinct pixel vectors are possible with SPOT HRG, Ikonos
and Landsat ETM+ data?
It is estimated that the human visual system can discriminate about 20,000
colours. Comment on the radiometric handling capability of a computer
compared to colour discrimination by a human analyst.

3:6 Information classes are resolved into spectral classes prior to classification. In
the case of the multidimensional normal distribution, those spectral classes are
individual Gaussian models. Why are more complex statistical distributions
not employed to overcome the need to establish individual, normally dis-
tributed spectral classes?

3:7 A very simple sensor that might be used to discriminate between water and
non-water could consist of a single infrared band with 1 bit radiometric res-
olution. A low response indicates water and a high response indicates
non-water. What would the spectral space look like? Suppose the sensor now
had 4 bit radiometric resolution. Again, describe the spectral space but in this
case noting the need to position the boundary between water and non-water
optimally within the limits of the available radiometric resolution. How might
you determine that boundary?

3:8 Plot the pixels from Table 2.2a in Question 2.2 in a coordinate space with
band 5 brightness horizontally and band 7 brightness vertically. Do they
naturally separate into three classes? Find the two-dimensional mean vectors
for each class and find the perpendicular bisectors of lines drawn between each
pair. Show that, as a set, those bisectors partition the coordinate space by class.
Repeat the exercise for the data in Table 2.2b. Is the separation now poorer? If
so, why? Note that June in the southern hemisphere is mid-winter and
December is mid-summer. To assess separability you may wish to mark plus
and minus one standard deviation about each mean in both coordinates.
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3:9 In Problem 3.8 assume that the reflectance of water does not change between
dates and that the difference in the water mean values is the result of solar
illumination changes with season. Using the water mean for the summer image
as a standard, find a simple scale change that will adjust the mean of the water
class for the winter image to that of the summer image. Then apply that scale
change to the other two winter classes and plot all classes (three for each of
summer and winter) on the same coordinates. Interpret the changes observed
in the mean positions of the vegetation and soil classes.

3:10 Thinking carefully about the spectral reflectance curves of vegetation, soil and
water, where would pixels of each of those cover types appear in a
two-dimensional spectral space in which the brightness in a near infrared band
is plotted vertically, while the brightness in a visible red band is plotted
horizontally? Why are there parts of that spectral space which are always
empty? Where would deep shadows appear in a spectral space?
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Chapter 4
Radiometric Enhancement of Images

Abstract Techniques for altering the brightness and contrast of images, generically
called contrast modification, are presented. These are based on methods for mod-
ifying the brightness values of individual pixels within given bands of data, and are
seen to be valuable in improving the visual quality of an image. The image his-
togram is described and used as the basis of many of the contrast modification
procedures covered. It is seen that the image histogram can be used also for
matching the contrasts (brightness distributions) of two geographically adjacent
images so they can be joined side-by-side in a mosaic without there being a sig-
nificant change in contrast across the common boundary. Examples are given of the
procedures covered.

4.1 Introduction

4.1.1 Point Operations and Look Up Tables

Image analysis by photointerpretation is often made easier when the radiometric
nature of an image is enhanced to improve its visual characteristics. Specific dif-
ferences in vegetation and soil type, for example, may be brought out by increasing
the contrast of an image. Highlighting subtle differences in brightness value by
applying contrast modification, or by assigning different colours to different
brightness ranges in the method known as colour density slicing, will often reveal
features not otherwise easily seen.

It is the purpose of this chapter to present a variety of radiometric modification
procedures that are regularly used with remote sensing image data. The methods
treated are characterised by the common feature that a new brightness value for a
pixel is generated only from its existing value. Neighbouring pixels have no
influence, as they do in the geometric enhancement procedures that are the subject
of Chap. 5. Consequently, radiometric enhancement techniques are sometimes
referred to as point or pixel-specific operations.
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All of the techniques to be covered in this chapter can be represented either as a
graph or a table that expresses the relationship between the old and new brightness
values. In tabular form this is referred to as a look up table (LUT).

4.1.2 Scalar and Vector Images

Two particular image types require consideration when treating image enhance-
ment. The first is referred to as a scalar image, in which each pixel has only a single
brightness value associated with it. Such is the case for a simple black and white
image. The second is a vector image, in which each pixel is represented by a vector
of brightness values, which might be the blue, green and red components of the
pixel in a colour scene or, for a remote sensing image, would be the various spectral
response components for the pixel. Most image enhancement techniques relate to
scalar images or the scalar components of vector imagery. That is the case with all
techniques covered in this chapter. Enhancement methods that relate particularly to
vector imagery tend to be transformation oriented. They are treated in Chap. 6.

4.2 The Image Histogram

Consider a typical remote sensing image, composed of pixels spatially and in which
each pixel is quantised radiometrically into discrete brightness levels. If pixels with
the same brightness value are counted, a graph of the number of pixels at a given
brightness, versus brightness value, can be constructed. That is referred to as the
histogram of the image. The tonal or radiometric quality of an image can be
assessed by inspecting its histogram, as illustrated in Fig. 4.1. An image which
makes good use of the available range of brightness values has a histogram with
occupied bins (brightness values) over the full range, but without significantly large
values at either extreme. The vertical scale of a histogram is sometimes called
frequency (of the occurrence of specific brightness values), or proportion, or
occurrence.

An image has a unique histogram, but the reverse is not true in general since a
histogram contains only radiometric and no spatial information. A point of some
importance is that the histogram can be viewed as a discrete probability distribution
since the relative height of a particular bar or occurrence, normalised by the total
number of pixels in the image, indicates the chance of finding a pixel with that
particular brightness value somewhere in the image.
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4.3 Contrast Modification

4.3.1 Histogram Modification Rule

Suppose we have available a digital image with poor contrast, such as that with the
histograms on the left-hand side of Fig. 4.1. We want to improve its contrast to
obtain an image with histograms that have a good spread of occurrences over the
available brightness range, resembling that in the centre of Fig. 4.1. An operation
called contrast modification or stretching is required; it is applied to the individual
image components. Often the degree of stretching desired is apparent. For example,
an original histogram may occupy brightness values between 40 and 75 and we
might want to expand that range to the maximum possible, say 0–255. Even though

poor contrast good contrast saturated

Fig. 4.1 Some images and the histograms of their three colour components; from left to right: an
image with low contrast and brightness, in which the histograms occupy a limited set of brightness
values, the same image with a good range of brightness and contrast and for which the histograms
show good use of the available range, and an overly contrasting image in which detail is lost and
the histograms show saturation at the upper extremes; although shown in colour to link them to the
image components, most histograms would be displayed in black and white
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the modification is obvious it is necessary to express it in mathematical terms in
order to transfer the problem to a computer.

Contrast modification is just a mapping of brightness values, in that the
brightness value (the abscissa) of a particular histogram occurrence is respecified
more favourably. The magnitudes of the occurrences themselves though are not
altered, although in some cases some may be mapped to the same new brightness
value and will be superimposed. In general, though, the new histogram will have
the same number of occurrences as the old, with the same values. They will just be
at different locations.

The mapping of brightness values can be described by

y ¼ f ðxÞ ð4:1Þ

where x is the old brightness value of a particular occurrence in the histogram and y
is the corresponding new brightness value. In principle, what we want to do in
contrast modification is to find the form of y ¼ f ðxÞ that will implement the desired
changes in pixel brightness and thus in the perceived contrast of the image.
Sometimes that is simple; on other occasions y ¼ f ðxÞ might be quite complicated.
In the following sections we look at simple contrast changes first and then treat
more complex situations, including matching the brightness value ranges of pairs of
images.

4.3.2 Linear Contrast Modification

The most common contrast modification operation is that in which the new and old
brightness values of the pixels in an image are related in a linear fashion, so that
(4.1) can be expressed

y ¼ f xð Þ ¼ axþ b

A simple numerical example of linear contrast modification is shown in Fig. 4.2;
the look-up table is included in the figure. In practice this would be used in software
to produce the new image. That is done by reading the original brightness values of
the pixels one at a time, substituting those brightnesses into the left-hand side of the
table and then reading the new brightness values for the pixels from the corre-
sponding entries on the right-hand side of the table.

It is important to note in digital image handling that the new brightness values,
just as the old, must be discrete integers and cover usually the same range. That
may require some rounding to integer form of the new values calculated from the
mapping function y ¼ f ðxÞ. A further point to note in the example of Fig. 4.2 is that
the look-up table is valid only for the range of inputs from 2 to 4. Beyond that,
output brightness values would be generated that lay outside the range valid for this
example. In practice, linear contrast stretching is generally implemented as the
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saturating linear contrast enhancement technique in Sect. 4.3.3 in which, for this
example, the outputs are set to 0 and 7 for input brightnesses less than 2 and greater
than 4 respectively.

An image with poor contrast that has been radiometrically enhanced by linear
contrast stretching is shown in Fig. 4.3.

4.3.3 Saturating Linear Contrast Enhancement

Frequently a better image product is generated when a degree of saturation is
created at the black and white ends of the histogram while applying linear contrast
enhancement. Such is the case, for example, if the darker regions in an image
belong to the same ground cover type within which small radiometric variations are
of no interest. Alternatively, a particular region of interest in an image may occupy
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Fig. 4.2 Simple example of linear contrast modification; the look up table (LUT) created from the
brightness value mapping function is used to re-position the occurrences in the histogram
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a restricted brightness value range, such as water in visible green wavelengths;
saturating linear contrast enhancement is then employed to expand just that range to
the maximum possible dynamic range of the display device, with all other
brightnesses being mapped to either black or white.

The brightness value mapping function y ¼ f ðxÞ for saturating linear contrast
enhancement is shown in Fig. 4.4, in which Bmax and Bmin are the user-determined
maximum and minimum brightness values that are expanded to the highest and
lowest brightness levels supported by the display device.

4.3.4 Automatic Contrast Enhancement

Most remote sensing image data is too low in brightness and poor in contrast to give
an acceptable image product if displayed directly in raw form as recorded by a
sensor. That is a result of the need to have the dynamic range of satellite and aircraft
sensors so adjusted that a variety of cover types over many images can be detected
without leading to saturation of the detectors, or without useful signals being lost in
noise. As a consequence, a typical single image will contain a restricted set of
brightnesses. Image display systems frequently implement an automatic contrast
stretch on the raw data in order to give a product with good contrast. Typically, the
automatic enhancement procedure is a saturating linear stretch. The cut-off and
saturation limits Bmin and Bmax are chosen by determining the mean brightness of
the raw data and its standard deviation, and then making Bmin equal to the mean less
three standard deviations and Bmax equal to the mean plus three standard deviations.

ba

Fig. 4.3 Linear contrast modification of the raw (as recorded) image in a to produce the visually
better product in b
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4.3.5 Logarithmic and Exponential Contrast Enhancement

Logarithmic and exponential mappings of brightness value between the original and
modified images are useful processes for enhancing dark and light features
respectively. The mapping functions are shown in Fig. 4.5, along with their
mathematical expressions. It is particularly important with these that the output
values be scaled to lie within the range of the device used to display the product and
that they be rounded to allowed, discrete values.

4.3.6 Piecewise Linear Contrast Modification

A particularly useful and flexible contrast modification procedure is the piecewise
linear mapping function shown in Fig. 4.6, which is characterised by a set of
user-specified break points. Generally, the user can also specify the number of
break points. This method has particular value in implementing some of the contrast
matching procedures in Sects. 4.4 and 4.5 following. It is a generalisation of the
saturating linear contrast stretch of Sect. 4.3.3.

4.4 Histogram Equalisation

4.4.1 Use of the Cumulative Histogram

The previous sections have addressed the task of simple expansion (or contraction)
of the histogram of an image. In many situations, however, it is desirable to modify

Bmax

255

0 x

y

Bmin

this selected range 
of inputs is mapped 
to the full output 
brightness range

the actual range of image brightness 
might extend beyond these limits

Fig. 4.4 Saturating linear
brightness value mapping
function
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contrast so that an image histogram matches a preconceived shape, other than a
simple mathematical modification of the original version. An important modified
shape is the uniform histogram in which, in principle, each occurrence has the same
height—i.e., each is equally likely. Such a histogram is associated with an image
that utilises the available brightness levels equally and thus should give a display in
which there is good representation of detail at all brightness values. In practice
a perfectly uniform histogram cannot be achieved for digital image data.
Nevertheless, the procedure following produces a histogram that is quasi-uniform
on the average.

xx
ba

Fig. 4.5 a Logarithmic and b exponential brightness mapping functions that respectively enhance
low brightness value and high brightness value pixels

L–1

0 x

y

user-specified 
break points

L–10

Fig. 4.6 Piecewise linear
brightness value modification
function defined by a set of
user-specified break points
that commence at 0, 0 and
increase monotonically to
finish at L–1, L–1
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The method for producing a uniform histogram is known as histogram equalisa-
tion. It is useful, in developing the method to achieve this, if we regard the histograms
as continuous curves as depicted inFig. 4.7.1 In thishiðxÞ represents the original image
histogram (the “input” to themodification process) and hoðyÞ represents the histogram
of the image after it has had its contrast modified (the “output” from the modification
process). These functions are similar to probability density functions in statistics, in
that the number of pixels covered by a brightness range dx about brightness value x in
the original histogram is hiðxÞdx, and similarly for the modified histogram.

In Fig. 4.7 the number of pixels included the range dy in the modified histogram
must, by definition in the diagram, be equal to the number of pixels included in the
range dx in the original histogram. Given that hiðxÞ and hoðyÞ are density functions
and that their values don’t vary much over the ranges dx and dy, this requires

ho yð Þdy ¼ hi xð Þdx

so that in the limit for a small range of brightness values, i.e., dx; dy ! 0, we have

ho yð Þ ¼ hi xð Þ dx
dy

ð4:2Þ

We can use the last expression in two ways. First, if we know the original (input)
histogram—which is usually always the case—and the function y ¼ f ðxÞ, we can
determine the resulting (output) histogram. Alternatively, if we know the original
histogram and the shape of the output histogram we want—“flat” in the case of
contrast equalisation—then we can use (4.2) to help us find the y ¼ f ðxÞ that will
generate that result. Our interest here is in the second approach.

Since y ¼ f ðxÞ, and thus x ¼ f�1ðyÞ, (4.2) can be expressed

ho yð Þ ¼ hi f�1ðyÞ� � df�1ðyÞ
dy

which is a mathematical expression for the modified histogram in general.2,3 To
develop the brightness value modification procedure for contrast equalisation in
particular, it is convenient to re-express (4.2) as

1 This figure is adapted from K.R. Castleman, Digital Image Processing, 2nd ed., Prentice Hall, N.
J., 1996.
2 This requires the inverse x ¼ f�1ðyÞ to exist. For the contrast modification procedures used in
remote sensing that is usually always the case. Should an inverse not exist, for example if
y ¼ f ðxÞ is not monotonic, Castleman, loc. cit., recommends that the original brightness value
range x be treated as a set of contiguous sub-ranges within each of which y ¼ f ðxÞ is monotonic.
3 If we apply this expression to the brightness value modification function for linear contrast
enhancement, y ¼ f xð Þ ¼ axþ b then x ¼ y�b

a so that ho yð Þ ¼ 1
a h

y�b
a

� �
. Relative to the original

histogram, the modified version is shifted because of the effect of b, is spread or compressed
depending on whether a is greater or less than 1, and is modified in amplitude. The last effect
only relates to the continuous function and cannot happen with discrete brightness value data.
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dy
dx

¼ hi xð Þ
ho yð Þ

For a uniform histogram hoðyÞ, and thus 1=hoðyÞ; should be constant—i.e., inde-
pendent of y. This is a mathematical idealisation for real data, and rarely will we
achieve a totally flat modified histogram in practice, as the examples in the fol-
lowing will show. However, making this assumption mathematically will generate
for us the process we need to adopt for equalisation; thus

dy
dx

¼ constant� hi xð Þ

so that

dy ¼ constant� hi xð Þdx

giving by integration

y ¼ constant
Z

hi xð Þdx

How should we interpret the integral on the right-hand side of this last expression?
In effect it is the continuous version of a cumulative histogram which, in discrete
form, is a graph of the number of pixels below a given brightness value as a function

Fig. 4.7 Setting the mathematical basis for histogram equalisation; the same numbers of pixels are
represented in the two shaded areas
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of brightness value, as shown in Fig. 4.8. The cumulative histogram is computed by
summing the occurrence bars in the ordinary histogram from left to right.

If we call the cumulative histogram CðxÞ, then

y ¼ constant� CðxÞ

is the brightness value modification formula for histogram (contrast) equalisation.
How do we find the value of the “constant”? We note, first, that the range of values
of y is required to be 0 to L� 1 to match the L brightness values available in the
image. Secondly, note that the maximum value of CðxÞ is N, the total number of
pixels in the image, as seen in Fig. 4.8. Thus, the constant needs to be ðL� 1Þ=N in
order to generate the correct range for y. In summary, the brightness value mapping
function that gives contrast equalisation is

y ¼ L� 1
N

CðxÞ ð4:3Þ

This equation is, in effect, a look-up table that can be used to move histogram
occurrence bars to new brightness value locations to create the equalised product.

To illustrate the concept, consider the need to “flatten” the simple histogram
shown in Fig. 4.9a. This corresponds to a hypothetical image with 24 pixels, each
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of which can take on one of 16 possible brightness values. The corresponding
cumulative histogram is shown in Fig. 4.9b, and the scaling factor in (4.3) is
ðL� 1Þ=N ¼ 15=24 ¼ 0:625.

Using (4.3) the new brightness value location of a histogram bar is given by
finding its original location on the abscissa of the cumulative histogram (x) and then
reading its unscaled new location (y) from the ordinate. Multiplication by the
scaling factor then produces the required new value. It is likely, however, that this
may not be one of the discrete brightness values available (for the output display
device) in which case the associated occurrence bar is moved to the nearest
available brightness value. This procedure is summarised for the example at hand in
Table 4.1, and the new, quasi-uniform histogram is given in Fig. 4.9c.

It is important to emphasise that additional brightness values cannot be created
with discrete data nor can pixels from a single brightness value in an original
histogram be distributed over several brightness values in the modified version. All
that can be done is to re-map the brightness values to give a histogram that is as
uniform as possible. Occasionally that entails some neighbouring occurrences from
the original histogram moving to the same new location and thus being superim-
posed, as seen in the example at brightness value 1.

In practice, the look up table created in Table 4.1 would be applied to every pixel
in the image by feeding the original brightness value for a pixel into the table and
reading the new brightness value from the table. Figure 4.10 shows an example of
an image with a simple linear contrast modification compared to the same image,
but in which contrast modification by histogram equalisation has been imple-
mented. Many contrast changing techniques only give perceived improvement of
detail on some image types and sometimes require all components of a colour
composite image to be so processed before the change is noticeable.

It is not necessary to retain the same number of distinct brightness values in an
equalised histogram as in the original. Sometimes it is desirable to have a smaller
output set and thereby produce a histogram with (fewer) occurrences that are closer
in height than would otherwise be the case. That can implemented by redefining L
in (4.3) to be the new total number of bars. Repeating the example of Table 4.1 and
Fig. 4.9 for the case of L ¼ 8 (rather than 16) gives the look up table of Table 4.2.
Such a strategy would be an appropriate one to adopt when using an output device
with a small number of brightness values (grey levels).

The maximum value of the cumulative histogram in (4.3) will be N, the total
number of pixels in the image. The divisor N in (4.3) has the effect then of
normalising the cumulative histogram to unity. Multiplication by L� 1 as shown
means the magnitude of the cumulative histogram goes from 0 to L� 1, as does its
argument, and is therefore directly in the form of the look up table.
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Fig. 4.9 Histogram equalisation: a original histogram, b cumulative histogram used to produce
the LUT in Table 4.1, and c the resulting quasi-uniform histogram
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4.4.2 Anomalies in Histogram Equalisation

Images containing large homogeneous regions will give rise to histograms with
high occurrences at the corresponding brightness values. A particular example is a
near infrared image with a large expanse of water. Because histogram equalisation
creates a histogram that is uniform on the average, the equalised version of such an
image will have poor contrast and little detail—quite the opposite to what is

Table 4.1 Generating the look up table for the histogram equalisation example of Fig. 4.9

Original brightness value Unscaled new value Scaled new value Nearest allowable
brightness value

0 1 0.63 1
1 2 1.25 1
2 5 3.13 3
3 9 5.63 6
4 14 8.75 9
5 18 11.25 11
6 19 11.88 12
7 19 11.88 12
8 19 11.88 12
9 19 11.88 12
10 19 11.88 12
11 19 11.88 12
12 19 11.88 12
13 20 12.50 13
14 23 14.40 14
15 24 15.00 15

ba

Fig. 4.10 Image with a linear contrast stretch compared with the same image modified by his-
togram equalisation
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Table 4.2 The look up table for histogram equalisation using 8 output brightness values from 16
input brightness levels

Original brightness value Unscaled new value Scaled new value Nearest allowable
brightness value

0 1 0.29 0
1 2 0.58 1
2 5 1.46 1
3 9 2.63 3
4 14 4.08 4
5 18 5.25 5
6 19 5.54 6
7 19 5.54 6
8 19 5.54 6
9 19 5.54 6
10 19 5.54 6
11 19 5.54 6
12 19 5.54 6
13 20 5.83 6
14 23 6.70 7
15 24 7.00 7
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Fig. 4.11 Illustration of anomalous histogram equalisation caused by very large occurrences in
the original histogram: a original with a large number of pixels at 0, b cumulative histogram of the
original, and c equalised histogram
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intended. The reason for this can be seen in the simple illustration of Fig. 4.11. The
cumulative histogram used as the look-up table for the enhancement is dominated
by the large bar at brightness value 0. The resulting image would be mostly grey
and white with little discrimination within the grey levels.

A similar situation happens when the automatic contrast enhancement procedure
of Sect. 4.3.4 is applied to images with large regions of constant brightness. That
can generate highly contrasting images on colour display systems; an acceptable
display may require some manual adjustment of contrast, taking due regard of the
abnormally large histogram bars.

To avoid the anomaly in histogram equalisation caused with the types of image
discussed it is necessary to reduce the significance of the dominating occurrences.
That can be done simply by arbitrarily reducing their size when constructing the
look up table, remembering to take account of that in the scale factor in (4.3).
Another approach is to produce the cumulative histogram and thus look-up table on
a subset of the image that does not include any, or any substantial portion, of the
dominating region. Yet another solution4 is based on accumulating the histogram
over “buckets” of brightness value—once a bucket is full to a pre-specified level, a
new bucket is started.

4.5 Histogram Matching

4.5.1 Principle

Frequently it is desirable to match the histogram of one image to that of another and,
in doing so, make the apparent distribution of brightness values in the two images as
close as possible. That would be important, for example, when contiguous images are
to be joined side by side to form a mosaic. Matching their histograms will minimise
brightness value variations across the joint. In another case, it might be desirable to
match the histogram of an image to a pre-specified shape, such as the uniform
distribution treated in the previous section. It is often found of value in photointer-
pretation to have an image whose histogram is a Gaussian function of brightness, in
which most pixels have mid-range brightness values with only a few in the extreme
white and black regions. The histogram matching technique, now to be derived,
allows both of those procedures to be implemented.

The process of histogram matching is best looked at as having two stages, as
represented in Fig. 4.12. Suppose we want to match the histogram hiðxÞ of a given
image, to the histogram hoðyÞ; hoðyÞ could be a pre-specified mathematical
expression or the histogram of a second image. The steps in the process are to

4 See A. Hogan, A piecewise linear contrast stretch algorithm suitable for batch Landsat image
processing. Proc. 2nd Australasian Conference on Remote Sensing, Canberra, Australia, 1981,
pp. 6.4.1–6.4.4.
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equalise the histogram hiðxÞ, by the methods of the previous section, to obtain an
intermediate histogram h�ðzÞ, which is then transformed to the desired shape hoðyÞ.

If z ¼ f ðxÞ is the transformation that flattens hiðxÞ to produce h�ðzÞ and z ¼ gðyÞ
is the operation that would flatten the reference histogram hoðyÞ then the overall
mapping of brightness values required to produce hoðyÞ from hiðxÞ is

y ¼ g�1 zð Þwith z ¼ f xð Þ; or y ¼ g�1 f xð Þf g ð4:4Þ

If the number of pixels and brightness values in hiðxÞ and hoðyÞ are the same, then
the ðL� 1Þ=N scaling factor in (4.3) will cancel in (4.4) and can be ignored in
establishing the look up table that implements the contrast matching process. If the
number of pixels is different, say N1 in the image to be modified and N2 in the
reference image, and the number of brightness levels L is the same in both images,
then a scaling factor of N2=N1 will be included in (4.4). Scaling in (4.4) however is
not a consideration if the cumulative histograms are normalised to some value such
as unity, or as a percentage of the total number of pixels in an image.

4.5.2 Image to Image Contrast Matching

Figure 4.13 illustrates the steps implicit in (4.4) when matching source and refer-
ence histograms. In this section the reference histogram is that of a second image.
The procedure is to use the cumulative histogram of the source image to obtain new
brightness values in the manner of the previous section. We commence by reading
the ordinate values corresponding to original brightness values entered on the
abscissa of the source cumulative histogram. These ordinate values are then entered
into the ordinate of the cumulative reference histogram and the final brightness
values (for the occurrence bars of the source histogram) are read from the abscissa
of the cumulative reference histogram; in this stage we see the cumulative reference
histogram being used in reverse as indicated by the g�1 operation in (4.4). The look
up table for this example is shown in Table 4.3. Again, note that some of the new
brightness values produced may not be in the available range; as before, they are
adjusted to the nearest available value.

Fig. 4.12 The stages in histogram matching, using the uniform histogram as a bridge
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An example using a pair of contiguous image segments is shown in Fig. 4.14.
Because of seasonal differences the original contrasts are quite different. Using the
cumulative histograms in (4.4) creates a good matching of image contrasts. Such a
process, as noted earlier, is an essential step in producing a mosaic of separate
contiguous images. Another step is to ensure geometric integrity of the join. That is
done using the geometric registration procedures of Sect. 2.20.
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Fig. 4.13 An example of the steps in histogram matching
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Table 4.3 Generating the look up table for contrast matching

Source histogram
brightness value x

Intermediate
(equalised) value
z

Brightness value
matched to reference y

Nearest allowable
brightness value

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 1 1 1
6 3 1.8 2
7 5 2.6 3
8 6 3 3
9 7 4 4
10 8 8 5
11 8 8 5

a

b

Parrama a River

Fig. 4.14 a Contiguous
Landsat multispectral scanner
images showing contrast
differences resulting from
seasonal effects; the left-hand
scene was recorded in autumn
while the right-hand scene
was recorded in summer,
b the same image pair but in
which the contrast of the
autumn scene has been
matched to that of the summer
scene
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4.5.3 Matching to a Mathematical Reference

In some applications it is of value to pre-specify the desired shape of an image
histogram to give a modified image with a particular distribution of brightness
values. To implement this, we take an existing image histogram and modify it
according to the procedures of Sect. 4.5.1. However, the reference is now a
mathematical function that describes the desired shape.

A particular example is to match an image histogram to a Gaussian or normal
shape. That is referred to as applying a Gaussian stretch to an image. It yields a new
image with few black and white regions and in which most detail is contained in the
mid-grey range. Here the reference histogram is the normal distribution. Since a
cumulative version of the reference is to be used, the cumulative normal distribution
is required. To use that distribution in the contrast matching situation, either its
ordinate has to be adjusted to the total number of pixels in the image to be modified
or both cumulative histograms must have the same vertical scale. Further, the
abscissa of the cumulative normal distribution needs to be scaled to match the
maximum allowable brightness range in the image. That requires consideration to
be given to the number of standard deviations of the Gaussian distribution to be
contained in the total brightness value range, having in mind that the Gaussian
function is continuous to �1. The mean of the distribution is placed usually at the
mid-point of the brightness scale and the standard deviation is chosen such that the
extreme black and white regions are three standard deviations from the mean.
A simple illustration is shown in Fig. 4.15.

4.6 Density Slicing

4.6.1 Black and White Density Slicing

A point operation often performed with remote sensing image data is to map ranges of
brightness value to particular shades of grey. In that way the overall discrete number of
brightness values used in the image is reduced and some detail is lost. However, the
effect of noise can be reduced and the image becomes segmented, or sometimes
contoured, into sections of similar grey level, in which each segment is represented by
a user-specified brightness. The technique is known as density slicing and finds value,
for example, in highlighting bathymetry in images of water when penetration is
acceptable. When used to segment a scalar image into significant regions of interest it
is acting as a simple one-dimensional parallelepiped classifier (see Sect. 8.6).

The brightness value mapping function for density slicing is illustrated in
Fig. 4.16. The thresholds in such a function are entered by the user. An image in
which the technique has been used to highlight bathymetry is shown in Fig. 4.18b.
Here differences in Landsat multispectral scanner visible imagery, with brightness
values too low to be discriminated by eye, have been remapped to new grey levels
to make detail apparent.
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4.6.2 Colour Density Slicing and Pseudocolouring

A simple, yet lucid, extension of black and white density slicing is to use colours to
highlight brightness value ranges, rather than simple grey levels. That is known as
colour density slicing. Provided the colours are chosen suitably, it can allow fine
detail to be made immediately apparent. It is a particularly simple operation to
implement by establishing three brightness value mapping functions in the manner
indicated in Fig. 4.17. Here one function is applied to each of the colour primaries
used in the display device. An example of the use of colour density slicing, again
for bathymetric purposes, is given in Fig. 4.18c. The technique is also used to give
a colour rendition to black and white imagery. It is then usually called
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Fig. 4.15 Modification of a
histogram to a
pseudo-Gaussian shape:
a original histogram, which is
the same as that in Fig. 4.9a,
b cumulative normal, and
c the histogram matched to
the Gaussian reference, which
also requires use of Fig. 4.9b
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pseudocolouring. Where possible this uses as many distinct hues as there are
brightness values in the image. In this way the contours introduced by density
slicing are avoided. It is of value in perception if the hues used are graded con-
tinuously. For example, starting with black, moving through dark blue, mid blue,
light blue, dark green, etc. and then moving to oranges and reds will give a much
more acceptable coloured product than one in which the hues are chosen arbitrarily.
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Fig. 4.16 Example of a
brightness value mapping
function for black and white
density slicing in which the
transitions are user-specified
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blue
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Fig. 4.17 A look up table for
colour density slicing, in this
case into six strong colours
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4.7 Bibliography on Radiometric Enhancement of Images

There are many books available that cover the essentials of radiometric enhance-
ment and modification, including

K.R. Castleman, Digital Image Processing, 2nd ed., Prentice Hall, N.J., 1996.

R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th ed. Pearson Prentice-Hall,
Upper Saddle River, N.J., 2018.

a

b

c

Fig. 4.18 Illustration of
b black and white and
c colour density slicing to
enhance water detail; the
original image a is a visible
green plus near infrared
Landsat multispectral scanner
composite that was smoothed
to reduce sensor line striping
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Gonzalez and Woods was first published in 1977 as Gonzalez and Wintz, and has
been through several editions (and changes of author) since, each time revising and
adding new material. There is a companion volume, showing how the various
techniques can be implemented in Matlab®:

R.C. Gonzalez, R.E. Woods and S.L. Eddins, Digital Image Processing Using Matlab®,
3rd ed., Gatesmark, Knoxville, 2020.

Although their motivation and perspectives are different from those in remote
sensing, computer graphics texts often contain good coverage of image processing
techniques. See, for example

J.F. Hughes, A. van Dam, M. McGuire, D.F. Sklar, J.D. Foley, S.K. Feiner and K. Akeley,
Computer Graphics: Principles and Practice, 3rd ed., Addison-Wesley, Boston, 2014.

Many books that treat digital processing and analysis in remote sensing more
generally also contain good treatments on radiometric enhancement techniques,
most of which have gone to later editions, including

R.A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed.,
Academic, Burlington, Mass., 2006.

J.R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.,
Prentice-Hall, Upper Saddle River, N.J, 2015.

One of the first treatments of digital image processing in the remote sensing context,
now more of historical value, is

J.G. Moik, Digital Processing of Remotely Sensed Images, NASA, Washington, 1980.

For examples of histogram equalisation and Gaussian contrast stretching see

A. Schwartz, New techniques for digital image enhancement, Proc. Caltech/JPL
Conference on Image Processing Technology, Data Sources and Software for
Commercial and Scientific Applications, Pasadena, California, 3–5 Nov. 1976, pp. 2.1–
2.12, and

J.M. Soha, A.R. Gillespie, M.J. Abrams and D.P. Madura, Computer techniques for geo-
logical applications, Proc. Caltech/JPL Conference on Image Processing Technology, Data
Sources and Software for Commercial and Scientific Applications, Pasadena, California, 3–
5 Nov. 1976, pp. 4.1–4.21.

In order to enhance spatial detail a multicycle version of contrast enhancement can
be used, in which the brightness value mapping function of (4.1) is cyclic. With this
approach several sub-ranges of image brightness are each mapped to the full range
of output brightness. The method is attributable to the following report

P.S. Chavez, G.L. Berlin and W.B. Mitchell, Computer Enhancement Techniques of
Landsat MSS Digital Images for Land Use/Land Cover Assessment. US Geological Survey,
Flagstaff, Arizona, 1979.
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4.8 Problems

4:1 One popular type of histogram modification is to match the histogram of an
image to a Gaussian or normal function. Suppose a raw image has the his-
togram indicated in Fig. 4.19. Produce the look-up table that describes how
the brightness values of the image should be changed if the histogram is to be
mapped, as nearly as possible, to a Gaussian histogram with a mean of 8 and a
standard deviation of 2 brightness values. Note that the sum of counts in the
Gaussian reference histogram must be the same as that in the raw data his-
togram, or both should be normalised to unity.

4:2 The histogram of a particular image is shown in Fig. 4.20. Produce the
modified version that results from:
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Fig. 4.19 Histogram to be matched to a Gaussian
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(i) a linear contrast stretch which makes use of the full range of brightness
values

(ii) a piecewise linear stretch that maps the range (12, 23) to (0, 31) and
(iii) histogram equalisation (i.e., producing a quasi-uniform histogram).

4:3 The histogram for a two-band image is shown in Fig. 4.21. Determine the
histogram that results from a simple linear contrast stretch on each band
individually.

4:4 Derive mathematically the contrast mapping function that equalises the con-
trast of an image which has a Gaussian histogram at the centre of the
brightness value range, with the extremities of the range being three standard
deviations from the mean.

4:5 What is the shape of the cumulative histogram of an image that has been
contrast (histogram) equalised? Can this be used as a figure of merit in his-
togram equalisation?

4:6 Clouds and large regions of clear, deep water frequently give histograms for
near infrared imagery that have large high brightness value or large low
brightness value occurrence bars respectively. Sketch typical histograms of
these types. Using the material of Sect. 4.4 show how these histograms would
be equalised and comment on the likely undesirable appearance of the cor-
responding contrast enhanced images. Show that the situation can be rectified
somewhat by artificially limiting the large bars to values not greatly different
from the heights of other bars in the histogram, provided the accompanying
cumulative histograms are normalised to correspond to the correct number of
pixels in the image.

4:7 Two images are to be joined side by side to form a mosaic for a particular
application. To give the new, combined image a uniform appearance it is
decided that the range and distribution of brightness levels in the first image
should be made to match those of the second image, before they are joined.
This is to be carried out by matching the histogram of image 1 to that of image
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Fig. 4.21 Two dimensional
image histogram
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2 (the reference). The original histograms are shown in Fig. 4.22. Produce a
look up table that can be used to transform the pixel brightness values of
image 1 in order to match the histograms as nearly as possible. Use the
look-up table to modify the histogram of image 1 and comment on the degree
to which contrast matching has been achieved. Now repeat the exercise with
the histogram of image 1 chosen as the reference.
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Fig. 4.22 Histograms of images to be contrast matched
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4:8 Describe the advantages or otherwise in applying contrast enhancement if an
image is to be analysed by (i) photointerpretation, and (ii) quantitative com-
puter methods.

4:9 A particular two band image has the two dimensional histogram shown in
Fig. 4.23. It is proposed to enhance the contrast of the image by matching the
histograms in each band to the triangular profile shown. Produce look-up
tables to enable each band to be enhanced and, from these, produce the new
two-dimensional histogram for the image.

4:10 Plot the equalised histogram for the example of Table 4.2. Compare it with
Fig. 4.9 and comment on the effect of restricting the range of output bright-
nesses. Repeat the exercise for the cases of 4 and 2 output brightness values.

4:11 Suppose an image has been modified by

(i) linear contrast enhancement
(ii) histogram equalisation.

You have available the digital image data for both the original image and the
contrast modified versions. By inspecting the data (or histograms) describe
how you might determine quantitatively which technique was used in each
case.

4:12 Repeat the example in Fig. 4.13 but reverse the histograms used as the source
and reference.

4:13 Examine the two dimensional histogram of Fig. 4.21. Noting the clustering of
the occurrences close to the diagonal through the histogram can you say
something about the relative appearances of the two bands of the image. What
about if all the occurrences were exactly along the diagonal of the two
dimensional histogram?

4:14 Match the source histogram in Fig. 4.15 to the top histogram of Fig. 4.22.
4:15 Take the spectral domain plot you constructed in Problem 3.8 from the data in

Table 2.2b. Apply the following linear contrast stretches to the original pixel
brightnesses and redo the Problem 3.8 exercise. Comment on whether class
separability has been affected by the contrast changes.

For the band 5 data y ¼ 2xþ 5

For the band 7 data y ¼ 3xþ 4
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Chapter 5
Geometric Processing
and Enhancement: Image Domain
Techniques

Abstract Methods by which the geometric properties of an image can be modified
are covered. These include reducing noise, enhancing edges or sharpening image
detail, all of which are illustrated by examples. Those operations are shown to
depend upon processing a neighbourhood of pixels about a central pixel of interest;
this is identified as the spatial convolution operation. Most commonly, spatial
convolution and thus the operations of smoothing and sharpening are implemented
by the use of templates, kernels or filters defined over a neighbourhood about the
pixel being processed. It is shown that the desired results are obtained by running
the template over an image, pixel by pixel, and executing a defined operation
between the template entries and pixel brightness values. Means are also presented
for describing geometric properties such as texture and spatial correlation. Image
morphological analysis is covered as a further example of template-based pro-
cessing, in which image objects can be refined.

5.1 Introduction

This chapter presents methods that allow us to analyse or modify the geometric
properties of an image. Our attention, first, is on techniques for filtering images to
remove noise or to enhance geometric detail. We will then look at means by which
we can characterise geometric properties like texture, and processes that allow us to
analyse objects and shapes that appear in imagery.

Our methods here are called image domain techniques because the results are
generated by working on the pixel brightness values directly. An alternative
approach is based on the spatial frequency domain, in which the images are
transformed first using Fourier and wavelet methods. Those are the subject of
Chap. 7.
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5.2 Neighbourhood Operations in Image Filtering

In contrast to the point operations used for radiometric modification of image data,
techniques for geometric processing are characterised by operations over local neigh-
bourhoods ofpixels, as illustrated inFig. 5.1. The result of a neighbourhoodoperation is
still a modified brightness value for the single pixel at the centre of the neighbourhood;
however, the new value is determined by the brightnesses of all the local neighbours
rather than just the original brightness value of the central pixel alone.

The neighbourhood shown in Fig. 5.1 is square and of dimension 3 � 3. It is
defined by a template or window that is laid over the image. In practice the template
can be any shape and size and, as we shall see, that partly defines the outcome of the
resulting operation; usually though it has an odd number of cells horizontally and
vertically so that it has a natural centre to place over the image pixel being processed.

While the template has been introduced as a means for defining the image
neighbourhood of interest it most often has numbers associated with each of its cells
as seen in Fig. 5.2; those numbers contribute to the outcome of the operation. The
result is most easily expressed in the (m,n) coordinate system of the template. The
new brightness value for the pixel ði; jÞ at the centre of the template is

r i; jð Þ ¼
X
m

X
n

/ m; nð Þt m; nð Þ ð5:1Þ

in which / m; nð Þ are original pixel brightness values addressed according to their
positions under the template; t m; nð Þ is the corresponding template entry with its
centre located at i; jð Þ. The origin for the template coordinates is at the upper
left-hand corner. Sometimes the template entries collectively are referred to as its
kernel and the template itself is sometimes called a mask or filter. Different kernels
will implement different geometric modifications of the image. The coordinate
system we have used here to address image pixels also has its origin at the top
left-hand corner, consistent with referring to the first row as the “first line of pixels”
as normally displayed.

If the template isfilled entirelywith zeros except for an entry of “1” at its centre, then
application of (5.1)will leave the image unchanged.While thismay seem to be a strange
and unproductive operation it will feature in compound template-based operations
designed to achieve specific image processing outcomes, as we will see later.

Equation (5.1) shows the template operating algebraically on the image pixels.
Non-algebraic operations are also possible as we will see later in this chapter. We
could write (5.1) more generally as

r i; jð Þ ¼ T m;n / i; jð Þf g ð5:2Þ

in which the operator T m;n represents how the template processes the brightness
values of the pixels covered by the template and centred on i; jð Þ. It could be an
operator whose kernel selects the maximum value of the pixels or calculates their
median value for example.
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To produce a geometrically modified image the template is run over the original
image line by line and column by column, centred on each pixel in turn, as illus-
trated in Fig. 5.3, creating new brightness values for the central pixels. Note that the
border pixels cannot, in principle, be modified because they do not have a full set of
neighbours. Often, they are left unprocessed and removed because there are usually
sufficiently many pixels in the original image that the lost edges are not a problem.
Sometimes artificial borders are created outside the image to allow the actual
borders to be processed. They are used in the generation of new edge pixel values
but are not themselves replaced by a template response. The external artificial
borders can be made up by replicating the actual border pixels. A theoretically more

pixel i,j

neighbourhood 
about pixel i,j

the neighbourhood is 
defined by a template

segment of the image 
covered by the template

the new brightness for the 
pixel at the centre of the 
neighbourhood is a 
func on of the brightness 
values of all the pixels in 
the neighbourhood and 
the nature of the template
chosen by the user

Fig. 5.1 Neighbourhood processing defined by a template operator
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Fig. 5.2 Demonstrating the operation of a numerical template of dimension 3 � 3 and the
coordinate convention used, based on the template

5.2 Neighbourhood Operations in Image Filtering 137



correct method for handling the borders derives from sampling theory, which we
treat in Chap. 7. That considers an image as though it were just one cycle within an
infinitely repeating sequence of images in both the horizontal and vertical direc-
tions. In that case the lines and columns of pixels outside the borders are those on
the opposite sides of the image. Although appealing this is rarely done in practice.

The template-based approach to the geometric modification of an image has a
theoretical basis in the mathematical operation of convolution, which is treated in
Sect. 5.8 following. Before looking at that we first examine some simple templates
and see how they modify imagery. We will then look at convolution in a little detail
so that we can develop a fuller understanding of the template method, and how it
can be generalised.

5.3 Image Smoothing

Images often contain noise, which usually shows as random variations of the bright-
nesses of the pixels about the actual values associated with real features and objects in
the scene. The noise can originate in the sensors thatwere used to acquire the data, from
any communications channels used to carry the information, and from quantisation
noise introduced when the raw signal data was digitised. One of the most common
geometric processing operations carried out with imagery is to smooth the data to
reduce the effect of noise. In this section we look at two approaches for smoothing.

5.3.1 Mean Value Smoothing

If the template has dimensions M � N and each of its entries has the value 1=MN
then (5.1) becomes

template is moved pixel by pixel
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Fig. 5.3 Moving the template over the image to create a processed version
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r i; jð Þ ¼ 1
MN

X
m

X
n

/ m; nð Þ ð5:3Þ

which is the mean value of the pixels covered by the template. The new brightness
for the pixel at the centre of the template is then the average brightness value in the
neighbourhood of that pixel.

Figure 5.4 shows the result of running a 1 � 3 smoothing template over a single
line of image data. The data contains an edge between bright (left-hand) and dark
(right-hand) regions. Either side of the boundary the noise fluctuations have been
reduced by the smoothing template. However, the edge has been smeared out over
several pixels. That degradation can be avoided if a threshold is applied to the
smoothing operation such that if the new brightness value is significantly different
from its old value then the old value is used. That is implemented by the following
algorithm. Let

q i; jð Þ ¼ 1
MN

X
m

X
n

/ m; nð Þ ð5:4aÞ

then r i; jð Þ ¼ q i; jð Þ if / i; jð Þ � q i; jð Þj j\T

¼ / i; jð Þ otherwise
ð5:4bÞ

where T is a user-specified threshold, which could be determined from a knowledge
or estimate of the signal to noise ratio of the image. Figure 5.4 shows how the use
of such a threshold can preserve boundaries and edges.

Templates of any shape and size can be used. Larger templates give more
smoothing and greater loss of fine detail. We describe fine detail in terms of high
spatial frequencies (see Chap. 7). If the detail changes rapidly across or down the
scene it is said to be high frequency, whereas low spatial frequency features vary
slowly across or down an image. Horizontal templates will smooth horizontal noise
and detail but leave detail in the vertical direction unaffected. In Fig. 5.5 the results
of applying several different smoothing templates to the same image are shown to
illustrate these points. Sometimes smoothing with a simple averaging template is
called box car filtering.

5.3.2 Median Filtering

An alternative to applying thresholding for avoiding edge deterioration when
smoothing is to use a median filter. In this case the kernel of the operator in (5.2) is
designed to find the median brightness of the pixels covered by the template, which
is then used as the new brightness for the central pixel. Whereas the mean of a set of
numbers is their average, the median is that number which sits numerically in the
middle of the set. For example, the median of the set 4, 6, 3, 7, 9, 2, 1, 8, 8 is 6,
whereas its mean is 5.3. Figure 5.6 shows the effect of applying a median filter to
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the data of Fig. 5.4 compared with simple mean value smoothing. It can be seen
that most of the boundary is preserved with the median operator.

An application for which median filtering is well suited is the removal of
impulse like noise. That is because pixels corresponding to noise spikes are atypical
among their neighbours and will be replaced by the most typical pixel in the
neighbourhood. Figure 5.7 shows the value of median filtering on an image that
contains impulsive black and white noise (sometimes called salt and pepper noise).

5.3.3 Modal Filtering

Another form of smoothing filter replaces the brightness of the central pixel by that
most commonly occurring among the pixels covered by the template. That is
referred to as the mode of the set and is illustrated in Fig. 5.8.

5.4 Sharpening and Edge Detection

The opposite to smoothing, in which high spatial frequency detail is reduced, is
image sharpening in which detail, including edges and lines, is enhanced. Two
techniques are in common use and are treated in the following. While the proce-
dures to be covered sharpen all high spatial frequency detail, the examples used are
based on edge detection and enhancement. We also consider edge detection
explicitly in Sect. 5.5.
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Fig. 5.4 Illustration of 1 � 3 smoothing along a single line of image data showing the
degradation of an edge, and its preservation if a threshold is used in the smoothing operation
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5.4.1 Spatial Gradient Methods

There are several implementations of this approach, but all depend on calculating
the local gradient in the brightness of an image in a pair of orthogonal directions.
Let r1 and r2 be measures of how the brightness changes in those directions, at
right angles to each other. We define the magnitude of the change as

rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þr2
2

q
ð5:5aÞ

and its direction as \r ¼ tan�1 r2=r1f g ð5:5bÞ

original

3x3 
smoothed

5x5 
smoothed

3x1 
smoothed

Fig. 5.5 Mean value
smoothing; in the last case
only horizontal detail has
been averaged
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The direction will not concern us any further here since it does not feature in
sharpening operations. It is of interest when finding contours in imagery and for
deriving slope and aspect models.

Application of (5.5) will extract the high spatial frequency detail. It is usual to
add that detail back to the original data so that the high frequencies are enhanced
and the image appears sharper. Usually, a weighted combination is employed along
the lines of

sharpened image ¼ original imageþ c� high spatial frequency detail

where c is a constant that controls the degree of sharpening.
Different spatial gradient methods for sharpening are distinguished by how they

estimate the orthogonal gradients r1 and r2. We now look at the most commonly
adopted definitions.

5.4.1.1 The Roberts Operator

If the estimates of r1 and r2 are produced from the differences between the
brightnesses of pixels diagonally separated, i.e.

r1 ¼ / i; jð Þ � / iþ 1; jþ 1ð Þ ð5:6aÞ

r2 ¼ / iþ 1; jð Þ � / i; jþ 1ð Þ ð5:6bÞ

then the Roberts Operator is generated from (5.5a). In principle, it computes the
gradient at the point (i + ½, j + ½), although the result is generally associated with
the pixel at i; jð Þ. The application of the Roberts Operator to the artificial image in
Fig. 5.9a, which has sharp horizontal and vertical transitions in brightness, is shown
in Fig. 5.9b.

5.4.1.2 The Sobel Operator

Perhaps a better spatial gradient estimator than the Roberts Operator is the Sobel
Operator which generates r1 and r2 for detecting edges in the horizontal and

2

2

24 2

6

4 3

3

mode=2

Fig. 5.8 Choosing the
(dominant) mode within the
template
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vertical directions centred on the pixel at i; jð Þ. While it derives most of its weight
from the pixels immediately above, below and to the sides of that at i; jð Þ, it is also
sensitive to the pixels diagonally about the pixel of interest. The individual
orthogonal components of gradient are

r1 ¼ / iþ 1; j� 1ð Þþ 2/ iþ 1; jð Þþ/ iþ 1; jþ 1ð Þf g
� / i� 1; j� 1ð Þþ 2/ i�1; jð Þþ/ i� 1; jþ 1ð Þf g

ð5:7aÞ

and r2 ¼ / i� 1; jþ 1ð Þþ 2/ i; jþ 1ð Þþ/ iþ 1; jþ 1ð Þf g
� / i� 1; j� 1ð Þþ 2/ i; j�1ð Þþ/ iþ 1; j� 1ð Þf g

ð5:7bÞ

which are equivalent to applying the 3 � 3 templates.

1 12

-2 -1-1

0 0 0

-1 10

0 1-1

-2 0 2

These templates are separately run over the image in the manner of Fig. 5.3 and the
results combined in (5.5a).

Applying the Sobel Operator to the image of Fig. 5.9a generates the result
shown in Fig. 5.9c. Again, a threshold would be specified to highlight major
transitions in brightness. In this case the boundaries in the image are highlighted by
two rows of pixels, one either side of the boundary.

5.4.1.3 The Prewitt Operator

If the weightings of 2 for the pixels directly above and below, and to either side of,
the central pixel in the calculations of (5.7) are changed to 1 then the result is the
Prewitt Operator, which has the template equivalents.

1 11

-1 -1-1

0 0 0

-1 10

0 1-1

-1 0 1

Again, the templates are applied to the image and the results combined in (5.5a).
Note that for the Roberts, Sobel and Prewitt operators the template entries sum to

zero. That is a feature of all operators that seek to highlight high spatial frequency
detail such as lines and edges, including the Laplacian operator below. The reason
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is that there should be zero response when those templates are applied to areas of
constant image brightness. In contrast, the entries in the templates used for
smoothing encountered earlier sum to a non-zero value—unity in the case of mean
value smoothing so that original image brightness values are preserved in homo-
geneous regions.

5.4.1.4 The Laplacian Operator

Examination of (5.6) shows that its two components are in fact the classical defi-
nition of the first derivative of the image brightness value function / i; jð Þ, albeit in
the diagonal directions. It is, of course, possible to look at the first derivatives as
incremental differences in the horizontal and vertical directions:

ri;j
1 ¼ / i; jþ 1ð Þ � / i; jð Þ ð5:8aÞ

ri;j
2 ¼ / iþ 1; jð Þ � / i; jð Þ ð5:8bÞ

in which the superscripts have been added to indicate the pixel address from which
the difference is computed.

The Laplacian operator1 is based on estimating the second derivatives in the
horizontal and vertical directions and summing them. The second derivative is the
derivative of the first derivative—it is a measure of how rapidly the first derivative
changes. Consider the horizontal direction first. The first derivative from the jth to
the jþ 1ð Þth pixel is given by (5.8a). In a similar way the first derivative (the
gradient) from the ðj� 1Þth to the jth pixel is
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Fig. 5.9 a Artificial image with vertical and horizontal edges, b application of the Roberts
Operator and c application of the Sobel Operator; the + entries represent indeterminate responses;
since the procedure finds a local gradient, edges and other features can be identified by selecting a
threshold above which they are kept and below which they are suppressed

1 R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Pearson Prentice-Hall,
Upper Saddle River, N.J., 2018.
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ri;j�1
1 ¼ / i; jð Þ � / i; j� 1ð Þ

The change in those first derivatives is the difference

ri;j
1 �ri;j�1

1 ¼ / i; jþ 1ð Þ � / i; jð Þ � / i; jð Þþ/ i; j� 1ð Þ
¼ / i; jþ 1ð Þ � 2/ i; jð Þþ/ i; j� 1ð Þ

ð5:9aÞ

which is the second derivative at the point i; j. Similarly, in the vertical direction the
change from the ith to the ðiþ 1Þth pixel, less that from the ði� 1Þth to the ith pixel,
i.e., the vertical second derivative at the point i; j, is

ri;j
2 �ri�1;j

2 ¼ / iþ 1; jð Þ � 2/ i; jð Þþ/ i� 1; jð Þ ð5:9bÞ

The Laplacian operator is the sum of (5.9a) and (5.9b) and given the symbol

r2/ i; jð Þ ¼ / i� 1; jð Þþ/ i; j� 1ð Þ � 4/ i; jð Þþ/ i; jþ 1ð Þþ/ iþ 1; jð Þ ð5:10Þ

which is equivalent to the template.

or 

0 0+1

+1 00

+1 -4 +1

0 0-1

-1 00

-1 +4 -1

The second version, with the signs reversed, is often encountered in practice,
particularly in the context of unsharp masking treated in the next section.

Sometimes the second derivatives in the two diagonal directions are added as
well to give the templates.

or 

1+ 1+1+

+1 +1+1

+1 -8 +1

-1 -1-1

-1 -1-1

-1 +8 -1
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5.4.2 Subtractive Smoothing (Unsharp Masking)

As seen in Figs. 5.4 and 5.5 a smoothed image retains low spatial frequency detail
but has its high spatial frequency features such as edges and lines attenuated (unless
thresholding has been employed to preserve sharp transitions). If a smoothed image
were subtracted from the original, we would be left, therefore, with just the high
spatial frequency detail—largely the edges and lines. That is illustrated in Fig. 5.10,
using the data of Fig. 5.4. If the high frequency detail so detected is then added
back to the original data, the result is an image in which the higher spatial fre-
quencies, including edges and lines, are enhanced, as seen in Fig. 5.10c.

The difference operation can result in negative values as seen in Fig. 5.10b.
Provided the result is not for display that is not a problem. If display is required, a
fixed brightness value offset can be added to all pixels and the results rescaled to the
display brightness range so that mid grey represents no difference. Positive dif-
ferences will be brighter than the mid-range and negative differences will be darker.
The same scaling approach is adopted for the final result in which the difference
image has been added back to the original. Again, the result is scaled to fit within
the allowed brightnesses of the display device.

Figure 5.11 shows the technique applied to each of 3 bands of a Landsat
Multispectral Scanner colour composite image. As seen, the sharpened image has
clearer high spatial frequency detail, although there is also a tendency for noise to
be enhanced.

The technique commonly goes by the name of unsharp masking; the high fre-
quency image that results from subtracting a smoothed version from the original is
sometimes referred to as a mask. Although it apparently requires three steps
(smoothing, subtraction, adding to the original) it can in fact be implemented by a
single template that combines those steps into a single operation, as the template
arithmetic shown in Fig. 5.12 demonstrates. Sharpening of a colour image product
can also be performed using the pan sharpening procedure treated in Sect. 6.8.

5.5 Edge Detection

The operators defined in Sect. 5.4 effectively detect edges, although as we have
seen they will enhance high spatial frequency detail in general. If the gradient
estimators r1 and r2 are kept separate and not combined in the magnitude
operation of (5.5a) they will individually detect edges in the vertical and horizontal
directions. That can be seen by looking at the structures of the templates for the
Roberts, Sobel and Prewitt operators.
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It is possible to build templates with kernels that detect edges in diagonal
directions as well. Suitable Roberts and Sobel diagonal edge detectors are.

Roberts 

Sobel 

0 -1-1

+1 0+1

+1 0 -1

1- 01-

+1 +10

-1 0 +1

0 -2-1

+1 0+2

+1 0 -1

-2 0-1

+1 +20

-1 0 +1
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brightness
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brightness 
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edge in original 
line of image data

edge detail 
reduced by 
smoothing

edge detail detected

a

d

c

b

e

edge detail enhanced

Fig. 5.10 Unsharp masking: a original line of image data and smoothed version, b detected high
spatial frequency detail, c sharpened version and d, e mapping the results of b, c to the allowed
brightness range of a display device
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sharpen each band 
separately by 

subtrac ve smoothing

Fig. 5.11 Subtractive smoothing (unsharp masking) for image sharpening
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Fig. 5.12 The steps in unsharp masking, and a single equivalent template
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Other, more sophisticated forms of edge detector are available including the
Marr-Hildreth and Canny operators2; however, they are not usually encountered in
remote sensing applications.

5.6 Line and Spot Detection

Linear features such as rivers and roads are usually detected as pairs of edges if they
are more than a pixel in width. If they are almost exactly one pixel wide, then they
can be extracted with the templates.

 vertical  horizontal  diagonal 

-1 -12

2 -1-1

-1 2 -1

1- 1-1-

-1 -1-1

2 2 2

2 -1-1

-1 2-1

-1 2 -1

1- 21-

-1 -12

-1 2 -1

Examination of the form of the Laplacian operator in Sect. 5.4.1.4 suggests it is
suited to the detection of spots in imagery, characteristically about a single pixel in
size.

5.7 Thinning and Linking

The outputs from the above operators can often contains breaks in the edges and
lines detected because of noise and other local variations in the original image data.
Also, as we have seen, some lines and edges may be thicker than necessary. Should
an edge or line map of high integrity be required, the operator outputs may need
tidying up by linking edge and line features that are separated by breaks, and by
thinning others. Thinning and linking are not operations encountered regularly in
remote sensing. Good treatments can be found in standard, more general image
processing texts.3 The morphological operations given in Sect. 5.11 can also be
employed for these purposes.

2 Gonzalez and Woods, loc. cit.
3 See Gonzalez and Woods, loc. cit., and K. R. Castleman, Digital Image Processing, 2nd ed.,
Prentice Hall, N.J., 1996.
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5.8 Geometric Processing as a Convolution Operation

While the template method for smoothing and sharpening presented above is
intuitive, it does in fact have a theoretical basis. In this section we develop the more
formal convolution approach to geometric processing. Having done so we will
understand more clearly the origins of the methods just treated and will be able to
devise still more sophisticated templates. The convolution approach also allows a
direct comparison of these image domain techniques with those based on the
Fourier transformation that operate in the spatial frequency domain.

Convolution is a process that occurs surprisingly often in physical systems
including optical imaging devices, imaging radar, and the transmission of signals
through electronic circuits. We introduce the concept here for a signal passing
though some unspecified system, and then generalise it to the case of images.

Suppose we have a function of time f tð Þ. If it is passed through some system,4

such as an amplifier, a telephone network, a link to a satellite in space or similar, as
shown in Fig. 5.13, then the signal y tð Þ that emerges from the system is given by
the convolution integral

y tð Þ ¼
Z1

�1

f sð Þhðt � sÞds, f tð Þ⋇ h tð Þ ð5:11Þ

in which h tð Þ describes the properties of the system through which the signal
passes. It is sometimes called its transfer function but is more properly called its
impulse response. The convolution operation also features strongly in the handling
of digital signals and images as seen in the material of Sects. 7.6 and 7.10.

Note that there is a dummy variable s in (5.11) which describes the various
functions inside the integral and disappears once the integration is performed. Also,
note that we adopt the symbol ⋇ to represent the convolution of two functions.
Detailed treatments of the concept of convolution in the context of processing
images will be found in Castleman5 and Gonzalez and Woods.6

Equation (5.11) is the convolution integral in just one dimension—time. For
images we have two independent variables—the spatial coordinates that describe
pixel location. Consequently, we need a two dimensional version of the convolution
integral.

Even though the pixels in a remotely sensed image are described by discrete
image coordinates, for the moment assume that any point in a scene can be
described by the pair of continuous variables x and y and that the scene properties
are represented by the brightness function / x; yð Þ: Now suppose we image or view

4 This assumes the system is linear, which is almost always the case for those we encounter in
image processing. A linear system is one in which adding two inputs gives a response which is the
sum of the individual responses.
5 Castleman, loc cit.
6 Gonzalez and Woods, loc. cit.
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that scene through some form of filter or lens system that has the two dimensional
impulse response k x; yð Þ. Then the resulting image is given by the two dimensional
convolution

r x; yð Þ ¼
Z1

�1

Z1

�1

/ u; vð Þk x� u; y� vð Þdudv ð5:12Þ

k x; yð Þ is the impulse response of the system that operates on the image; we have
given it the symbol k to emphasise that it is a kernel, similar to the templates used
earlier. It is also often referred to as the system function. If the system represents an
imaging device, then k x; yð Þ would be the device’s point spread function; (5.12)
then describes the degradation of the properties of the scene observed in an image.
Alternatively, if k x; yð Þ is one of the kernels specified earlier7 for geometrically
processing an existing image, then (5.12) is a mathematical specification of the
sliding template operation illustrated in Fig. 5.3; in this case / x; yð Þ and r x; yð Þ
represent the original and processed versions of the image respectively.

For digital image data r x; yð Þ, / x; yð Þ and k x; yð Þ are discrete rather than con-
tinuous and have limited ranges in the two coordinate directions, not extending to
�1 as implied by the integrals in (5.12). It is necessary therefore to modify (5.12)
so it can be applied to digital imagery. The integrals will be replaced by discrete
sums and the continuous functions by their digital counterparts. If we let i; jð Þ be the
discrete versions of x; yð Þ and m; nð Þ be discrete values of the integration variables
u; vð Þ then (5.12) is written

r i; jð Þ ¼
X
m

X
n

/ m; nð Þk i� m; j� nð Þ ð5:13Þ

The sums are taken over all values of the dummy variables m; n. Strictly, the ranges
of m; n are the same as the ranges of i; j and they have the same origin in the manner
in which (5.13) is expressed. Similarly, the template is, in principle, the same size as
the image and its origin is the same as the image origin.8

To see how (5.13) would be used in practice it is necessary to interpret the
sequence of operations it incorporates. The negative signs on m; nð Þ in (5.13) imply

f(t) h(t) y(t)

Fig. 5.13 System model for
demonstrating the
convolution operation

7 With one small modification, seen in the following paragraphs.
8 There is a further subtlety that only becomes apparent when sampling theory is understood (see
Chap. 7). When a continuous image is sampled to convert it to digital form it effectively becomes
just one cycle in each dimension of an infinite periodic repetition of samples; the same is the case
for the template. In practice, we often ignore that property. It is however important when con-
sidering the interaction with a template that is comparable in size to the image.
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reflections through the origin in each of the m and n axes. That is equivalent to a
rotation of the system function k i; jð Þ by 180° before it is used in (5.13). We call the
rotated function t m� i; n� jð Þ.

Next, (5.13) says that the value of r i; jð Þ is given by multiplying, for all values of
m; n, the image and the rotated system function and then summing the result. That
gives the new value for the pixel at the specific location i; jð Þ—in other words just
for one pixel in the new image. To get the modified values for all pixels we need to
adopt in turn all values of i; jð Þ in (5.13), which has the effect of relocating the
template to each i; jð Þ, pixel by pixel, as in Fig. 5.3.

The pixel and template origins in (5.13) are in their respective upper left-hand
corners. It is more convenient in practice, when we restrict the templates or kernels
to a small neighbourhood about i; jð Þ, to address pixel and template entries by
coordinates which have their origin at the upper left-hand corner of the finite sized
template. That allows (5.13), with the kernel k i� m; j� nð Þ replaced by the rotated
system function t m� i; n� jð Þ; to be re-expressed in simple form as (5.1).

The templates of the previous sections, and in (5.1) in particular, are equivalent
to the rotated version of the system function k m; nð Þ. Consequently, any geometric
processing operation that can be modelled by convolution can also be expressed in
template form. For example, if the point spread function of an imaging device is
known then an equivalent template can be derived for computing what the image of
a scene will look like, noting that the 180° rotation is important if the system
function is not symmetric.

Templates for altering the geometric properties of an image can be chosen
intuitively, as with smoothing in Sect. 5.3, or can be designed using a knowledge of
filtering in the spatial frequency domain, based on the Fourier transformation dis-
cussed in Chap. 7.

5.9 Image Domain Techniques Compared with Using
the Fourier Transform

Most geometric processing operations can be implemented using either the image
domain procedures of this chapter or the Fourier transformation to be treated in
Chap. 7. Which option to adopt depends on several factors, such as user familiarity
and processing limitations. The Fourier transform method is more flexible and
allows a much greater range of processing operations to be applied. Another con-
sideration relates to processing time. This matter is pursued here in order to indicate,
from a cost viewpoint, when one method might be chosen in favour of the other.

The Fourier transform spatial frequency domain process and the template
approach both consist only of sets of multiplications and additions. No other
mathematical operations are involved. It is sufficient, therefore, to make a time
comparison based upon the number of multiplications and additions necessary to
achieve a result. Here we will ignore the additions since they are generally faster
than multiplications in most cases and also since they are comparable in number to
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the multiplications involved. For an image of K � K pixels, and a template of size
M � N, the total number of multiplications necessary to evaluate (5.1) for every
image pixel (ignoring any difficulties with the edges of the image) is

NC ¼ MNK2

From the material presented in Sect. 7.9 it can be seen that the number of (complex)
multiplications required in the frequency domain approach is

NF ¼ 2K2log2KþK2

A processing time comparison is, therefore, given by

NC

NF
¼ MN= 2log2Kþ 1ð Þ

When this figure is below unity it is more economical to use the template operator
approach. Otherwise, the Fourier transform method is more cost effective. That
does not take into account program overheads, such as the bit shuffling required in
the frequency domain approach and the added cost of complex multiplications;
however, it is a reasonable starting point in choosing between the methods.

Table 5.1 shows values of Nc=Np for various image and template sizes, from
which it is seen that, provided a 3 � 3 template will implement the operation
required, it is always more cost-effective than processing based on the Fourier
transformation. Similarly, a rectangular 3 � 5 template is more cost effective for
practical image sizes. The spatial frequency domain technique is seen to be eco-
nomical if very large templates are needed, although only marginally so for large
images. Note, however, that the frequency domain method is able to implement
processes not possible (or at least not viable) with template operators. Removal of
periodic noise is one example. That is particularly simple in the spatial frequency
domain but requires unduly complex templates or even nonlinear operators (such as
median filtering) in the image domain. Nevertheless, the template approach is a
popular one since often 3 � 3 and 5 � 5 templates are sufficient in many cases.

5.10 Geometric Properties of Images

The grey level histograms treated in Chap. 4 summarise the radiometric properties
of images. We now look at a number of measures that characterise geometric
structure. Image geometry is effectively characterised by the inter-relationships
between pixels at different locations. For example, sets of pixels in a given
neighbourhood may describe an object, such as a field or roadway, while repeating
patterns of pixels define any texture-like qualities in a scene. We now look at both
of those concepts.

154 5 Geometric Processing and Enhancement: Image Domain Techniques



5.10.1 Measuring Geometric Properties

When thinking about the geometric nature of an image a logical consideration is
how related adjacent pixels might be. In agricultural regions, for example, it is
highly likely that neighbouring pixels will be of the same ground cover type and
thus will be similar in brightness in each of the recorded data channels. Also, road
and river systems consist of sets of connected pixels of comparable brightness. We
are then led to think about means by which we might describe the spatial rela-
tionships between pixels. In Chap. 8, when we look at image classification, we will
do that using a set of conditional probabilities that describe the likelihoods of
neighbouring pixels being from the same ground cover class. Here we are interested
in measures that apply to the pixel brightness values in a single channel of image
data.

A simple and obvious measure is to compare the brightnesses of pixels by taking
their differences. Although logically we might look at adjacent pixels there is also
value in comparing pixels further apart. Among other things that will lead us to
definitions for texture. If we use the symbol k 2 i; jf g to represent either the row or
column index of a pixel, then the brightness difference of two pixels from the same
channel, spaced h apart along a given row or down a given column, is

/ kð Þ � / kþ hð Þ

Usually, single pixel measures are not that helpful. Instead, we might be inter-
ested in the difference between all pixels in the image and their neighbours h away
as some sort of measure of similarity or correlation over a given separation. To do
so we could average the brightness differences, but of course that risks the can-
cellation of positive and negative differences, so we average the squared distances
instead, to get

Table 5.1 Time comparison of geometric processing using templates compared with the Fourier
transformation approach; this is based upon a comparison of multiplications (real or complex)

etalpmeT size 

Image size 3 x 3 3 x 5 5 x 5 5 x 7 7 x 7 

128 x 128 0.60 1.00 1.67 2.33 3.27 

256 x 256 0.53 0.88 1.47 2.06 2.88 

512 x 512 0.47 0.79 1.32 1.84 2.58 

1024 x 1024 0.43 0.71 1.19 1.67 2.33 

2048 x 2048 0.39 0.65 1.09 1.52 2.13 

4096 x 4096 0.36 0.60 1.00 1.40 1.96 
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var ¼ 1
K

XK
k¼1

/ kð Þ � / kþ hð Þf g2 ð5:14Þ

which will be recognised as a variance-like measure—in fact it is the variance in
pixel brightness in the direction of interest; K is the number of brightness pairs
chosen for the computation. Often that might be all the available pixel pairs in that
direction.

If we vary the separation h then we can construct a graph that shows the variance
(essentially how different the pairs of pixels are on the average) as a function of
separation. The graph is called a variogram. Sometimes half the variance is plotted;
we then have a semivariogram. As the semivariance increases the correlation or
similarity of pixels on the average decreases. Conversely, highly correlated pixel
pairs will exhibit small semivariance and will plot low on a semivariogram. If there
is spatial periodicity in the landscape the semivariogram will reflect that behaviour.

Several properties can be derived from the semivariogram, which are best
illustrated on the idealised form shown in Fig. 5.14; they include the sill (its
asymptotic maximum value, if it exists), the nuggett variance (the extrapolated
point of intersection with the ordinate), sometimes taken to indicate the noise
properties of the image since it represents variance that is not related to the spatial
properties of the scene, and the range, which is the lag or separation at which the
sill is reached.

The image of Fig. 5.15 is a Landsat ETM+ image of a region surrounding
Canberra, Australia. Figure 5.16 plots horizontal semivariograms for the four
regions indicated.9 Note that grassland exhibits the least variance and thus the
greatest correlation over the image, while the suburban region is least correlated.

5.10.2 Describing Texture

Many of the surfaces we observe about us in our day-to-day life are textured—that
is they seem to have some form of quasi-repeating pattern that readily tells us
whether the surface is moderately smooth, rough but nominally repetitive (such as a
carpet) or rough and strongly repetitive, such as a piece of linen cloth. The same is
the case for satellite imagery. Grassland, crops and forests all appear differently
textured to our observation—that is they are composed of some form of natural
scale that seems to repeat on the average. While we can describe textures quali-
tatively, and can certainly discriminate among them using our own eyes, quanti-
tative characterisation of texture is not so simple. We have to start by finding a

9 These results were produced by Associate Professor Xiuping Jia of the University of New South
Wales.
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measure that captures the spatial properties of a scene which reveal texture. Those
properties have to do with repetition, on the average.

A long-standing spatial measure is the grey level co-occurrence matrix (GLCM)
defined in the following way.10 To make the development simple, imagine we want
to detect a component of texture just in the horizontal direction in a particular
region. To do that we could see how often two particular grey levels occur in that
direction in the selected region, separated by a specified distance. Let gð/1;/2jh; hÞ

sill

nuggett variancese
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ar
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nc

e

lag (h)range

Fig. 5.14 An idealised
semivariogram when there is
no spatial periodicity present

forest

suburban

mountainous

grassland

Fig. 5.15 Portion of a
Landsat ETM+ image near
Canberra, Australia showing
four regions used to compute
geometric properties

10 R. M. Haralick, Statistical and structural approaches to texture, Proc. IEEE, vol. 67, no. 5, May
1979.

5.10 Geometric Properties of Images 157



be the relative occurrence of pixels with grey levels /1 and /2 spaced h apart in the
h direction—for the moment chosen as the horizontal direction. Relative occurrence
is the number of times each grey level pair occurs, divided by the total possible
number of grey level pairs. The GLCM for the region of interest is the matrix of
those measurements over all grey level pairs; there will be as many GLCMs as there
are values of h and h. If the pixels are described by L possible brightness values
then the matrix will be L � L: Given that L can be quite large, the brightness value
range is often reduced by looking for co-occurring pairs of brightness value ranges.
Alternatively, the dynamic range of the data can be reduced (e.g., from 10 to 5 bit
data) before processing. We generally look for similar behaviour in other directions,
such as vertically and diagonally, in which case there would be four matrices for the
chosen values of h. Often h is used as a variable to see whether texture exists on a
local or more regional scale. Sometimes the GLCMs computed for various values of
h are kept separate to see whether the texture is orientation dependent; alternatively,
they can be averaged on the assumption that texture will not vary significantly with
orientation.

Once we have the GLCMs for the region of interest it is then usual to set up a
single metric computed from each matrix to use as a texture descriptor. A range of
measures is possible one of which is to describe the entropy of the information
contained in the GLCM, defined by

H h; hð Þ ¼ �
XL
/1¼1

XL
/2¼1

g /1;/2jh; hð Þlogfg /1;/2jh; hð Þg ð5:15Þ

Entropy will be highest when all entries in the GLCM are equiprobable—when the
image is not obviously textured—and will be low when there is a large disparity in
the probabilities, as happens when significant texture is present. Another measure is
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energy which is the sum of the squared elements of the GLCM. It will be small
when the GLCM elements are small, indicating low texture.

Figure 5.17 shows graphs11 of entropy and energy for the four regions indicated
in Fig. 5.15, within which just the horizontal GLCMs were computed for a range of
values of lag, h. Those calculations used just the first ETM+ band—the visible blue,
which was reduced in dynamic range to 5 bits before any calculations were per-
formed. Two points are noteworthy. First, entropy increases, and energy decreases,
with lag, indicating that the texture is falling away at larger spacing. Secondly the
four cover types chosen—grass, forest, mountainous and suburban—are separable
by their texture, with grassland exhibiting the strongest texture. The suburban and
mountainous regions are seen to be low in texture by comparison and are com-
parable to each other for the range of scales chosen. Note that entropy and energy
behave oppositely to each other as expected.

5.11 Morphological Analysis

While most interest in digital processing of remotely sensed imagery relates to
enhancing radiometric and geometric properties, or to interpreting cover types using
the mapping and labelling procedures to be treated in later chapters, there are
occasions when we are interested in specific objects. Those objects will be defined
by connected groups of pixels and could represent agricultural fields, river systems
and road networks, or the building blocks of an urban scene.

Often those objects are not well defined. The image of an agricultural field may
have less regular boundaries than is the case in reality because of system noise, or
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Fig. 5.17 Entropy and energy computed from the grey level co-occurrence matrices for the fields
in Fig. 5.15

11 These results were produced by Associate Professor Xiuping Jia of the University of New South
Wales.
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limitations in the analytical procedures used to identify the field. Similarly, a
homogeneous field may end up with incorrect inclusions of other cover types.
Roads and river networks, likewise, might exhibit gaps and have variable thick-
nesses, again because of limitations in the processing algorithms, such as the line
detectors of Sect. 5.6, and the nature of the data available. The morphological
operations to be introduced in this section are helpful in cleaning up such problems
by operating on the objects themselves.

Morphological processing is a template-based operation of the form described in
(5.2). As with the template operations we looked at earlier, the choice of the
operator T m;n establishes how the object in an image is modified.

The images that contain the objects in which we are interested in this treatment
have binary brightness values for each pixel. Said another way, the background has
one value and all the pixels that define the object have a different brightness value.
Figure 5.18 contains such an object, which might be a field. Whether it consists of a
single field or a long narrow field adjacent to a larger rectangular field is hard to
discern because of the join between what could be two objects; that may be the result
of the processing operation that led to the object(s) being identified in the image in
the first place. Also shown in Fig. 5.18 is an elongated object that emulates a river
which might have been extracted from an image using a sharpening template.

In morphological processing the template operation T m;n is defined in terms of a
structuring element (SE), which is effectively a template in which the elements are
present or not present, often represented respectively by template entries of 1 or 0.
As with the geometric processing operations considered earlier, the SE is placed
over each image pixel in turn, similar to the process shown in Fig. 5.3. For each
location, the result of applying the structuring element to the image is a decision as
to whether the pixel under the centre of the SE is a member of the object or not.
That decision will depend on how the entries in the structuring element are used
with respect to the object pixels being examined. This is a logical, rather than an
algebraic, operation.

Note that there is no concept of generating a new brightness value for the pixel.
Instead, the outcome of the operation is whether the pixel is a member of the set of
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Fig. 5.18 Two objects to be used to demonstrate morphological operations
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pixels that define the object, or a member of the set of pixels that define the
background. That leads us naturally to consider morphological processing in the
language of set theory.

The structuring element can, in principle, be any shape or size. We will choose a
3 � 3 example to illustrate the essential points about morphological processing, but
it will become obvious how to use other variants. Two 3 � 3 examples are shown
in Fig. 5.19. Both can be represented as a box with binary elements. In image
processing it is common to define the SE by rectangles and to indicate by 1 those
cells which take part in the morphological processing and by 0 those cells which do
not, as shown.

We will now introduce some specific processing operations.

5.11.1 Erosion

As its name implies this operation has the effect of eroding, and thus reducing the
size of, an object. It has the particular advantage that it can help to reduce ragged
edges. It is defined by deciding that a pixel is part of an object if the SE, when
centred on that pixel, is completely enclosed by the object. As illustrated in
Fig. 5.20, if any part of the SE is outside the object, even though centred on an
object pixel, that pixel is removed from the object. Thus, the size of the object is
reduced.

We now express this operation in the notation of set theory. Let S represent the
set of members of the structuring element and O represent the set of pixels from
which the object is composed. If the structuring element is centred on the image
pixel at i; jð Þ then we represent that by adding the pixel address as subscripts to the
SE, viz. Si;j. If, at a particular location, the structuring element is completely inside
the object then it can be said to be a sub-set of the object, which is written Si;j�O.
The eroded object is the set of pixels, with addresses i; jð Þ that satisfy that subset
condition. If we let E represent the set of pixels that describe the eroded object, then
we express that object as

E ¼ O€S ¼ fi; jjSi; j�Og ð5:16Þ
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Fig. 5.19 Examples of 3 � 3 structuring elements
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In words, this equation says that the eroded object is the set of points ði; jÞ that,
when used as the centre of the SE, satisfy the condition that the SE is a sub-set of (is
completely enclosed within) the original object. The symbol € is used to represent
erosion.12 Figure 5.21 shows the effect of eroding the objects of Fig. 5.18 with a
square 3 � 3 SE. As seen, the outcome is a greatly reduced object, with protrusions
and thin linkages reduced. In the case of the river object, since its width is no
greater than 3 pixels at any point, it is totally eroded away.

5.11.2 Dilation

Dilation has the opposite effect on an object to erosion; it has the tendency to grow
the object’s size and to fill in holes. It is defined by deciding that a pixel is part of an

structuring element has to be completely inside the original object in order 
that the pixel at its centre be considered as part of the eroded object

original object eroded object

Fig. 5.20 Illustrating the erosion operation; the image with the object in it is assumed to extend
beyond the sample shown, with continuity in brightness value, as indicated by the corner arrows
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Fig. 5.21 Erosion of the objects of Fig. 5.18 using a 3 � 3 structuring element

12 Castleman uses �, which some other authors use for a thinning operation.
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object if the SE, when centred on that pixel, partly overlaps the object. This is
illustrated in Fig. 5.22, showing that the size of the object is expanded. How can we
write this in set notation? We start by saying that the only SE centre locations that
are not part of the dilated object are those for which the SE lies entirely outside the
original object. If the set of SE members lies outside the set of object members, then
their intersection will be the null set. In dilation we are happy to accept any location
as part of a dilated object provided the SE has a non-null intersection with the
original object. Using the same set notation as above, but calling the set of pixels
that describe the dilated object D, then

D ¼ O� S ¼ fi; jjSi;j \O 6¼ ;g ð5:17Þ

in which ; is the null set. The symbol � is used to signify dilation. Figure 5.23
shows the effect of dilating the objects of Fig. 5.18 with a square 3 � 3 SE. As
seen, the outcome is a greatly expanded object, with small holes closed up. The
gaps in the river object are closed but at the expense of a broadened line overall.

5.11.3 Opening and Closing

Erosion and dilation are not the inverse of each other. In other words, the original
objects cannot be recovered after dilation by applying an erosion operation, and
vice-versa. However, the sequential application of erosion and dilation, or the
sequential application of dilation and erosion, give interesting operations in their
own right.

Erosion followed by dilation is referred to as opening, while dilation followed by
erosion is called closing. The reasons for these names will be apparent from the

structuring element has to enclose at least one member of the original object 
in order that the pixel at its centre be considered as part of the dilated object

original object dilated object

Fig. 5.22 Illustrating the dilation operation; the image with the object in it is assumed to extend
beyond the sample shown, as indicated by the corner arrows
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results of their application. Using these definitions, we can write the set of pixels
(the object) that results from an opening operation, in which the bracketed operation
is performed first, as

P ¼ O � S ¼ O€ Sð Þ � S ð5:18Þ

and the object that results from a closing operation as

C ¼ O 	 S ¼ O� Sð Þ€S ð5:19Þ

The results of applying these to the objects in Fig. 5.18 are shown in Fig. 5.24.

5.11.4 Boundary Extraction

Since erosion shrinks the boundaries of an object, subtracting an eroded version
from its original will effectively isolate the boundaries. In the notation of sets this is
written

B Oð Þ ¼ O�O€S

in which B Oð Þ is the set of pixels different between the object and its eroded
version. Using this approach, the boundaries of the field object in Fig. 5.18 are
shown in Fig. 5.25.
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Fig. 5.23 Dilation of the objects of Fig. 5.18 using a 3 � 3 structuring element
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Fig. 5.24 Result of applying opening (top) and closing (bottom) morphologic operations to the
images of Fig. 5.18

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 5.25 Boundary extraction by subtracting an eroded version from the original object
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5.11.5 Other Morphological Operations and Applications

A range of other morphological operations is possible and finds wide application in
fields in which visual interpretation of imagery is common, including medical
imaging, astronomy and handwriting analysis.13 It is also possible to set up mor-
phological techniques to operate on grey scale images, as against the binary image
data considered here.

In remote sensing, morphological processing has been extended to a high degree
of sophistication, including its application in detailed analysis of high spatial and
spectral resolution imagery.14 It has been used successfully to extract building
shapes from high spatial resolution panchromatic imagery,15 and to classify urban
land cover, where again shape is an important feature.16

5.12 Object and Shape Recognition

In the past the analysis of shapes in remote sensing imagery has not been as
common as in other fields such as robotics and computer vision, often because the
resolution generally available was insufficient to define shape with any degree of
precision, and the algorithms did not exist to do object recognition easily. However,
with pixels of the order of 1 m resolution and better now available, shapes such
rectangular and circular pivotal irrigation fields in agriculture, urban features, and
objects on the ground such as aircraft and ships are now easily discerned. As a
result, there has been a big increase in interest in shape analysis and object
recognition in the past decade or so.

Shape analysis can be carried out using template techniques, in which the
templates are chosen according to the shape of interest. The operation required is
one of correlation and not the convolution operation of (5.1) and (5.13). We will
meet correlation in Chap. 7; it is defined by (5.13) but with additions in place of
subtractions. That yields an operation that has a maximum response when the

13 See Gonzalez and Woods, loc. cit., and R. Berry and J. Burnell, Handbook of Astronomical
Image Processing, 2nd ed., William Bell, Inc., Richmond Virginia, 2006.
14 See M. Pesaresi and J. A. Benediktsson, A new approach for the morphological segmentation of
high resolution satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 39,
no. 2, February 2001, pp. 309–320, and P. Soille and M. Pesaresi, Advances in mathematical
morphology applied to geosciences and remote sensing, IEEE Transactions on Geoscience and
Remote Sensing, vol. 40, no. 9, September 2002, pp. 2042–2055.
15 N. L. Gavankar and S. K. Chosh, Automatic building footprint extraction from high-resolution
satellite image using mathematical morphology, European Journal of Remote Sensing, vol. 51, no.
1, 2018, pp. 182–193.
16 L. T. Tsoeleng, J. Odini and P. Mhangara, A comparison of two morphological techniques in the
classification of urban land cover, Remote Sensing, Vol. 12, 2020, https://doi.org/10.3390/
rs12071089.
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kernel matches as closely as possible the underlying segment of image data in
shape, size and orientation. A difficulty with this simple approach, which as a
consequence renders the technique of limited value in practice, is the need to match
shape, size and orientation exactly.

However, when convolution forms the basis of neural networks, as we will see in
Sect. 8.21, the whole field of object recognition and analysis in remote sensing
opens up. Shape and object analysis is almost fundamental to the development and
application of the convolutional neural network (CNN),17 which is now used
routinely in fields such as picture analysis and handwriting recognition.

Although the theory of CNNs is not covered until Chap. 8, examples of their
application to object recognition in remote sensing can be seen in Liu et al.18

Other methods have been used in the past but are now largely of historical value.
They include the adoption of shape factors, moments of area and Fourier transforms
of shape boundaries. In each of these the shape must first be delineated from the rest
of the image. That is achieved by histogram slicing (to separate objects from
backgrounds), quantitative analysis and edge and line detection processes.19

5.13 Bibliography on Geometric Processing
and Enhancement: Image Domain Techniques

Many of the books that cover radiometric enhancement of images also include good
treatments of geometric processing. They include.

K.R. Castleman, Digital Image Processing, 2nd ed., Prentice Hall, N.J., 1996.

R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th ed. Pearson Prentice-Hall,
Upper Saddle River, N.J., 2018.

R.A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed.,
Academic, Burlington, Mass, 2006.

J.R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.,
Prentice-Hall, Upper Saddle River, N.J, 2015.

The classic reference on texture analysis and processing is.

R.M. Haralick, Statistical and structural approaches to texture, Proc. IEEE., vol. 67, no. 5.,
May 1979, pp. 786–802.

17 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (Adaptive Computation and
Machine Learning series) The MIT Press, Cambridge Mass., 2016.
18 Y. Liu, H-Y Cui, Z. Kuang and G-Q Li, Ship detection and classification on optical remote
sensing images using deep learning, 4th Annual Conference on Information Technology and
Applications, ITM Web of Conferences, vol. 12, 05012, 2017.
19 See S. Loncaric, A survey of shape analysis techniques, Pattern Recognition, vol. 31, no.
8 August 1988, pp. 983–1001.
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For a comprehensive overview of recent advances in morphological processing
applied to remote sensing images, and which includes a good reference list of
salient contributions in morphology, see.

M. D. Mura, J.A. Benediktsson, J. Chanussot and L. Bruzzone, The evolution of the
morphological profile: from panchromatic to hyperspectral images, in S. Prasad, L.M.
Bruce and J. Chanussot, eds., Optical Remote Sensing: Advances in Signal Processing and
Exploitation Techniques, Springer, Berlin, 2011.

Castleman, loc. cit., contains a short overview of common shape analysis methods.
While the application of convolutional neural networks to shape and object
recognition will be found in.

I. Goodfellow, Y. Bengio, and A Courville, Deep Learning (Adaptive Computation and
Machine Learning series) The MIT Press, Cambridge Mass., 2016.

Many tutorials on object detection and recognition will be found through web
searching.

5.14 Problems

5:1. The template entries for line and edge detection sum to zero whereas those for
smoothing do not. Why?

5:2. Repeat the example of Fig. 5.10 but by using a [1 � 5] smoothing operation
in part (a), rather than [1 � 3] smoothing.

5:3. Repeat the example of Fig. 5.10 but by using a [1 � 3] median filtering
operation in part (a) rather than [1 x 3] mean value smoothing.

5:4. An alternative smoothing process to median and mean value filtering using
template methods is modal filtering. Apply [1 � 3] and [1 � 5] modal filters
to the image data of Fig. 5.6. Note differences in the results compared with
mean value and median smoothing, particularly around the edges.

5:5. Suppose S is a template operation that implements smoothing, and O is the
template operator that leaves an image unchanged. Then an edge enhanced
image created by unsharp masking (Sect. 5.4.2) can be expressed

new image = O (old image) + O (old image) − S (old image)

Rewrite this expression to incorporate two user defined parameters A and B
that will cause the formula to implement any of smoothing, edge detection or
edge enhancement.

5:6. This requires vector algebra background. Show that template methods for line
and edge detection can be expressed as the scalar product of a vector composed
from the template entries and a vector formed from the neighbourhood of pixels
currently covered by the template. Show how the angle between the template
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and pixel vectors can be used to assess the edge or line feature to which a
current pixel most closely corresponds.

5:7. The following kernel is sometimes convolved with image data. What operation
will it implement?

0 0-1

-1 00

-1 +4 -1

5:8. Consider the middle pixel shown in the figure below and calculate its new value
if

(i) a [3 � 3] median filter is applied,
(ii) a [3 � 3] unsharp mask is applied,
(iii) a [1 � 3] image smoothing template with a threshold of 2 is applied, and
(iv) the Sobel operator is applied.

7 92

7 03

8 1 1

5:9. Image smoothing can be performed by template operators that implement
averaging or median filtering. Compare those methods, particularly as they
affect edges. Would you expect median filtering to be useful in edge
enhancement using unsharp masking?

5:10. If a [3 � 3] smoothing template is applied to an image twice in succession
how many neighbours will have played a part in modifying the brightness of a
given pixel? Design a single template to achieve the same result in one pass.

5:11. The kernel function k (,) in either (5.12) or (5.13) can be used to demonstrate
the degrading effect of the point spread function (PSF) of an imaging sensor
on a scene being recorded. If / (,) is the ideal image of the scene and k (,) is
the instrument PSF, what form should k (,) take in order that the instrument
cause minimum degradation to the image data?

5:12. Inspection of Figs. 5.18, 5.21 and 5.23 demonstrates that erosion of an object
is the same as dilation of the background for a binary image, and vice versa.
Can you demonstrates that using set theory?

5:13. Repeat the examples of Figs. 5.20 and 5.22 using structuring elements with
shapes: 1 � 3, 3 � 1, 5 � 3, 3 � 5.
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Chapter 6
Spectral Domain Image Transforms

Abstract After looking at the value of band arithmetic, in which sums, differences
and other operations are performed at the pixel level between the different bands of
an image, focus shifts to the very important concept of principal components
analysis. In preparation for this, the properties of the mean vector and covariance
matrix are described and illustrated, along with the notion of band-to-band corre-
lation. The principal components transform is seen as an operation which produces
a new set of bands from the originally recorded set, in which the new bands are
uncorrelated and in which detail, described by variance, is ranked-ordered by
component. The first component contains most variance, while the last contains
least. These properties are illustrated by example. Applications of the principal
components transform are covered, including its value in detecting changes
between images. The applications-specific Kauth-Thomas Tasseled cap transform is
also developed. The chapter concludes with the transformation that converts the
red, green, blue image description into a hue, saturation, intensity description, and
with the operation of pan sharpening.

6.1 Introduction

Because of the multispectral or vector character of remote sensing image data we
can devise transformations that generate new pixel vector descriptions from the old,
and thereby create synthetic image components, or bands, as shown in Fig. 6.1.
They represent an alternative description of the data. The new components are
related to the old brightness values of the pixels in the original set of spectral bands
via a mathematical operation, which is usually linear. Such a transformed image
may make evident features that are not easily seen in the original data; alternatively,
it might be possible to preserve most of the essential information content of the
original image using a reduced number of the transformed dimensions. The last
point has significance for displaying data in the three colour primaries, and for
compressed transmission and storage of data.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. A. Richards, Remote Sensing Digital Image Analysis,
https://doi.org/10.1007/978-3-030-82327-6_6
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It is also possible to devise pixel descriptors matched to particular applications.
Vegetation indices are a good example. By combining the components of a pixel
vector, a single descriptor can be generated that indicates the degree of vegetation
present in that pixel. By doing so for all pixels, a vegetation index image is
produced.

This chapter presents image transformations that are of value in enhancing and
interpreting remote sensing imagery; some also find application in preconditioning
image data prior to classification by the techniques of Chaps. 8 and 9. The methods
covered here, which appeal directly to the vector nature of the image, include the
principal components transformation and so-called band arithmetic. The latter
includes the creation of ratio images and specialised indices. Special purpose
transformations, such as the Kauth-Thomas tasseled cap transform, are also treated.

6.2 Image Arithmetic and Vegetation Indices

The simplest of all transformed images results from basic arithmetic operations
among the pixel brightnesses in Fig. 6.1. Addition, subtraction and division (ratios)
of the brightness values of two or more bands are the most common. While band
products can be formed, they are rarely encountered.

Differences can be used to highlight regions of change between two images of
the same area. That requires the images to be registered beforehand using the
techniques of Chap. 2. The resultant difference image must be scaled to remove
negative brightness values; normally that is done so that regions of no change
appear mid-grey, while changes show as brighter or duller than mid-grey according
to the sign of the difference.

original pixel 
brightness vector

transformed pixel 
brightness vectormathema cal 

opera on

original
bands

synthesised
bands

Fig. 6.1 The principle of spectral domain transformation
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Ratios of different spectral bands from the same image find use in reducing the
effect of topography, as a vegetation index, and for enhancing subtle differences in
the spectral reflectance characteristics for rocks and soils. As an illustration of the
value of band ratios for providing a simple vegetation index image, Fig. 6.2 shows
Landsat near infrared and red channel Multispectral Scanner images of an agri-
cultural region, and their ratio. As seen, healthy vegetated areas are bright, soils are
mid to dark grey, and water is black. Those shades are readily understood from an
examination of the corresponding spectral reflectance curves.

More sophisticated vegetation indices can be created using composite band
arithmetic operations.1 The most widely encountered uses the ratio of the difference
and sum of reflected infrared and visible red measurements. It is generally referred
to as the Normalised Difference Vegetation Index (NDVI):

NDVI ¼ /nir � /red

/nir þ/red

in which /nir is the near infrared brightness of a pixel and /red is its visible red
brightness. Two other indices sometimes used are the Normalised Difference Water
Index (NDWI), which gives an indication of soil moisture

Fig. 6.2 a Near infrared and b visible red Landsat MSS images, along with c their ratio, which
shows vegetated regions as bright, soils as mid to dark grey and water as black

1 For a comprehensive set of indices see http://www.harrisgeospatial.com/docs/VegetationIndices.
html accessed March 2021.
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NDWI ¼ /green � /nir

/green þ/nir

and the Land Surface Water Index (LSWI):

LSWI ¼ /nir � /swir

/nir þ/swir

/swir is the pixel reflectivity in the short wave infrared (typically 1.4–3.0 lm).
/green is the green wavelength brightness of a pixel.

Figure 6.3 shows a continental-scale application of NDVI to drought monitoring
using NOAA AVHRR image data, for which the pixel size is 1 km.

6.3 The Principal Components Transform

We can represent the pixels in a vector space with as many axes or dimensions as
there are spectral components associated with each pixel (see Sect. 3.5.1 and
Appendix C). In the case of Landsat ETM+ multispectral data it will have seven
dimensions while for SPOT HRG data it will be four dimensional. For hyper-
spectral data, such as that from Hyperion, there may be several hundred axes.
A particular pixel plots as a point in such a space with coordinates that correspond
to its brightness values in the spectral components. We call the space, generically, a
spectral space.2 For simplicity the treatment to be developed here is based on a two
dimensional space (say visible red and near infrared) since the diagrams are then
easily understood and the mathematical examples are easily followed. The results to
be derived, however, are perfectly general and apply to data of any dimensionality.

6.3.1 The Mean Vector and the Covariance Matrix

The positions of the pixel points in spectral space can be described mathematically
by column vectors, the components of which are the individual spectral responses
in each band. Strictly, they are vectors drawn from the origin to the pixel points as
seen in Appendix C, but this concept is not used explicitly.

Consider a spectral space containing a large number of pixels as shown in
Fig. 6.4, with each pixel described by its appropriate vector x. The mean position of

2 It can have any number of dimensions; occasionally we will talk about hyperspectral space if the
dimensionality is exceptionally high, although spectral and multispectral are even then still suf-
ficient descriptors mathematically.
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the pixels in the space is defined by the expected (or average) value of the pixel
vector x

m ¼ E xf g ¼ 1
K

XK
k¼1

xk ð6:1Þ

where m is the mean pixel vector and the xk are the individual vectors of total
number K; E is the expectation operator.3

While the mean vector is useful for describing the average or expected position
of the pixels in the vector space, it is important to be able to describe their scatter or
spread as well. That is the role of the covariance matrix which is defined as

Cx ¼ E x�mð Þ x�mð ÞT
n o

ð6:2Þ

in which the superscript T denotes vector transpose, as discussed in Appendix C.
An unbiased estimate of the covariance matrix is given by

Cx ¼ 1
K � 1

XK
k¼1

xk �mð Þ xk �mð ÞT ð6:3Þ

The covariance matrix is one of the most important mathematical concepts in the
analysis of multispectral remote sensing data, as a result of which it is of value to
consider some sample calculations to understand its properties. First, there is
another matrix that is helpful to know about when we examine the properties of the
covariance matrix. It is called the correlation matrix Rx; its elements rij are related
to those of the covariance matrix cij according to

Fig. 6.4 A two dimensional
spectral space showing
individual pixel vectors and
their average, or expected,
position described by the
mean vector m

3 Sometimes the principal components transform is derived by assuming that the mean of the
distribution is zero. That is achieved by subtracting the mean vector from all pixel vectors before
processing, an operation called centering. See Sect. 6.3.3 for the effect of an origin shift and the
invariance of the transformation.
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rij ¼ cij=
ffiffiffiffiffiffiffiffiffi
ciicjj

p ð6:4Þ

The elements of the correlation matrix describe explicitly the degree of mathe-
matical correlation between the data dimensions, spectral measurements, or coor-
dinates, indexed by the two subscripts.

Consider the two sets of pixel vectors shown in Fig. 6.5. They have different
distribution patterns in spectral space—we will see shortly that the correlations
between the coordinates in each case are different.

Table 6.1 shows a set of hand calculations for finding the covariance matrix of
the set in Fig. 6.5a. As seen, the covariance matrix has zero off-diagonal entries and
the correlation matrix, computed from the entries of the covariance matrix, also has
zero off-diagonal entries. That indicates that there is no correlation between the two
spectral components of the data set in Fig. 6.5a. A similar set of calculations for the
data set of Fig. 6.5b gives

m ¼ 3:50
3:50

� �
Cx ¼ 1:90 1:10

1:10 1:10

� �
Rx ¼ 1:00 0:76

0:76 1:00

� �

which shows the two spectral components to be 76% correlated. What does that
mean? Fig. 6.6 shows what the images represented by the data in Fig. 6.5 might
look like. For the data of Fig. 6.5b when one band is dark the other is generally
dark, and vice versa. On the other hand, for the uncorrelated data of Fig. 6.5a, there
is no near-correspondence in dark and light between the bands.

If the points in Fig. 6.5b happened all to lie on a straight line, then the corre-
sponding images of both bands would be identical, and it would be possible to
predict what the pixel in one band would look like knowing its appearance in the
other band. The distribution of points in a fairly random, circular pattern as in
Fig. 6.5a is typical of bands that exhibit little mutual correlation, whereas the
elongate distribution of points in Fig. 6.5b is typical of the pixels in a correlated
image.

0 1 2 3 4 5 
0 

1 
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5 

0 1 2 3 4 5 
0 
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5 

(2,4) (4,4)

(1,2) (5,2)

(2,1) (4,1)

(5,5)

(5,4)(3,4)

(2,3) (4,3)

(2,2)

a b 

Fig. 6.5 Two dimensional data sets a with no correlation between the components, and b with
high correlation between the components
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Both the covariance and correlation matrices are symmetric and will be diagonal
if there is no correlation between the image components. Although this example has
been based on two dimensional data, the symmetry of the matrices holds in general,
as does the special case of diagonal correlation and covariance matrices if all bands
are uncorrelated.

We are now in the position to understand the basis of the principal components
transform, one of the most frequently encountered image domain transformations in
remote sensing image analysis.

Table 6.1 Computation of the covariance and correlation matrices for the data of Fig. 6.5a

x x�m x�mð Þðx�mÞT
1
2

� � �2:00
�0:33

� �
4:00 0:66
0:66 0:11

� �

2
1

� � �1:00
�1:33

� �
1:00 1:33
1:33 1:77

� �

4
1

� �
1:00

�1:33

� �
1:00 �1:33

�1:33 1:77

� �

5
2

� �
2:00

�0:33

� �
4:00 �0:66

�0:66 0:11

� �

4
4

� �
1:00
1:67

� �
1:00 1:67
1:67 2:79

� �

2
4

� � �1:00
1:67

� �
1:00 �1:67

�1:67 2:79

� �

From which Cx ¼ 2:40 0
0 1:87

� �
and Rx ¼ 1:00 0

0 1:00

� �

The mean vector for this data set is m ¼ 3:00
2:33

� �

Fig. 6.5a image Fig. 6.5b image

band 1 band 2 band 1 band 2

1 

5 
4 
3 
2 

Fig. 6.6 Six-pixel images that might correspond to the data of Fig. 6.5; shades of grey have been
used to represent numerical values when moving clockwise around the data points of Fig. 6.5
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6.3.2 A Zero Correlation, Rotational Transform

It is fundamental to the development of the principal components transformation to
ask whether there is a new coordinate system in spectral space in which the data can
be represented without correlation; in other words, so that the covariance matrix in
the new coordinates is diagonal. For two dimensions such a new coordinate system
is depicted in Fig. 6.7. If the vectors describing the pixel points are represented as y
in the new coordinates then we want to find a linear transformation G of the original
x coordinates, such that

y ¼ Gx ¼ DTx ð6:5Þ

subject to the condition (constraint) that the covariance matrix of the pixel data in
the y coordinates is diagonal.4 Expressing G as DT will allow a simpler comparison
of principal components with other transformation operations to be treated later.
Equation (6.5) is a vector–matrix shorthand method for saying that each component
of y is a linear combination of all of the elements of x; the weighting coefficients are
the elements of the matrix G.

In the y coordinate space the covariance matrix of the data is, by definition,

Cy ¼ E y�my
� �

y�my
� �Tn o

in which my is the mean vector (mean position of the data) expressed in y coor-
dinates. It is readily shown that5

my ¼ E yf g ¼ E DTx
� � ¼ DTE xf g ¼ DTmx

where mx is the mean vector in the original x coordinate system. Thus, the
covariance matrix in the new y coordinates becomes

Cy ¼ E DTx� DTmx
� �

DTx� DTmx
� �Tn o

which can be written6

Cy ¼ DTE x�mxð Þ x�mxð ÞT
n o

D

4 See Appendix C for a summary of relevant material in vector and matrix algebra.
5 Since DT is a matrix of constants it can be taken outside the expectation operator.
6 Since A1½ �T ¼ 1TAT, which is called the reverse order law of matrices. Note also that
A1½ ��1 ¼ 1�1A�1.
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i.e. Cy ¼ DTCxD ¼ GCxGT ð6:6Þ

in which Cx is the covariance matrix of the data in the x coordinate space.
It is now important to recall that we are looking for a y coordinate space in which

the pixel data exhibits no correlation. That requires Cy to be a diagonal matrix, as
demonstrated in the simple two dimensional example of the previous section. Thus,
from matrix algebra, (6.6) will be recognised as the diagonal form of the original
covariance matrix Cx, which requires Cy to be a diagonal matrix of the eigenvalues
of Cx and D to be a matrix of the eigenvectors of Cx.

We write the y space covariance matrix as

Cy ¼

k1 0
0 k2

:
:

kN�1 0
0 kN

2
6666664

3
7777775

where N is the dimensionality of the data (the number of spectral bands) and the kn
are the eigenvalues of Cx. The matrix is arranged diagonally such that
k1 [ k2. . .[ kN : The elements of a diagonal covariance matrix are the simple
variances along each coordinate direction. Thus, the eigenvalues of Cx will be the
variances along each of the new coordinates in the y space. In view of the rank
ordering of the eigenvalues, the data will show greatest spread along the first y
coordinate. Its second greatest dispersion will be along the second new coordinate,
which corresponds to the second largest eigenvalue, and so on.

Fig. 6.7 Illustration of how data that is correlated in one coordinate space (x) can be uncorrelated
in a new, rotated coordinate space (y)
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The transformation described by (6.5), subject to (6.6) with a diagonal trans-
formed covariance matrix, is called the Principal Components Transform. It is also
known as the Karhunen-Loève or Hotelling Transform.

To summarise, the steps involved in the principal components transformation
are:

• Generate the covariance matrix of the data in the coordinates of the original
spectral measurements

• Find the eigenvalues and eigenvectors of the covariance matrix
• Rank order the eigenvalues to identify the first, second and subsequent principal

axes
• Use the matrix of eigenvectors in (6.5) to generate the new brightness values for

the pixels in each of the principal axes.

To demonstrate these points further we return to the example of Fig. 6.5b. Recall
that the x space covariance matrix of the that highly correlated data is

Cx ¼ 1:90 1:10
1:10 1:10

� �

To find its eigenvalues we have to solve the characteristic equation

Cx � kIj j ¼ 0

in which I is the identify matrix, and the vertical bars signify the determinant of the
enclosed matrix. Substituting for the elements of Cx this gives

1:90� k 1:10
1:10 1:10� k

				
				 ¼ 0

which, when evaluated, leads in this second order case to the quadratic equation in
the unknown eigenvalue k

k2 � 3:00kþ 0:88 ¼ 0

On solving, this gives k ¼ 2:67 or 0.33 as the two eigenvalues (k1 and k2
respectively) of the covariance matrix Cx. As a handy check on the analysis, it may
be noted that the sum of the eigenvalues is equal to the trace of the covariance
matrix, which is simply the sum of its diagonal elements. Having found the
eigenvalues we now know that the covariance matrix in the y coordinate system is

Cy ¼ 2:67 0
0 0:33

� �

Thus, the variance of the data (loosely, its scatter) in the y1 coordinate direction,
which is referred to as the first principal component, is 2.67 and its variance along
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the y2 direction, the second principal component, is 0.33. Using these values we can
say that the first principal component accounts in this case for 2.67/(2.67 + 0.33) �
89% of the total variance of the data.

We can now proceed to find the actual principal components transformation
matrix G in (6.5). Since D is the matrix of eigenvectors of Cx, then G is the
transposed matrix of eigenvectors.

There are two eigenvectors, one for each of the eigenvalues. We commence by
seeking that which corresponds to k1 ¼ 2.67, in which the subscript 1 has been
added so that we can associate the eigenvalue with its eigenvector. The eigenvector
g1 is a solution to the vector equation

Cx � k1I½ �g1 ¼ 0

with g1 ¼ g11
g12

� �
¼ dT1 .

Substituting for Cx and k1 gives the pair of equations

�0:77g11 þ 1:10g21 ¼ 0

1:10g11 � 1:57g21 ¼ 0

both of which give

g11 ¼ 1:43g21 ð6:7Þ

The equations are not independent because they are a homogeneous set.7 At this
stage either g11 or g21 would be chosen arbitrarily; however, there is a property we
haven’t yet used that allows us to determine unique values for g11 and g21. The
covariance matrices we encounter in remote sensing are always real and symmetric.
That ensures the eigenvalues are real and that the eigenvectors can be normalised.8

From this last property we have another equation we can use to tie down values for
g11 and g21, viz. that the vector magnitude is unity:

g211 þ g221 ¼ 1 ð6:8Þ

From (6.7) and (6.8) we find

g1 ¼ 0:82
0:57

� �

7 Although these simultaneous equations are homogeneous (both equate to zero) the solution, as
we have seen, is non-trivial. That is because the determinant of the coefficient matrix is zero, a
property we used earlier in finding the eigenvalues.
8 See C.M. Bishop, Pattern Recognition and Machine Learning, Springer Science + Business
Media, N.Y., 2006.
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In a similar manner it can be shown that the eigenvector corresponding to k2 ¼ 0:33
is

g2 ¼ �0:57
0:82

� �

The required principal components transformation matrix is, therefore,

G ¼ DT ¼ 0:82 �0:57
0:57 0:82

� �T
¼ 0:82 0:57

�0:57 0:82

� �

We now consider how to use these results. First, the individual eigenvectors g1 and
g2 define the principal component axes in the original coordinate space. They are
shown in Fig. 6.8, expressed in terms of a pair of unit vectors e1 and e2 that point
along the original coordinate directions. It is evident that the data is uncorrelated in
the new axes and that the new axes are a rotation of the original coordinates. This
holds with data of any dimensionality. For this reason, the principal components
transform is called a rotational transform.

Now consider the application of the transformation matrix G to find the
brightness values of the pixels in the principal axes. For this example (6.5) is

y1
y2

� �
¼ 0:82 0:57

�0:57 0:82

� �
x1
x2

� �
ð6:9Þ

For the pixels given in Fig. 6.5b

x ¼ 2
2

� �
;

4
3

� �
;

5
4

� �
;

5
5

� �
;

3
4

� �
;

2
3

� �

we find

y ¼ 2:78
0:50

� �
;

4:99
0:18

� �
;

6:38
0:43

� �
;

6:95
1:25

� �
;

4:74
1:57

� �
;

3:35
1:32

� �

The pixels plotted in y space are shown in Fig. 6.9. Several important points can
be noted. First, the data exhibits no obvious correlation in the new coordinates,
meaning that there is no correlation between the two new axes for this data.
Secondly, most of the spread is in the direction of the first principal component; we
could interpret this to mean that, for this example, the first principal component
contains most of the information in the image.9 Finally, if the pair of principal
component images is generated using the y1 and y2 component brightness values for

9 This needs to be interpreted carefully. Since the principal components transform was generated
using the global covariance matrix for the data, comments like this mean “on the average.” As will
be seen in practice, later principal components may contain small, yet informative detail.
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the pixels, then the first principal component will show a high degree of contrast
while the second will have lower contrast by comparison. Its brightness values will
be spread over a smaller part of the available range so that it appears to lack the
detail of the first component. This trend continues for the higher order components.
The brightness value range of the higher order components is generally so small
that they look noisy because of the limited number of discrete brightness values
used to represent them in a display system.

6.3.3 The Effect of an Origin Shift

It will be evident that some principal component pixel brightness values could be
negative owing to the fact that the transformation is a simple axis rotation. Clearly a
combination of positive and negative brightnesses cannot be displayed. Nor can
negative brightness pixels be ignored because their appearance relative to other
pixels serves to define detail. In practice, the problem with negative values is
handled by shifting the origin of the principal components space so that all com-
ponents have positive, and thus displayable, brightnesses. That has no effect on the
properties of the transformation as can be seen by inserting an origin shift term in
the definition of the covariance matrix in the principal component space.

Fig. 6.8 Principal component axes for the data of Fig. 6.5b; e1 and e2 are directional unit vectors
in the x1 and x2 directions respectively

2 3 4 5 

1 

2 
2

1
1 

0 
0 6 7 

Fig. 6.9 Pixel data in the
principal components space,
in which the correlation has
been removed
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Let y0 ¼ y� yo in which yo is the position of a new origin. In the new y0

coordinates

Cy0 ¼ E ðy0 �my0 Þðy0 �my0 ÞT
n o

Now my0 ¼ my � yo so that y0 �my0 ¼ y� yo �my þ yo ¼ y�my. Thus
Cy0 ¼ Cy. Therefore, the origin shift has no influence on the covariance (and thus
correlation) of the data in the principal components axes and can be used for
convenience in displaying principal component images.

6.3.4 Example and Some Practical Considerations

The material presented in Sect. 6.3.2 provides the background theory for the
principal components transform. By working through the numerical example in
detail the importance of eigenanalysis of the covariance matrix has been seen.
When using principal components analysis in practice the user is generally not
involved in that level of detail. Rather only three steps are necessary. They are, first,
the assembling of the covariance matrix of the image that is to be transformed,
according to (6.5). Normally, software will be available for that step, often in
conjunction with the need to generate signatures for classification as described in
Chap. 8. The second step is to determine the eigenvalues and eigenvectors of the
covariance matrix. At this stage the eigenvalues can be used to assess the distri-
bution of data variance over the respective components. A rapid fall off in the sizes
of the eigenvalues indicates that the original band description of the image data
exhibits a high degree of correlation and that the results from the transformation
step to follow will be significantly different from the original bands.10

The final step is to calculate the principal components using the eigenvectors of
the covariance matrix as the weighting coefficients. As seen in (6.5) and as
demonstrated in (6.9), the principal component brightness values for a pixel are the
weighted sums of its brightnesses in the original bands; the weights are the elements
of the eigenvectors of the covariance matrix. The first eigenvector produces the first
principal component from the original data, the second eigenvector gives rise to the
second component and so on.

Figure 6.10 shows two examples of principal components drawn from the same
image data set.11 These are band subsets that exhibit differing degrees of

10 If there were no correlation among the original bands for a given data set, then the principal
components transform will generate components that are identical with the original bands. That
can be demonstrated easily by taking the ideal case in which the covariance matrix for the original
data is the identity matrix.
11 A HyVista Hymap 124 channel hyperspectral image over Perth, Western Australia; MultiSpec
was used for the principal components processing.
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band 7 (611nm) band 15 (634nm) band 29 (847nm) band 80 (1565nm) R:29 G:15 B:7

PC1 PC2 PC3 PC4 R:PC1 G:PC2 B:PC3

PC1 PC2 PC3 PC4 R:PC1 G:PC2 B:PC3

band 30 (862nm) band 35 (908nm) band 40 (987nm) band 45 (1065nm) R:40 G:35 B:30

Fig. 6.10 First row: four bands with low correlation and the colour composite formed from the
first three; second row: the four principal components generated from the bands in the first row and
a colour composite formed from the first three; third row: four bands with high correlation and a
colour composite formed from the first three; fourth row: the four principal components generated
from the third row and the colour composite formed from the first three
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correlation. In the first row, four bands are chosen that have lower correlation; the
principal components of those bands are shown in the second row. Each of the
individual band images and the individual principal component images has been
contrast stretched to allow detail to be seen better. At the end of each row is a colour
composite image formed from the channels indicated. Although the principal
components image is brightly coloured it does not seem to provide much added
detail. For comparison, the four bands shown in the third row are more highly
correlated; note how similar they are and how the colour composite product is
almost a grey level image, with only tiny touches of colour. In this case, the
principal components, shown in the fourth row, exhibit a greater drop in variance,
with a corresponding increase in discretisation noise. The colour product is brightly
coloured, and highlights detail not seen in the original bands, particularly among the
buildings.

Table 6.2 shows the eigenvalues for the two examples, from which the com-
pressive property of the transformation can be seen. Also shown are the eigen-
vectors so that each component can be seen to be a weighted combination of the
original bands. The covariance and correlation matrices are also included although,
for clarity, only to three significant figures. Because they are symmetric only the
lower triangles are shown.

6.3.5 Application of Principal Components in Image
Enhancement and Display

When displaying remotely sensed image data only three bands can be mapped to
the three colour primaries of the display device. For imagery with more than three
bands the user must choose the most appropriate subset of three to use. A less ad

Table 6.2 Eigenvalues and eigenvectors for the two image data sets of Fig. 6.10; the data is 16 bit

Data set with lower correlation Data set with higher correlation

Eigenvalues Eigenvectors by row Eigenvalues Eigenvectors by row

�1000 % �1000 %

1 4495 87.51 0.22 0.26 0.72 0.61 10,822 99.79 0.47 0.49 0.52 0.52
2 539 10.49 −0.43 −0.58 0.61 −0.32 16 0.15 −0.81 0.03 0.14 0.57
3 95 1.84 0.55 0.31 0.32 −0.71 5 0.05 0.25 −0.87 0.26 0.33
4 8 0.16 0.68 −0.70 −0.10 0.17 2 0.02 0.25 0.04 −0.80 0.54

Covariance
matrices
(�106)

0.34 2.44
0.40 0.49 2.49 2.56
0.57 0.65 2.54 2.68 2.75 2.96
0.63 0.78 1.84 1.76 2.64 2.71 2.92 2.89

Correlation
matrices

1.00 1.00
0.97 1.00 1.00 1.00
0.61 0.58 1.00 1.00 1.00 1.00
0.81 0.84 0.87 1.00 0.99 1.00 1.00 1.00
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hoc means for colour assignment is based on performing a principal components
transform and assigning the first three components to the red, green and blue colour
primaries. Examination of a typical set of principal component images, such as
those seen in Fig. 6.10 for the highly correlated data set, reveals that there is little
detail in the fourth (and later) components so that, in general, they could be ignored
without prejudicing the ability to extract meaningful information from the scene
visually.

A difficulty with principal components colour display, however, is that there is
no longer a one-to-one mapping between sensor wavelengths and colours. Rather,
each colour now represents a linear combination of spectral components, making
photointerpretation difficult for many applications. An exception might be in
exploration geology where structural differences may be enhanced in principal
components imagery, there sometimes being little interest in the meanings of the
actual colours.

At this point we might ask why principal components imagery is often more
colourful than the original image data. In preparation for answering that question
consider the three dimensional colour space shown in Fig. 6.11. That represents
how data would be displayed in terms of the three additive primary colours. It also
shows how combinations of the fully saturated colour primaries create: yellow
through the addition of red and green; magenta by the addition of red and blue; and
cyan through the addition of blue and green. Note also that white results from the
addition of the fully saturated three colour primaries, black is the result of zero
values of red, green and blue, and shades of grey occur along the three dimensional
diagonal shown.

When creating remote sensing imagery, it is sometimes the case that the three
bands chosen for display are moderately correlated. Plotting the pixel points in a
three dimensional space corresponding to those bands will give a scatter of points
about the three dimensional diagonal that represents 100% correlation. When those
three bands are allocated to the colour primaries for display, the pixels points
similarly group about the three dimensional colour space diagonal. The colour
product then appears to be poorly coloured, with many grey tones. That is depicted
in Fig. 6.12a, in which the scatter of pixel points is shown as an ellipsoid. If the data
is subject to simple linear contrast stretching of each band, in an attempt to improve
its appearance, the general shape of the data ellipsoid will not change, the corre-
lation remains and the colour of the final product, while brighter, will not have
vastly improved tones. Any brightly coloured parts of an image will generally be
the result of image segments (cover types) that have less correlation among the
chosen bands. Some images will appear more colourful, especially if the correla-
tions are low, but even though the colour primaries (red, green and blue) might
show richly in some imagery, rarely will the fully saturated combinations of yellow,
cyan and magenta appear.

If the bands chosen for display are totally uncorrelated then the data will scatter
in a roughly spherical fashion as shown in Fig. 6.12b. Contrast stretching can push
the data out into all corners of the data space, including those corresponding to
yellow, cyan and magenta, resulting in an image that makes good use of all
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available colours; that is the reason why principal components imagery, derived
from an original highly correlated set of bands, is much more colourful than the
original image display.

6.3.6 The Taylor Method of Contrast Enhancement

Based on the observations of the previous section on filling the colour space with
uncorrelated image data, an interesting contrast stretching procedure can be

blue
corner

green
corner

red
corner

black
corner

cyan
corner

magenta
corner

yellow 
corner

white 
corner

line of grey

re
d 

di
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is

blue display axis
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Fig. 6.11 The colour space in which three bands of remotely sensed image data are displayed;
fully correlated data points would fall along the line of grey

correlated data uncorrelated data
can’t fill the colour space, even a er 
simple contrast enhancement

can fill the colour space with simple 
contrast enhancement

a b 

Fig. 6.12 Showing the use of the colour space made when displaying a correlated and
b uncorrelated image data
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developed using the principal components transformation.12 Consider a two
dimensional image with the histogram shown in Fig. 6.13.

As observed, the two components (bands) are highly correlated, which can also
be seen in the large off diagonal elements in the covariance matrix for the data,
which is

Cx ¼ 0:885 0:616
0:616 0:879

� �
ð6:10Þ

The limited range of brightness values in the histogram suggests there would be
value in performing a contrast stretch to allow a better use of the available brightness
value range, in this case from 0 to 9. Suppose a simple linear stretch is used. It is usual
to apply that enhancement to each image component separately. That requires the
equivalent one dimensional histogram to be constructed for each component, irre-
spective of the brightness values in the other component. The one dimensional his-
tograms are the marginal distributions of the two dimensional histogram of Fig. 6.13
and are shown in Fig. 6.14a.When contrast stretched the versions in Fig. 6.14b result.
The equivalent two dimensional histogram resulting from the separate stretches in
each band is shown in Fig. 6.15. Note that the correlation between the bands is still
present and that if component 1 is displayed as red and component 2 as green no
highly saturated reds or greenswill be evident in the enhanced image although, for this
two dimensional example, brighter yellows will appear.
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Fig. 6.13 Histogram for a
hypothetical two dimensional
image which has strongly
correlated bands; the numbers
in the cells are the pixel
counts

12 This was demonstrated initially in M.M. Taylor, Principal components display of ERTS-1
imagery, Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351, 1973,
pp. 1877–1897, and later in J.M. Soha and A.A. Schwartz, Multispectral histogram normalization
contrast enhancement. Proc. 5th Canadian Symposium on Remote Sensing, 1978, pp. 86–93.
A recent, general treatment will be found in N.A. Campbell, The decorrelation stretch transfor-
mation, Int. J. Remote Sensing, vol. 17, 1996, pp. 1939–1949.
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Fig. 6.14 a Individual histograms for the image with the two dimensional histogram of Fig. 6.13,
and b individual histograms after a simple linear contrast stretch
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As noted in the previous section the situation for three dimensional correlated
data is even worse, showing no saturated colour primaries and no bright mixture
colours. The procedure recommended by Taylor overcomes this, as will now be
demonstrated, allowing the colour space to be filled more completely. It is based on
taking a principal components transformation, contrast stretching the principal
components and then inverting the transformation to return to the original set of
bands.

Let x be the vector of brightness values of the pixels in the original image and y
be the corresponding vector of intensities after principal components transformation
according to y ¼ Gx. G is the principal components transformation matrix, com-
posed of the transposed eigenvectors of the original covariance matrix Cx. The
covariance matrix which describes the scatter of pixel points in the principal
components vector space is a diagonal matrix of the eigenvalues of G which, for
three dimensional data, is of the form

Cy ¼
k1 0 0
0 k2 0
0 0 k3

2
4

3
5

Suppose now the individual principal components are enhanced in contrast such
that they each cover the full range of brightness values and, in addition, have the
same variances; in other words, the histograms of the principal components are
matched, for example, to a Gaussian histogram that has the same variance in all
dimensions. The new covariance matrix will be of the form

C
0
y ¼

r2 0 0
0 r2 0
0 0 r2

2
4

3
5 ¼ r2I ð6:11Þ

where I is the identity matrix. Since the principal components are uncorrelated,
enhancement of the components independently yields an image with good utilisa-
tion of the available colour space, with all hues technically possible. The axes in the
colour space, however, are principal components and are not as desirable for image
analysis by photointerpretation as having a colour space based on the original
components of the image. It would be of value if the image data could be returned
to the original x space so that the display colours represent the original image
bands. Let the contrast enhanced principal components be represented by the vector
y0. These can be transformed back to the original axes for the image by using the
inverse of the principal components transformation matrix G�1. Since G is
orthogonal its inverse is its transpose, which is readily available, so that the
modified pixel vector in the original coordinate space (i.e., the spectral measure-
ment space) is given from x0 ¼ GTy0.

The new covariance matrix of the data back in the original image domain is,
using (6.6),
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C0
x ¼ E ½x0 � E x0ð Þ�½x0 � E x0ð Þ�T

n o
¼ GTE ½y0 � E y0ð Þ�½y0 � E y0ð Þ�T

n o
G ¼ GTC0

yG

In view of (6.11) this gives

C0
x ¼ GTr2IG ¼ r2I:

Thus, the covariance matrix of the enhanced principal components data is pre-
served on transformation back to the original image space. No correlation is
introduced, and the data shows good utilisation of the colour space while using the
original image data components.13

In practice, one problem encountered with the Taylor procedure is the dis-
cretisation noise introduced into the final results by the contrast enhanced third
principal component. If the brightness values were continuous, rather than discrete,
that would not occur. However, because image analysis software treats image data
in integer format, the rounding of intermediate results to integer form produces the
noise. One possible remedy is to low pass filter the noisy components before the
inverse transform is carried out.

6.3.7 Use of Principal Components for Image Compression

Recall that the principal components transformation generates images of decreasing
variance, and essentially compresses most of the image spectral detail into the first
few component images. It is therefore suited to generating a reduced representation
of image data for storage or transmission. In such a situation, it is only the
uppermost significant components that are retained to represent the image. The
information content lost is indicated by the sum of the eigenvalues of the com-
ponents ignored compared with the total sum; this represents the mean square error
of the approximation. Since the eigenvalues are ranked, the compression is optimal
in terms of mean square error.

If the original image is to be restored, either on reception through a communi-
cations channel or on retrieval from memory, then the inverse of the transformation
matrix is used to reconstruct the image from the reduced set of components. Since
the matrix is orthogonal its inverse is its transpose. This technique is known as
bandwidth compression in the field of telecommunications.

13 See Problem 6.10 for a completion of this example.
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6.3.8 The Principal Components Transform in Change
Detection Applications

The principal components transformation is a redundancy reduction technique that
generates data that is uncorrelated in the principal axes. It can also be used as a data
transform to enhance regions of localised change in multitemporal image data.14

That is a direct result of the high correlation that exist between images for regions
that don’t change significantly, and the relatively low correlations associated with
regions that change. Provided the major portion of the variance in a multitemporal
image data set is associated with constant cover types, regions of localised change
will be enhanced in the higher principal components generated from the multi-
temporal data. Regions of localised urban development and floods can be enhanced
in this manner. In this section we demonstrate the technique using multitemporal
imagery that shows fire damage between dates.

As might be expected, the major effect of fire damage on healthy green vege-
tation shows up in the near infrared region of the spectrum. When burnt, the strong
infrared response of vegetation drops sharply. Conversely, when fire damaged
vegetation regenerates, the near infrared response increases. To illustrate the value
of principal components for highlighting changes associated with fire events con-
sider near infrared data from two dates, one prior to a fire and the other afterwards.

We can construct a two-date scatter diagram as shown in Fig. 6.16. Pixels that
correspond to cover types that remain essentially constant between dates, apart from
normal seasonal differences, distribute in an elongated fashion as shown, corre-
sponding to vegetation, water and soils. Cover types that change between dates will
appear as major departures from that general trend. Pixels that were vegetated in the
first date and burnt in the second lead to the off-diagonal group which has a low
date 2 near infrared response as shown. Similarly, pixels that were bare (burnt) in
the first date and revegetated in the time before the second acquisition, also cluster,
but in the opposite direction.

Principal components analysis will lead to the axes shown in the figure.
Variations in the near infrared response associated with the localised fire changes
project into both component axes, but the effect is masked in the first component by
the large range of brightness values of the near-constant cover types. By compar-
ison, the change effect dominates the second principal component because the cover

14 See G.R. Byrne and P.F. Crapper, An example of the detection of changes between successive
Landsat images by numerical methods in an urban area, Proc. 1st Australasian Conf. on Remote
Sensing (Landsat’79), Sydney, 1979; G.R. Byrne, P.F. Crapper and K.K. Mayo, Monitoring land
cover change by principal components analysis of multitemporal Landsat data, Remote Sensing of
Environment, vol. 10, 1980, pp. 175–184; J.A. Richards, Thematic mapping from multitemporal
image data using the principal components transformation, Remote Sensing of Environment, vol.
16, 1984, pp. 35–46; S.E. Ingebritsen and R.J.P. Lyon, Principal components analysis of multi-
temporal image pairs, Int. J. Remote Sensing, vol. 6, 1985, pp. 687–696; T. Fung and E. Le Drew,
Application of principal components analysis to change detection, Photogrammetric Engineering
and Remote Sensing, vol. 53, 1987, pp. 1649–1658.
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types that were unchanged between dates project to a small range of brightnesses in
the second component. The same general situation occurs when all available bands
of image data are used, and all principal components are generated. Several of the
higher order components may show local change information.

Figure 6.17 shows portions of two near infrared images recorded by Landsat in
1979 and 1980, over the northern suburbs of the city of Sydney, Australia. In the
first there is a large fire scar evident as the result of a severe bush fire that occurred
just prior to image acquisition. That region is revegetating in the second image, but
two new burns are evident from fires that occurred earlier in 1980. While the figure
shows only the near infrared images, four bands were available for each date,
corresponding the visible green and red bands and the two near infrared bands of
the Landsat Multispectral Scanner instrument. After the two images were registered,
an 8 band multispectral, multitemporal image data set was available for use in the
study.15

The principal components of the 8 band data set were generated, the first four of
which are shown in Fig. 6.18. The remainder do not show any features of signif-
icance to this analysis. The first component is tantamount to a total brightness
image, whereas the later components highlight changes. It is the second, third and
fourth components that are most striking in relation to the fire features of interest.
Pixels that have essentially the same cover type in both dates e.g., vegetation and
vegetation, fire burn and fire burn, show as mid grey in the second, third and fourth
components. Those that have changed, either as vegetation to fire burn or as fire
burn to vegetation, show as darker or brighter than mid grey, depending on the
component.

near infrared
date 2

near infrared
date 1

burnt date 1
revegetated date 2

vegetated date 1
burnt date 2

first principal axis

second principal axis

distribu on of pixels 
that don’t change 
much between dates

Fig. 6.16 A two-date near infrared scatter diagram showing the likely distribution of pixels that
remain largely constant in brightness between dates and those that change with fire events

15 See details in J.A. Richards, Thematic mapping from multitemporal image data using the
principal components transformation, Remote Sensing of Environment, vol. 16, 1984, pp. 35–46.
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Those effects are easily verified by substituting typical spectral reflectance
characteristics into the equations that generate the components. Each component is
a linear combination of the original eight bands of data, where the weighting
coefficients are the components of the corresponding eigenvector of the 8 � 8
covariance matrix. Those eigenvectors, along with their eigenvalues, which are the
variances of the components, are shown in Table 6.3.

When interpreting the fourth component it is necessary to account for a sign change
introduced by the software16 that generated the set of principal components. The
second principal component image expresses the 1979fire burn as lighter than average
tone, while the third principal component highlights the two fire burns. The 1979 burn
region shows as darker than average whereas that for 1980 shows as slightly lighter
than average. In the fourth component the 1980 fire burn shows as darker than average
with the 1979 scar not evident. What can be seen, however, is revegetation in 1980
from the 1979 fire. That shows as lighter regions. A particular example is revegetation
in two stream beds on the right-hand side of the image a little over halfway down.

A colour-composite image formed by displaying the second principal compo-
nent as red, the third as green, and the fourth as blue is given in Fig. 6.19. That
shows the area that was vegetated in 1979 but burnt in 1980 as lime green; regions
from the 1979 burn that remain without vegetation or have only a light vegetation
cover in 1980 show as bright red; revegetated regions in 1980 from the 1979 fire
display as bright blue/purple whereas the vegetated, urban, and water backgrounds
that remained essentially unchanged between dates show as dark green/grey.

a b 

1979
fire burn

1980
fire burns

Fig. 6.17 Landsat MSS infrared images recorded in a 1979 and b 1980, showing fire and
revegetation events

16 Dipix Aries II.
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PC1 PC2

PC3 PC4

Fig. 6.18 The first four principal component images from the 1979, 1980 multitemporal Landsat
multispectral scanner data set; the expanded portions demonstrate the high noise of the fourth
component compared with the low noise of the first; underlying diagram from J.A. Richards,
Thematic mapping from multitemporal image data using the principal components transformation,
Remote Sensing of Environment, vol. 16, 1984, pp. 35–46 used with permission of Elsevier

Table 6.3 Eigenvalues and eigenvectors of the 8 band multitemporal covariance matrix; the
eigenvector elements weight the original bands when generating the principal components

Component Eigenvalue Eigenvector elements (by row)
1 1884 0.14 0.21 0.38 0.38 0.15 0.30 0.53 0.50
2 236 0.24 0.32 −0.21 −0.45 0.36 0.63 0.06 −0.25
3 119 0.24 0.21 0.49 0.46 0.07 0.08 −0.40 −0.53
4 19 −0.51 −0.58 −0.03 0.27 0.13 0.55 −0.04 −0.12
5 6 0.37 −0.50 0.07 −0.04 0.38 −0.30 0.49 −0.37
6 5 0.44 −0.14 −0.54 0.41 0.31 0.00 −0.37 0.32
7 4 −0.17 0.35 −0.52 0.45 −0.19 −0.05 0.42 −0.39
8 3 0.50 −0.29 −0.04 −0.02 −0.74 0.34 0.08 −0.04
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6.3.9 Use of Principal Components for Feature Reduction

In Sect. 10.3.1 we consider the value of the principal components transformation as
a tool for reducing the number of features that need to be processed when classi-
fying image data. Because of its compressive properties the essence of the tech-
nique is to apply a principal components transformation and retain only the high
variance bands for subsequent quantitative analysis. Provided the classes of interest
are discriminable in the principal axes then the technique is suitable. However,
noting that principal components analysis is based on the global covariance matrix,
which is insensitive to the class composition of the data, the procedure is often
unsatisfactory particularly, as we have seen in Sect. 6.3.8, some spatially small
classes are emphasised in later components.

6.4 The Noise Adjusted Principal Components Transform

In the examples of Figs. 6.10 and 6.18 it is apparent that noise present in the
original image has been concentrated in the later principal components. Ordinarily
that is what would be expected: the components would become progressively
noisier as their eigenvalues decrease. In practice that is not always the case. It is

Fig. 6.19 Colour composite
principal components image
in which the second principal
component from Fig. 6.18 has
been displayed as red, the
third as green and the fourth
as blue
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sometimes found that earlier components are noisier than those with the smallest
eigenvalues. The noise adjusted transformation overcomes that problem.17 Let

y ¼ Gx ¼ DTx ð6:12Þ

be a transformation that will achieve what we want. As with the principal com-
ponents transformation, if Cx is the covariance of the data in the original (as
recorded) coordinate system, the diagonal covariance matrix after transformation
will be

Cy ¼ DTCxD ð6:13Þ

To find the transformation matrix DT that will order the noise by component we
start by defining the noise fraction

ð6:14Þ

where vn is the noise variance along a particular axis and v is the total variance
along that axis, consisting of the sum of the signal (wanted) variance and the noise
variance. We assume that the signal and noise are uncorrelated. The total noise
variance over all bands in the recorded data can be expressed as a noise covariance
matrix Cn

x so that after transformation according to (6.12) the noise covariance
matrix will be

Cn
y ¼ DTCn

xD ð6:15Þ

This last equation is a matrix-based summary of the set of equations

vn ¼ dTCn
xd

in which vn is the noise variance along the axis g ¼ dT. From (6.13) the total signal
plus noise variance along that axis is

v ¼ dTCxd

so that, from (6.14), the noise fraction along that axis is

ð6:16Þ

17 J. B. Lee, A. S. Woodyatt, and M. Berman, Enhancement of high spectral resolution
remote-sensing data by a noise-adjusted principal components transform, IEEE Transactions on
Geoscience and Remote Sensing, vol. 28, no. 3, May 1990, pp. 295–304.
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We now want to find the coordinate direction g ¼ dT that minimises . To do
that we equate to zero the first derivative of with respect to d. Thus18

which, after simplification, gives

Cn
xd� Cxd

dTCn
xd

dTCxd
¼ 0

i.e.

so that

ð6:17Þ
We now recognise the as the eigenvalues of Cn

xC
�1
x and the d as the corre-

sponding eigenvectors. If we rank the eigenvalues in increasing order then the
image components will be ranked from that with the lowest noise variance to that
with the highest, as required.

Suppose the noise covariance can be transformed to the identity matrix I, by the
technique we develop below. Then (6.17) becomes

and, from (6.16), , so that after multiplying throughout by Cx the last
expression becomes

ðCx � vIÞd ¼ 0

which is the standard eigenvalue equation for the principal components transform,
in which v is explicitly the image variance associated with the relevant principal
component, as before. This leads to a simple way to apply the noise adjusted
principal components transform. First, we transform the original data so that the
noise covariance matrix becomes the identity matrix. We then apply the standard
principal components procedure.

The only outstanding step is to know how to transform the original data so that its
noise covariance becomes the identitymatrix. That is achieved in the followingmanner.
From Appendix C we see that the diagonal form of the noise covariance matrix is

K ¼ E�1Cn
xE

18 Note @
@x xTAxf g ¼ 2Ax.
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in which K is the diagonal matrix of its eigenvalues and E is the matrix of its
eigenvectors. If we pre-multiply the last expression by ðK�0:5ÞT and post-multiply it
by K�0:5 we have

I ¼ ðK�0:5ÞTE�1Cn
xEK

�0:5

Defining F ¼ EK�0:5, and noting that E is orthogonal, the last expression becomes

I ¼ FTCn
xF

We thus recognise y ¼ FTx as the transformation of the original data which yields a
new set in which the noise covariance matrix is unity. Provided this transformation
is carried out first, the standard principal components transform can be applied.

The procedure just outlined requires an estimate of the noise covariance matrix
for the original image data. There are several means by which this estimate might be
found.19 Many are based on examining an image in segments thought to represent
relatively pure, homogeneous regions on the ground. For those segments, an esti-
mate of the noise is generated from the result of having subtracted a smoothed
version of the image from the original.

6.5 The Kauth-Thomas Tasseled Cap Transform

The principal components transform yields a new coordinate description of remote
sensing image data by establishing the diagonal form of the global covariance
matrix. The new coordinates are linear combinations of the original spectral bands.
Other linear transformations are possible. One is the procedure referred to as
canonical analysis, treated in Chap. 10. Others are application-specific in that the
new axes in which the data are described have been devised to maximise infor-
mation of importance to particular needs. The “tasseled cap” transform20 is an
agriculture-specific transformation designed to highlight the most important,
spectrally observable phenomena of crop development, in such a way that dis-
crimination among crops, and crops from other vegetative cover is maximised. Its
basis lies in the behaviour of crop trajectories with time in infrared versus visible

19 See S.I. Olsen, Estimation of noise in images: an evaluation, Graphical Models and Image
Processing, vol. 55, 1993, pp. 319–323.
20 See R.J. Kauth and G.S. Thomas, The tasselled cap—a graphic description of the
spectral-temporal development of agricultural crops as seen by Landsat. Proc. LARS 1976
Symposium on Machine Processing of Remotely Sensed Data, Purdue University, 1976; E.P. Crist
and R.J. Kauth, The tasseled cap de-mystified, Photogrammetric Engineering and Remote
Sensing, vol. 52, 1986, pp. 81–86.
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red, and visible red versus visible green image subspaces. Consider the infrared/red
space shown in Fig. 6.20a.

The first observation that can be made is that the variety of soil types on which
specific crops might be planted appear as pixel points scattered about the diagonal
of the infrared/red space. That is well-known and can be assessed by observing the
spectral reflectance characteristics for soils.21 Darker soils lie nearer the origin and
lighter soils are at higher values in both bands. The actual slope of the line of soils
will depend on global external factors such as atmospheric haze and soil moisture
effects. If the transformation to be derived is to be used quantitatively those effects
need to be modelled and the data calibrated or corrected beforehand.

Consider now the trajectories followed in the infrared/red subspace for crop
pixels corresponding to growth on different soils as shown in the figure—in this
case looking just at the extreme light and dark soil types. For both, the spectral
response at planting is dominated by soil, as expected. As crops emerge the
shadows cast over the soil dominate any green matter response. As a result, there is
a darkening of the response of the lighter soil crop fields and possibly a slight
darkening of fields on dark soil. When crops reach maturity their trajectories come
together, implying closure of the crop canopy over the soil. The response is then
dominated by the green biomass, being in a high infrared and low red region, as is
well known.

When the crops senesce and turn yellow their trajectories remain together and
move away from the green biomass point in the manner depicted in the diagram.
However, whereas the development to maturity takes place almost totally in the
same plane, the yellowing development moves out of that plane, as seen by how the
trajectories develop in the red versus green subspace during senescence, as depicted

line of soils
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dark soil
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emergence

mature 
cropsin
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ed

red
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green

soils

yellowing of 
senescent crops

a b 

Fig. 6.20 Spectral subspaces showing stages of crop development

21 See P.H. Swain and S.M. Davis, eds., Remote Sensing: The Quantitative Approach,
McGraw-Hill, N.Y., 1978, Chap. 5.
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in Fig. 6.20b. Should the crops then be harvested, the trajectories move back
towards their original soil positions.

Having made those observations, the two diagrams of Fig. 6.20 can now be
combined into a single three dimensional version in which the stages of the crop
trajectories can be described according to the parts of a cap, with tassels, from
which the name of the subsequent transformation is derived. That is shown in
Fig. 6.21. The first point to note is that the line of soils used in Fig. 6.20a is now
shown as a plane of soils. Its maximum spread is along the three dimensional
diagonal as indicated; it has a scatter about this line consistent with the spread in red
versus green shown in Fig. 6.20b. This plane of soils forms the brim and base of the
cap. As crops develop on any soil type their trajectories converge essentially
towards the crown of the cap at maturity, after which they fold over and continue to
yellowing as indicated. Thereafter they break up to return ultimately to various soil
positions, forming the tassels on the cap.

The behaviour observable in Fig. 6.21 suggests the development of a linear
transformation that would be useful in crop discrimination. As with principal
components analysis, this transformation should be based on orthogonal axes.
However, the axis directions are chosen according to the behaviour seen in
Fig. 6.21.

Three orthogonal directions of significance in agriculture can be identified in the
new coordinate system. The first is the principal diagonal along which soils are
distributed. That is chosen as the first axis in the tasseled cap transform. The
development of green biomass as crops move towards maturity appears to occur
orthogonal to the soil axis. That direction is chosen for the second axis, with the
intention of providing a greenness indicator. Crop yellowing takes place in a
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Fig. 6.21 Crop trajectories in
a green, red and infrared
space, having the appearance
of a tasseled cap
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different plane from maturity. Consequently, choosing a third axis orthogonal to the
soil line and greenness axis will give a yellowness measure. Finally, a fourth axis is
required to account for data variance not substantially associated with differences in
soil brightness, or vegetative greenness or yellowness if using four dimensional data
such as Landsat MSS. Again, that needs to be orthogonal to the previous three. The
transformation that produces the new description of the data may be expressed

u ¼ Rxþ c ð6:18Þ

where x is the original image data vector, and u is the vector of transformed
brightness values. This has soil brightness as its first component, greenness as its
second and yellowness as its third. They can be used as indices. R is the trans-
formation matrix and c is a constant vector chosen to avoid negative values in u.
The transformation matrix R is the transposed matrix of column unit vectors along
each of the transformed axes (compare with the principal components transfor-
mation matrix). For a given agricultural region the first unit vector can be chosen as
the line of best fit through a set of soil classes. The subsequent unit vectors can then
be generated by using a Gram Schmidt orthogonalization procedure in the direc-
tions required.22 The transformation matrix generated by Kauth and Thomas for a
Landsat Multispectral Scanner data set is23

R ¼
0:433 0:632 0:586 0:264

�0:290 �0:562 0:600 0:491
�0:829 0:522 �0:039 0:194
0:223 0:012 �0:543 0:810

2
664

3
775

From this it can be seen, at least for the region investigated by Kauth and
Thomas, that the soil brightness is a weighted sum of the original four Landsat
bands, with approximately equal emphases. The greenness measure is the difference
between the infrared and visible responses. In a sense it is more a biomass index.
The yellowness measure can be seen to be largely the difference between the visible
red and green bands.

Just as new images can be synthesised to correspond to principal components,
the same can be done with the Tasseled cap transform. By applying (6.18) to every
pixel in the original image, soil brightness, greenness, yellowness and residual
images can be produced. They can then be used to assess stages in crop develop-
ment. Clearly, the method can also be applied to other sensors.

22 It is possible to generate as many independent orthogonal vectors, and thus coordinates, as there
are dimensions in the original coordinate space; the Gram-Schmidt process allows such an
orthogonal basis to be found to suit the needs of the data set.
23 Kauth and Thomas, loc. cit.
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6.6 The Kernel Principal Components Transform

As the examples in Sect. 6.3.4 show the principal components transform produces
the most striking results on data that exhibits a strong degree of correlation. This
suggests that the data distributions on which the transformation has most impact are
those which are elongated in the spectral domain. In such a situation the trans-
formation often works well for feature reduction, because many classes will be
distributed along the line of maximum correlation. However, Fig. 3.8 demonstrates
that many of the classes of interest in remote sensing are distributed in a more
general fashion. Although the principal components transformation can be limited
as a feature reduction tool, as discussed in Sect. 6.3.9, if it can be made to dis-
criminate among classes that are distributed in the fashion of Fig. 3.8, then its value
for feature selection is significantly improved.

One way of achieving that would be to apply some form of axis transformation
to the data before principal components analysis in order to redistribute the data
points in a form more suited to generating a better outcome from the principal
components transformation. We will now explore that approach; by exploiting an
artifice known as the kernel trick we will see that we do not have to find the axis
transform explicitly.24

Assume there is a transformation z ¼ UðxÞ that projects the data into a new set
of coordinates in which the principal components transformation is better able to
discriminate the classes of interest. We are imposing no particular constraints on the
transformation UðxÞ at this stage. It could project the data into a space with
dimensions higher than that of the original recorded measurements.

It helps our analysis if we assume that the original measurements x are centred.
That implies we have assumed a mean position of zero, which can be achieved by
subtracting the mean vector from each of the original measurement vectors.
Likewise, we assume that the z are centred. The covariance matrix in the z coor-
dinates is

Cz ¼ E zzT
� � ¼ 1

N

XN
j¼1

zjzTj ¼ 1
N

XN
j¼1

UðxjÞUðxjÞT ð6:19Þ

in which N is the total number of data points. The equation in z space for finding the
eigenvalues kz and eigenvectors vz of Cz is

25

kzvz ¼ Czvz

24 The formative paper on kernel principal components is B. Schölkopf, A. Smola and K-R Müller,
Kernel principal components analysis, in B. Schölkopf, C.J.C. Burges, and A..J. Smola, eds.,
Advances in Kernel Methods–Support Vector Learning, MIT Press, Cambridge, Mass., 1999.
25 See (C.6).
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For reasons which will become clear shortly, take the scalar product of both sides of
this equation with UðxkÞ; k ¼ 1. . .N. The scalar product of two vectors can be
expressed in dot product or transposed form; here we choose the latter

kzUðxkÞTvz ¼ UðxkÞTCzvz; k ¼ 1. . .N ð6:20Þ

Recall that the eigenvectors can be expressed as a linear combination of the
coordinates of the z space; the set of expansion coefficients ai below are what we
normally refer to as the eigenvectors. Thus

vz ¼
XN
i¼1

aizi ¼
XN
i¼1

aiUðxiÞ ð6:21Þ

If we now substitute (6.21) and (6.19) into (6.20) we obtain

kzUðxkÞT
XN
i¼1

aiUðxiÞ ¼ UðxkÞT 1
N

XN
j¼1

UðxjÞUðxjÞT
XN
i¼1

aiUðxiÞ; k ¼ 1. . .N

This can be written

NkzUðxkÞT
XN
i¼1

aiUðxiÞ ¼ UðxkÞT
XN
i;j¼1

UðxjÞUðxjÞTaiUðxiÞ; k ¼ 1. . .N

or

Nkz
XN
i¼1

aiUðxkÞTUðxiÞ ¼
XN
i;j¼1

UðxkÞTUðxjÞUðxjÞTUðxiÞai; k ¼ 1. . .N

Note that this last equation is expressed in the form of three scalar products of the
transformed vector z ¼ UðxÞ. If we define the vector of coefficients ai by a then the
last expression can be written compactly as

NkzKa ¼ K2a

in which K is the matrix of all scalar products of the general form
UðxiÞTUðxjÞ; i; j ¼ 1. . .N. The last expression simplifies to

Nkza ¼ Ka ð6:22Þ
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so that Nkz is an eigenvalue of K and a is the eigenvector. We require the
eigenvalues vz to be normalised, as with traditional principal components analysis,
so that vTz vz ¼ 1. From (6.21) that gives for the kth eigenvector26

XN
i;j¼1

aki a
k
jUðxiÞTUðxjÞ ¼ 1

which is equivalent to ðakÞTKak ¼ 1. From (6.22) this gives ðakÞTNkkzak ¼ 1

which requires the eigenvector ak to be divided by
ffiffiffiffiffiffiffiffi
Nkkz

q
to ensure that the

eigenvectors vz have unit magnitude.
How do we now create the actual principal components in z space? As in (6.9)

we generate the pixel points by taking the scalar products of the eigenvectors of the
covariance matrix and the original pixel vector. The equivalent operation in this
analysis for the kth component is

kth kernel PC ¼ ðvkÞTU xð Þ ¼
XN
i¼1

akiU xið ÞTU xð Þ ð6:23Þ

Thus, to compute the kth principal component in the transformed data space it is
only necessary to know the scalar product U xið ÞTU xð Þ in (6.23) and not the actual
form of the axis transform itself. We replace that scalar product by the so-called
kernel function kðxi; xÞ. Once that is specified, we then only need the eigenvectors a
in order to apply (6.23). Those eigenvectors are found by solving (6.22) which
requires the kernel matrix K to be found. Note that its elements are also defined
entirely in terms of the scalar products and thus in terms of the chosen kernel
function.

The kernel function kð:; :Þ must satisfy certain conditions, as all the more
commonly encountered kernels do (see Sect. 8.16).

If the data are not centred beforehand, the above analysis still holds provided the
kernel matrix is modified to27

K ¼ K� INK�KIN þ INKIN ð6:24Þ

in which IN ¼ 1
N I.

26 Note that the superscript here refers to the eigenvector index and is not a power.
27 See Schölkopf et al., loc. cit.
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The kernel based PCA has been used to improve feature selection28 and to assist
image registration.29 It has also been used to enhance the PCA-based change
detection procedure covered in Sect. 6.3.8.30

6.7 HSI Image Display

While not strictly a spectral domain transform in the sense of principal components
analysis, the transform which creates a hue, saturation, intensity image from a blue,
green, red counterpart is a useful operation for display and is employed as a step in
the process of colour image sharpening (see Sect. 6.8).

The human visual system sees detail predominantly because of variations in
brightness rather than changes in colour. That is why black and white photographs
and black and white television are acceptable. Colour has the effect of adding to the
visual experience but is not nearly as important as image intensity. As a conse-
quence, in television systems more bandwidth (bit rate) is given to the transmission
of intensity information than to the transmission of colour.

A useful model with which to describe colour is the colour wheel or colour solid,
such as that shown in Fig. 6.22. It shows image brightness, or intensity, along the
vertical axis and colour around a circular base plane. Two properties are required to
describe colour in that plane. The most common are the hue, which represents the
actual colour itself, and the saturation, which represents how vivid the colour is.
A fully saturated red is very bright whereas an unsaturated red would be a
washed-out pink colour. The hue and saturation description of colour are effectively
the polar coordinates in the colour plane. Points in the colour plane can be located
with other coordinate systems as well such, as the U, V axes used for the PAL
colour television system.

The hue (H), saturation (S) and intensity (I) components of an image which has
been displayed with red (R), green (G) and blue (B) components can be found in the
following manner. First, it is convenient to define the normalised colours

28 M. Fauvel, J. Chanussot and J.A. Benediktsson, Kernel principal component analysis for feature
reduction in hyperspectral image analysis, Proc. 7th Nordic Signal Processing Symposium 2006,
pp. 238–241, and M. Fauvel, J. Chanussot and J.A. Benediktsson, Kernel principal component
analysis for the construction of the extended morphological profile, Proc. Int. Geoscience and
Remote Sensing Symposium, IGARSS2009, Cape Town, 12–17 July 2009, pp. II843–II846.
29 M. Ding, Z. Tian, Z. Jin, M. Xu and C. Cao, Registration using robust kernel principal com-
ponents for object-based change detection, Geoscience and Remote Sensing Letters, vol. 7, no. 4,
October 2010, pp. 761–765.
30 A.A. Neilson and M.J. Canty, Kernel principal components analysis for change detection, Proc.
SPIE Image and Signal Processing for Remote Sensing XIV, L. Bruzzone, C. Notarnicola and F.
Posa, eds., vol. 7109, 2008, pp. 71090 T-1–71090 T-10.
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r ¼ R
RþGþB

g ¼ G
RþGþB

b ¼ B
RþGþB

Intensity is the average of the red, green and blue signals:

I ¼ RþGþB
3

ð6:25Þ

Hue is given by

for b\g H ¼ cos�1 r � gð Þþ r � bð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � gÞ2 þ r � bð Þ g� bð Þ

q ð6:26aÞ

for b[g H ¼ 2p� H ð6:26bÞ

while saturation is defined by

S ¼ 1� 3minðr; g; bÞ ð6:27Þ

Intensity is called luminance in the television industry and given the symbol Y. Note
that on these definitions the range of hue is [0, 2p] and that of saturation is [0, 1].
When used for display, those ranges, as that for intensity, need to be scaled to the
range of the display device. As seen in Fig. 6.22 the hue origin corresponds to red.

We can go from HSI to RGB with the following expressions. They depend on
the sector of the colour wheel in which the colour point falls.

hue

satura on

intensity

white

black

red

green

blue

120° 

colour solid colour wheel

Fig. 6.22 Colour representation in HSI coordinates; effectively this is a cylindrical coordinate
system, whereas the RGB colour cube of Fig. 6.11 is a Cartesian colour space; the grey axis in
Fig. 6.11 corresponds to the vertical intensity axis above
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For 0�H\120�

r ¼ 1
3

1þ S cosH
cos 60� Hð Þ

� �
b ¼ 1� S

3
g ¼ 1� b� r ð6:28aÞ

For 120� �H\240�

g ¼ 1
3

1þ S cosðH � 120Þ
cos 180� Hð Þ

� �
r ¼ 1� S

3
b ¼ 1� r � g ð6:28bÞ

For 240� �H\360�

b ¼ 1
3

1þ S cosðH � 240Þ
cos 300� Hð Þ

� �
g ¼ 1� S

3
r ¼ 1� g� b ð6:28cÞ

6.8 Pan Sharpening

Having recognised in the previous section that it is possible to map from the red,
green, blue colour space to a hue, saturation and intensity representation, and the
fact that spatial detail is more easily discerned in intensity data, a simple method
arises for sharpening the spatial detail in an image.

Many remote sensing instruments contain a higher resolution panchromatic band
along with the set of multispectral bands. A straightforward way to produce a
colour product with the spatial resolution of the panchromatic band is to choose
three of the original multispectral bands from which a blue, green, red colour
version is formed. A hue, saturation and intensity transformation is then carried out,
following which the intensity channel is discarded and replaced by the panchro-
matic data. The hue and saturation images are then resampled to the spatial reso-
lution of the panchromatic band. The new combination is transformed back to the
red, green, blue colour space. This technique is known as pan sharpening. The
intensity channel could of course be replaced by a co-registered higher resolution
intensity product from any other source.

A variation on this approach uses the principal components transformation. This
has the advantage that the original data can consist of more than just three bands,
such as red, green and blue. In this method a principal components transformation is
applied to the original multispectral image data set. The panchromatic band is
contrast matched to the first principal component and is then used in place of that
component. After resampling the remaining principal components to the new
panchromatic band, an inverse principal components transformation is performed to
regenerate the original set of bands, but with the spatial resolution of the
panchromatic band.
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Reviews of pan sharpening techniques will be found in Xiangchao et al.,31 and
Ehlers et al.32 More recently the convolutional neural network has been applied to
the sharpening problem.33

6.9 Bibliography on Spectral Domain Image Transforms

One of the earliest and most easily read treatments of the principal components
transformation in a remote sensing context is the formative paper.

S.K. Jensen and F.A. Waltz, Principal components analysis and canonical analysis in
remote sensing, Proc. American Photogrammetric Society 45th Annual Meeting, 1979,
pp. 337–348.

Full theoretical treatments can be found in many books on image processing and
statistics, although often under the alternative titles of Karhunen-Loève or Hotelling
transform. They include

R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th ed. Pearson Prentice-Hall,
Upper Saddle River, N.J., 2018.

Other books on remote sensing image analysis also normally contain extensive
sections on the principal components transformation and related topics. The
foundation paper for the kernel principal components transformation is

B. Schölkopf, A. Smola and K-R Müller, Kernel principal components analysis, in B.
Schölkopf, C. J. C. Burges and A. J. Smola, eds., Advances in Kernel Methods–Support
Vector Learning, MIT Press, Cambridge, MA, 1999.

Kernel methods in general, with a remote sensing context, will be found in

G. Camps-Valls and L. Bruzzone, eds., Kernel Methods for Remote Sensing Image
Analysis, John Wiley & Sons, Chichester UK, 2009.

The use of the principal components transformation for change detection will be
found in

31 M. Xiangchao, S. Huanfeng, L. Huifang, Z. Liangpei and F. Randi, Review of the pansharp-
ening methods for remote sensing images based on the idea of meta-analysis: practical discussion
and challenges, Information Fusion, vol. 46, 2019, pp. 102–113.
32 M. Ehlers, S. Klonus, P.J. Åstrand and P. Rosso, Multi-sensor image fusion for pansharpening
in remote sensing, International Journal of Image and Data Fusion, vol.1, no.1, 2010, pp. 25–45.
33 X. Li, F. Xu, X. Lyu, Y. Tong, Z. Chen, S. Li and D. Liu, A remote-sensing image
pan-sharpening method based on multi-scale channel attenuation residual network, IEEE Access,
vol. 8, 2020, pp. 27,163–27,177.
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G.R. Byrne and P.F. Crapper, An example of the detection of changes between successive
Landsat images by numerical methods in an urban area, Proc. 1st Australasian Conf on
Remote Sensing (Landsat’79), Sydney, 1979.

G.R. Byrne, P.F. Crapper and K.K. Mayo, Monitoring land cover change by principal
components analysis of multitemporal Landsat data, Remote Sensing of Environment, vol.
10, 1980, pp. 175–184.

J.A. Richards, Thematic mapping from multitemporal image data using the principal
components transformation, Remote Sensing of Environment, vol. 16, 1984, pp. 35–46.

S.E. Ingebritsen and R.J.P. Lyon, Principal components analysis of multitemporal image
pairs, Int. J. Remote Sensing, vol. 6, 1985, pp. 687–696.

T. Fung and E. Le Drew, Application of principal components analysis to change detection,
Photogrammetric Engineering and Remote Sensing, vol. 53, 1987, pp. 1649–1658.

The tasselled cap transformation is developed and refined in

R.J. Kauth and G.S. Thomas, The tasselled cap – a graphic description of the
spectral-temporal development of agricultural crops as seen by Landsat. Proc. LARS 1976
Symposium on Machine Processing of Remotely Sensed Data, Purdue University, 1976.

E.P. Crist and R.J. Kauth, The tassled cap de-mystified, Photogrammetric Engineering and
Remote Sensing, vol. 52, 1986, pp. 81–86.

Colour space transformations will be found in books on computer graphics and
image processing and those that treat the transmission of colour in applications such
as colour television. Easily read treatments that might be consulted include

K.R. Castleman, Digital Image Processing, 2nd ed., Prentice Hall, N.J., 1996, and

J.F. Hughes, A. van Dam, M. McGuire, D.F. Sklar, J.D. Foley, S.K. Feiner and K. Akeley,
Computer Graphics: Principles and Practice, 3rd ed., Addison-Wesley, Boston, 2014.

Gonzalez and Woods (see above) has a detailed and excellent section on colour
models and representation.

6.10 Problems

6:1 (a) At a conference two research groups (A and B) presented papers on the
value of the principal components transform for reducing the number of
features required to represent image data. Group A showed very good
results. Group B thought it was of little use. Both groups were using
image data with only two spectral components. The covariance matrices
for their respective images are:
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CA ¼ 5:4 4:5
4:5 6:1

� �
CB ¼ 28:0 4:2

4:2 16:4

� �

Explain the points of view of both groups.
(b) If information content can be related directly to variance, indicate

how much information is discarded if only the first principal
component is retained by each group?

6:2 Suppose you have been asked to describe the principal components trans-
formation to a non-specialist. Write a single paragraph summary of its
essential features, using diagrams if you wish, but no mathematics.

6:3 (For those mathematically inclined). Demonstrate that the principal compo-
nents transformation matrix developed in Sect. 6.3.2 is orthogonal.

6:4 Colour image products formed from principal components generally appear
richer in colour than a colour composite product formed by combining three of
the original bands of remote sensing image data. Why?

6:5 (a) The steps for computing principal component images may be sum-
marised as:

• calculation of the image covariance matrix
• eigenanalysis of the covariance matrix
• computation of the principal components.

Assessments can be made in the first two steps as to the likely value
in proceeding to compute the components. Describe what you
would look for in each case.

(b) The covariance matrix need not be computed over the full image to
produce a principal components transformation. Discuss the value of
using training areas to define the portion of image data to be taken into
account in compiling the covariance matrix.

6:6 Imagine you have two images from a sensor which has a single band in the
range 0.9–1.1 lm. One image was taken before a flood occurred. The second
shows the extent of flood inundation. Produce a sketch of what the two-date
spectral space would look like if the image from the first date contained rich
vegetation, sand and water and that in the second date contains the same cover
types but with an expanded region of water. Demonstrate how a two dimen-
sional principal components transform can be used to highlight the extent of
flooding.

6:7 Repeat the exercise of 6.6 but for a region that was initially largely soil and on
which a crop has been sown and reached maturity. Comment on the extent to
which the crop cover type can fill the image if the technique is to work.

6:8 Describe the nature of the correlations between the pairs of axis variables (e.g.,
bands) in each of the cases in Fig. 6.23.
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6:9 The covariance matrix for an image recorded by a particular four channel
sensor is shown below. Which band would you discard if you had to construct
a colour composite display of the image by assigning the remaining three
bands to each of the colour primaries?

C ¼
35 10 10 5
10 20 12 2
10 12 40 30
5 2 30 30

2
664

3
775

6:10 Verify the elements of the covariance matrix in (6.10) using the data of
Fig. 6.13. Although lengthy, you should now be able to complete the example
of Sect. 6.3.6 by computing the principal components, linearly stretching the
components, and transforming them back to the original coordinate system.

6:11 Perform a principal components transformation of the data shown in Fig. 4.21
and then produce a simple linear contrast stretch on each of the components
separately. Compare the result to that from Problem 4.3.

6:12 Is the principal components transformation just a rotation of axes because

(a) the principal components values are linear combinations of the
original brightness values in the image, or

(b) the eigenvalues decrease monotonically, or
(c) the principal components values are linear combinations of the

original brightness values in the image, and the resulting covariance
matrix is diagonal?

6:13 Consider an artificial landscape consisting of a black and white chequerboard
pattern. Suppose a sensor with blue, green and red bands images that land-
scape. Which of the following statements is correct?

(a) The covariance matrix of the image data will be diagonal
(b) All the elements of the correlation matrix will be unity
(c) One of the eigenvalues of the covariance matrix will be unity and

the other two will be zero

Fig. 6.23 Examples of two dimensional correlations
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6:14 When using the principal components transformation for data compression in
which the later principal components are discarded, is it possible to quantify
the information loss?

(a) Not easily because we have no reliable metrics
(b) Yes, by looking at the distribution of the components in the first

eigenvector
(c) Yes, by looking at the sum of the eigenvalues of the discarded

bands compared with the sum of all eigenvalues

6:15 Is it practically conceivable that we can find an image of the natural landscape
for which there is no correlation among bands recorded in the optical
wavelengths?
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Chapter 7
Spatial Domain Image Transforms

Abstract A number of special functions are introduced including the complex
exponential, delta and Heaviside functions. The Fourier series and Fourier trans-
forms are then covered in continuous and discrete forms, leading to the definition of
the Fourier transform of an image, and how it can be evaluated. Convolution,
including in two dimensions, is then introduced both as a basis for developing
sampling theory and for understanding the theoretical origin of the spatial domain
geometric processing techniques of Chap. 5. Examples are presented to consolidate
the material developed, before moving on to consider an introduction to the wavelet
transform.

7.1 Introduction

In the material presented in Chap. 5 we looked at a number of geometric processing
operations that involve the spatial properties of an image. Averaging over adjacent
groups of pixels to reduce noise and looking at local spatial gradients to enhance
edge and line features are examples. There are, however, more sophisticated
approaches for processing the spatial domain properties of an image. The most
recognisable is probably the Fourier transformation which we consider in this
chapter, allowing us to understand what are called the spatial frequency components
of an image. Once we can use the Fourier transformation, we will see that it offers a
powerful method for generating the sorts of operation we did with templates in
Chap. 5.

There are other spatial transformation techniques as well. Some we will mention
in passing that find application in image compression in the video and television
industry. Other techniques, such as the wavelet transform, have emerged as
important image processing tools in their own right, including in remote sensing.
The wavelet transform is treated later in this chapter.

We commence with some necessary mathematical background that leads, in the
first instance, to the principles of sampling theory. That is sampling, not in the
statistical sense that we use when testing map accuracy in Chap. 11, but in the role

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. A. Richards, Remote Sensing Digital Image Analysis,
https://doi.org/10.1007/978-3-030-82327-6_7
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of digitising a continuous landscape to produce an image composed of discrete
pixels. This material is based on two mathematical fields that the earth science
reader may not have encountered in the past: the first is complex numbers and the
second is integral calculus. We will work our way through that material as carefully
as possible but for those readers not needing a background on transformation
methods, this chapter can be passed over without affecting an understanding of the
remainder of the book.

7.2 Special Functions

Three special functions are important in understanding the development of sam-
pling theory and the transformations treated here. We will consider them as func-
tions of time, because that is the way most are presented in classical texts, but they
will be interpreted as functions of position, in either one or two dimensions as
required, later in the chapter.

7.2.1 The Complex Exponential Function

Several of the functions we meet here involve imaginary numbers which arise when
we try to take the square root of a negative number. The most basic is the square
root of �1. Although that may seem to be an unusual concept, it is an enormously
valuable mathematical construct in developing transformations. It is sufficient here
to consider

ffiffiffiffiffiffiffi�1
p

as a special symbol rather than try to understand the logical
implications of taking the square root of something that is negative. It is given the
symbol j in the engineering literature but is represented by i in the mathematical
literature.

By definition, a complex exponential function1 that is periodic with time is

g tð Þ ¼ ejxt ð7:1Þ

This is best looked at as a vector that rotates in an anticlockwise direction in a two
dimensional plane (called an Argand diagram) described by real and imaginary
number axes as shown in Fig. 7.1. The concept of an imaginary number is
developed further below. If the exponent in (7.1) were negative the vector would
rotate in the clockwise direction. As the vector rotates from its position at time zero
its projection onto the axis of real numbers plots out the cosine function whereas its
projection onto the axis of imaginary numbers plots out the sine function. One

1We use the symbol g here for a general function, rather than the more usual f , to avoid
confusion with the symbol universally used for frequency.
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complete rotation of the vector, covering 360° or 2p radians, takes place in a time
t ¼ T defined by xT ¼ 2p. T ¼ 2p=x is called the period of the function, mea-
sured in seconds, and x is called its radian frequency, with units of radians per
second. For example, if the period is 10 ms, the radian frequency would be
200p ¼ 628 rad s−1. Often, we describe frequency f in hertz rather than as x in
radians per second. The two measures are related by

x ¼ 2pf ð7:2Þ

The complex exponential expression in (7.1) can be written2

ejxt ¼ cosxtþ j sinxt ð7:3aÞ

or, if the sign of the exponent is reversed,

e�jxt ¼ cosxt � j sinxt ð7:3bÞ

Both equations in (7.3) can be written in the form g tð Þ ¼ a tð Þþ jbðtÞ in which a tð Þ
is called the real part of g tð Þ and bðtÞ is called the imaginary part.3

The expressions in (7.3) can be demonstrated from Fig. 7.1 if the rotating vector
is represented by two Cartesian coordinates with unit vectors ð1; jÞ in the horizontal
and vertical directions respectively. In this way the symbol j is nothing other than a
vector that points in the vertical direction. From (7.3a) we can see that

Fig. 7.1 Showing how
sinusoids can be generated
from a rotating complex
exponential function

2 This is known as Euler’s formula.
3 If a, b and g are constants then g is called a complex number.
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cosxt ¼ Re ejxt
� � ð7:4aÞ

sinxt ¼ Im ejxt
� � ð7:4bÞ

in which Re and Im are operators that pick out the real (horizontal) or imaginary
(vertical) parts of the complex exponential. Alternatively, from (7.3) we can see that

cosxt ¼ 1
2

ejxt þ e�jxt
� � ð7:5aÞ

sinxt ¼ 1
2j

ejxt � e�jxt
� � ð7:5bÞ

7.2.2 The Impulse or Delta Function

An important function for understanding the properties of sampled signals,
including digital image data, is the impulse function. It is also referred to as the
Dirac delta function, or simply the delta function. It is spike-like, of infinite
amplitude and infinitesimal duration. It cannot be defined explicitly. Instead, it is
described by a limiting operation in the following manner.

Consider the rectangular pulse of duration a and amplitude 1=a shown in
Fig. 7.2. Note that the area under the curve is 1. If we let the value of a go to 0 then
the function grows in amplitude to infinity and tends to an infinitesimal width, while
its area stays the same. We define the delta function by that limiting operation. As a
formal definition, the best we can do then is to say

dðtÞ ¼ 0 for t 6¼ 0 ð7:6aÞ

and4 Z1

�1
dðtÞdt ¼ 1 ð7:6bÞ

This turns out to be sufficient for most purposes in engineering and science.
Equation (7.6) defines a delta function at the origin; an impulse located at time t0

is defined by

dðt � t0Þ ¼ 0 for t 6¼ t0 ð7:6cÞ

4 Recall that the integral of a function over its range is equal to the area under its curve.
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and Z1

�1
dðt � t0Þdt ¼ 1 ð7:6dÞ

If we take the product of a delta function with another function the result, from
(7.6c), is

d t � t0ð Þg tð Þ ¼ d t � t0ð Þg t0ð Þ ð7:7Þ

From this we see

Z1

�1
d t � t0ð Þg tð Þdt ¼

Z1

�1
d t � t0ð Þg t0ð Þdt ¼ g t0ð Þ

Z1

�1
d t � t0ð Þdt ¼ g t0ð Þ ð7:8Þ

This is known as the sifting property of the impulse because it picks (sifts) out the
value of g tð Þ at time t0.

7.2.3 The Heaviside Step Function

The Heaviside or unit step function is shown in Fig. 7.3 and is defined by

u t � t0ð Þ ¼ 1 for t� t0
¼ 0 for t\t0

ð7:9Þ

Fig. 7.2 A rectangular pulse
that approaches an impulse in
the limit as a ! 0
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The step and delta functions are related by

d t � t0ð Þ ¼ duðt � t0Þ
dt

7.3 The Fourier Series

We now come to a very important concept in the analysis of functions and signals,
which we will apply later to images. If a function of time is periodic, in the sense
that it repeats itself with some regular interval such as the square waveform shown
in Fig. 7.4, then it can be written as the sum of sinusoidal signals or the sum of
complex exponential signals; that is called a Fourier series. We write a periodic
function as g tð Þ ¼ gðtþ TÞ where, again, T is its period. In the terminology of the
complex exponential the Fourier series of the function gðtÞ is written

g tð Þ ¼
X1
n¼�1

Gne
jnx0t ð7:10aÞ

in which x0 ¼ 2p=T , and n is an integer. The coefficients Gn tell us how much of
each sinusoidal frequency component is present in the composition of gðtÞ. Notice
however that there are coefficients with positive and negative indices corresponding
to positive and negative frequency components. That can be understood by noting
in (7.5) that the pure trigonometric functions are composed of exponentials with
positive and negative exponents. The two-sided summation in (7.10a) recognises
that property. One might ask why the trigonometric functions themselves are not
used in developing the Fourier series. The fact is they can be and are; it is just that
the exponential form is more convenient mathematically and has become the
standard expression in engineering and science.

Fig. 7.3 The Heaviside (unit)
step function
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The expansion coefficients Gn are, in general, complex numbers. Finding their
values is the most significant part of using the Fourier series. They are given by5

Gn ¼ 1
T

ZT=2

�T=2

gðtÞe�jnx0tdt ð7:10bÞ

To understand their importance, consider the Fourier series of the square waveform
of Fig. 7.4. Over the range (�T /2, T /2) covered by the integral the square wave-
form is zero except between (�T/4, T /4) over which it is unity. Therefore
Eq. (7.10b) becomes

Gn ¼ 1
T

ZT=4

�T=4

e�jnx0tdt ¼ 1
np

sin
np
2

The first few values of this last expression for positive and negative values of n are

n ¼ �5 �4 �3 �2 �1 0 1 2 3 4 5
Gn ¼ 1=5p 0 �1=3p 0 1=p 0.5 1/p 0 �1=3p 0 1/5p

These are shown plotted in Fig. 7.5 in two forms: in the second, they are
represented by their amplitudes and phase angles. Any complex number can be
written in either of two forms—the Cartesian and polar representations. Which one
to use is dictated by the application at any given time. The Cartesian form aþ jb

can be converted to the polar form Rejh where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and h ¼ tan�1ðb=aÞ.

In our work the polar form, in which the number has an amplitude R and phase h, is
most common.

Fig. 7.4 A square waveform with period T

5 See L.A. Pipes, Applied Mathematics for Engineers and Physicists, 2nd ed., McGraw-Hill, N.Y.,
1958 for an easily read treatment. See also L.A. Pipes and L.R. Harvill, Applied Mathematics for
Engineers and Physicists, 3rd ed., Dover, N.Y., 2014.
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The graphs shown in Fig. 7.5 are frequently referred to as spectra, as indicated;
generically the set of Gn are also referred to as the spectrum of the function gðtÞ.
Note that an angle (phase) of �180 is equivalent to �1 in complex numbers. These
results tell us that the square wave of Fig. 7.4 can be made up from 0.500 parts of a
constant, plus 0.318 parts of a pure sinusoid with the same fundamental frequency
as the square wave, minus 0.106 parts of a sine wave with three times the frequency
(said to be the third harmonic), plus 0.064 parts of a sine wave at five times the
frequency (fifth harmonic), and so on. The square wave has no even harmonic
components. Again, remember that the two components for the same frequency
either side of the origin are the amplitudes of the positive and negative exponential
components that constitute a sinusoid as in (7.5).

7.4 The Fourier Transform

The Fourier series above describes a periodic function as the sum of a discrete
number of sinusoids, expressed in complex exponentials at integral multiples of the
fundamental frequency. For functions that are non-periodic, called aperiodic,

Fig. 7.5 Fourier coefficients
(top), along with the
amplitude and phase spectra
of the square wave; the phase
spectrum is shown as an odd
function by convention
although both odd and even
representations are equivalent
since phases of +180° and
−180° both imply −1
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decomposition into sets of sinusoids is still possible. However, whereas the Fourier
series yields a set of distinct and countable components, the spectrum of a
non-periodic function can consist of an infinite set of sinusoids at every conceivable
frequency. To find that composition we use the Fourier transform, or Fourier
integral, defined by6

GðxÞ ¼
Z1

�1
gðtÞe�jxtdt ð7:11aÞ

This is the equivalent expression to (7.10b). The major difference is that there is no
sense of period in this equation; in addition, the frequency term in the exponent is
now a variable x rather than a discrete set fnx0g as was the case for the Fourier
series. Writing the transform as a function of the continuous frequency variable
indicates the likelihood that it exists at all possible frequencies.

If we know the Fourier transform, or spectrum, of a function then the function
can be reconstructed according to

gðtÞ ¼ 1
2p

Z1

�1
GðxÞejxtdx ð7:11bÞ

This is the equivalent of the Fourier series expression of (7.10a).
To demonstrate the application of the Fourier transform, consider the single unit

pulse shown in Fig. 7.6a. From (7.11a) the transform is seen to be

G xð Þ ¼
Za

�a

e�jxtdt ¼ 2a
sin ax
ax

which is shown plotted in Fig. 7.6b.7 Again, note that the frequency axis accom-
modates both positive and negative frequencies, which together compose sinusoids.
Note also that every possible frequency exists in the spectrum of the pulse, apart
from a set where the spectrum crosses the frequency axis. The spectrum has neg-
ative as well as positive values. When negative, the phase spectrum has a value of
�180�.

An important Fourier transform is that of an impulse function. From the sifting
property of the impulse and the fact that e0 ¼ 1, the transform is

6 There are a number of conventions for defining the Fourier integral, largely to do with where the
2p is placed between (7.11a) and (7.11b).
7 The function of the form sin x

x , and shown in Fig. 7.6b, is called a sinc function.
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G xð Þ ¼
Za

�a

dðtÞe�jxtdt ¼ 1

This tells us that the impulse is composed of equal amounts of every possible
frequency! It also suggests that functions which change rapidly in time will have
large numbers of frequency components.

It is also interesting to consider the Fourier transform of a constant c. That can be
shown to be

G xð Þ ¼
Z1

�1
ce�jxtdt ¼ 2pcdðxÞ

In other words, as expected, the spectrum of a constant exists only at the origin in
the frequency domain.8 This expression can be derived based on the properties of
the complex exponential; it can be verified by working backwards through (7.11b).
While it might seem strange having the impulse function appear as a multiplier for
the constant, we can safely interpret that as just a reminder that the constant exists at
x ¼ 0 and not as something that changes the amplitude of the constant.

The Fourier transform of a periodic function, normally expressed using the
Fourier series, is important. We can obtain it by substituting (7.10a) into (7.11a) to
give

G xð Þ ¼
Z1

�1

X1
n¼�1

Gne
jnx0te�jxtdt

Fig. 7.6 a Unit pulse and b its Fourier transform

8 If the transform at (7.11) had used the 2p as a denominator in (7.11a) then the 2p would not
appear in the transform of a constant. If the transforms were defined in terms of frequency
f ¼ x=2p, the 2p factor would not appear at all. Some authors use that form.

226 7 Spatial Domain Image Transforms



i.e., G xð Þ ¼
X1

n¼�1
Gn

Z1

�1
ej nx0�xð Þtdt

which becomes

G xð Þ ¼ 2p
X1
n¼�1

Gndðx� nx0Þ ð7:12Þ

This last expression uses the property for the Fourier transform of a constant (in this
case unity). It tells us that the only frequencies that can exist in the Fourier
transform of a periodic function are those which are integral multiples of the
fundamental frequency of the periodic waveform.

The last example is important because it tells us that we do not need to work
with both Fourier series and Fourier transforms. Because the Fourier transform also
applies to periodic functions, it is sufficient in the following to focus on the
transform alone.

7.5 The Discrete Fourier Transform

Because our interest is in digital imagery, which is simply a two-dimensional
version of the one-dimensional functions we have been considering up to now, it is
important to move away from continuous functions of time (or any other inde-
pendent variable) and instead look at the situation when the independent variable is
discrete, and the dependent variable consists of a set of samples.

Suppose we have a set of K samples over a time interval T of the continuous
function gðtÞ. Call these samples c kð Þ; k ¼ 0. . .K � 1. The individual samples
occur at the times tk ¼ kDt where Dt is the spacing between samples. Note that
T ¼ KDt. Consider now how (7.11a) needs to be modified to handle the set of
samples rather than a continuous function of time. First, obviously the function
itself is replaced by the samples. Secondly the integral over time is replaced by the
sum over the samples and the infinitesimal time increment dt in the integral is
replaced by the sampling time increment Dt. The time variable t is replaced by
kDt ¼ kT

K ; k ¼ 0. . .K � 1. So far this gives as a discrete form of (7.11a)

G xð Þ ¼ Dt
XK�1

k¼0

c kð Þe�jxkDt

We now have to consider how to treat the frequency variable x. We are developing
this discrete form of the Fourier transformation so that it can handle digitised data and
so that it can be processed by computer. Therefore, the frequency domain also has to
be digitised by replacing x by the frequency samples x ¼ rDx; r ¼ 0. . .K � 1. We
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have deliberately chosen the number of samples in the frequency domain to be the
same as the number in the time domain for convenience.What value nowdowegive to
the increment in frequency Dx? That is not easily answered until we have treated
sampling theory later in this chapter, so for the present note that it will be 2p=T and
thus is directly related to the time over which the original function has been sampled.
With this treatment of the frequency variable the last expression for the discrete
version of the Fourier transform now becomes

G rð Þ ¼ Dt
XK�1

k¼0

c kð Þe�j2prk
K r ¼ 0. . .K � 1

It is common to define

W ¼ e�j2p=K ð7:13Þ

so that the last expression is written

G rð Þ ¼ Dt
XK�1

k¼0

c kð ÞWrk r ¼ 0. . .K � 1 ð7:14aÞ

Equation (7.14a) is known as the discrete Fourier transform (DFT). In a similar
manner we can derive a discrete inverse Fourier transform (IDFT) to allow the
original sequence c kð Þ to be reconstructed from the frequency samples GðrÞ. That is
given by

c kð Þ ¼ 1
T

XK�1

r¼0

G rð ÞW�rk k ¼ 0. . .K � 1 ð7:14bÞ

If we substitute (7.14a) into (7.14b) we see they do in fact constitute a transform
pair. To do so we need different indices for k; we will use l instead of k in (7.14b) so
that

c lð Þ ¼ 1
T

XK�1

r¼0

G rð ÞW�rl ¼ 1
T

XK�1

r¼0

Dt
XK�1

k¼0

c kð ÞWrkW�rl

i.e., c lð Þ ¼ 1
K

XK�1

K¼0

cðkÞ
XK�1

r¼0

Wrðk�lÞ

From the properties of the complex exponential function the second sum is zero for
k 6¼ l and is K when k ¼ l, so that the right-hand side becomes cðlÞ as required. An
interesting by-product of this analysis has been that the Dt and T divide to leave K,
the number of samples. As a result, the transform pair in (7.14) can be written in the
simpler form, used in software that computes the discrete Fourier transform:
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G rð Þ ¼
XK�1

k¼0

c kð ÞWrk r ¼ 0. . .K � 1 ð7:15aÞ

c kð Þ ¼ 1
K

XK�1

r¼0

G rð ÞW�rk k ¼ 0. . .K � 1 ð7:15bÞ

These last two expressions are particularly simple. All they involve are the sets of
samples to be transformed (or inverse transformed) and the complex constants W ,
which can be computed beforehand.

7.5.1 Properties of the Discrete Fourier Transform

Three properties of the DFT and IDFT are important.

Linearity

Both the DFT and IDFT are linear operations. Thus, if the set G1ðrÞ is the DFT of
the sequence c1ðkÞ and the set G2ðrÞ is the DFT of the sequence c2ðkÞ then, for any
constants, a and b, aG1 rð Þþ bG2ðrÞ is the DFT of ac1 kð Þþ bc2ðkÞ.
Periodicity

From (7.13) W�mkK ¼ 1 where m and k are integers, so that

G rþmKð Þ ¼
XK�1

k¼0

c kð ÞW ðrþmKÞk ¼ GðrÞ ð7:16aÞ

Similarly,

c kþmKð Þ ¼ 1
K

XK�1

r¼0

G rð ÞW�r kþmKð Þ ¼ c kð Þ ð7:16bÞ

Thus, both the sequence of samples and the set of transformed samples are periodic
with period K. This has two important implications. First, to generate the Fourier
series of a periodic function it is only necessary to sample it over a single period.
Secondly, the spectrum of an aperiodic function will be that of a periodic repetition
of that function over the sampling duration—in other words it is made to look
periodic by the limited time sampling. Therefore, for a limited time function such as
the rectangular pulse shown in Fig. 7.6, it is necessary to sample the signal well
beyond the range of arguments for which it is non-zero to ensure it looks
approximately aperiodic.
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Symmetry

Put r
0 ¼ K � r in (7.15a) to give

G r0ð Þ ¼
XK�1

k¼0

c kð ÞW K�rð Þk

Since WkK ¼ 1 then G K � rð Þ ¼ G�ðrÞ where the * represents the complex con-
jugate. This implies that the amplitude spectrum is symmetric about K=2 and the
phase spectrum is antisymmetric.

7.5.2 Computing the Discrete Fourier Transform

Evaluating the K values of GðrÞ from the K values of cðkÞ in (7.15a) requires K2

multiplications and K2 additions, assuming that the values of Wrk have been cal-
culated beforehand. Since those numbers are complex, the multiplications and
additions required to evaluate the Fourier transform are also complex. It is the
multiplications that are the problem; complex multiplications require significant
computing resources, so that transforms involving many samples can take signifi-
cant time. Fortunately, a fast algorithm, called the fast Fourier transform (FFT), is
available.9 It only requires K

2 log2 K complex multiplications, which is a substantial
reduction in computational demand. The implementation of the DFT in software
uses the FFT algorithm. The only penalty in using this method is that the number of
samples taken of the function to be transformed, and the number of samples in the
transform, each have to be a power of two.

7.6 Convolution

7.6.1 The Convolution Integral

Before proceeding to look at the Fourier transform of an image it is of value to
appreciate the operation called convolution. It was introduced in Sect. 5.8 in the
context of geometric enhancement of imagery. We now look at it in more detail
because of its importance in understanding both sampled data and the spatial pro-
cessing of images. As with the development of the Fourier transform, we commence
with its application to one dimensional, continuous functions of time. We will then
modify it to apply to samples of functions. After having considered the Fourier
transform of an image, we will look at the two-dimensional version of convolution.

9 See E.O. Brigham, The Fast Fourier Transform and its Applications, Prentice-Hall, N. J., 1988.
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Convolution is defined in terms of a pair of functions. For g1ðtÞ and g2ðtÞ the
result is

y tð Þ ¼ g1 tð Þ⋇ g2 tð Þ ¼
Z1

�1
g1 sð Þg2 t � sð Þds ð7:17Þ

in which the symbol ⋇ indicates convolution. The operation is commutative, i.e.,
g1 tð Þ⋇ g2 tð Þ ¼ g2 tð Þ⋇ g1 tð Þ; a fact sometimes used when evaluating the integral.

We can understand the convolution operation if we break it down into the
following four steps, which are illustrated in Fig. 7.7:

i. Folding: form g2ð�sÞ by taking the mirror image of g2ðsÞ about the vertical
axis

ii. Shifting: form g2ðt � sÞ by shifting g2ð�sÞ by the variable amount t
iii. Multiplication: form the product g1 sð Þg2 t � sð Þ
iv. Integration: compute the area under the product.

7.6.2 Convolution with an Impulse

Convolution of a function with an impulse is important in understanding sampling.
The delta function sifting property in (7.8) gives

y tð Þ ¼ g tð Þ⋇ d t � t0ð Þ ¼
Z1

�1
g sð Þd t � s� t0ð Þds ¼ g t � t0ð Þ

Thus, the result is to shift the function to a new origin. Clearly, for t0 ¼ 0,
y tð Þ ¼ g tð Þ.

7.6.3 The Convolution Theorem

This theorem can be verified using the definitions of convolution and the Fourier
transform.10 It has two forms:

If y tð Þ ¼ g1 tð Þ⋇ g2 tð Þ then Y xð Þ ¼ G1 xð ÞG2 xð Þ ð7:18aÞ

If Y xð Þ ¼ G1 xð Þ⋇G2 xð Þ then y tð Þ ¼ 2pg1 tð Þg2 tð Þ ð7:18bÞ

10 See A. Papoulis, Circuits and Systems: a Modern Approach, Holt-Saunders, Tokyo, 1980, and
Brigham, loc. cit.
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7.6.4 Discrete Convolution

Just as we can modify the Fourier transform formula to handle discrete samples
rather than continuous functions, we can do the same with convolution. Suppose
c1 kð Þ and c2 kð Þ are sampled versions of the functions g1 tð Þ and g2 tð Þ then (7.17) can
be written in discrete form as

Fig. 7.7 Graphical illustration of convolution
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y kð Þ ¼
X
n

c1 nð Þc2 k � nð Þ for all k ð7:19Þ

The integral has been replaced by the sum operation. Strictly dt should be replaced
by the time increment between the samples, but it is usually left out in the discrete
form. To evaluate (7.19) the set of samples c2 kð Þ is first reversed in order to form
c2 �nð Þ and then slid past c1 nð Þ as shown in Fig. 7.8, taking products where
samples coincide and then summing the results.

7.7 Sampling Theory

Discrete time functions, such as the sequence of samples that we considered when
developing the discrete Fourier transform, and digital images, can be considered to
be the result of sampling the corresponding continuous functions or scenes on a
regular basis. The periodic sequence of impulses, spaced Dt apart, sometimes called
a Dirac comb,

D tð Þ ¼
X1
k¼�1

d t � kDtð Þ ð7:20Þ

can be used to extract a uniform set of samples from a function g tð Þ by forming the
product

5 -3 7 

6 -5 4 

5 -3 7 

6 -5 4 

5 -3 7 

6 -5 4 

5 -3 7 

6 -5 4 

5 -3 7 

6 -5 4 

second sequence continues 
sliding past first to give

0 

20

18

-35

0 

-15 57

result Fig. 7.8 Discrete
convolution using two
sequences {5, −3, 7} and
{4, 6, − 5}; the second is
reversed and run past the first
as shown, generating the
aggregate sums {0, 20, 18,
−15, 57, −35, 0}
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D tð Þg tð Þ ð7:21Þ

From (7.7) this is seen to be a sequence of samples of value g kTð Þd t � kDtð Þ,
which we represent by c kð Þ. Despite the undefined magnitude of the delta function
we will be content in this treatment to regard the product simply as a sample of the
function cðtÞ, so that (7.21) can be interpreted as a set of uniformly spaced samples
of cðtÞ.

It is important now to know the Fourier transform of the samples in (7.21). We
will find that by calling on the convolution theorem in (7.18b), which requires the
Fourier transforms of g tð Þ and D tð Þ. Since D tð Þ is periodic we can work via the
Fourier series coefficient formula of (7.10b), which shows

Dn ¼ 1
Dt

ZDt=2

�Dt=2

d tð Þe�jnx0tdt ¼ 1
Dt

so that from (7.12) the Fourier transform of the periodic sequence of impulses in
(7.20) is

D xð Þ ¼ 2p
Dt

X1
n¼�1

d x� nxsð Þ ð7:22Þ

in which xs ¼ 2p=Dt. Thus, the Fourier transform of the periodic sequence of
impulses spaced Dt apart in the time domain is itself a periodic sequence of
impulses in the frequency domain spaced apart 2p

Dt rad s�1, or 1
Dt Hz.

Suppose gðtÞ has the Fourier transform, or spectrum, GðxÞ; then from (7.18b)
and (7.22) the spectrum of the samples of gðtÞ represented by (7.21) is given by
convolving GðxÞ with (7.22). Convolution with an impulse shifts a function to a
new origin centred on the impulse so that the outcome of this operation is a periodic
repetition of the spectrum GðxÞ—the spectrum of the unsampled function—as
shown in Fig. 7.9. The repetition period in the frequency domain is determined by
the rate at which the time function is sampled —it is the inverse of the time domain
sampling rate. Note that if the sampling rate is high then the repeated segments of
the spectrum of the original function are well separated. If the sampling rate is low,
then those segments are closer together.

Imagine that the frequency components of the original function are limited to
frequencies below BHz (or 2pB rad s�1). B is called the bandwidth of g tð Þ: Not all
real non-periodic functions have a limited bandwidth. The single pulse of Fig. 7.6 is
an example. However, it suits our purpose here to assume that there is a limit B to
the frequency composition of those functions of interest to us. That allows us to
introduce a particularly important concept in the sampling of signals and images. It
is clear that if adjacent spectral segments in Fig. 7.9 are to remain separated then we
require
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sampling rate ¼ 1
Dt

[ 2B ð7:23Þ

In other words, the rate at which the function gðtÞ is sampled must exceed twice its
bandwidth. Should that not be the case then the segments of the spectrum will
overlap as shown in Fig. 7.9d, causing a form of distortion called aliasing. The
sampling rate of 2B in (7.23) is called the Nyquist rate. Equation (7.23) is often
called the sampling theorem.

Return now to the concept of the discrete Fourier transform. On the basis of the
sampling material just presented we know that the spectrum of a band limited
sampled signal is a periodic repetition of the spectrum of the original unsampled
signal. We now need to represent the spectrum by a set of samples so that we can
handle the data digitally. Effectively that means sampling the spectrum shown in
Fig. 7.10a by a periodic sequence of impulses (a sampling comb) in the frequency
domain. For this purpose, consider an infinite periodic sequence of impulses in
frequency spaced Df orDx=2p apart as seen in Fig. 7.10b. Using (7.20) and (7.22),
but going from the frequency to the time domain, it can be shown that the inverse
transform of the frequency domain sampling sequence is a set of impulses in the
time domain, spaced T ¼ 1=Df apart.

Multiplication of the spectrum of the sampled time function in Fig. 7.10a by the
frequency domain sampling function in Fig. 7.10b produces the sampled spectrum
of Fig. 7.10c. By the convolution theorem of (7.18a), that is equivalent to

Fig. 7.9 Development of the
Fourier transform of a
sampled function:
a unsampled function and its
spectrum, b periodic sequence
of impulses and its spectrum,
c sampled function and its
spectrum; F is the Fourier
transform operation,
d sub-Nyquist rate sampling
leading to overlap in the
spectrum and thus aliasing
distortion
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convolving the periodic sequence of impulses in the time domain shown in
Fig. 7.10b by the original time function samples in Fig. 7.10a to produce the
periodic repetition of the samples of the time function shown in Fig. 7.10c. The
repetition period of the group of samples is T . It is convenient if the number of
samples used to represent the spectrum is the same as the number of samples taken
of the time function. Let that number be K; consistent with the development in
Sect. 7.5. Since the time domain samples are spaced Dt apart, the duration of
sampling is KDt. By the manner in which we have drawn Fig. 7.10, we have, for
convenience, synchronised the total sampling period of the time function T with the
repetition period of the inverse Fourier transform of the frequency domain sampling
comb in Fig. 7.10b. As a result, Df ¼ 1=T ¼ 1=KDt, the inverse of the sampling
duration. Similarly, the total unambiguous bandwidth in the frequency domain is
KDf ¼ 1=Dt which covers just one segment of the spectrum.

7.8 The Discrete Fourier Transform of an Image

7.8.1 The Transform Equations

The previous sections have treated functions with a single independent variable.
That could have been time, or position along a line of image data. We now turn our
attention to functions with two independent variables to allow Fourier transforms of

Fig. 7.10 Effect of sampling the spectrum: a sampled function and its spectrum, b periodic
sequence of impulses (right) used to sample the spectrum, and its time domain equivalent (left),
c sampled version of the spectrum (right) and its time domain equivalent (left), which is a periodic
version of the samples in a; F�1 represents the inverse Fourier transform
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images to be computed and understood. Despite this implicit increase in com-
plexity, we will find that we can take full advantage of the material of the previous
sections to help in our understanding. Let

/ k; lð Þ k; l ¼ 0. . .K � 1 ð7:24Þ

be the brightness of a pixel at location k; l in an image of K � K pixels. The set of
image pixels is a digital sample of the scene recorded by the remote sensing imaging
instrument. Therefore, the Fourier transform of the scene is given by the discrete
Fourier transform of the set of pixel brightnesses. Building on the material of
Sect. 7.5 it can be seen that the discrete Fourier transform of an image is given by

U r; sð Þ ¼
XK�1

k¼0

XK�1

l¼0

/ k; lð ÞWrkWsl ð7:25aÞ

An image can be reconstructed from its transform according to

/ k; lð Þ ¼ 1
K2

XK�1

r¼0

XK�1

s¼0

U r; sð ÞW�rkW�sl ð7:25bÞ

7.8.2 Evaluating the Fourier Transform of an Image

We can rewrite (7.25a) as

U r; sð Þ ¼
XK�1

k¼0

Wrk
XK�1

l¼0

/ k; lð ÞWsl ð7:26Þ

The right-hand sum will be recognised as the one-dimensional Fourier transform of
the kth row of pixels in the image, which we write as

U k; sð Þ ¼
XK�1

l¼0

/ k; lð ÞWsl k ¼ 0. . .K � 1 ð7:27Þ

Thus, the first step is to Fourier transform each row of the image. We then replace
the row by its transform. The transformed pixels are now addressed by the spatial
frequency index s across the row rather than the positional index l. Using (7.27) in
(7.26) we have

U r; sð Þ ¼
XK�1

k¼0

U k; sð ÞWrk ð7:28Þ
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which is the one-dimensional discrete Fourier transform of the sth column of the
image, after the row transforms of (7.27) have been computed. Therefore, to
compute the two dimensional Fourier transform of an image, it is only necessary to
transform each row individually to generate an intermediate image, and then
transform that result by column to yield the final transform. Both the row and
column transformations would be carried out using the fast Fourier transform
algorithm, which requires K2 log2 K complex multiplications to transform the
complete image.

7.8.3 The Concept of Spatial Frequency

Entries in the Fourier transformed image U r; sð Þ represent the composition of the
original image in terms of spatial frequency components, vertically and horizon-
tally. Spatial frequency is the image analogue of the time frequency of signal.
A sinusoidal function with a high frequency alternates rapidly, whereas a
low-frequency function changes slowly with time. Similarly, an image with high
spatial frequency in, say, the horizontal direction shows frequent changes of
brightness with position horizontally. A picture of a crowd of people would be a
particular example, whereas a head and shoulders view of a person reading the
news on television is likely to be characterised mainly by low spatial frequencies.
Typically, an image is composed of a collection of both horizontal and vertical
components with different spatial frequencies of differing strengths. They are what
the discrete Fourier transform describes.

The upper left-hand pixel in U r; sð Þ—U 0; 0ð Þ—is the average brightness value
of the image. In engineering this would sometimes be called the DC value. That is
the component of the spectrum with zero frequency variation in both directions.
Thereafter, pixels in U r; sð Þ both horizontally and vertically represent components
with frequencies that increment by 1=K where the original image is of size K � K.
In most cases we would know the scale of the image, in other words the distance on
the ground covered by the K pixels across the lines and down the columns. That
allows us to define the spatial frequency increment in terms of metres−1. For
example, if an image covered 5 km � 5 km, then the spatial frequency increment
in both directions is 2 � 10−4 m−1.

7.8.4 Displaying the DFT of an Image

In Fig. 7.9 we saw that the one dimensional discrete Fourier transformation of a
function is periodic with period K. The same is true of the discrete Fourier trans-
form of an image. The K � K pixels of U r; sð Þ can be viewed as one period of an
infinitely periodic two-dimensional array in the manner depicted in Fig. 7.11. We
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also saw that the amplitude spectrum of the one dimensional DFT is symmetric
about K=2. Similarly, U r; sð Þ is symmetric about its centre. Therefore, no new
amplitude information is shown by displaying transformed pixels horizontally and
vertically beyond K=2. Rather than ignore them (since their accompanying phase is
important) the display is adjusted as shown in Fig. 7.11 to bring U 0; 0ð Þ to the
centre. In that manner the pixel at the centre of the Fourier transform array rep-
resents the image average brightness value. Pixels away from the centre represent
the proportions of image components with increasing spatial frequency. That is the
usual manner for presenting two-dimensional image transforms. Examples of
spectra displayed in this manner are given in Fig. 7.12. To make visible those
components with smaller amplitudes logarithmic scaling11 is sometimes used

D r; sð Þ ¼ logf U r; sð Þj jg ð7:29Þ

7.9 Image Processing Using the Fourier Transform

Having a knowledge of the discrete Fourier transform of an image allows us to
develop more general geometric processing operations than those treated in Chap. 5.
In preparation for this, note that the high spatial frequency content of an image is
associated with frequent changes of brightness with position. Edges, lines and some
types of noise are examples of high spatial frequency data. In contrast, gradual
changes of brightness with position account for the low frequency components of the
spatial spectrum. Since ranges of spatial frequency are identifiable with regions in
the spectrum, we can understand how the spectrum of an image can be altered to
produce different geometric enhancements of the image itself. For example, if
regions near the centre of the spectrum are removed, leaving behind only the high
frequencies, and the image is then reconstructed from the modified spectrum, a
version containing only edges and line-like features will be produced. On the other
hand, if the high frequency components are removed, leaving behind only the region
near the centre of the spectrum, the reconstructed image will appear smoothed, since
edges, lines and other high-frequency detail will have been removed.

Modification of the two-dimensional discrete image spectrum in the manner just
described can be expressed as the product of the image spectrum U r; sð Þ and a filter
function H r; sð Þ to generate the new spectrum:

Y r; sð Þ ¼ Hðr; sÞU r; sð Þ ð7:30Þ

11 R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th ed. Pearson Prentice-Hall, Upper
Saddle River, N.J., 2018.
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Fig. 7.11 Showing the periodic nature of the two dimensional discrete Fourier transform,
indicating how an array centred on the average value U 0; 0ð Þ is chosen for symmetric display
purposes

Fig. 7.12 Examples of Fourier transforms for images: the top set is a visible red image with strong
vertical features, and its spectrum, while the others are further demonstrations of the influence of
geometry; in each case the logarithm of the amplitude spectrum is shown
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To implement simple sharpening or smoothing as described above Hðr; sÞ would be
set to 0 for those frequency components to be removed and 1 for those frequency
components to be retained. Equation (7.30) also allows more complicated filtering
operations to be carried out. For example, a specific band of spatial frequencies
could be excluded if they corresponded to some form of periodic noise, such as the
line striping sometimes observed with line scanner data. Also, the entries in Hðr; sÞ
can be different from 0 or 1, allowing more sophisticated changes to the spectrum of
an image. Figure 7.13 shows the effect of applying ideal (sharp cut-off) filters to the
image segment in Fig. 7.12. The filter cut off values are shown superimposed over
the log amplitude spectrum of the image by circles.

The low pass filtered images are those generated by retaining only those fre-
quency components inside the circles, whereas the high pass filtered versions are
made up from those spectral components outside the filter circles. Even though the
filters are shown for convenience over the amplitude spectra they are applied to the
full complex Fourier transform of the original image. Modification of the spatial
(geometric) features of an image in the frequency domain in this manner involves
three steps. First, the image has to be Fourier transformed to produce a spectrum.
Secondly, the spectrum is modified according to (7.30). Finally, the image is
reconstructed from the modified spectrum using the inverse discrete Fourier
transform. Together, these three operations require 2K2 log2 K þK2 multiplications.

7.10 Convolution in Two Dimensions

The convolution theorem for functions given in Sect. 7.6.3 has a two dimensional
counterpart, again in two forms:

If y k; lð Þ ¼ / k; lð Þ⋇ h k; lð Þ then Y r; sð Þ ¼ U r; sð ÞH r; sð Þ ð7:31aÞ

If Y r; sð Þ ¼ U r; sð Þ⋇H r; sð Þ then y k; lð Þ ¼ / k; lð Þh k; lð Þ ð7:31bÞ

Unlike (7.18b) there is no 1/2p scaling factor here since the spatial frequency
variables r, s are equivalent to frequency f in hertz and not frequency x in radians
per second.

The operation in (7.31) is the discrete version of convolution shown in (5.13)
and described in Sect. 5.8. Equation (7.31a) shows that any of the geometric
enhancement operations that can be implemented by modifying the image spectrum
can also be carried out by performing a convolution between the image itself and
the inverse Fourier transform of the filter function Hðr; sÞ. Conversely, operations
such as simple mean value filtering described in Sect. 5.3.1 can be implemented in
the spatial frequency domain; that needs the Fourier transform of the template. The
template has to have the same dimensions as the image but with values of 0
everywhere except for the set of pixels that are used to implement the prescribed
operation.
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7.11 Other Fourier Transforms

If (7.3b) is substituted in (7.11a) we have

G xð Þ ¼
Z1

�1
g tð Þðcosxt � j sinxtÞdt

which can be separated into

G xð Þ ¼
Z1

�1
g tð Þ cosxt dt ð7:32aÞ

and G xð Þ ¼
Z1

�1
g tð Þ sinxt dt ð7:32bÞ

the first of which is called a Fourier cosine transform, and the second of which is
called a Fourier sine transform. They are applied to even and odd functions
respectively, in which case the integrals usually go from 0 to ∞. There is a discrete
version of the Fourier cosine transform, called the DCT or discrete cosine trans-
form, which is given by discretising (7.32a) in the same manner we discretised

image filter low pass high pass

Fig. 7.13 Examples of low pass and high pass spatial filtering based on the Fourier transform of
the original image; in this case filters with sharp cut-offs have been used
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(7.11a) to generate the DFT. The DCT finds widespread application in video
compression for the television industry.12

7.12 Leakage and Window Functions

In Sect. 7.7 we noted that a sampled function can be regarded as the unsampled
version multiplied by an infinite periodic sequence of impulses. The spectrum of the
set of samples produced is the spectrum of the original function convolved with the
spectrum of the sequence of impulses; we saw that in Fig. 7.9.

In practice it is not possible to take an infinite number of samples of the function.
Instead, sampling is commenced at a given time and terminated after some period s;
as illustrated in Fig. 7.14. A finite set of samples can be represented by a long pulse
of unit amplitude and duration s—a sampling window—that multiplies an infinite
sequence of samples. The spectrum of the finite set of samples is, as a consequence,
modified by being convolved by the spectrum of the sampling window, again as
illustrated in Fig. 7.14. Since the sampling window is a rectangular pulse its Fourier
transform is as shown in Fig. 7.6. Because the pulse is long compared with the
sampling interval, the spectrum shown in Fig. 7.6 is compressed and looks like a
finite amplitude impulse, thus approximating well the situation with an infinite
sampling comb. However, when finite in length, its side lobes create problems
during convolution with the spectrum of the sequence of samples, causing distor-
tion, as depicted in Fig. 7.14.

To minimise that form of distortion, which is referred to as leakage, the rect-
angular sampling window is replaced by a function which avoids the sharp turn on
and turn off with time that characterises the rectangular function. There are several
candidates for these so-called window functions,13 perhaps the most common of
which is the raised cosine or Hanning window:

w tð Þ ¼ 0:5� 0:5 cos
2pt
s

� �
ð7:33Þ

This has smaller side lobes in its spectrum than the simple rectangular pulse and, as
a result, leads to less leakage distortion.

If the function being sampled is periodic, and the samples are taken over one or
several full periods, leakage will not occur. Otherwise, leakage is always a matter
for consideration, and window functions generally need to be used.

12 See J.A. Arnold, M. Frater and M. Pickering, Digital Television; Technology and Standards,
John Wiley & Sons, N.Y., 2007.
13 An excellent treatment of leakage and the use of window functions is given in E.O Brigham, The
Fast Fourier Transform and its Applications, Prentice-Hall, N.J., 1988.
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7.13 The Wavelet Transform

7.13.1 Background

In principle, the Fourier transform can be used to represent any signal by a col-
lection, sometimes infinite, of sinusoidal functions. Likewise, the two-dimensional
spatial Fourier transform can be used to model the distribution of brightness values
in an image by using a collection of two dimensional sinusoidal basis functions.

Many of the image features of interest to us occur over a short distance,
including edges and lines. Also, when dealing with functions of time, we are
sometimes interested in representing short time signals rather than those that last for
a long period. As an illustration, an organ playing a single, pure tone generates a
signal that is well-modelled by simple sinusoids. In contrast, when a single note is
played on a piano we have an approximately sinusoidal signal, at the frequency of
the key played, which lasts for just a short time. We can still find the Fourier
transform representation of the piano note—its spectrum—but there are other ways
to represent such a short time signals, just as there are other ways of representing or
modelling image features that change over a short distance. The wavelet transfor-
mation is generally more useful in such situations than the Fourier transform. It is
based on the definition of a wavelet, which is a wavelike signal that is limited in
time (or space, in the spatial domain). The theory of the wavelet transformation is

Fig. 7.14 Demonstrating the
effect of leakage distortion:
a time signal and its spectrum,
b infinite sequence of
sampling impulses and its
spectrum, c finite time
sampling window and its
spectrum, and d the result of
finite time sampling as a
product in the time domain
and a convolution in the
frequency domain
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quite detailed, especially when treated comprehensively.14 Here we provide a
simple introduction in which the mathematical detail is kept to a minimum and
some concepts are simplified, so that its common usage in image processing can be
understood. It finds most application in image compression and coding, and in the
detection of localised features such as edges and lines.

7.13.2 Orthogonal Functions and Inner Products

The Fourier series and transform expansions of (7.10a) and (7.11b) are special cases
of the more general representation of a function by a sum of other functions,
expressible as

g tð Þ ¼
X
n

anwnðtÞ ð7:34Þ

The wnðtÞ are called basis functions and the an are expansion coefficients. We saw
how to find the expansion coefficients for complex exponential basis functions in
(7.10b). To do so depends on a property of the basis functions called orthogonality,
which means:

Z
wm tð Þwn tð Þdt ¼ 1 form ¼ n; and zero otherwise ð7:35Þ

The range of the integral depends on the actual basis functions themselves. In
(7.10b) the range extends over one period of the sinusoidal basis functions. If (7.35)
holds, then using (7.34) we can see

Z
g tð Þwmdt ¼

Z X
n

anwn tð Þwmdt

¼
X
n

an

Z
wn tð Þwmdt ¼ am

which gives us the procedure for calculating values for the expansion coefficients.
That is seen in explicitly (7.10b), and in the Fourier transform formula of (7.11a).

It is fundamental to many functional representations of the form of (7.34) that an
orthogonal basis set is chosen so that the expansion coefficients are easily estab-
lished. In the general theory of the wavelet transform, in which we will seek to
represent practical functions and images by basis functions that exist over only a
limited interval, the same is essentially true.

14 For a detailed treatment of wavelets see G. Strang and T. Nguyen, Wavelets and Filter Banks,
Wellesley-Cambridge, Mass., 1996, and K.R. Castleman, Digital Image Processing, 2nd ed.,
Prentice Hall, N.J., 1996.
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Operations like that in (7.35) are called inner products and are written sym-
bolically as

hwm tð Þ;wn tð Þi ¼
Z

wm tð Þwn tð Þdt

7.13.3 Wavelets as Basis Functions

What sorts of wavelet basis functions should we use in practice? Whatever func-
tions we choose they have to be able to model events that occur at different
positions in time, or space when we look at images, and to accommodate events
that, while being localised, can occur over different ranges of time or position. To
achieve that the wavelet basis functions generally have to have two indices (one for
location and one for spread) so that a function can be represented, or expanded, as

g tð Þ ¼
X
j;k

cj;kwj;k tð Þ ð7:36Þ

Figure 7.15 shows such a set of functions. We see that a fundamental function is
translated and scaled so that it can cover instances at different times and over
different durations.

Rather than define translations and scalings arbitrarily we restrict attention to
binary scalings, in which the range is shrunk by progressive factors of two, and to
dyadic translations, in which the shift amount is an integral multiple of the binary
scaling factor. That means that the set of wavelet functions we are dealing with are
built up from a basis function wðtÞ, sometimes called the mother wavelet or gen-
erating wavelet, such that all other wavelets are defined by

wj;k tð Þ ¼ 2j=2wð2 jt � kÞ ð7:37Þ

in which j is the scaling factor and k is the integral multiple of the scaling by which
the shift occurs. The factor 2j=2 is included so that the integral of the squared
amplitude of the wavelet is unity, one of the requirements of a wavelet basis
function. The relationship in (7.37) is used in Fig. 7.15, although the amplitude
scaling is omitted for clarity. Note that, apart from being integers, j and k are
arbitrary at this stage. Putting (7.37) in (7.36) we have

g tð Þ ¼
X
j;k

cj;k2j=2wð2 jt � kÞ ð7:38Þ

The set of coefficients cj;k is sometimes called the wavelet transform of gðtÞ, or its
wavelet spectrum.
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7.13.4 Dyadic Wavelets with Compact Support

It is possible to restrict further the set of wavelets of interest by establishing a
relationship between j and k. If we constrain our attention to so-called compact
functions gðtÞ that are zero outside the interval [0, 1] we can use a single index n to
describe the set of basis functions, where

n ¼ 2 j þ k

The basis functions, while still having the general form in (7.37), can then be
indexed by the single integer n, in which case the wavelet expansion, or repre-
sentation, of the time restricted signal is

gðtÞ ¼
X1
n¼0

cnwnðtÞ ð7:39Þ

Fig. 7.15 Some members of a family of wavelets (Mexican hat) created by time scaling and
translating a basic form (without any amplitude scaling)
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The expansion coefficients are given by

cn ¼
Z1

�1
gðtÞwnðtÞdt ð7:40Þ

We do not pursue this version explicitly any further here.

7.13.5 Choosing the Wavelets

Not all finite time (or space) functions can be used as wavelets; it is only those that
satisfy the so-called admissibility criterion that can be employed in wavelet
expansions.15 Fortunately, for most of the work of interest to remote sensing image
processing a simpler approach is possible, based on the concept offilter banks,which
avoids the need specifically to treat a range of candidate wavelet families. Although
originally developed separately, the filter bank and wavelet approaches are related.
Rather than continue with the theoretical developments of continuous wavelets as
such, we will now focus on filter banks. As the name suggests a filter bank is made
up of a set of filters that respond to different frequency ranges in a signal or image.
Each of the filters is a finite impulse response (FIR) digital filter. A background in
that material, while helpful, is not required for the following development.

7.13.6 Filter Banks

7.13.6.1 Sub Band Filtering, and Downsampling

Suppose we want to represent the signal gðtÞ by a wavelet model. The first step in
the filter bank approach is to separate the signal into its low and high frequency
components by passing it through two filters as illustrated in Fig. 7.16; one extracts
the low frequencies from the signal and the other the high frequencies. In this case
the filters are chosen so that they divide the spectrum of the signal into two halves,
as indicated, which makes the following development simple. In practice other
arrangements are also used.

We can represent the filtering operation diagrammatically as in Fig. 7.17, which
shows the filters as blocks. The output of each filter block is given by the convo-
lution between the input signal and the function of time—the filter function—that
describes the operation of the filter.16 The filter function is also called its impulse

15 See Castleman, loc. cit., Sect. 14.2.1 and Problem 7.14.
16 See also Sect. 5.8 and Fig. 5.13.
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response. That name comes about because if an impulse is fed into the filter then the
output (the response) is the filter function, as seen from Sect. 7.6.2.

If we use the convolution theorem of (7.18a) we can represent the output of the
filter in the frequency domain as the product of the Fourier transform of the input
signal and the Fourier transform of the filter impulse response, also called the
filter’s transfer function.

Fig. 7.16 Filtering out the low and high frequency components of a signal

Fig. 7.17 Signal transmission through low pass and high pass filters, showing three ways of
describing signals and system functions: as continuous in time, by their frequency spectra or as
discrete time (sampled) versions
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We now assume that the input signal has been sampled and is represented by the
sequence c kð Þ. When dealing with sampled functions we must also represent the
impulse response of the filter by its sampled counterpart. Call this h0 kð Þ for the low
pass filter and h1 kð Þ for the high pass filter, as seen in Fig. 7.17.

The results of sending the sampled input signal through the two filters are

y0 kð Þ ¼
X
n

c nð Þh0ðk � nÞ ð7:41aÞ

and

y1 kð Þ ¼
X
n

c nð Þh1ðk � nÞ ð7:41bÞ

For simplicity we have left out limits on the summations, but they are understood to
cover the full range of samples. Assume that we have sampled gðtÞ at or just above
the Nyquist limit of (7.23), which says that the sampling rate should exceed twice
the bandwidth of the signal if there is to be no (aliasing) distortion, and so that the
signal can be fully recovered from the samples. Such an assumption of near Nyquist
rate sampling helps simplify the following development. It can be shown that the
results hold in general just so long as sampling is above the Nyquist rate.

We now make an interesting observation about the sequence of samples in
(7.41a); y0 kð Þ is sampled at the same rate as gðtÞ and yet, because it is the output of
a low pass filter with a cut-off frequency that is half of the original signal band-
width, the Nyquist limit is halved. In other words, we have twice the sampling rate
necessary to avoid aliasing distortion in y0 kð Þ. We could therefore halve the rate and
still avoid distortion; with that reduced rate y0 kð Þ can still be reconstructed if
necessary. We halve the sampling rate by dropping out every second sample in
y0 kð Þ, leaving a sequence that is half the size of the original. Although not as
obvious, we can also halve the sampling rate of y1 kð Þ by dropping every second
sample.17 The process of dropping one sample in two, in each of y0 kð Þ and y1 kð Þ; is
called downsampling.

The next step is to low and high pass filter y0 kð Þ. In this case the cut-off
frequency of the filter h0 kð Þ is set to B=4 because the bandwidth of y0 kð Þ is B=2.
Similarly, the band pass of h1 kð Þ is from B=4 to B=2. Thus, both filters now have a
bandwidth that is half that used in the first stage; that affects the impulse response as
we show below in Fig. 7.19.

Again, the result is downsampled by dropping every second sample in the
resultant signals. We continue in that fashion, by filtering the low frequency signals

17 See Castleman, loc. cit., Sect. 14.4.3.2. As an alternative explanation for those with a signal
processing background, the ability to drop every second sample in y1 kð Þ can be appreciated if we
recognise that because the spectrum below B=2 is unfilled, the high pass signal can be frequency
downshifted (translated) to the origin without distortion, whereupon its highest frequency
component is then at B=2 and not B. The downshifted version can then also be represented
without distortion at the downsampled rate.
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at each step, using filters with bandwidths half of their previous values, and
downsampling, until the point is reached where the resulting low frequency signal
is a single number. That process is shown in Fig. 7.18 for a three-stage filter bank.
It has decomposed the sequence c kð Þ into the set fy1 kð Þ; y01 kð Þ; y001 kð Þ; y000 kð Þg as
a result of the chosen h0 kð Þ and h1 kð Þ. The latter play the part of basis functions
while the fy1 kð Þ; y01 kð Þ; y001 kð Þ; y000 kð Þg act as expansion coefficients. That is the
wavelet spectrum of c kð Þ on the h0 kð Þ, h1 kð Þ basis. At first it seems odd having two
apparently different basis functions. Indeed, there aren’t, as we will see soon in
Sect. 7.13.6.3.

The high pass filters h1 kð Þ constitute the wavelets, with the first—that with a
bandwidth of B=2—being the mother wavelet. As we move from left to right in
Fig. 7.18 the impulse responses broaden (dilate) as expected of a set of wavelet
basis functions, even though that is opposite to the scaling from coarse to fine in the
family shown in Fig. 7.15.

Fig. 7.18 Successive low and high pass filtering, followed by downsampling; the impulse
responses at each stage are successively dilated (scaled)

Fig. 7.19 Relationship between the transfer function and the normalised magnitude of the impulse
response for an ideal low pass filter
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The impulse responses of the low pass filters, h0 kð Þ, are called the scaling
vectors and their outputs are the scaling functions.18 To see the changes in impulse
response all we have to do is find the time equivalent versions of the low pass and
high pass filters, using (7.11b). For a low pass filter with cut off frequency B=N,
with N ¼ 2 j; j ¼ 1; 2. . . it can be shown that the amplitude of the continuous time
impulse response is given by

gðtÞ ¼ B
Np

sincðBt=NÞj j

which is shown plotted in Fig. 7.19. It can be demonstrated that the magnitude of
the impulse response for the equivalent high pass filters is the same. Time dilation
by factors of 2 is evident in the figure as the bandwidth is decreased by those same
factors.

7.13.6.2 Reconstruction from the Wavelets, and Upsampling

In principle we can reconstruct the filtered signal after a single stage by choosing
two new filters in the manner seen in Fig. 7.20, shown in terms of transfer functions
rather than impulse responses since that leads quickly to an important result. The
signals are also expressed in their frequency domain (Fourier transformed) versions.
By using the frequency domain representation, we can avoid convolution.

As in Fig. 7.17 the outputs of the left-hand filters are

Y0 fð Þ ¼ H0 fð ÞG fð Þ and Y1 fð Þ ¼ H1 fð ÞG fð Þ

The output from the right-hand summing device is

Y fð Þ ¼ R0 fð ÞY0 fð ÞþR1 fð ÞY1 fð Þ

which, when substituting for Y0 fð Þ and Y1 fð Þ, gives

Y fð Þ ¼ R0 fð ÞH0 fð ÞGðf ÞþR1 fð ÞH1 fð ÞGðf Þ
¼ ½R0 fð ÞH0 fð ÞþR1 fð ÞH1 fð Þ�Gðf Þ

Now if

R0 fð ÞH0 fð ÞþR1 fð ÞH1 fð Þ ¼ 1 ð7:42aÞ

18 They are also referred to as the approximations to the original signal; they are a successive set of
reduced resolutions of the original and are sometimes said to form an image pyramid. They can be
employed in multi-resolution analysis.
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then
Y fð Þ ¼ Gðf Þ

Equation (7.42a) shows a general relationship that must hold for perfect recon-
struction. However, since the filtered samples were downsampled, they must be
upsampled before the reconstruction filters can generate the correct result.19 That is
done by inserting zeros between each successive sample in y0ðkÞ and y1ðkÞ. An
outcome of doing that is that (7.42a) generalises to

R0 fð ÞH0 fð ÞþR1 fð ÞH1 fð Þ ¼ 2 ð7:42bÞ

The reconstruction segment of Fig. 7.20 can be cascaded as was the analysis block
in Fig. 7.18 to create a synthesis or reconstruction filter bank.

It would be desirable if the same filter bank could be used in reverse order to
reconstruct the original signal from the transformed version. That turns out to be
possible when the impulse response samples are symmetric, which is the simple
case we treat in this section. In general, the samples have to be reversed when
reconstructing.20 The special case is shown in Fig. 7.21. As noted above, since, in
Fig. 7.18, the sequences have been downsampled after each stage of filtering we
have to upsample during reconstruction to restore each successive set of sequences
to the right number of samples.

7.13.6.3 Relationship Between the Low and High Pass Filters

We now consider the interdependence of h0 kð Þ and h1 kð Þ. Clearly, they are inti-
mately related because one is the complement of the other in the frequency domain,
as observed in Fig. 7.16. What does that mean for the samples themselves? If we
view the high pass filter in the frequency domain as a frequency shifted version of
the low pass filter, we can employ the frequency shift property of the Fourier
transform to show the h0 kð Þ, h1 kð Þ relationship. To use that theorem, we note first
that the spectrum of the high pass filter is essentially the same as that of the low
pass filter but shifted along the frequency axis by an amount B. That is expressed

Fig. 7.20 Decomposition
followed by reconstruction

19 G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge, Mass., 1996,
Sect. 1.4 gives a nice example of reconstruction involving down- and upsampling.
20 See P.S. Addison, The Illustrated Wavelet Handbook, IOP Publishing, Bristol, 2002, Fig. 3.18,
and Strang and Nguyen, loc. cit.
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H1 fð Þ ¼ H0ðf � BÞ

From the frequency shift theorem.21

h1 tð Þ ¼ ej2pBth0ðtÞ

We now have to express this in discrete form. The filter bandwidth B in a digital
filter is set by the time between samples. A higher sampling rate leads to a greater
bandwidth, and vice versa. If we write the continuous time variable as an integral
multiple of the sampling interval t ¼ kDt then B ¼ 1=2Dt so that, in discrete form,
the last expression becomes

h1 kð Þ ¼ ejpkh0ðkÞ

The complex exponential with an exponent that is an integral multiple of p is �1.
That tells us that the impulse response of the high pass filter is that same as that of
the low pass filter, except that every odd numbered sample has its sign reversed.
That applies for the case of the ideal low and high pass filters. More generally, it
also requires a reversal of the order of the samples.22

7.13.7 Choice of Wavelets

In the filter bank development of Sect. 7.13.6 we have presented a decomposition
and synthesis methodology that emulates wavelet analysis. It is based on the
specification of the impulse responses of the low and high pass filters, which we

Fig. 7.21 Reconstruction of the original time sequence by upsampling and recombining the low
and high pass filtered versions at each stage; in this case the same impulse responses are shown for
reconstruction as were used for analysis in Fig. 7.18

21 See Brigham, loc. cit.
22 See Strang and Nguyen, loc. cit.
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now need to be more specific about because they describe the wavelets that are the
basis functions for a given situation.

Although (7.38) is acceptable as a general expression of a wavelet expansion, it
is more convenient, when comparing it to the filter bank approach, if we re-express
the decomposition as the combination of an expansion in wavelets wðtÞ plus a
companion scaling function uðtÞ in the form

g tð Þ ¼ Au tð Þþ
X
j;k

cj;k2j=2wð2 jt � kÞ ð7:43Þ

The scaling function satisfies the scaling or dilation equation

u tð Þ ¼
X
k

h0ðkÞu 2t � kð Þ ð7:44Þ

while the mother wavelet satisfies the wavelet equation

w tð Þ ¼
X
k

h1ðkÞu 2t � kð Þ ð7:45Þ

As an illustration of these suppose the scaling function is the constant between 0
and 1 shown in Fig. 7.22 and the filter impulse response is a simple two sample
average for the low pass filter [h0 0ð Þ ¼ 1; h0 1ð Þ ¼ 1] and a simple two sample
difference [h1 0ð Þ ¼ 1; h1 1ð Þ ¼ �1] for the high pass filter. Then (7.44) and (7.45)
become, respectively

u tð Þ ¼ u 2tð Þþu 2t � 1ð Þ ð7:46aÞ

w tð Þ ¼ u 2tð Þ � u 2t � 1ð Þ ð7:46bÞ

which are also shown plotted in Fig. 7.22. The recurrence relationship in (7.37)
then allows others in the set to be generated. These are the Haar wavelets. When
used as the basis for a filter bank implementation of the wavelet transform the
expressions in (7.46) need to be scaled by 1=

ffiffiffi
2

p
to give the correct square integral

for the wavelets.
Haar wavelets are generated by the simple sum and difference filters above.

A variety of other types is available, many of which are examples of the Daubechies
wavelets23 that can also be implemented readily as filter banks. The family of
Daubechies wavelets includes the Haar wavelet as its simplest case.

23 See Strang and Nguyen, loc. cit., and Addison, loc. cit., Fig. 3.15.
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7.14 The Wavelet Transform of an Image

The application of the discrete wavelet transformation to imagery is similar to the
manner in which the discrete Fourier transform is applied. First, the rows of the
image are transformed using the first stage process in Fig. 7.18. Every second
column is then discarded, which corresponds to downsampling the row transformed
data. Next the columns are transformed and every second row discarded.

As illustrated in Fig. 7.23 that leads to four new images:

• a version that has been low pass filtered in both row and column, and which is
referred to as the approximation image

• a version that has been high pass filtered to emphasise the horizontal edge
information

• a version that has been high pass filtered to emphasise the vertical edge
information

Fig. 7.22 The Haar scaling
function and wavelets
generated with the scaling,
dilation and recurrence
relations—this is the first
subset of 8 Haar wavelets;
also shown at the top is the
scaling function on a half time
scale; note that the 2j=2

amplitude scaling in (7.37)
has not been included
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• a version that has been high pass filtered in both the vertical and horizontal
directions, thereby emphasising diagonal edge information.

Because of the downsampling operations by column and row, the dimensions of
those transformed images are half those of the original, giving us the same number
of pixels overall. This is demonstrated with the small 2 � 2 image embedded in
Fig. 7.23, which does not require downsampling, using the operations in (7.46).
The single stage of Fig. 7.18 can be extended by transforming the low resolution
image to produce yet a new low frequency approximation and high pass detail
images, such as seen in Fig. 7.24 for two stages. As with the one dimensional
wavelet transform, image reconstruction can be carried out by using the filter bank
in reverse if the impulse response is symmetric.

7.15 Applications of the Wavelet Transform in Remote
Sensing Image Analysis

Since the original image, such as the swan in the example of Fig. 7.24, can be
completely reconstructed from any stage of the discrete wavelet transform using a
reconstructing filter bank, it is clear that any level of decomposition contains all the
original information content. Specifically, the low pass approximation image and
the three high pass detail images in that figure, among them hold all the

Fig. 7.23 One stage discrete wavelet transform using filter banks: including a simple 2 � 2
example (a, b, c, d without amplitude scaling) to allow the operations to be tracked; and a complete
image example (swan)
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information. Interestingly, the detail images are much less complex than the
approximation and can be compressed using a number of standard techniques
without significant information loss. That allows the image data to be stored or
transmitted using far fewer bits of digital data than the original. Compression based
on the discrete wavelet transform is one of its principal applications in image
processing.25

The wavelet transform can also be applied to decompose a single pixel spectrum
into a more compact form as a feature reduction tool prior to classification.26

original first stage dwt second stage dwt

Fig. 7.24 Two stages of the discrete wavelet transform of an image using Haar wavelets24

24
MATLAB

® contains a large number of wavelet bases that can be used in signal and image
processing.
25 See B. Li, R. Yang and H. Jiang, Remote-sensing image compression using two-dimensional
oriented wavelet transform, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1,
January 2011, pp. 236–250. Sometimes the principal components transform has been found better
for compression than the DWT: see, for example, B. Penna, T. Tillo, E. Magli and G. Olmo,
Transform coding techniques for lossy hyperspectral data compression, IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, no. 5, May 2007, pp. 1408–1421. For a treatment of
three dimensional wavelets and other transform techniques for compression of hyperspectral
imagery in the two spatial and one spectral dimension see B. Penna, T. Tillo, E. Magli and G.
Olmo, Transform coding techniques for lossy hyperspectral data compression, IEEE Transactions
on Geoscience and Remote Sensing, vol. 45, no. 5, May 2007, pp. 1408–1421. An overview and
comparison of compression techniques is E. Christophe, Hyperspectral data compression tradeoff,
in S. Prasad, L.M. Bruce and J. Chanussot, eds., Optical Remote Sensing: Advances in Signal
Processing and Exploitation Techniques, Springer, Berlin, 2011.
26 See J. Zheng and E. Regentova, Wavelet based feature reduction method for effective classi-
fication of hyperspectral data, Proc. Int. Conference on Information Technology, Computers and
Communications (ITCC 2003), April 2003, pp. 483–487, and L. M. Bruce, C.H. Kroger and J. Li,
Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,
IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 10, October 2002, pp. 2331–
2338.
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7.16 Bibliography on Spatial Domain Image Transforms

Many texts in image processing for engineering and science cover much of the
material presented in this chapter. The difficulty, however, is that the level of
mathematical detail is sometimes quite high. Books that are comprehensive but not
overly complex are

K. R. Castleman, Digital Image Processing, Prentice Hall, NJ, 1996, and

R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th ed. Pearson Prentice-Hall,
Upper Saddle River, N.J., 2018.

Introductory treatments can also be found in books on remote sensing image pro-
cessing including

R.A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed.,
Academic, Burlington, Mass., 2006.

Easily read accounts of Fourier series and the Fourier transform will be found in

L.A. Pipes, Applied Mathematics for Engineers and Physicists, 2nd ed., McGraw-Hill, N.
Y., 1958, and the later edition

L.A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists, 3rd ed.,
Dover, N.Y., 2014.

Material on fast Fourier transform is given in

E.O. Brigham, The Fast Fourier Transform and its Applications, Prentice-Hall, N. J., 1988.

which remains one of the best treatments available, with a good emphasis on
sampling.

A. Papoulis, Circuits and Systems: A Modern Approach, Holt-Saunders, Tokyo, 1980

provides a detailed treatment of the Fourier transform and convolution for those
with a higher level of mathematics expertise, as does the standard text in the field

R.N. Bracewell, The Fourier Transform and its Applications, 3rd ed., McGraw-Hill, N.Y.,
1999.

Wavelets are covered in books that range from detailed mathematical treatments
through to those which focus on applications. Castleman (above) has a good but
difficult to read section. An idiosyncratic, but very comprehensive and readable
account, is given in
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G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge, Mass., 1996

A good overview of the application of wavelets in a wide range of physical situ-
ations including medicine, finance, fluid flow, geophysics and mechanical engi-
neering will be found in

P.S. Addison, The Illustrated Wavelet Handbook, IOP Publishing, Bristol, 2002

while a very good discussion on wavelet applications in astronomical image pro-
cessing is given in

R. Berry and J. Burnell, The Handbook of Astronomical Image Processing, Willman-Bell,
Richmond, VA, 2006.

This book also includes a helpful section on the use of the Fourier transform for
image filtering. It shows the use of wavelets for multiresolution image analysis and
how, by filtering specific wavelet components, features at particular levels of detail
can be enhanced. Other texts that could be consulted are

C. Sidney Burrus, R. A. Gopinath and H. Guo, Introduction to Wavelets and Wavelet
Transforms, Prentice Hall, Upper Saddle River, NJ, 1998, and

A.K. Chan and C. Peng, Wavelets for Sensing Technologies, Artech House, Norwood, MA,
2003

the last of which has a focus on SAR imagery and medical imaging.

7.17 Problems

7:1 Using (7.35) demonstrate that the complex exponentials ejmxt, where m is an
integer, are an orthogonal set.

7:2 Verify the results of Sect. 7.6.2 using a simple sketch.
7:3 Using the Fourier transform of an impulse and the convolution theorem,

verify the result of Sect. 7.6.2 mathematically.
7:4 Using (7.15a) compute the discrete Fourier transform of a square wave using

2, 4 and 8 samples per period respectively.
7:5 Compute the discrete Fourier transform of a unit pulse of width 2a. Use 2, 4

and 8 samples over a time interval equal to 8a. Compare the results to those
obtained in Problem 7.4.

7:6 Image smoothing can be undertaken by computing averages over a square or
rectangular window or by filtering in the spatial frequency domain. Consider
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just a single line of image data. Determine the corresponding spatial fre-
quency domain filter function for a simple 3 pixel averaging filter to be used
on that line of data. That requires the calculation of the discrete Fourier
transform of a unit pulse.

7:7 As in Problem 7.6 consider a single line of image data. One way of applying
a low pass filter to that data is to choose an ideal filter function in the spatial
frequency domain that has a sharp cut-off, such as that shown in Fig. 7.16.
Determine the corresponding function in the image domain by calculating
the inverse Fourier transform of the ideal filter. Taking into account the
discrete pixel nature of the image, approximate the inverse transform by an
appropriate one dimensional template.

7:8 Are window functions required if a periodic signal is sampled over an
integral number of periods?

7:9 In Fig. 7.9 suppose the function gðtÞ is a sinusoid of frequency B Hz. Its
spectrum will consist of two impulses, one at þB Hz and the other at �B
Hz. Produce the spectrum of the sinusoid obtained by taking three samples
every two periods. Suppose the sinusoid is to be reconstructed from the
samples by feeding them through a low pass filter that will pass all frequency
components up to 1=2Dt, where Dt is the sampling interval, and will exclude
all other frequencies. Describe the nature of the reconstructed signal; this will
give an appreciation of aliasing distortion.

7:10 The periodic sequence of impulses in Fig. 7.9 is an idealised sampling
function. In practice it is not possible to generate infinitesimally short sam-
ples of a function; rather, the samples will have a finite, although short,
duration. That can be modelled mathematically by replacing the infinite
sequence of impulses by a periodic sequence of finite-width pulses. One way
of representing that periodic sequence of pulses is as the convolution of a
single pulse and a periodic sequence of impulses. Using that model, describe
what modifications are required in Fig. 7.9 to account for samples of finite
duration.

7:11 Explain the appearance of the spectrum shown in Fig. 7.12 for the sequence
of uniformly spaced vertical lines.

7:12 By examining Fig. 7.24 how many pixels are there in the collected set of
images after the 1st and 2nd stages of the discrete wavelet transformation?
What would be the case without downsampling?

7:13 The histogram of an image before wavelet transformation generally will have
many filled bins. The same would be expected of the approximation images
at each stage of the transformation. Qualitatively, what might the general
shape of the histograms of the detail images look like in, say, Fig. 7.24? The
simple example illustrated in Fig. 7.23 may help in answering this question.
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7:14 The time function gðtÞ, with Fourier transform Gðf Þ, is acceptable as a basic
wavelet if it satisfies the admissibility criterion

Z1

�1

Gðf Þj j2
fj j df\1

Show that the wavelets associated with the high pass filter in Fig. 7.16 satisfy
the criterion.

7:15 Find the Fourier spectrum of a short, time-limited pure sinusoid, such as
might occur when hitting a single note on a piano. In time that can be
modelled by a sinusoidal signal that commences at a given time and stops a
short time later. You may find this easier to handle using the convolution
theorem, rather than calculating the Fourier transform from scratch.

7:16 The square waveform of Fig. 7.4 can be generated by convolving a unit
pulse, such as that shown in Fig. 7.6a, with a periodic sequence of impulses.
Using that model, and the convolution theorem, verify the spectrum of
Fig. 7.5 from the spectrum of Fig. 7.6b.
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Chapter 8
Supervised Classification Techniques

Abstract The variety of supervised classification techniques used with remotely
sensed image data are presented in detail, commencing with the maximum likeli-
hood decision rule and minimum distance classification, and progressing to the
support vector classifier and neural networks, including the convolutional neural
networks and recurrent neural networks used in deep learning. Emphasis is given to
the development and properties of each of the algorithms, and examples are used to
demonstrate how the various procedures are applied. The importance of the Hughes
phenomenon (also called overfitting or the curse of dimensionality), in which
insufficient training samples can lead to poor classification results, is highlighted as
a key consideration in using any approach. Context classification is also covered in
which the label attached to a pixel by a classifier can be made sensitive to the labels
attached to neighbouring pixels.

8.1 Introduction

Supervised classification is the technique most often used for the quantitative
analysis of remote sensing image data. At its core is the concept of segmenting the
spectral domain into regions that can be associated with the ground cover classes of
interest to a particular application. In practice those regions may sometimes
overlap. A variety of algorithms is available for the task, and it is the purpose of this
chapter to cover those most commonly encountered.

The development of different methods for supervised classification has perhaps
been the area of greatest change in remote sensing image analysis over the past
several decades. In this chapter we capture that development by commencing with
the earliest benchmark procedure—the maximum likelihood classifier—and then
progress through more recent methods to the currently popular deep learning
procedures.

Essentially, the different methods vary in the way they identify and describe the
regions in spectral space. Some seek a simple geometric segmentation while others
adopt statistical models with which to associate spectral measurements and the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. A. Richards, Remote Sensing Digital Image Analysis,
https://doi.org/10.1007/978-3-030-82327-6_8
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classes of interest. Some can handle user-defined classes that overlap each other
spatially and are referred to as soft classification methods; others generate firm
boundaries between classes and are called hard classification methods, in the sense
of establishing boundaries rather than having anything to do with difficulty in their
use. Hard classifiers produce only a single candidate class label for a pixel whereas
soft classifiers produce several, often ordered in likelihood of being correct.

Sometimes the data from a set of sensors is available to help in the analysis task.
Classification methods suited to multi-sensor or multi-source analysis are the
subject of Chap. 12.

The techniques we are going to develop in this chapter come from a field that has
had many names over the years, often changing as the techniques themselves
develop. Most generically it is probably called pattern recognition or pattern
classification but, as the field has evolved, the names

learning machines
pattern recognition
classification, and
machine learning

have been used. Learning machine theory commenced in the late 1950s in an
endeavour to understand brain functioning and to endow machines with a degree of
decision-making intelligence1; so, the principle of what we are going to develop
here is far from new, although many of the procedures are.

8.2 The Essential Steps in Supervised Classification

Recall from Fig. 3.3 that supervised classification is essentially a mapping from the
measurement space of the sensor to a field of labels that represent the ground cover
types of interest to the user. It depends on having enough pixels available, whose
class labels are known, with which to train the classifier. In this context “training”
refers to the estimation of the parameters that the classifier needs in order to be able
to recognise and label unseen pixels. The labels represent the classes on the map
that the user requires. The map is called a thematic map, meaning a map of themes.

An important concept must be emphasised here, which is often overlooked in
practice and about which we will have much to say in Chap. 11. That concerns
whether the classes of interest to the user occupy unique regions in spectral space,
and whether there is a one-to-one mapping between the measurement vectors and
class labels set by the user. A simple illustration is shown in Fig. 8.1, which is a
near infrared versus visible red spectral space of a geographical region used for
growing crops. The data is shown to be in three moderately distinct clusters,

1 See N.J. Nilsson, Learning Machines, McGraw-Hill, N.Y., 1965 for a good coverage of the
earlier developments in the field.
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corresponding to crops (on loam), a loamy soil and a sandy soil. One user might be
interested in a map of crops and soil—just two classes, but the soil class has two
sub-classes—loam and sand. Another user might be interested in which parts of the
region are most suitable for cropping, and those which are not. The former will have
two sub-classes—crops and loam—but they are different from those of the first
user. We call the classes into which the data naturally clusters the spectral classes
(in this simple example the crops, loam and sand) whereas those which match user
requirements are called information classes.2

Spectral classes are a property of the recorded image data, whereas information
classes are labels defined by the analyst to suit a particular application. The chal-
lenge in operational remote sensing is to gather information about the information
classes in which we are interested through a discovery of the spectral class structure
of the recorded data. Essentially, we undertake a two stage mapping as illustrated in
Fig. 8.1.

The simple illustration just presented has been used to introduce the distinction
between spectral and information classes. In practice the difference may be more
subtle. Spectral classes are groupings of pixel vectors in spectral space that are
matched to the particular classifier algorithm being used. With some supervised
classification algorithms, it will be beneficial to segment even simple classes like
vegetation into sub-groups of data and let the classifier work on the sub-groups.
After classification is complete the analyst then maps the sub-groups (i.e., the
spectral classes) to the information classes of interest. We will see that in action in
examples in Chap. 11. For most of this chapter, though, we will not make the
distinction between the two class types very often. For clarity and simplicity, we
will assume the information and spectral classes are the same.

Many different algorithms are available for supervised classification. Irrespective
of the one chosen, the essential practical steps in applying a classifier usually
include:

1. Deciding on the set of ground cover type classes into which to segment the
image.

2. Choosing representative pixels for each of the classes, for which the class labels
are known. Those pixels are said to form training data. Training data sets for
each class can be established using site visits, maps, air photographs or even
photointerpretation of image products formed from the data. Sometimes the
training pixels for a given class will lie in a common region enclosed by a
border. That region is called a training field.

3. Using the training data to estimate the parameters of the particular classifier
algorithm to be employed; the set of parameters is sometimes called the sig-
nature of that class.

4. Using the trained classifier to label every pixel in the image as belonging to one
of the classes specified in step 1. Here the whole image is classified. Whereas in

2 The important distinction between information and spectral classes was first made in P.H. Swain
and S.M. Davis, eds., Remote Sensing: The Quantitative Approach, McGraw-Hill, N.Y., 1978.
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step 2 the user may need to know the labels for about 1% or so of the pixels, the
remainder are now labelled by the classifier. This step is called classification,
labelling or allocation. In the terminology of machine learning it is called
generalisation. It is in this step that we see the major benefit of supervised
classification in remote sensing. Gathering labelled training data for each class
can be expensive and time-consuming. However, that investment is rewarded
significantly by being able to label all the other pixels in the image, with just the
cost of running the classifier algorithm.

5. In connection with step 4, producing thematic (class) maps and tables which
summarise class memberships of all pixels in the image, from which the areas of
the classes can be measured.

6. Assessing the accuracy of the final product using a labelled testing data set. This
is a crucial step if the results of classification are to be relied upon in practice.
We address this particular requirement in Chap. 11.

In practice it might be necessary to decide, on the basis of the results obtained at
step 6, to refine the training process in order to improve classification accuracy.
Sometimes it might even be desirable to classify just the training samples them-
selves to ensure that the parameters generated at step 3 are acceptable.

It is our objective now to consider the range of algorithms that could be used in
steps 3 and 4. Recall that we are assuming that each information class consists of
just one spectral class, unless specified otherwise, and we will use the names
interchangeably. That allows the development of the basic algorithms to proceed
without the added complexity of considering spectral classes, which are also called
sub-classes. Sub-classes are treated in Sect. 8.4 and in Chaps. 9 and 11.

in
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crop class
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“suitable for crops”   
class

“unsuitable for crops” 
class

spectral classes

acceptable
alterna�ve 
sets of 
informa�on 
classes

sensor data

spectral classes

informa�on classes

classifica�on as a two 
stage mapping

Fig. 8.1 Simple illustration of the difference between spectral and information classes: in this case
the spectral classes have identifiable names; in practice they are more likely to be groupings of data
that match the characteristics of the classifier to be used
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8.3 Maximum Likelihood Classification

Maximum likelihood classification is one of the most common supervised classi-
fication techniques used with remote sensing image data and was the first rigorous
algorithm to be employed widely. In many ways it has become the benchmark
against which later algorithms have been compared. It is developed in the following
in a statistically acceptable manner. A more general derivation is given in
Appendix E, although the present approach is sufficient for most remote sensing
purposes.

8.3.1 Bayes’ Classification

Let the classes be represented by xi; i ¼ 1 . . .M where M is the number of classes.
In determining the class or category to which a pixel with measurement vector x
belongs, the conditional probabilities

p xijxð Þ; i ¼ 1 . . .M

play a central role. The vector x is a column vector of the brightness values for the
pixel in each measurement band. It describes the pixel as a point in spectral space.
The probability p xijxð Þ tells us the likelihood that xi is the correct class for the
pixel at position x in the spectral space. If we knew the complete set of p xijxð Þ for
the pixel, one for each class, then we could label the pixel—classify it—according
to the decision rule

x 2 xi if p xijxð Þ[ p xjjx
� �

for all j 6¼ i ð8:1Þ

This says that the pixel with measurement vector x is a member of class xi if
p xijxð Þ is the largest of the set of probabilities. This intuitive statement is a special
case of a more general rule in which the decisions can be biased according to
different degrees of significance being attached to different incorrect classifications.
That general approach is called Bayes’ classification which is the subject of
Appendix E.

The rule of (8.1) is sometimes called a maximum posterior or MAP decision
rule, a name which will become clearer in the next section.

8.3.2 The Maximum Likelihood Decision Rule

Despite the simplicity of (8.1) the p xijxð Þ are unknown. What we can find rela-
tively easily, though, are the set of class conditional probabilities p xjxið Þ, which
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describe the chances of finding a pixel at position x in spectral space from each of
the classes xi. Those conditional probability functions are estimated from labelled
training data for each class and are the class distribution functions we saw in
Fig. 3.6. Later we will adopt a specific form for the distribution function, but for the
moment we will retain it in general form.

The desired p xijxð Þ in (8.1) and the available p xjxið Þ, estimated from training
data, are related by Bayes’ theorem3

p xijxð Þ ¼ p xjxið Þp xið Þ=p xð Þ ð8:2Þ

in which pðxiÞ is the probability that pixels from class xi appear anywhere in the
image. If 15% of the pixels in the scene belong to class xi then we could use
pðxiÞ ¼ 0:15. The pðxiÞ are referred to as prior probabilities—or sometimes just
priors. If we knew the complete set, then they are the probabilities with which we
could guess the class label for a pixel before (prior to) doing any analysis. By
contrast the p xijxð Þ are the posterior probabilities since, in principle, they are the
probabilities we find for the class labels of a pixel at position x, after analysis. What
we strive to do in statistical classification is to estimate, via (8.2), the set of class
posterior probabilities for each pixel so that the pixels can be labelled according to
the largest of the posteriors using the decision rule of (8.1).

The term p xð Þ is the probability of finding a pixel with measurement vector x in
the image, from any class. Although p xð Þ is not important in the following
development it should be noted that

p xð Þ ¼
XM
i¼1

pðxjxiÞp xið Þ

On substituting from (8.2) the decision rule of (8.1) reduces to

x 2 xi if p xjxið Þp xið Þ[ p xjxj
� �

p xj
� �

for all j 6¼ i ð8:3Þ

in which p xð Þ has been removed as a common factor, since it is not class dependent
and thus doesn’t contribute to decision making. The decision rule of (8.3) is more
acceptable than that of (8.1) since the p xjxið Þ are known from training data, and it
is conceivable that the priors pðxiÞ are also known or can be estimated.

It is mathematically convenient now to define the discriminant function

gi xð Þ ¼ ln p xjxið Þp xið Þf g ¼ ln p xjxið Þþ ln p xið Þ ð8:4Þ

3 J.E. Freund, Mathematical Statistics, 5th ed., Prentice Hall, N.J., 1992, or C.M. Bishop, Pattern
Recognition and Machine Learning, Springer Science + Business Media, LLC, N.Y., 2006.
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Because the natural logarithm is a monotonic function we can use (8.4) in (8.3) to
give as the decision rule:

x 2 xi if gi xð Þ[ gj xð Þ for all j 6¼ i ð8:5Þ

8.3.3 Multivariate Normal Class Models

To develop the maximum likelihood classifier further we now choose a particular
probability model for the class conditional density function p xjxið Þ. The most
common choice is to assume p xjxið Þ is a multivariate normal distribution, also
called a Gaussian distribution. This tacitly assumes that the classes of pixel of
interest in spectral space are normally distributed. That is not necessarily a real
property of natural spectral or information classes, but the Gaussian is a simple
distribution to handle mathematically, and its multivariate properties are well
known. For an N dimensional space the specific form of the multivariate Gaussian
distribution function is4

p xjxið Þ ¼ 2pð Þ�N=2 Cij j�1=2exp �1=2 x�mið ÞTC�1
i x�mið Þ

n o
ð8:6Þ

where mi and Ci are the mean vector and covariance matrix of the data in class xi.
We will sometimes write the normal distribution in the shorthand form
Nðxjmi;CiÞ.

Substituting (8.6) into (8.4) gives the discriminant function

gi xð Þ ¼ �1=2N ln 2p� 1=2 ln Cij j � 1=2 x�mið ÞTC�1
i x�mið Þþ ln p xið Þ

Since the first term is not class dependent is doesn’t aid discrimination and can be
removed, leaving as the discriminant function

gi xð Þ ¼ ln pðxiÞ � 1=2 ln Cij j � 1=2ðx�miÞTC�1
i x�mið Þ ð8:7Þ

If the analyst has no useful information about the values of the prior probabilities,
they are assumed all to be equal. The first term in (8.7) is then ignored, allowing the
½ to be removed as well, leaving

gi xð Þ ¼ � ln Cij j � x�mið ÞTC�1
i x�mið Þ ð8:8Þ

4 See Appendix D.
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which is the discriminant function for the Gaussian maximum likelihood classifier,
so-called because it determines class membership of a pixel based on the highest of
the class conditional probabilities, or likelihoods. Its implementation requires use of
either (8.7) or (8.8) in (8.5). There is an important practical consideration con-
cerning whether all the classes have been properly represented in the training data
available. Because probability distributions like the Gaussian exist over the full
domain of their argument (in this case the spectral measurements) use of (8.5) will
yield a class label even in the remote tails of the distribution functions. In
Sect. 8.3.5 the use of thresholds allows the user to avoid such inappropriate
labelling and thereby also to identify potentially missing classes.

8.3.4 Decision Surfaces

The probability distributions in the previous section have been used to discriminate
among the candidate class labels for a pixel. We can also use that material to see
how the spectral space is segmented into regions corresponding to the classes. That
requires finding the shapes of the separating boundaries in vector space. As will
become evident, an understanding of the boundary shapes will allow us to assess
the relative classification abilities, or strengths, of different classifiers.

Spectral classes are defined by those regions in spectral space where their dis-
criminant functions are the largest. Those regions are separated by surfaces where
the discriminant functions for adjoining spectral classes are equal. The ith and jth
spectral classes are separated by the surface

gi xð Þ � gj xð Þ ¼ 0

which is the actual equation of the surface. If all such surfaces were known, then the
class membership of a pixel can be made on the basis of its position in spectral
space relative to the set of surfaces.

The construction ðx�miÞTC�1
i x�mið Þ in (8.7) and (8.8) is a quadratic func-

tion of x. Consequently, the decision surfaces generated by Gaussian maximum
likelihood classification are quadratic and thus take the form of parabolas, ellipses
and circles in two dimensions, and hyperparaboloids, hyperellipsoids and hyper-
spheres in higher dimensions.

If an information class were represented by a set of spectral classes then, even
though the surfaces between spectral classes were hyperquadratic, those between
the information classes can be quite complex.5

5 See J.A. Richards and N.G. Kingsbury, Is there a preferred classifier for operational thematic
mapping? IEEE Transactions on Geoscience and Remote Sensing, 52, no 2, May 2014, pp. 2715–
2725.
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8.3.5 Thresholds

It is implicit in the rules of (8.1) and (8.5) that pixels at every point in spectral space
will be allocated to one of the available classes xi, irrespective of how small the
actual probabilities of class membership are. This is illustrated for one dimensional
data in Fig. 8.2a. Poor classification can result as indicated. Such situations can
arise if spectral classes have been overlooked or, if knowing that other classes
existed, enough training data was not available to estimate the parameters of their
distributions with any degree of accuracy (see Sect. 8.3.6 following).

In situations such as those it is sensible to apply thresholds to the decision
process in the manner depicted in Fig. 8.2b. Pixels which have probabilities for all
classes below the threshold are not classified. In practice, thresholds are applied to
the discriminant functions and not the probability distributions, since the latter are
never actually computed. With the incorporation of a threshold the decision rule of
(8.5) becomes

x 2 xi if gi xð Þ[ gj xð Þ for all j 6¼ i ð8:9aÞ

and gi xð Þ[ Ti ð8:9bÞ

where Ti is the threshold to be used on class xi.
We now need to understand how a reasonable value for Ti can be chosen.

Substituting (8.7) into (8.9b) gives

ln p xið Þ � 1=2 ln Cij j � 1=2 x�mið ÞTC�1
i x�mið Þ[ Ti

or

x�mið ÞTC�1
i x�mið Þ\� 2Ti þ 2 ln p xið Þ � ln Cij j ð8:10Þ

If x is normally distributed, the expression on the left-hand side of (8.10) has a v2

distribution with N degrees of freedom,6 where N is the number of bands in the
data. We can, therefore, use the properties of the v2 distribution to determine that
value of ðx�miÞTC�1

i x�mið Þ below which a desired percentage of pixels will
exist. Larger values of ðx�miÞTC�1

i x�mið Þ correspond to pixels lying further out
in the tails of the normal distribution. That is shown in Fig. 8.3.

As an example of how this is used consider the need to choose a threshold such
that 95% of all pixels in a class will be classified, or such that the 5% least likely
pixels for the class will be rejected. From the v2 distribution we find that 95% of all
pixels have v2 values below 9.488. Thus, from (8.10)

6 See Swain and Davis, loc. cit.
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Ti ¼ �4:744þ ln p xið Þ � 1=2 ln Cij j

which can be calculated from a knowledge of the prior probability and covariance
matrix for the ith spectral class.

8.3.6 Number of Training Pixels Required

Enough training pixels for each spectral class must be available to allow reasonable
estimates to be obtained of the elements of the class conditional mean vector and
covariance matrix. For an N dimensional spectral space the mean vector has
N elements. The covariance matrix is symmetric of size N � N; it has 1=2N Nþ 1ð Þ
distinct elements that need to be estimated from the training data. To avoid the
matrix being singular, at least N Nþ 1ð Þ independent samples are needed.
Fortunately, each N dimensional pixel vector contains N samples, one in each
waveband; thus, the minimum number of independent training pixels required is
Nþ 1ð Þ. Because of the difficulty in assuring independence of the pixels, usually
many more than this minimum number are selected. A practical minimum of 10N
training pixels per spectral class is recommended, with as many as 100N per class if
possible.7 If the covariance matrix is well estimated then the mean vector will be
also, because of its many fewer elements.

For data with low dimensionality, say up to 10 bands, 10N to 100N can usually
be achieved, but for higher order data sets, such as those generated by hyperspectral
sensors, finding enough training pixels per class is often not practical, making
reliable training of the traditional maximum likelihood classifier difficult. In such
cases, dimensionality reduction procedures can be used, including methods for
feature selection. They are covered in Chap. 10.

Another approach that can be adopted when not enough training samples are
available is to use a classification algorithm with fewer parameters, several of which
are treated in later sections. It is the need to estimate all the elements of the
covariance matrix that causes problems for the maximum likelihood algorithm. The
minimum distance classifier, covered in Sect. 8.5, depends only on knowing the
mean vector for each training class—consequently there are only N unknowns to
estimate.

7 See Swain and Davis, loc. cit., although some authors regard this as a conservatively high
number of samples.
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8.3.7 The Hughes Phenomenon and the Curse
of Dimensionality

Although recognised as a potential problem since the earliest application of
computer-based interpretation to remotely sensed imagery, the Hughes phe-
nomenon had not been a significant consideration until the availability of hyper-
spectral data. It concerns the number of training samples required per class to train a
supervised classifier reliably and is thus related to the material of the previous
section. Although that was focussed on Gaussian maximum likelihood classifica-
tion, in principle any classifier that requires parameters to be estimated is subject to
the problem.8 It manifests itself in the following manner.

Clearly, if too few samples are available good estimates of the class parameters
cannot be found; the classifier will not be properly trained and will not predict well
on data from the same classes that it has not already seen. The extent to which a
classifier predicts on previously unseen data, referred to as testing data, is called
generalisation. Increasing the set of random training samples would be expected to
improve parameter estimates, which indeed is generally the case, and thus lead to
better generalisation.

Suppose now we have enough samples for a given number of dimensions to
provide reliable training and good generalisation. Instead of changing the number
of training samples, imagine now we can add more features, or dimensions, to the
problem. On the face of it that suggests that the results should be improved because
more features should bring more information into the training phase. However, if
we don’t increase the number of training samples commensurately, we may not be
able to get good estimates of the larger set of parameters created by the increased
dimensionality, and both training and generalisation will suffer. That is the essence
of the Hughes phenomenon.

The effect of poorly estimated parameters resulting from too few training sam-
ples with increased dimensionality was noticed very early in the history of remote
sensing image classification. Figure 8.4 shows the results of a five-class agricultural
classification using 12 channel aircraft scanner data.9 Classification accuracy is
plotted as a function of the number of features (channels) used. As noted, when
more features are added there is an initial improvement in classification accuracy
until such time that the estimated maximum likelihood statistics apparently become
less reliable.

As another illustration consider the determination of a reliable linear separating
surface; here we approach the problem by increasing the number of training sam-
ples for a given dimensionality, but the principle is the same. Figure 8.5 shows

8 See M. Pal and G.F. Foody, Feature selection for classification of hyperspectral data for SVM,
IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 5, May 2010, pp. 2297–2307
for a demonstration of the Hughes phenomenon with the support vector machine of Sect. 8.14.
9 Based on results presented in K.S. Fu, D.A. Landgrebe and T.L. Phillips, Information processing
of remotely sensed agricultural data, Proc. IEEE, vol. 57, no. 4, April 1969, pp. 639–653.
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three different training sets of data for the same two-dimensional data set. The first
has only one training pixel per class, and thus the same number of training pixels as
dimensions. As seen, while a separating surface can easily be found it may not be
accurate. The classifier performs at the 100% level on the training data but is very
poor on testing data.

Having two training pixels per class, as in the case of the middle diagram,
provides a better estimate of the separating surface, but it is not until we have many
pixels per class compared to the number of channels, as in the right-hand figure,
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Fig. 8.4 Actual experimental classification results showing the Hughes phenomenon—the loss of
classification accuracy as the dimensionality of the spectral domain increases

cba

training data tes�ng data

Fig. 8.5 Estimating a linear separating surface using an increasing number of training samples,
showing poor generalisation if too few per number of features are used; the dashed line represents
the optimal surface while the full lines are the surfaces generated by the training data in each case
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that we obtain good estimates of the parameters of the supervised classifier, so that
generalisation is good.

The Hughes phenomenon was first examined in 196810 and has become widely
recognised as a major consideration whenever parameters have to be estimated in a
high dimensional space. In the field of pattern recognition, it is often referred to as
the curse of dimensionality.11

8.3.8 An Example

As a simple example of the maximum likelihood approach, the 256 � 276 pixel
segment of a Landsat Multispectral Scanner image shown in Fig. 8.6 is to be
classified. Four broad ground cover types are evident: water, fire burn, vegetation
and urban. Assume we want to produce a thematic map of those four cover types in
order to enable the distribution of the fire burn to be evaluated.

The first step is to choose training data. For such a broad classification, suitable
sets of training pixels for each of the four classes are easily identified visually in the
image data. The locations of four training fields for this purpose are seen in solid
colours on the image. Sometimes, to obtain a good estimate of class statistics it may
be necessary to choose several training fields for each cover type, located in dif-
ferent regions of the image, but that is not necessary in this case. The numbers of
training pixels are in the figure caption.

The signatures for each of the four classes, obtained from the training fields, are
given in Table 8.1. The mean vectors can be seen to agree generally with the known
spectral reflectance characteristics of the cover types. Also, the class variances,
given by the diagonal elements in the covariance matrices, are small for water as
might be expected but on the large side for the developed/urban class, indicative of
its heterogeneous nature.

When used in a maximum likelihood algorithm to classify the four bands of the
image in Fig. 8.6, the signatures generate the thematic map of Fig. 8.7. The four
classes, by area, are given in Table 8.2. Note that there are no unclassified pixels,
since a threshold was not used in the labelling process. The area estimates are
obtained by multiplying the number of pixels per class by the effective area of a
pixel. In the case of the Landsat Multispectral Scanner the pixel size is 0.4424
hectare.

10 G. F Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Transactions on
Information Theory, vol. IT-14, no.1, 1968, pp. 55–63.
11 C.M. Bishop, Pattern Recognition and Machine Learning, Springer Science + Business Media,
LLC, N.Y., 2006.
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One of the benefits of classifiers such as the maximum likelihood rule is that the
mean vector elements represent the average spectral reflectance curves of the cover
types, as seen in Fig. 8.7.

water vegeta�on

fire burn urban

Fig. 8.6 Image segment to be
classified, consisting of a
mixture of natural vegetation,
waterways, urban regions, and
vegetation damaged by fire.
Four training areas are
identified:

Those pixels were used to
generate the signatures in
Table 8.1

Table 8.1 Class signatures
generated from the training
areas in Fig. 8.6

Class Mean
vector

Covariance matrix

Water 44.27 14.36 9.55 4.49 1.19
28.82 9.55 10.51 3.71 1.11
22.77 4.49 3.71 6.95 4.05
13.89 1.19 1.11 4.05 7.65

Fire Burn 42.85 9.38 10.51 12.30 11.00
35.02 10.51 20.29 22.10 20.62
35.96 12.30 22.10 32.68 27.78
29.04 11.00 20.62 27.78 30.23

Vegetation 40.46 5.56 3.91 2.04 1.43
30.92 3.91 7.46 1.96 0.56
57.50 2.04 1.96 19.75 19.71
57.68 1.43 0.56 19.71 29.27

Urban 63.14 43.58 46.42 7.99 −14.86
60.44 46.42 60.57 17.38 −9.09
81.84 7.99 17.38 67.41 67.57
72.25 −14.86 −9.09 67.57 94.27

water violet 847 pixels

vegetation green 1,293 pixels

fire burn red 2,347 pixels

urban dark blue 781 pixels
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8.4 Gaussian Mixture Models

In order that the maximum likelihood classifier algorithm work optimally it is
important that the classes be as close to Gaussian as possible. In Sect. 8.2 that was
stated in terms of knowing the number of spectral classes, sometimes also referred
to as modes or sub-classes, of which each information class is composed. In
Chap. 11 we will employ the unsupervised technique of clustering, to be developed
in the next chapter, to help us do that. Here we present a different approach, based
on the assumption that the image data is composed of a set of Gaussian distribu-
tions, some subsets of which may constitute information classes. This material is
included at this point because it fits logically into the flow of the chapter, but it is a
little more complex and could be passed over on a first reading.12

We commence by assuming that the pixels in a given image belong to a prob-
ability distribution that is a linear mixture of K Gaussian distributions of the form

p xð Þ ¼
XK
k¼1

akN xjmk;Ckð Þ ð8:11Þ

vegeta�on

0

10

20

30

40

50

60

70

80

90

green red IR1 IR2

loss of vegeta�on 
though burning

fire burn

water
red absorp�on dip 
for green vegeta�on

urban
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Fig. 8.7 Thematic map produced using the maximum likelihood classifier in which blue
represents water, red is fire damaged vegetation, green is natural vegetation and yellow is urban
development; also shown are the spectral reflectance curves for the four cover types produced from
the four components of each of the class mean vectors

Table 8.2 Tabular summary
of the thematic map of
Fig. 8.7

Class Number of pixels Area (ha)
Water 4830 2137
Fire burn 14,182 6,274
Vegetation 28,853 12,765
Urban 22,791 10,083

12 A very good treatment of Gaussian mixture models will be found in C.M. Bishop, loc. cit.
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The ak are a set of mixture proportions, which are also considered to be the prior
probabilities of each of the components that form the mixture. They satisfy

0� ak � 1 ð8:12aÞ

and
XK
k¼1

ak ¼ 1 ð8:12bÞ

Equation (8.11) is the probability of finding a pixel at position x in spectral space
from the mixture. It is the mixture equivalent of the probability p xjxið Þ of finding a
pixel at position x from the single class xi. Another way of writing the expression
for the class conditional probability for a single distribution is p xjmi;Cið Þ, in which
the class has been represented by its parameters—the mean vector and covariance
matrix—rather than by the class label itself. Similarly, p xð Þ in the mixture equation
above could be shown as conditional on the parameters of the mixture explicitly,
viz.

p xjaK;mK;CKð Þ ¼
XK
k¼1

akN xjmk;Ckð Þ ð8:13Þ

in which mK is the set of all K mean vectors, CK is the set of all K covariance
matrices and aK is the set of mixture parameters.

What we would like to do now is find the parameters in (8.13) that give the best
match of the model to the data available. In what follows we assume we know, or
have estimated, the number of components K; what we then have to find are the sets
of mean vectors, covariance matrices and mixture proportions.

Suppose we have available a data set of J pixels X ¼ x1 . . . xJf g, assumed to be
independent samples from the mixture. Their joint likelihood can be expressed

p XjaK;mK;CKð Þ ¼
YJ
j¼1

p xjjaK;mK;CK
� �

the logarithm13 of which is

ln p XjaK;mK;CKð Þ ¼
XJ
j¼1

ln p xjjaK;mK;CK
� � ð8:14Þ

We now want to find the parameters that will maximise the log likelihood that X
comes from the mixture. In other words, we wish to maximise (8.14) with respect to
the members of the sets mK ¼ mk; k ¼ 1. . .Kf g, CK ¼ Ck; k ¼ 1. . .Kf g,
aK ¼ ak; k ¼ 1. . .Kf g. Substituting (8.13) into (8.14) we have

13 As in Sect. 8.3, using the logarithmic expression simplifies the analysis to follow.
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ln p XjaK;mK;CKð Þ ¼
XJ
j¼1

ln
XK
k¼1

akNðxjjmk;CkÞ ð8:15Þ

Differentiating this with respect to the mean vector of, say, the kth component, and
equating the result to zero gives

XJ
j¼1

@

@mk
ln
XK
k¼1

akN xjjmk;Ck
� � ¼ 0

XJ
j¼1

1PK
k¼1 akN xjjmk;Ck

� � @

@mk

XK
k¼1

akN xjjmk;Ck
� � ¼ 0 ð8:16Þ

XJ
j¼1

ak N xjjmk;Ck
� �PK

k¼1 akN xjjmk;Ck
� � @

@mk
�1=2 xj �mk

� �TC�1
k xj �mk
� �n o

¼ 0

Using the matrix property14 @
@x xTAxf g ¼ 2Ax this can be written

XJ
j¼1

akp xjjmk;Ck
� �

p xjjak;mK;CK
� �C�1

k xj �mk
� � �XJ

j¼1

akp xjjmk;Ck
� �
p xj
� � C�1

k xj �mk
� � ¼ 0

If we regard ak as the prior probability of the kth component then the fraction just
inside the sum will be recognised, from Bayes’ Theorem, as pðmk;CkjxjÞ, the
posterior probability for that component given the xjth sample,15 so that the last
equation becomes

XJ
j¼1

p mk;Ckjxj
� �

C�1
k xj �mk
� � ¼ 0

The inverse covariance matrix cancels out; rearranging the remaining terms gives

mk ¼
PJ

j¼1 p mk;Ckjxj
� �

xjPJ
j¼1 p mk;Ckjxj

� �
The posterior probabilities in the denominator, p mk;Ckjxj

� �
; express the likelihood

that the correct component is k for the sample xj. It would be high if the sample
belongs to that component, and low otherwise. The sum over all samples of the

14 See K.B. Petersen and M.S. Pedersen, The Matrix Cookbook, 15 Nov 2012, https://www.math.
uwaterloo.ca/*hwolkowi/matrixcookbook.pdf accessed 2021.
15 In C.M. Bishop, loc. cit., it is called the responsibility.
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posterior probability for component k in the denominator is a measure of the
effective number of samples likely to belong to that component,16 and we define
it as Nk:

Nk ¼
XJ
j¼1

p mk;Ckjxj
� � ð8:17Þ

Note that the numerator in the expression for mk above is a sum over all the
samples weighted by how likely it is that the kth component is the correct one in
each case. The required values of the mk that maximise the log likelihood in (8.15)
can now be written

mk ¼ 1
Nk

XJ
j¼1

p mk;Ckjxj
� �

xj ð8:18Þ

To find the covariance matrices of the components that maximise (8.15) we proceed
in a similar manner by taking the first derivative with respect to Ck and equating the
result to zero. Proceeding as before we have, similar to (8.16),

XJ
j¼1

akPK
k¼1 akN xjjmk;Ck

� � @

@Ck
N xjjmk;Ck
� � ¼ 0 ð8:19Þ

The derivative of the normal distribution with respect to its covariance matrix is a
little tedious but relatively straightforward in view of two more useful matrix
calculus properties17:

@

@M
Mj j ¼ Mj j M�1� �T ð8:20aÞ

@

@M
aTM�1a ¼ � M�1� �T

aaT M�1� �T ð8:20bÞ

Using these we find

@

@Ck
N xjjmk;Ck
� � ¼ N xjjmk;Ck

� �
xj �mk
� �

xj �mk
� �T C�1

k

� �T�1
n o

16 See Bishop, loc. cit.
17 See K.B. Petersen and M.S. Pedersen, loc. cit.
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When substituted in (8.19) this gives

XJ
j¼1

ak N xjjmk;Ck
� �PK

k¼1 akN xjjmk;Ck
� � xj �mk

� �
xj �mk
� �T C�1

k

� �T�1
n o

¼ 0

Recognising as before that the fraction just inside the summation is the posterior
probability, multiplying throughout by C�1

k , and recalling that the covariance
matrix is symmetric, we have

XJ
j¼1

p mk;Ckjxj
� �

xj �mk
� �

xj �mk
� �T�Ck

n o
¼ 0

so that, with (8.17), this gives

Ck ¼ 1
Nk

XJ
j¼1

p mk;Ckjxj
� �

xj �mk
� �

xj �mk
� �Tn o

ð8:21Þ

which is the expression for the covariance matrix of the kth component that will
maximise (8.15). Note how similar this is in structure to the covariance matrix
definition for a single Gaussian component in (6.3). In (8.21) the terms are summed
with weights that are the likelihoods that the samples come from the kth component.
If there were only one component then the weight would be unity, leading to (6.3).

The last task is to find the mixing parameter of the kth component that con-
tributes to maximising the log likelihood of (8.15). The ak are also constrained by
(8.12b). Therefore, we maximise the following expression with respect to ak using
Lagrange multipliers k to constrain the maximisation18:

XJ
j¼1

ln
XK
k¼1

akN xjjmk;Ck
� �þ k

XK
k¼1

ak � 1

( )

Putting the first derivative with respect to ak to zero gives

XJ
j¼1

N xjjmk;Ck
� �PK

k¼1 akN xjjmk;Ck
� �þ k ¼ 0

18 For a good treatment of Lagrange multipliers see C.M. Bishop, loc. cit., Appendix E.
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which, using (8.13), is XJ
j¼1

Nðxjjmk;CkÞ
p xjjak;mK;CK
� �þ k ¼ 0

and, using Bayes’ Theorem

XJ
j¼1

p mk;Ckjxj
� �

ak
þ k ¼ 0

Multiplying throughout by ak and using (8.17) this gives

Nk þ akk ¼ 0 ð8:22Þ

so that if we take the sum

XK
k¼1

Nk þ akkf g ¼ 0

we have, in view of (8.12b)

k ¼ �N

Thus, from (8.22),

ak ¼ Nk

N
ð8:23Þ

With (8.18), (8.21) and (8.23) we now have expressions for the parameters of the
Gaussian mixture model that maximise the log likelihood function of (8.14).
Unfortunately, though, they each depend on the posterior probabilities pðmk;CkjxjÞ
which themselves are dependent on the parameters. The results of (8.18), (8.21) and
(8.23) do not therefore represent solutions to the Gaussian mixing problem.
However, an iterative procedure is available that allows the parameters and the
posteriors to be determined progressively. It is called Expectation–Maximisation
(EM) and is outlined in the algorithm of Table 8.3. It consists of an initial guess for
the parameters, following which values for the posteriors are computed—that is
called the expectation step. Once the posteriors have been computed, new estimates
for the parameters are computed from (8.18), (8.21) and (8.23). That is the max-
imisation step. The loop is repeated until the parameters don’t change any further. It
is also helpful at each iteration to estimate the log likelihood of (8.14) and use it to
check convergence.

8.4 Gaussian Mixture Models 283



8.5 Minimum Distance Classification

8.5.1 The Case of Limited Training Data

The effectiveness of maximum likelihood classification depends on reasonably
accurate estimation of the mean vector m and the covariance matrix C for each
spectral class. This in turn depends on having a sufficient number of training pixels
for each of those classes. In cases where that is not possible, inaccurate estimates of
the elements of C result, leading to poor classification.

When the number of training samples per class is limited, it may sometimes be
more effective to resort to an algorithm that does not make use of covariance
information but instead depends only on the mean positions of the spectral classes,

Table 8.3 The expectation–maximisation algorithm for mixtures of Gaussians

Step 1: Initialisation Choose initial values for ak ;mk ;Ck .
Call these aoldk ;mold

k ;Cold
k

Step 2: Expectation Evaluate the posterior probabilities using the current estimates for
ak;mk;Ck , according to:

p mk ;Ck jxj
� � ¼ aoldk p xjjmold

k ;Cold
k

� �
p xjjaoldK ;mold

K ;Cold
K

� �
i.e.

p mk ;Ck jxj
� � ¼ aoldk p xjjmold

k ;Cold
k

� �PK
k¼1 a

old
k Nðxjjmold

k ;Cold
k Þ

Step 3: Maximisation Compute new values for ak ;mk ;Ck from (8.18), (8.21)
and (8.23) in the following way:
First compute

Nk ¼
PJ

j¼1 pðmold
k ;Cold

k jxjÞ
then

mnew
k ¼ 1

Nk

PJ
j¼1 pðmold

k ;Cold
k jxjÞxj

Cnew
k ¼ 1

Nk

PJ
j¼1 pðmold

k ;Cold
k jxjÞf xj �mnew

k

� �ðxj �mnew
k ÞTg

anewk ¼ Nk
N

Also, evaluate the log likelihood

ln p Xjak;mK;CKð Þ ¼PJ
j¼1 ln

PK
k¼1 a

old
k Nðxjjmold

k ;Cold
k Þ

Step 4: Evaluation If mnew
k � mold

k ; Cnew
k � Cold

k ; anewk � aoldk
then terminate the process. Otherwise put
mold

k ¼ mnew
k ; Cold

k ¼ Cnew
k ; aoldk ¼ anewk

and return to Step 2
This check can also be carried out on the basis of little or no change
in the log likelihood calculation
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noting that for a given number of samples they can be more accurately estimated
than covariances. The minimum distance classifier, or more precisely, minimum
distance to class means classifier, is such an approach. With this algorithm, training
data is used only to determine class means; classification is then performed by
placing a pixel in the class of the nearest mean.

The minimum distance algorithm is also attractive because it is faster than
maximum likelihood classification, as will be seen in Sect. 8.5.6. However, because
it does not use covariance data it is not as flexible. In maximum likelihood clas-
sification each class is modelled by a multivariate normal class model that can
account for spreads of data in particular spectral directions. Since covariance data is
not used in the minimum distance technique class models are symmetric in the
spectral domain. Elongated classes will, therefore, not be well modelled. Instead,
several spectral classes may need to be used with this algorithm in cases where one
might be suitable for maximum likelihood classification.

8.5.2 The Discriminant Function

Suppose mi; i ¼ 1 . . .M are the means of the M classes determined from training
data, and x is the position of the pixel in spectral space to be classified. Compute the
set of squared Euclidean distances of the unknown pixel to each of the class means:

dðx;miÞ2 ¼ ðx�miÞT x�mið Þ ¼ x�mið Þ � x�mið Þ i ¼ 1 . . .M

Expanding the dot product form gives

dðx;miÞ2 ¼ x � x� 2mi � xþmi �mi

Classification is performed using the decision rule

x 2 xi if dðx;miÞ2\dðx;mjÞ2 for all j 6¼ i

Since x � x is common to all squared distance calculations it can be removed from
both sides in the decision rule. The sign of the remainder can then be reversed so
that the decision rule can be written in the same way as (8.5) to give

x 2 xi if gi xð Þ[ gj xð Þ for all j 6¼ i

in which

gi xð Þ ¼ 2mi � x�mi �mi ð8:24Þ
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Equation (8.24) is the discriminant function for the minimum distance classifier.19

8.5.3 Decision Surfaces for the Minimum Distance
Classifier

The implicit surfaces in spectral space separating adjacent classes are defined by the
respective discriminant functions being equal. The surface between the ith and jth
spectral classes is given by

gi xð Þ � gj xð Þ ¼ 0

which, when substituting from (8.24), gives

2 mi �mj
� � � x� mi �mi �mj �mj

� � ¼ 0

This defines a linear surface—a hyperplane in more than three dimensions. The
surfaces between each pair of classes define a set of first-degree separating
hyperplanes that partition the spectral space linearly. The quadratic decision surface
generated by the maximum likelihood rule in Sect. 8.3.4 renders that algorithm
potentially more powerful than the minimum distance rule if properly trained; the
minimum distance classifier nevertheless is effective when the number of training
samples is limited or if linear separation of the classes is suspected.

8.5.4 Thresholds

Thresholds can be applied to minimum distance classification by ensuring not only
that a pixel is closest to a candidate class but also that it is within a prescribed
distance of that class in spectral space. Such an assessment is often used with the
minimum distance rule. The distance threshold is usually specified in terms of a
number of standard deviations from the class mean.

8.5.5 Degeneration of Maximum Likelihood to Minimum
Distance Classification

The major difference between the minimum distance and maximum likelihood clas-
sifiers lies in the use, by the latter, of the sample covariance information. Whereas the

19 It is possible to implement a minimum distance classifier using distance measures other than
Euclidean: see A.G. Wacker and D.A. Landgrebe, Minimum distance classification in remote
sensing, First Canadian Symposium on Remote Sensing, Ottawa, 1972.
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minimum distance classifier labels a pixel as belonging to a particular class on the
basis only of its distance from the relevant mean in spectral space, irrespective of its
direction from that mean, the maximum likelihood classifier modulates its decision
with direction, based on the information contained in the covariance matrix.
Furthermore, the entry �1=2 ln Cij j in its discriminant function shows explicitly that
patterns have to be closer to some means than others to have equivalent likelihoods of
class membership. As a result, superior performance is expected of the maximum
likelihood classifier. The following situation however warrants consideration since
there is then no advantage in maximum likelihood procedures. It could occur in
practice when class covariance is dominated by systematic noise rather than by the
natural spectral spreads of the individual spectral classes.

Consider the covariance matrices of all classes to be diagonal and equal, and the
variances in each component to be identical, so that

Ci ¼ r2I for all i

in which I is the identity matrix. The discriminant function for the maximum
likelihood classifier in (8.7) then becomes

gi xð Þ ¼ �1=2 ln r2N � 1
2r2

x�mið ÞT x�mið Þþ lnp xið Þ

The first term on the right-hand side is common to all discriminant functions and
can be ignored. The second term can be expanded in dot product form in which the
resulting x � x terms can also be ignored, leaving

gi xð Þ ¼ 1
2r2

2mi � x�mi �mið Þþ lnp xið Þ

If all the prior probabilities are assumed to be equal then the last term can be
ignored, allowing 1=2r2 to be removed as a common factor, leaving

gi xð Þ ¼ 2mi � x�mi �mi

which is the same as (8.24), the discriminant function for the minimum distance
classifier. Therefore, minimum distance and maximum likelihood classification are
the same for identical and symmetric spectral class distributions.

8.5.6 Classification Time Comparison of the Maximum
Likelihood and Minimum Distance Rules

For the minimum distance classifier, the discriminant function in (8.24) must be
evaluated for each pixel and each class. In practice 2mi and mi �mi would be
calculated beforehand, leaving the computation of N multiplications and N
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additions to check the potential membership of a pixel to one class, where N is the
number of components in x. By comparison, evaluation of the discriminant function
for maximum likelihood classification in (8.7) requires N2 þN multiplications and
N2 þ 2Nþ 1 additions to check a pixel against one class, given that ln pðxiÞ �
1=2 ln jCij would have been calculated beforehand. Ignoring additions by compar-
ison to multiplications, the maximum likelihood classifier takes N þ 1 times as long
as the minimum distance classifier to perform a classification. It is also significant to
note that classification time, and thus cost, increases quadratically with the number
of spectral components for the maximum likelihood classifier, but only linearly for
minimum distance classification.

8.6 Parallelepiped Classification

The parallelepiped classifier is a very simple supervised classifier that is trained by
finding the upper and lower brightness values in each spectral dimension. Often that
is done by inspecting histograms of the individual spectral components in the
available training data, as shown in Fig. 8.8. Together the upper and lower bounds
in each dimension define a multidimensional box or parallelepiped; Fig. 8.9 shows
a set of two-dimensional parallelepipeds. Unknown pixels are labelled as coming
from the class of the parallelepiped within which they lie.

While it is very simple and fast, it has several limitations. First, there can be
considerable gaps between the parallelepipeds in spectral space; pixels in those
regions cannot be classified. By contrast, the maximum likelihood and minimum
distance rules will always label unknown pixels unless thresholds are applied.
Secondly, for correlated data some parallelepipeds can overlap, as illustrated in
Fig. 8.10, because their sides are always parallel to the spectral axes. As a result,
there are some parts of the spectral domain that can’t be separated. Finally, as with
the minimum distance classifier, there is no provision for prior probability of class
membership with the parallelepiped rule.

lower threshold lower thresholdupper threshold upper threshold

Fig. 8.8 Setting the parallelepiped boundaries by inspecting class histograms in each band
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8.7 Mahalanobis Classification

Consider the discriminant function for the maximum likelihood classifier for the
special case of equal prior probabilities in (8.8). If the sign is reversed the function
can be considered as a distance squared measure because the quadratic entry has
those dimensions and the other term is a constant. Thus, we can define

d x;mið Þ2¼ ln Cij j þ x�mið ÞTC�1
i x�mið Þ ð8:25Þ

and classify an unknown pixel on the basis of the smallest d x;mið Þ, as for the
Euclidean minimum distance classifier. Thus, the maximum likelihood classifier
(with equal priors) can be considered as a minimum distance algorithm but with a
distance measure that is sensitive to direction in spectral space.

cl
as

s 1

class 2

class 3

Fig. 8.9 A set of
two-dimensional
parallelepipeds

class 2

class 1

parallelepipeds

actual distribu�on of pixels

inseparable 
region

Fig. 8.10 Classification of
correlated data showing
regions of inseparability
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Assume now that all class covariances are the same and given by Ci ¼ C for
all i. The ln Cj j term is now not discriminating and can be ignored. The squared
distance measure then reduces to

d x;mið Þ2¼ x�mið ÞTC�1 x�mið Þ ð8:26Þ

A classifier using this simplified distance measure is called aMahalanobis classifier
and the distance measure shown squared in (8.26) is called the Mahalanobis dis-
tance. Under the additional simplification of C ¼ r2I the Mahalanobis classifier
reduces to the minimum Euclidean distance classifier of Sect. 8.5.

The advantage of the Mahalanobis classifier over the maximum likelihood
procedure is that it is faster and yet retains a degree of directional sensitivity in the
spectral domain via the covariance matrix C, which could be a class average or a
pooled covariance.

8.8 Non-parametric Classification

Classifiers such as the maximum likelihood and minimum distance rules are often
called parametric because the class definitions and discriminant functions are
defined in terms of sets of parameters, such as the mean vectors and covariance
matrices for each class.

One of the valuable aspects of the parametric, statistical approach is that a set of
relative likelihoods is produced. Even though, in the majority of cases, the maxi-
mum of the likelihoods is chosen to indicate the most probable label for a pixel,
there exists nevertheless information in the remaining likelihoods that could be
made use of in some circumstances, either to initiate processes such as relaxation
labelling (Sect. 8.23.4) and Markov random fields (Sect. 8.23.5) or simply to
provide the user with some feeling for the other likely classes. Those situations are
not common however and, in most remote sensing applications, the maximum
selection is made. That being so, the material in Sects. 8.3.4 and 8.5.3 shows that
the decision process has a geometric counterpart in that a comparison of statistically
derived discriminant functions leads equivalently to a decision rule that allows a
pixel to be classified on the basis of its position in spectral space compared with the
location of a decision surface.

There are also classifiers that, in principle, don’t depend on parameter sets and
are thus called non-parametric. Two simple non-parametric methods are given in
Sects. 8.9 and 8.10, although the table look up approach of Sect. 8.9 is now rarely
used.

Non-parametric methods based on finding geometric decision surfaces were
popular in the very early days of pattern recognition20 but fell away over the 1980s

20 See N.J. Nilsson, Learning Machines, McGraw-Hill, N.Y., 1965.
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and 1990s because flexible training algorithms could not be found. They have,
however, been revived in the past several decades with the popularity of the support
vector classifier and the neural network, which we treat in Sects. 8.14 and 8.20, 8.21
after we explore some non-parametric approaches and their limitations.

8.9 Table Look Up Classification

Because the set of discrete brightness values that can be taken by a pixel in each
spectral band is limited by the radiometric resolution of the data, there is a finite,
although often very large, number of distinct pixel vectors in any particular image.
For a given class there may not be very many different pixel vectors if the radio-
metric resolution is not high, as was the case with the earliest remote sensing
instruments. In such situations a viable classification scheme is to note the set of
pixel vectors corresponding to a given class based on representative training data,
and then use those vectors to classify the image by comparing unknown pixels with
each pixel in the training data until a match is found. No arithmetic operations are
required and, notwithstanding the number of comparisons that might be necessary
to determine a match, it is a fast classifier. It is referred to as a look up table
approach since the training pixel brightness values are stored in tables that point to
the corresponding classes.

An obvious drawback with this technique is that the chosen training data must
contain an example of every possible pixel vector for each class. Should some be
missed then the corresponding pixels in the image will be left unclassified. With
modern data sets, in which there can be billions of individual data vectors, this
approach is impractical.

8.10 kNN (Nearest Neighbour) Classification

A classifier that is particularly simple in concept, but can be time consuming to
apply, is the k Nearest Neighbour (kNN) classifier. It assumes that pixels close to
each other in spectral space are likely to belong to the same class. In its simplest
form an unknown pixel is labelled by examining the available training pixels in the
spectral domain and choosing the class most represented among a pre-specified
number of nearest neighbours in the training set. The comparison essentially
requires the distances from the unknown pixel to all training pixels to be computed.

8.8 Non-parametric Classification 291



Suppose there are ki neighbours labelled as class xi among the k nearest
neighbours of a pixel vector x, noting that

PM
i¼1 ki ¼ k where M is the total number

of classes. In the basic kNN rule we define the discriminant function for the ith class
as

gi xð Þ ¼ ki

and the decision rule as x 2 xi if gi xð Þ[ gj xð Þ for all j 6¼ i.

The basic rule does not take distance into account apart from identifying the
neighbours. An improvement is to distance-weight and normalise the discriminant
function:

gi xð Þ ¼
Pki

l¼1 1=d x; xli
� �PM

i¼1

Pki
l¼1 1=d x; xlið Þ ð8:27Þ

in which d x; xli
� �

is the distance (usually Euclidean) from the unknown pixel vector
x to its neighbour xli, the ith of the ki pixels in class xi.

If the training data for each class is not in proportion to its respective population
p xið Þ in the image, a Bayesian version of the simple nearest neighbour discriminant
function is

gi xð Þ ¼ p xjxið Þp xið ÞPM
i¼1 p xjxið Þp xið Þ ¼

kip xið ÞPM
i¼1 kip xið Þ ð8:28Þ

For each unknown pixel to be labelled in the kNN algorithm, as many spectral
distances as there are training pixels must be evaluated. That requires an imprac-
tically high computational load, particularly when the number of spectral bands
and/or the number of training samples is large. The method is not well-suited
therefore to hyperspectral datasets, although it is possible to improve the efficiency
of the distance search process.21

8.11 The Spectral Angle Mapper

A classifier sometimes used with data of high spectral dimensionality, such as that
recorded by imaging spectrometers, is the spectral angle mapper22 (SAM) which
segments the spectral domain on the basis of the angles of vectors measured from

21 See B.V. Dasarathy, Nearest neighbour (NN) norms, NN Pattern Classification Techniques,
IEEE Computer Society Press, Los Alamitos, California, 1991.
22 F.A. Kruse, A.B. Letkoff, J.W. Boardman, K.B. Heidebrecht, A.T.Shapiro, P.J. Barloon and A.
F.H. Goetz, The spectral image processing system (SIPS)—interactive visualization and analysis
of imaging spectrometer data, Remote Sensing of Environment, vol. 44, 1993, pp. 145–163.
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the origin, as illustrated in Fig. 8.11 for two dimensions. Every pixel point in
spectral space has both a magnitude and angular direction when expressed in polar,
as against the more usual Cartesian, form. The decision boundary shown in
Fig. 8.11b is based on the best angular separation between the training pixels in
different classes, usually in an average sense. Only first order parameters are esti-
mated, putting the SAM in the same class as the minimum distance classifier in
terms of its suitability for high dimensional imagery.

8.12 Non-parametric Classification from a Geometric
Basis

8.12.1 Linear Classification and the Concept of a Weight
Vector

Consider the simple two class spectral space shown in Fig. 8.12, which has been
constructed intentionally so that a simple straight line can be drawn between the
pixels as shown. This straight line will be a multidimensional linear surface, or
hyperplane in general, and can function as a decision surface for classification. In
the two dimensions shown, the equation of the line can be expressed

w1x1 þw2x2 þw3 ¼ 0

where the xi are the brightness value coordinates in the spectral space and the wi are
a set of coefficients, usually called weights. There will be as many weights as the
number of channels in the data, plus one. If the number of channels or bands is N,
the equation of a general linear surface is

class 1

class 2

class 1

class 2
ba

Fig. 8.11 a Representing pixel vectors by their angles; b segmenting the spectral space by angle
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w1x1 þw2x2 þ � � � þwNxN þwNþ 1 ¼ 0

which can be written

wTxþwNþ 1 � w � xþwNþ 1 ¼ 0 ð8:29Þ

where x is the pixel measurement vector and w is called the weight vector. The
transpose operation has the effect of turning the column vector into a row vector.

The position of the separating hyperplane would generally not be known ini-
tially; it would have to be found by training based on sets of reference pixels, just as
the parameters of the maximum likelihood classifier are found by training. Note that
there is not a unique solution; inspection of Fig. 8.12 suggests that any one of an
infinite number of slightly different hyperplanes would be acceptable.

8.12.2 Testing Class Membership

The calculation in (8.29) will be zero only for values of x lying exactly on the
hyperplane (the decision surface). If we substitute into that equation values of x
corresponding to any of the pixel points shown in Fig. 8.12 the left-hand side of
(8.29) will be non-zero. Pixels in one class will generate a positive inequality, while
pixels in the other class will generate a negative inequality. Once the decision
surface, or more specifically the weights w that define its equation, has been found
through training then a decision rule for labelling unknown pixels is

x 2 class 1 if wTxþwNþ 1 [ 0
x 2 class 2 if wTxþwNþ 1 \ 0

ð8:30Þ

separa�ng hyperplane
class 1

class 2

Fig. 8.12 Two-dimensional
spectral space, with two
classes that can be separated
by a simple linear surface
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8.13 Training a Linear Classifier

The simple linear classifier in Fig. 8.12 can be trained in several ways.
A particularly simple approach is to choose the hyperplane as the perpendicular
bisector of the line between the mean vectors of the two classes. That is the
minimum distance to class means classifier of Sect. 8.5. Another is to guess an
initial position for the separating hyperplane and then iterate it into position by
reference, repetitively, to each of the training samples. Such a method has been
known for over 50 years.23 There is however a more elegant training method which
forms the basis of the support vector classifier treated in the next section.

8.14 The Support Vector Machine: Linearly Separable
Classes

Inspection of Fig. 8.12 suggests that the only training patterns that need to be
considered in finding a suitable hyperplane are those from each class nearest the
hyperplane. Effectively, they are the patterns closest to the border between the
classes. If a hyperplane can be found that satisfies those pixels then the pixels
further from the border must, by definition, also be satisfied. Moreover, again by
inspecting Fig. 8.12, we can induce that the “best” hyperplane would be that which
would be equidistant, on the average, between the nearest edge pixels for each of
the two classes. This concept, along with the concentration just on the edge pixels,
forms the basis of the support vector machine, which was introduced into remote
sensing in 1998.24

If we expand the region in the vicinity of the hyperplane in Fig. 8.12, we can see
that the optimal position and orientation of the separating hyperplane is when there
is a maximum separation between the patterns of the two classes in the manner
illustrated in Fig. 8.13. We can draw two more hyperplanes, parallel to the sepa-
rating hyperplane, that pass through the nearest training (edge) pixels from the
classes, as indicated. We call them marginal hyperplanes. Their equations are
shown on the figure, suitably scaled so that the right-hand sides have a magnitude
of unity. For pixels that lie on or beyond the marginal hyperplanes we have

for class 1 pixels wTxþwNþ 1 � 1
for class 2 pixels wTxþwNþ 1 � � 1

ð8:31Þ

On the marginal hyperplanes

23 See Nilsson, ibid.
24 J.A. Gualtieri and R.F. Cromp, Support vector machines for hyperspectral remote sensing
classification, Proc. SPIE, vol. 3584, 1998, pp. 221–232.
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for class 1 pixels wTxþwN þ 1 ¼ 1
for class 2 pixels wTxþwN þ 1 ¼ �1

or

for class 1 pixels wTxþwNþ 1 � 1 ¼ 0
for class 2 pixels wTxþwNþ 1 þ 1 ¼ 0

The perpendicular distances of these hyperplanes from the origin are, respectively,
1� wNþ 1j j= wk k and �1� wNþ 1j j= wk k in which wk k is the Euclidean length, or
norm, of the weight vector.25 The separation of the hyperplanes is the difference in
these perpendicular distances, which we call the margin:

margin ¼ 2= wk k ð8:32Þ

The best or optimal position for the separating hyperplane is that for which the
margin of (8.32) is largest or, equivalently, when the weight vector norm wk k is
smallest. This provides a goal for optimal training of the linear classifier. However,
we must always ensure that every pixel vector stays on its correct side of the
separating hyperplane, which gives us a set of constraints that must be observed
when seeking the optimal separating hyperplane. We can capture those constraints
mathematically in the following manner.

Describe the class label for the ith training pixel by the variable yi, which takes
the values of +1 for class 1 pixels and �1 for class 2 pixels. The two equations in
(8.31) can then be written in single expression, valid for pixels from both classes:

op�mal 
hyperplane

class 1

class 2margin

Fig. 8.13 An optimal
separating hyperplane can be
determined by finding the
maximum separation between
classes; two marginal
hyperplanes can be
constructed using the pixel
vectors closest to the
separating hyperplane

25 See Prob. 8.13.
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for pixel xi in its correct class yi wTxi þwNþ 1ð Þ� 1

or yi wTxi þwNþ 1ð Þ � 1� 0
ð8:33Þ

In seeking to minimise wk k we must observe the constraints of (8.33), one for each
training pixel. Constrained minimisation can be handled by the process of Lagrange
multipliers.26 This entails setting up a function, called the Lagrangian L, which
consists of the property to be minimised (the vector norm wk k) but from which is
subtracted a proportion of each constraint. For later convenience we will seek to
minimise half the square of the vector norm, so that the Lagrangian has the form:

L ¼ 1
2

wk k2�
X
i

ai yi wTxi þwNþ 1
� �� 1

� � ð8:34Þ

The ai � 0 for all i, are called the Lagrange multipliers and are positive by defi-
nition. How are they treated during the minimisation process? Suppose we chose a
training pixel and find it is on the wrong side of the separating hyperplane, thus
violating (8.30) and (8.33). Given that ai is positive that would cause L to increase.
What we need to do is find values for w and wN þ 1 that minimise L while the ai are
trying to make it larger for incorrectly located training patterns. In other words, we
are shifting the hyperplane via its weights to minimise L in the face of the ai trying
to make it bigger for wrongly classified training data.

Consider, first, the values of w and wNþ 1 that minimise L. That requires equating
to zero the derivatives of L with respect to the weights. Noting wk k2� wTwwe have

@L
@w

¼ w�
X
i

aiyixi ¼ 0

which gives

w ¼
X
i

aiyixi ð8:35Þ

Now

@L
@wNþ 1

¼ �
X
i

aiyi ¼ 0 ð8:36Þ

We can use (8.35) and (8.36) to simplify (8.34). First, using (8.35), we can write

wk k2¼ wTw ¼
X
j

ajyjxTj
X
i

aiyixi

26 See C.M. Bishop, loc. cit., Appendix E.
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Substituting into (8.34) gives

L ¼ 1
2

X
j

ajyjxTj
X
i

aiyixi �
X
i

aifyi
X
j

ajyjxTj xi þwNþ 1

 !
� 1g

i:e:; L ¼ 1
2

X
i;j

aiajyiyjxTj xi �
X
i;j

aiajyiyjxTj xi � wNþ 1

X
i

aiyi þ
X
i

ai

Using (8.36) this simplifies to

L ¼
X
i

ai � 1
2

X
i;j

aiajyiyjxTj xi ð8:37Þ

We are now in the position to find the ai. Remember they are trying to make the
Lagrangian as large as possible, so we seek to maximise (8.37) with respect to the
ai. This is referred to as a dual representation in the field of optimisation. Note that
there are constraints on this optimisation too. They are that

ai � 0 ð8:38aÞ

and, from (8.36),
X
i

aiyi ¼ 0 ð8:38bÞ

Equation (8.37), for any real problem, has to be solved numerically, following
which the values of ai have been found. The one remaining unknown is wNþ 1

which we will come to in a moment. First, however, there is another constraint
on (8.37) which, together with (8.38a, b), give what are called the Karush–Kuhn–
Tucker conditions.27 This further constraint is

ai yi wTxi þwNþ 1
� �� 1

� � ¼ 0 ð8:38cÞ

This is very interesting because it says that either ai ¼ 0 or yi wTxi þwNþ 1ð Þ ¼ 1.
The latter expression is valid only for training vectors that lie on the marginal
hyperplanes—what we call the support vectors. For any other training sample this
condition is not valid so that (8.38c) can then only be satisfied if ai ¼ 0. In other
words, it seems that a whole lot of the training pixels are irrelevant. In a sense that is
true but must be interpreted carefully. When maximising (8.37) we have no way of
knowing beforehand which of the training samples will end up being support
vectors because we don’t yet know the value of w. However once (8.37) has been
optimised we know the optimal hyperplane and thus the support vectors. We are

27 See Bishop, loc. cit.
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then in the position to discard all the other training data. When is that important? It
is in the classification phase. That is done via the test of (8.30) or (8.33). To test the
class membership of a pixel at position x in multispectral space we evaluate the sign
of wTxþwNþ 1 with w given by (8.35) but computed using only the support
vectors. Thus, the test of class membership for pixel x is

sgn wTxþwNþ 1
� � ¼ sgn

X
i2S

aiyixTi xþwNþ 1

( )
ð8:39Þ

where the symbol S in the sum refers only to the support vectors.
How do we now find the value of wNþ 1? A simple approach is to choose two

support vectors, one from each class; call these x 1ð Þ and x �1ð Þ for which y ¼ 1 and
y ¼ �1 respectively. From (8.33) we have for those vectors

wTx 1ð ÞþwNþ 1 � 1 ¼ 0

�wTx �1ð Þ � wN þ 1 � 1 ¼ 0

so that

wNþ 1 ¼ � 1
2
wT x 1ð Þþ x �1ð Þf g ð8:40Þ

We could alternately choose sets of x 1ð Þ and x �1ð Þ and average the values of
wN þ 1 so generated. Following Bishop,28 this can be generalised by noting from the
argument of (8.39) that

yx
X
i2S

aiyixTi xþwNþ 1

 !
¼ 1 ð8:41Þ

in which yx is associated with the pixel x. Multiplying throughout by yx, and noting
y2x ¼ 1, we have from (8.41)

wNþ 1 ¼ yx �
X
i2S

aiyixTi x

This is for one support vector x. We now average over all support vectors to give

wNþ 1 ¼ 1
NS

X
x2S

yx �
X
i2S

aiyixTi x

( )
ð8:42Þ

in which NS is the number of support vectors.

28 ibid.
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8.15 The Support Vector Machine: Overlapping Classes

It is unrealistic to expect that the pixel vectors from two ground cover classes will
be completely separated, as implied in Fig. 8.13. Instead, there is likely to be class
overlap more like the situation depicted in Fig. 8.2. Any classifier algorithm, to be
effective, must be able to cope with such a situation by generating the best possible
discrimination between the classes in the circumstances. As developed in the pre-
vious section the support vector classifier will not find a solution for overlapping
classes and requires modification. That is done by relaxing the requirement on
finding a maximum margin solution by agreeing that such a goal is not possible for
all training pixels and that we will have to accept that some will not be correctly
separated during training. Such a situation is accommodated by introducing a
degree of “slackness” in the training step. To develop this variation, consider the set
of training pixels in Fig. 8.14.

We introduce a set of positive “slack variables” ni, one for each of the training
patterns, which are used to modify the constraint of (8.33) such that it now becomes

ðwTxi þwNþ 1Þyi � 1� ni 8i ð8:43aÞ

The slack variables are defined such that:

ni ¼ 0, for training pixels that are on or on the correct side
of the marginal hyperplane

ni ¼ 1 for a pixel on the separating hyperplane—the
decision boundary—because wTxi þwN þ 1 ¼ 0
and yij j ¼ 1.

ni [ 1 for pixels that are on the wrong side of the
separating hyperplane since wTxi þwNþ 1 has the
opposite sign to yi for misclassified pixels.

ni ¼ yi � wTxi þwNþ 1ð Þj j\1 for all other training pixels because they are
between the marginal hyperplanes

When training the support vector machine with overlapping data we minimise the
number of pixels in error while maximising the margin by minimising wk k.
A measure of the number of pixels in error is the sum of the slack variables over all
the training pixels; they are all positive and thus their sum increases with mis-
classification. Minimising misclassification error and maximising the margin
together can be achieved by seeking to minimise

1
2

wk k2 þC
X
i

ni ð8:43bÞ

in which the positive weight C, called the regularisation parameter, adjusts the
relative importance of the margin versus misclassification error.
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As before the minimisation is subject to constraints. One is (8.43a); the other is
that the slack variables are positive. We again accomplish the minimisation by
introducing Lagrange multipliers. However, now there is a different multiplier
associated with each constraint, so that the Lagrangian is

L ¼ 1
2

wk k2 þC
X
i

ni �
X
i

ai yi wTxi þwNþ 1
� �� 1þ ni

� ��X
i

lini ð8:44Þ

in which the ai and the li are the Lagrange multipliers. We now equate to zero the
first derivatives with respect to the weight vector and the slack variables in an
attempt to find the values that minimise the Lagrangian.

First

@L
@w

¼ w�
X
i

aiyixi ¼ 0

which gives

w ¼
X
i

aiyixi ð8:45Þ

while

@L
@wNþ 1

¼ �
X
i

aiyi ¼ 0 ð8:46Þ

class 1

class 2margin

Fig. 8.14 Slack variables and
overlapping classes
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Now

@L
@ni

¼ C � ai � li ¼ 0 ð8:47Þ

Remarkably, (8.47) removes the slack variables when substituted into (8.44). Since
(8.45) and (8.46) are the same as (8.35) and (8.36), (8.44) reduces to

L ¼
X
i

ai � 1
2

X
i;j

aiajyiyjxTj xi ð8:48Þ

which is identical to the dual formulation of (8.37) which has to be maximised with
respect to the Langrange multipliers ai. However, the constraints on the ai are now
different. Since, by definition the Lagrange multipliers, both ai and li, are
non-negative we have

0� ai �C ð8:49aÞ

and, from (8.46) X
i

aiyi ¼ 0 ð8:49bÞ

Again, (8.48) needs to be solved numerically subject to the constraints of (8.49).
Once the ai are found (8.39) is used to label unknown pixels. As with the linearly
separable case some of the ai will be zero, in which case the corresponding training
pixels do not feature in (8.39). The training pixels for which ai 6¼ 0 are again the
support vectors.

There are more Karush–Kuhn–Tucker conditions in the case of slack variables as
seen in Bishop29 and Burges30; one is lini ¼ 0. We can use this to generate a means
for finding wN þ 1. We know that ai [ 0 for support vectors. If, in addition, we have
some vectors for which ai\C then (8.47) shows that li must be non-zero. Since
lini ¼ 0 this requires ni ¼ 0 so that (8.42) can again be used to find wN þ 1 but with
the sums over those support vectors for which also ai\C.

29 ibid.
30 C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and
Knowledge Discovery, vol. 2, 1998, pp. 121–166.
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8.16 The Support Vector Machine: Nonlinearly Separable
Data and Kernels

When we examine the central equations for support vector classification, viz.
(8.37), (8.39), (8.42) and (8.48) we see that the pixel vectors enter only via a scalar
(or dot) product of the form xTi x. As is often the case in thematic mapping, it is
possible to transform the original pixel vectors to a new set of features before we
apply the support vector approach, in an endeavour to improve separability. For
example, we could use a function / to generate the transformed feature vector / xð Þ,
so that equations such as (8.39) become

sgn /ðwÞT/ xð ÞþwNþ 1

n o
¼ sgn

X
i2S

aiyi/ðxiÞT/ xð ÞþwNþ 1

( )
ð8:50Þ

We refer to the scalar product of the transformed features as a kernel function,
written as

k xi; xð Þ ¼ /ðxiÞT/ xð Þ ð8:51Þ

which has a scalar value. Since the pixel vectors enter the calculations only in this
product form it is not necessary to know the actual transformation / xð Þ; all we have
to do is specify a scalar kernel function k xi; xð Þ of the two pixel vectors.

What functions are suitable as kernels? Effectively, any function that is
expressible in the scalar (or dot) product form in (8.51) is suitable. Clearly, we
could build up kernels by choosing the transformations first, but that defeats the
purpose: the real benefit of the process known as kernel substitution, or sometimes
the kernel trick, is that we don’t need to know the transform but can just choose
appropriate kernels. All we need do is satisfy ourselves that the kernel chosen is
equivalent to a scalar product. The test comes in the form of satisfying the Mercer
condition31 which, for the kernels below, can always be assumed.

It is instructive to examine a classical example. Consider a kernel composed of
the simple square of the scalar product:

k x; yð Þ ¼ xTy
� �2

To avoid a complication with subscripts in the following the kernel has been
expressed in terms of the variables x and y. We now restrict attention to the case of
two-dimensional data, so that the column vectors can be written as x ¼ ½x1; x2	T and
y ¼ ½y1; y2	T. Expanding the kernel operation, we have

k x; yð Þ ¼ xTy
� �2¼ ½x1y1 þ x2y2	2

31 ibid.
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Expanding, we get ½x1y1 þ x2y2	2 ¼ x21y
2
1 þ 2x1y1x2y2 þ x22y

2
2

which can be expressed

½x1y1 þ x2y2	2 ¼ ½x21;
ffiffiffi
2

p
x1x2; x

2
2	

y21ffiffiffi
2

p
y1y2
y22

2
4

3
5 ¼

x21ffiffiffi
2

p
x1x2
x22

2
4

3
5T

y21ffiffiffi
2

p
y1y2
y22

2
4

3
5

This shows that the quadratic kernel k x; yð Þ ¼ xTy½ 	2 can be written in the scalar
product form of (8.51) and is thus valid. The transformation is now seen explicitly
to be

/ xð Þ ¼
x21ffiffiffi
2

p
x1x2
x22

2
4

3
5 ¼

z1
z2
z3

2
4

3
5 ð8:52Þ

which transforms the original two-dimensional space into three dimensions defined
by the squares and products of the original variables. Figure 8.15 shows how this
transformation leads to linear separability of a two-class data set that is not linearly
separable in the original coordinates. In this example the original data lies either
side of the quadrant of a circle defined by x21 þ x22 ¼ 2500, shown dotted in
Fig. 8.15a. Following transformation, the circle becomes the straight line
z1 þ z3 ¼ 2500, which has a negative unity slope and intersects the axes at 2500, as
shown in Fig. 8.15b. In this simple example the third dimension is not required for
separation and can be thought of as coming out of the page; Fig. 8.15b is the
two-dimensional sub-space projection in the z1; z3 plane.

The simple quadratic kernel is of limited value, but the above example serves to
demonstrate the importance of using kernels as substitutions for the scalar product
in the key equations. A more general polynomial kernel that satisfies the Mercer
condition is of the form

k xi; xð Þ ¼ ½xTi xþ b	m ð8:53Þ

with b[ 0. Values for the parameters b and m have to be found to maximise
classifier performance.

A popular kernel in remote sensing applications is the Gaussian radial basis
function kernel, which has one parameter c[ 0 and is based on the distance
squared between the two vector arguments:

k xi; xð Þ ¼ exp �c x� xik k2
n o

ð8:54Þ

304 8 Supervised Classification Techniques



The distance metric chosen is normally Euclidean, although others are also possi-
ble. It is interesting to note that the dimensionality of the transformed space with the
radial basis function kernel is infinite, which explains its power and popularity. That
can be seen by expanding

x� xik k2¼ ðx� xiÞT x� xið Þ ¼ xTx� 2xTxi þ xTi xi

so that

k xi; xð Þ ¼ exp �cxTx
� �

exp 2cxTxi
� �

exp �cxTi xi
� �

:

Taking just the first exponential and replacing it by its power series we have

exp �cxTx
� � ¼ 1� cxTxþ c2

2
xTx
� �2� c3

6
xTx
� �3 þ � � �

Note the quadratic transformation of the scalar product in (8.52) led to one more
dimension than the power. It is straightforward to demonstrate for two-dimensional
data that the cubic term leads to a four-dimensional transformed space. In this last
case, the first exponential, consisting of an infinite set of terms, leads to an infinite
transformed space, as do the other exponentials in k xi; xð Þ.

A third option, that has an association with neural network classifiers treated
later, is the hyperbolic tangent kernel:

k xi; xð Þ ¼ tanh jxTi xþ b
� � ð8:55Þ
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Fig. 8.15 Use of (8.52) to transform the linearly inseparable data set shown in a into the separable
case in b; the z2 dimension is out of the page, but doesn’t contribute to separation
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which has two parameters to be determined. There is a set of rules that allow new
kernels to be constructed from valid kernels, such as those above.32

When applying the support vector machine, we have a number of parameters to
find, along with the support vectors. The latter come out of the optimisation step but
the parameters—the regularisation parameter C in (8.43b) and c for the radial basis
function kernel, or m and b for the polynomial kernel—have to be estimated to give
best classifier performance. Generally, that is done through a search procedure that
is demonstrated in the example in Sect. 8.18.

8.17 Multi-category Classification with Binary Classifiers

Since the support vector classifier places unknown pixels into one of just two
classes, a strategy is needed to allow its use in the multi-class situations encountered
in remote sensing. Several approaches are possible. A simple method often used
with binary classifiers in the past is to construct a decision tree, at each node of
which one of M classes is separated from the remainder as depicted in Fig. 8.16a.
The disadvantage with this method is that the training classes are unbalanced,
especially in the early decision nodes, and it is not known optimally which classes
should be separated first.

More recently, parallel networks have been used to perform multiclass decisions
from binary classifiers, as illustrated in Fig. 8.16b. They have been used principally
in one of two ways. First, each classifier can be trained to separate one class from
the rest, in which case there are as many classifiers as there are classes, in this case
M. Again, this approach suffers from unbalanced training sets. If the classifiers are
support vector machines there is evidence to suggest that such imbalances can affect
classifier performance.33 Also, some form of logic needs to be applied in the
decision rule to choose the most favoured class recommendation over the others;
that could involve selecting the class which has the largest argument in (8.39).34

Despite these considerations, the method is often adopted with support vector
classifiers and is known as the one-against-the-rest or one-against-all
(OAA) technique.

A better approach, again using Fig. 8.16b, is to train M M � 1ð Þ=2 separate
binary classifiers, each of which is designed to separate a pair of the classes of
interest. This number covers all possible class pairs. Once trained, an unknown
pixel is subjected to each classifier and is placed in the class with the highest overall
number of classification recommendations in favour. Of course, each individual

32 See Bishop, loc. cit. p. 296.
33 K. Song, Tackling Uncertainties and Errors in the Satellite Monitoring of Forest Cover Change,
Ph.D. Dissertation, The University of Maryland, 2010.
34 See F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with
support vector machines, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8,
August 2004, pp. 1778–1790.
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classifier will be presented with pixels from classes for which it was not trained.
However, by training for every possible class pair, choosing the most recommended
class always works, in principle.35 The method is called one-against-one (OAO).
The disadvantage of this method is the very large number of binary classifiers
needed. For example, if there were 10 classes, the OAO multiclass strategy requires
45 separate binary classifiers, whereas the OAA only needs 10. Offsetting that
problem, however, is the fact that the class-wise binary decisions are generally
easier than those in the one against the rest strategy, usually involving simpler
SVMs with fewer support vectors for each separate classifier.36

8.18 Applying the Support Vector Classifier

8.18.1 Initial Choices

When applying the support vector classifier in thematic mapping the user needs to
make two initial decisions: which kernel to use to improve separability, and what
multiclass strategy to adopt.

Generally, a polynomial or radial basis function kernel is chosen. Although
many other possibilities exist, they are the two most often found in remote sensing
studies and are known to work well. In this section we will focus on the radial basis
function kernel of (8.54). It has one parameter c, a value for which has to be

not class 1

binary classifier

binary classifier

binary classifier

not class 2

not class 3

class 1

class 2

class 3

binary classifier

binary classifier

binary classifier

class

decision rule

ba

Fig. 8.16 a A simple binary decision tree, and b multiclass decisions using binary classifiers in
parallel, followed by decision logic

35 See Prob. 8.7.
36 See Melgani and Bruzzone, loc. cit.
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estimated to generate optimum results from the support vector classifier. We will
come to that below. Similar considerations will apply if a polynomial kernel is
chosen.

Although several multiclass methods are available to allow the fundamentally
binary support vector machine to work with many classes, most often the
one-against-one (OAO) approach is selected.

The user also needs to select training data for each information class. That needs
to be done carefully as discussed in Sect. 11.2.1.1.

There are two parameters to be found before the SVM can be applied: the
regularisation parameter C which controls the misclassification error that can be
tolerated, and the width parameter c in the kernel, if a radial basis function is used.
Unfortunately, they are interdependent, so one cannot be found in isolation from the
other.

8.18.2 Grid Searching for Parameter Determination

The best values of C and c will vary from data set to data set and thus have to be
determined anew for each classification exercise. Unfortunately, they can vary over
a wide range, particularly C, so an efficient search strategy is needed. A grid
searching process is usually selected in which an initial large range of values for
each parameter is chosen and the ranges discretised to give a matrix of C; c pairs.
The SVM is trained on a representative set of data using each pair selected in turn,
from which the best pair is selected. The grid spacing can then be narrowed in the
vicinity of that pair and the process repeated, allowing more effective values to be
found. This process should be used to find the best parameter pair for each binary
classifier in the multiclass topology adopted but is sometimes done for the multi-
class data set as a whole.

Once the user is satisfied with those values then the OAO multiclass network of
SVMs can be fully trained. During training the final set of SVMs for each binary
separation, the corresponding support vectors, and corresponding values for the
coefficients ai in (8.50) will be determined with the optimisation software used.37

Once they are available the decision rule in (8.50) is then fully specified and can be
used to label unseen pixels.

37 Several packages are available for the support vector classifier, including LibSVM, described in
Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, ACM
Transactions on Intelligent Systems and Technology, vol. 2, issue 3, 2011, pp. 27:1–27:27. The
software is available at http://www.csie.ntu.edu.tw/cjlin/libsvm accessed 2021. Commercial image
analysis packages also include SVM classifiers.
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8.18.3 Data Centering and Scaling

Some, although not all, authors recommend that the data be shifted to a mean of
zero and scaled to a common range in each band before training, as a means for
improving performance and to speed up the optimisation step.38

8.18.4 Examples

We now look at a simple example of the use of the support vector machine for
image classification.39 Figure 8.17 shows a segment of a Quickbird 2 image taken
over the city of Boumerdès in Algeria, located on the coast of the Mediterranean
Sea. It was acquired on 22 April 2002 and consists of 500 � 600 pixels, with a
spatial resolution of 0.6 m, achieved through pan-sharpening the sensor’s 2.4 m
multispectral bands. The Quickbird 2 sensor has the four bands indicated in the
figure.

Seven principal information classes are evident in the scene: water, sand, tree,
rock, bare soil, asphalt, roof. The last two were each separated into two spectral
classes. In the case of asphalt, they are streets (asphalt 1) and pavements (asphalt 2),
while for roof they are tiles (roof 1) and cement (roof 2). Table 8.4 shows the
numbers of training and testing pixels chosen to support the exercise of mapping
the image segment into the classes of interest.

A radial basis function kernel was used as was the OAO multi-class strategy.
Since there were 9 (spectral) classes, the total number of classifiers to be trained
with the OAO strategy was 9 � 8/2 = 36. The LibSVM package was used to
perform the classification.

Although parameter determination is usually carried out with grid searching, in
this case the experience of the researchers led to a slightly simpler procedure. First,
c the kernel parameter was initially set to 0.25. Next, the regularisation parameter C
was varied from 25 to 200 in steps of 25. Using the best value found for C, c was
then varied over 0.25 to 2 in steps of 0.25. They found that the best parameter pair
was c ¼ 2 and C ¼ 200. These same parameter values were used for all 36
classifiers.

38 See A.J. Gualtieri, S. R. Chettri, R.F. Cromp and L.F. Johnson, Support vector machine clas-
sifiers as applied to AVIRIS data, Proc. 8th JPL Airborne Earth Sciences Workshop, Pasadena,
California, 1999, pp. 217–227, A.J. Gualtieri, The Support Vector Machine (SVM) algorithm for
supervised classification of hyperspectral remote sensing data, in G. Camps-Valls and L.
Bruzzone, eds., Kernel methods for Remote Sensing Data Analysis, John Wiley & Sons,
Chichester, UK, 2009, and C-W Hsu, C–C Chang, and C-J Lin, A Practical Guide to Support
Vector Classification, http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf accessed 2021.
39 This example was provided by Dr. Farid Melgani of the University of Trento, Italy. The analysis
was carried out by Dr. Yakoub Bazi of King Saud University, Saudi Arabia. The ground truthing
was done by Dr. Abdelhamid Daamouche of the University of Boumerdès, Algeria.
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Figure 8.18 shows the classification results obtained, both as a thematic map and
as a table of class-wise accuracies. The overall average accuracy was 76.9%.
Although the water class was handled perfectly the performance on the rock and
bare soil classes was very poor and would not usually be acceptable. Several cases
of these misclassifications have been identified in Fig. 8.18. If this were a real
exercise the classification would be repeated, perhaps with a more careful choice of
the values of c and C, and with a re-examination of the training data to ensure it is
not in error.

This example has not demonstrated one of the key benefits of the SVM—the
ability to classify hyperspectral imagery without being unduly affected by the

blue 450-520nm green 520-600nm

red 630-690nm NIR 760-890nm

Fig. 8.17 Portion of a Quickbird 2 image, showing the four individual bands and a natural colour
composite

Table 8.4 Numbers of
training and testing pixels
used in the classification of
the Quickbird 2 Boumerdès
image segment with the
support vector machine

Class Training pixels Testing pixels
Water 600 2400
Sand 600 2400
Tree 375 700
Asphalt 1 105 200
Asphalt 2 343 500
Rock 175 450
Roof 1 75 200
Roof 2 294 500
Bare soil 300 700
Total 2867 8050
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Hughes phenomenon. An example from Melgani and Bruzzone40 is now considered
to illustrate this point. This exercise applied a support vector classifier to the Indian
Pines data set41 recorded by AVIRIS (Airborne Visible and Infrared Imaging
Spectrometer) in 1992. AVIRIS records 224 bands over the spectral range 0.4–2.5
lm. At the time of this work, it recorded 220 bands with a 10 bit radiometric
resolution; for this exercise 20 bands were discarded because of atmospheric
problems with the data. The remaining 200 bands were labelled into 9 of the
available 16 Indian Pines classes. Table 8.5 shows the classes, along with the
numbers of training and testing pixels available.

In this case the OAA multiclass strategy was used, and the radial basis function
kernel was adopted. Through grid searching they chose C ¼ 40 and c ¼ 0:25. The
results are shown in Table 8.6, again on a class-wise basis. They are remarkably
good on data of such high dimensionality.

The authors now did an interesting sensitivity analysis to check the importance
of having precise values for the regularization and kernel parameters. One
parameter was held constant while the other was varied over the range shown in
Table 8.6. They then computed the average performance and the variance of per-
formance over the tests, as indicated. The fact that the variance is small demon-
strates that the parameters do not have to be determined with high precision in these
ranges in order to get good results. Note though that the original (grid) searching
operation was still needed to get the nominal values for C and c.

many pixels of 
bare soil have 
been classified 

as asphalt

some pixels of 
rock have been 

classified as tree

water
sand
tree
asphalt 1
asphalt 2
rock
roof 1
roof 2
bare soil

100%
65.7%
95.6%
63.5%
85.4%
44.0%
62.5%
72.0%
44.1%

Fig. 8.18 SVM classification results, showing where major labelling errors have occurred

40 F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with support
vector machines, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, August
2004, pp. 1778–1790.
41 Baumgardner, M. F., Biehl, L. L., Landgrebe, D. A. (2015). 220 Band AVIRIS Hyperspectral
Image Data Set: June 12, 1992 Indian Pine Test Site 3. Purdue University Research Repository.
https://doi.org/10.4231/R7RX991C.
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8.19 Committees of Classifiers

Classically, a committee classifier consists of a number of algorithms that all
operate on the same data set to produce individual, sometimes competing, rec-
ommendations about the class membership of a pixel, as shown in Fig. 8.19. Those
recommendations are fed to a decision maker, or chair, which resolves the final
class label for the pixel.42

The decision maker resolves the conflicts by using one of several available
logics. One is the majority vote, in which the decision maker decides that the class
most recommended by the committee members is the appropriate one for the pixel.
Another is veto logic, in which all classifiers have to agree about class membership
before the decision maker will label the pixel. Yet another is seniority logic, in
which the decision maker always consults one particular classifier first (the most

Table 8.5 The classes and
the numbers of training and
testing pixels used in the
classification of the Indian
Pines data set

Class Training pixels Testing pixels
Corn-no till 742 692
Corn-min till 442 392
Grass/pasture 260 237
Grass/trees 389 358
Hay-windrowed 236 253
Soybean no-till 487 481
Soybean min-till 1245 1223
Soybean clean-till 305 309
Woods 651 643
Total 4757 4588

Table 8.6 Results of the classification and a sensitivity analysis on the regularisation and kernel
parameters

Class Result

Corn-no till 91.5%

Corn-min till 87.8%

Grass/pasture 94.9%

Grass/trees 98.9%

Hay-windrowed 100.0%

Soybean no-till 88.6%

Soybean min-till 91.3%

Soybean clean-till 95.8%

Woods 99.4%

Overall 93.4%

42 See N.J. Nilsson, Learning Machines, McGraw-Hill, N.Y., 1965.
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“senior”) to determine the label for a pixel. If that classifier is unable to recommend
a class label, then the decision maker consults the next most senior member of the
committee, and so on until the pixel is labelled. Seniority logic has been used as a
means for creating piecewise linear decision surfaces.43

8.19.1 Bagging

Apart from the simple approach of committee labelling based on logical decisions
as in the previous section, several other procedures using a number of similar
classifiers have been devised in an endeavour to improve thematic mapping
accuracy. One is called bagging which entails training a set of classifiers on ran-
domly chosen subsets of data, and then combining the results.

The different data sets are chosen by the process called bootstrapping, in which
the available K training pixels are used to generate L different data sets each
containing N training pixels, in the following manner. For each data set N pixels are
chosen randomly from the K available, with replacement; in other words, the same
pixel could appear more than once among the N chosen. Each of the L data sets is
used to train a classifier. The results of the individual classifiers are then combined
by voting. The name bagging derives from bootstrap aggregating.

8.19.2 Boosting and AdaBoost

Adaptive boosting, called AdaBoost, is a committee of binary classifiers in which
the members are trained sequentially, in the following manner. The first classifier is
trained. Training pixels that are found to be in error are then emphasised in the
training set and the next classifier trained on that enhanced set. Training pixels
unable to be separated correctly by the second classifier are given a further
emphasis and the third classifier is trained, and so on. The final label allocated to a

decision maker

classifier 1

classifier 2

classifier 3

class

Fig. 8.19 A committee of
three classifiers

43 See T. Lee and J.A. Richards, A low cost classifier for multi-temporal applications, Int.
J. Remote Sensing, vol. 6, 1985, pp. 1405–1417.

8.19 Committees of Classifiers 313



pixel is based on the outputs of all classifiers. Algorithmically, it proceeds in the
following steps.

Suppose there are K training pixels; the correct label for the kth pixel is rep-
resented by the binary variable yk which takes the values {+1, –1} according to
which class the kth training pixel belongs. Define tk 2 þ 1;�1f g as the actual class
that the pixel is placed into by the trained classifier. For correctly classified pixels
tk ¼ yk while for incorrectly classified pixels tk 6¼ yk .

1. Initialise a set of weights for each of the training pixels in the first classifier step
according to44

w1
k ¼ 1=K

2. For l ¼ 1 . . . L, where L is the number of classifiers in the committee, carry out
the following steps in sequence

a. Train a classifier using the available weighted training data. Initially each
training pixel in the set is weighted equally, as in 1. above.

b. Set up an error measure after the lth classification step according to

el ¼
P

k w
l
kI tk; ykð ÞP
k w

l
k

in which I tk; ykð Þ ¼ 1 for tk 6¼ yk
¼ 0 otherwise

.

c. Form the weights for the ðlþ 1Þth classifier according to
either

wlþ 1
k ¼ wl

kexp alI tk; ykð Þ� � ð8:56aÞ

or

wlþ 1
k ¼ wl

kexp �altkyk
� � ð8:56bÞ

with

al ¼ ln 1� el
� �

=el
� � ð8:56cÞ

Both (8.56a) and (8.56b) enhance the weights of the incorrectly classified
pixels; (8.56a) leaves the weights of the correct pixels unchanged, while
(8.56b) de-emphasises them.

44 All superscripts in this section are stage (iteration) indices and not powers.
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d. Test the class membership of the kth pixel according to

TL xkð Þ ¼ sgn
X
l

altlk xkð Þ ð8:56dÞ

This weights the class memberships recommended by the individual clas-
sifiers to come up with the final label for the pixel. Note that TL 2 1;�1f g
for this binary classifier.

Bishop45 gives a simple example of AdaBoost in which the improvement of
accuracy is seen as more classifiers are added. Accuracy may not always improve
initially and many, sometimes hundreds, of stages are needed to achieve good
results.

8.20 Networks of Classifiers: The Artificial Neural
Network

Decision trees, committee classifiers and processes such as boosting and bagging
are examples of what more generally can be referred to as classifier networks, or
sometimes layered classifiers.46 An important example is the artificial neural net-
work (ANN), which is available in several configurations. Here we will develop the
most common—the multilayer Perceptron. The basic Perceptron is a simple, binary
linear classifier that, once trained, places patterns into one of the two available
classes by checking on which side of the linear separating surface they lie. The
surface is defined in (8.29) as wTxþwNþ 1 ¼ 0, so that the class test is given by
(8.30):

x 2 class 1 if wTxþwNþ 1[0
x 2 class 2 if wTxþwNþ 1\0

Diagrammatically this can be depicted as shown in Fig. 8.20, in which z ¼
wTxþwNþ 1 the sign of which is checked via a thresholding operation. Together
the weighting and thresholding operation are called a threshold logic unit (TLU),
which is the essential building block of the Perceptron but which effectively limits
its value to linearly separable, binary data unless layered procedures are used.

45 See C.M. Bishop, loc. cit.
46 Nilsson, loc. cit.
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8.20.1 The Processing Element

One of the breakthroughs that makes the ANN able to handle data that is not
linearly separable is that the hard thresholding of the TLU in the Perceptron is
replaced by the softer thresholding operation shown in Fig. 8.21. The building
block is then referred to as a processing element (PE) and is described by the
operation

g ¼ f wTxþ h
� � ð8:57Þ

where w is the vector of weighting coefficients, and x is the vector of inputs as
before; h is a threshold, sometimes set to zero, which takes the place of the
weighting coefficient wNþ 1. f is called the activation function which can take many
forms, the most common of which is the sigmoid47

g ¼ f zð Þ ¼ 1
1þ exp �z=bð Þ ð8:58Þ

where z ¼ wTxþ h and b is a constant. The activation function g approaches 1 for z
large and positive, and 0 for z large and negative, and is thus asymptotically
thresholding. For a very small value of b it approaches a hard thresholding oper-
ation, and the PE behaves like a TLU. Usually, we choose b ¼ 1. This is seen in
Fig. 8.22, along with the behaviour of the activation function for several other
values of b.

+1

-1
Σ...

+1 or -1 TLU +1 or -1

Fig. 8.20 The threshold logic unit (TLU)

PE

Fig. 8.21 Neural network
processing element

47 See Fig. 3.2 of A. Graves, Supervised Sequence Learning with Recurrent Neural Networks,
Springer, Berlin, 2012, for a range of other possibilities.
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The ReLU activation function of Fig. 8.35 is now more commonly being used
because it leads to improved training performance, but we continue this develop-
ment with the activation function of (8.58) since it is still often employed and
demonstrates the original development of the training process for the MLP.

A typical neural network used in remote sensing applications will appear as
shown in Fig. 8.23. It is a layered classifier composed of processing elements of the
type in Fig. 8.21. It is conventionally drawn with an input layer of nodes, with one
node per spectral measurement; it has the function only of distributing the inputs,
possibly with scaling, to a set of processing elements that form the second layer. An
output layer generates the class labels for the input provided. The central layer is
referred to as a hidden layer. While we have shown only one here it is possible to
use more than a single hidden layer. Even though one is often sufficient in most
remote sensing applications of the ANN, choosing the number of processing ele-
ments to use in that layer is not simple and is often done by trial and error. We
return to that in Sect. 8.20.3 below.

8.20.2 Training the Neural Network—Backpropagation

As with any supervised classifier the neural network must be trained before it can be
employed for thematic mapping. Available training data is used to determine the
elements of the weight vector w and the offset h for each processing element in the
network. The parameter b, which governs the slope of the activation function, as
seen in Fig. 8.22, is generally pre-specified and does not need to be estimated from
training data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 8.22 Plots of the activation function of (8.58)
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Part of the complexity in understanding the training process for a neural net is
caused by the need to keep careful track of the parameters and variables over all
layers and processing elements, how they vary with the presentation of training
pixels and, as it turns out, with iteration count. This can be achieved with a detailed
subscript convention, or by the use of a simpler generalised notation. We will adopt
the latter approach, following essentially the development given by Pao.48 The
derivation will be focussed on a three-layer neural net, since this architecture has
been found sufficient for many applications. Nevertheless, the results generalise to
more layers, which is important when we come to convolutional neural networks
later.

Figure 8.23 incorporates the nomenclature used. The three layers are lettered as
i; j; k with k being the output. The set of weights (i.e., the components of the weight
vectors) linking layer i PEs with those in layer j are represented by wji, while those
linking layers j and k are represented by wkj. There will be a very large number of
those weights, but in deriving the training algorithm it is not necessary to refer to
them all individually. Similarly, the activation function arguments zi and outputs gi,
can be used to represent all the arguments and outputs in the corresponding layer.
For j and k layer PEs (8.58) is

gj ¼ f zj
� �

with zj ¼
X
j

wjigi þ hj
� � ð8:59aÞ

PE

PE

PE

PE

PE

PE

PE

PE

outputs 

measurement 
vector

input layer hidden layer output layer

i j k

Fig. 8.23 A three-layer multilayer Perceptron neural network and the nomenclature used in the
derivation of the backpropagation training algorithm

48 Y.H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, Reading
Mass., 1989.
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gk ¼ f zkð Þ with zk ¼
X
k

wkjgj þ hk
� � ð8:59bÞ

The sums in (8.59) are shown with respect to the indices j and k. This should be
read as meaning the sums are taken over all inputs of the layer j and layer k PEs
respectively. Note also that the sums are expressed in terms of the outputs of the
previous layer since those outputs form the inputs to the PEs in question.

An untrained or poorly trained network will give erroneous outputs. As a
measure of how well a network is functioning during training, we assess the outputs
at the last layer (k). A suitable performance measure is the sum of the squared
output error. Using this, the error made by the network when presented with a
single training pixel is expressed

E ¼ 1=2
X
k

tk � gkð Þ2 ð8:60Þ

where the tk represent the desired or target outputs49 and gk represents the actual
outputs from the output layer PEs in response to the training pixel. The factor of ½
is included for arithmetic convenience in the following. The sum is taken over all
output layer PEs.

A logical training strategy is to adjust the weights in the processing elements
until the error has been minimised, at which stage the actual outputs are as close as
possible to the desired outputs.

A common approach for adjusting weights to minimise the value of a function of
which they are arguments, is to modify their values proportional to the negative of
the partial derivative of the function. This is called a gradient descent technique.50

Thus, for the weights linking the j and k layers let a revised estimate be

w0
kj ¼ wkj þDwkj

with

Dwkj ¼ �g
@E
@wkj

49 These will be specified in the labelling of the training data pixels. The actual value taken by tk
will depend on how the set of outputs is used to represent classes. Each individual output could
be a specific class indicator, e.g., 1 for class 1 and 0 for class 2 as with the yi in (8.33);
alternatively, some more complex coding of the outputs could be adopted. This is considered in
Sect. 8.20.3.
50 The conjugate gradient method can also be used: see J.A. Benediktsson, P.H. Swain and O.K.
Esroy, Conjugate-gradient neural networks in classification of multisource and very high
dimensional remote sensing data, Int. J. Remote Sensing, vol. 14, 1993, pp. 2883–2903.

8.20 Networks of Classifiers: The Artificial Neural Network 319



in which η is a positive constant that controls the degree of adjustment; it is called
the learning rate. This requires an expression for the partial derivative, which can
be found using the chain rule

@E
@wkj

¼ @E
@gk

@gk
@zk

@zk
@wkj

ð8:61Þ

each term of which is now evaluated. From (8.58) and (8.59b) we see

@gk
@zk

¼ 1
b

1� gkð Þgk ð8:62aÞ

and

@zk
@wkj

¼ gj ð8:62bÞ

From (8.60) we have

@E
@gk

¼ � tk � gkð Þ ð8:62cÞ

so that the correction to be applied to the weights is

Dwkj ¼ g tk � gkð Þ 1� gkð Þgkgj ð8:63Þ

in which we have chosen b ¼ 1. For a given training pixel all the terms in (8.63) are
known, so that a beneficial adjustment can be made to the weights that link the
hidden layer to the output layer.

Now consider the weights that link layers i and j. The weight adjustments are
determined from

Dwji ¼ �g
@E
@wji

¼ �g
@E
@gj

@gj
@zj

@zj
@wji

In a manner similar to the above we can show, with b ¼ 1, that

Dwji ¼ �g
@E
@gj

1� gj
� �

gjgi

Unlike the case with the output layer, we cannot generate an expression for @E
@gj

directly because it requires an expression for the output error in terms of hidden
layer responses. Instead, we proceed by the following chain rule
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@E
@gj

¼
X

k

@E
@zk

@zk
@gj

¼
X

k

@E
@zk

wkj

The remaining partial derivative, from (8.62a) and (8.62c) with b ¼ 1, is

@E
@zk

¼ � tk � gkð Þ 1� gkð Þgk

so that

Dwji ¼ g 1� gj
� �

gjgi
X
k

tk � gkð Þ 1� gkð Þgkwkj ð8:64Þ

Having determined the wkj via (8.63) it is now possible to find values for wji using
(8.64) since all the other entries in (8.64) are known or can be determined readily.

We now define

dk ¼ tk � gkð Þ 1� gkð Þgk ð8:65aÞ

and

dj ¼ 1� gj
� �

gj
X
k

dkwkj ð8:65bÞ

so that

Dwkj ¼ gdkgj ð8:66aÞ

and

Dwji ¼ gdjgi ð8:66bÞ

The thresholds hj and hk in (8.59) are found in exactly the same manner as for the
weights, using (8.66), but with the corresponding inputs set to unity.

Sometimes “momentum” is included in the weight adjustment step to improve
convergence during training. The gradient descent steps at (8.66) can be expressed
generically as gdg so that the weight adjustment step at either the hidden or output
layers can be written w0 ¼ wþDw ¼ wþ gdg. We now add another adjustment to
the weights which assumes that the change at this iteration is likely to be not too
different from the previous adjustment.

w0 ¼ wþDw ¼ wþ gdgþ aDwð�1Þ

aDwð�1Þ is the momentum term in which w(–1) is the weight adjustment from the
previous iteration and a is a user-specified parameter that accounts for the degree to
which momentum is used during training.
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Now that we have the mathematics in place it is possible to describe how
training is carried out. The network is initialised with an arbitrary set of weights so
that it can generate a nominal output. The training pixels are then presented one at a
time to the network. For a given pixel the output of the network is computed using
the network equations. Almost certainly the output will be incorrect to start with—
i.e., gk will not match the desired class tk for the training pixel. Correction to the
output PE weights, described in (8.66a), is then carried out, using the definition of
dk in (8.65a). With these new values of dk , and thus wkj, (8.65b) and (8.66b) can be
applied to find the new weight values in the earlier layers. In this way the effect of
the output being in error is propagated back through the network in order to correct
the weights. The technique is thus referred to as backpropagation.

After the weights have been adjusted the training pixels are presented to the
network again and the outputs re-calculated to see if they correspond better to the
desired classes. Usually, they will still be in error and the process of weight
adjustment is repeated. The process is iterated as many times as necessary in order
that the network respond with the correct class for each of the training pixels, or
until the number of errors in classifying the training pixels is reduced to an
acceptable level.

Pao51 recommends that the weights not be corrected on each presentation of a
single training pixel; instead, he recommends that the corrections for all pixels in
the training set should be aggregated into a single adjustment. For p training pat-
terns the bulk adjustments are

w
0
kj ¼

X
p

wkj w
0
ji ¼

X
p

wji

which is equivalent to deriving the algorithm with the error being calculated over all
pixels p in the training set, viz.

E ¼
X
p

Ep; ð8:67Þ

where Ep is the error for a single pixel in (8.60). This is sometimes referred to as a
batch adjustment, whereas updating with a single training pixel at a time using
(8.60) is called stochastic gradient descent (SGD). In SGD the training pixels
should be chosen randomly, but often in practice all available training samples are
used. One of the advantages of SGD is that is can be used when the numbers of
training samples is very large, whereas batch adjustment suffers with large data sets
and is thus only used when numbers of training pixels is not too large. Also, batch
processing generally requires all the training data to be available in machine
memory simultaneously. However, convergence is smoother with batch processing
but less so with SGD.

51 Y.H. Pao, loc. cit.
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The mini-batch gradient descent technique splits the training set into smaller
batches of randomly chosen pixels for learning and is the recommended approach
when the data sets are large. Essentially, it is mid-way between SGD and batch
processing.

8.20.3 Choosing the Network Parameters

When considering the application of the artificial neural network to thematic
mapping it is necessary to make several key decisions beforehand. First, the number
of layers to use must be chosen. Generally, a three-layer network is selected, with
the purpose of the first layer being simply to distribute, or fan out, the components
of the input pixel vector to each of the processing elements in the second layer. The
first layer does no processing as such, apart perhaps from scaling the input data if
required. The second layer is the hidden layer and the third is the output layer.

Although one hidden layer is usually the case when applying an ANN to remote
sensing problems, when we come to convolutional neural networks we will often
use more than a single hidden layer.

The next choice relates to the number of elements in each layer. The input layer
will generally be given as many nodes as there are spectral components (features) in
the pixel vectors. The number to use in the output node will depend on how the
outputs are used to represent the classes. The simplest method is to let each separate
output signify a different class, in which case the number of output processing
elements will be the same as the number of training classes. Alternatively, a single
PE could be used to represent all classes, in which case a different value or level of
the output variable will be attributed to a given class. A further possibility is to use
the outputs as a binary code, so that two output PEs can represent four classes, three
can represent 8 classes and so on.

As a general guide, the number of PEs to choose for the hidden or processing
layers should be the same as, or larger than, the number of nodes in the input
layer.52

8.20.4 Example

We now consider a simple example to see how a neural network is able to develop
the solution to a classification problem. Figure 8.24 shows two classes of data, with
three points in each, arranged so that they cannot be separated linearly. The network
shown in Fig. 8.25 will be used to discriminate the data. The two PEs in the first

52 R.P. Lippman, An introduction to computing with neural nets, IEEE ASSP Magazine, April
1987, pp. 4–22.
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processing layer are described by activation functions with no thresholds—i.e.,
h ¼ 0 in (8.57), while the single output PE has a non-zero threshold in its activation
function. The learning rate g was set to 2, and b ¼ 1.

Table 8.7 shows the results of training the network with the backpropagation
method of the previous section, along with the error measure of (8.60) at each
step. As seen, the network approaches a solution quickly (approximately 50 iter-
ations) but takes more iterations (approximately 250) to converge to a final result.

Having trained the network, it is now possible to understand how it implements a
solution to the nonlinear pattern recognition problem. The arguments of the acti-
vation functions of the PEs in the first processing layer each define a straight line
(hyperplane in general) in the pattern space. Using the result at 250 iterations, these
are:
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Fig. 8.25 Neural network
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Fig. 8.24
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2:901x1 � 2:976x2 ¼ 0

2:902x1 þ 2:977x2 ¼ 0

which are shown plotted in Fig. 8.26. Either one of these lines goes some way
towards separating the data but cannot accomplish the task fully.

It is now important to consider how the output PE operates on the outputs of the
first layer PEs to complete the discrimination of the two classes. For pattern points
lying exactly on one of the above lines, the output of the respective PE will be 0.5,
given that the activation function of (8.58) has been used. However, for patterns a
little distance away from those lines the output of the first layer PEs will be close to
0 or 1 depending on which side of the hyperplane they lie.

Table 8.7 Training the network of Fig. 8.25; iteration 0 shows an arbitrary set of initial weights

Iteration w1 w2 w3 w4 w5 w6 h Error
0 0.050 0.100 0.300 0.150 1.000 0.500 −0.500 0.461
1 0.375 0.051 0.418 0.121 0.951 0.520 −0.621 0.424
2 0.450 0.038 0.455 0.118 1.053 0.625 −0.518 0.408
3 0.528 0.025 0.504 0.113 1.119 0.690 −0.522 0.410
4 0.575 0.016 0.541 0.113 1.182 0.752 −0.528 0.395
5 0.606 0.007 0.570 0.117 1.240 0.909 −0.541 0.391
10 0.642 −0.072 0.641 0.196 1.464 1.034 −0.632 0.378
20 0.940 −0.811 0.950 0.882 1.841 1.500 −0.965 0.279
30 1.603 −1.572 1.571 1.576 2.413 2.235 −1.339 0.135
50 2.224 −2.215 2.213 2.216 3.302 3.259 −1.771 0.040
100 2.670 −2.676 2.670 2.677 4.198 4.192 −2.192 0.010
150 2.810 −2.834 2.810 2.835 4.529 4.527 −2.352 0.007
200 2.872 −2.919 2.872 2.920 4.693 4.692 −2.438 0.006
250 2.901 −2.976 2.902 2.977 4.785 4.784 −2.493 0.005
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We can therefore regard the pattern space as being divided into two regions
(0 and 1) by a particular hyperplane. Using these extreme values, Table 8.8 shows
the possible responses of the output layer PE for patterns lying somewhere in the
pattern space.

As seen, for this example the output PE functions in the nature of a logical OR
operation; patterns that lie on the 1 side of either of the first processing layer PE
hyperplanes are labelled as belonging to one class, while those that lie on the 0
side of both hyperplanes are labelled as belonging to the other class. Therefore,
patterns which lie in the shaded region shown in Fig. 8.26 will generate a 0 at the
output of the network and will be labelled as belonging to class 1, while patterns in
the unshaded region will generate a 1 response and thus will be labelled as
belonging to class 2.

Although this exercise is based on just two classes, similar functionality of the
PEs in a more complex network can, in principle, be identified. The input PEs will
set up hyperplane divisions of the data and the later PEs will operate on those
results to generate a solution to a non-linearly separable problem.

An alternative way of considering how the network determines a solution is to
regard the first processing layer PEs as transforming the data in such a way that later
PEs (in this example only one) can apply linear discrimination. Figure 8.27 shows
the outputs of the first layer PEs when fed with the training data of Fig. 8.24. After
transformation the data is seen to be linearly separable. The hyperplane shown in
the figure is that generated by the argument of the activation function of the output
layer PE.

To illustrate how the network of Fig. 8.25 functions on unseen data Table 8.9
shows its response to the testing patterns indicated in Fig. 8.28. For this simple
example all patterns are correctly classified.

8.21 The Convolutional Neural Network

For many decades, image analysts in remote sensing have been critically aware of
the matter of spatial context. That is: when considering the label for a pixel there is
a high likelihood that the surrounding pixels will be from the same class. That is
especially the case for agricultural regions and many natural landscapes; and yet the
classifiers we have treated with so far have ignored that property. In that sense they
are called point (or pixel-specific) classifiers, because they just focus on a pixel,
independently of its neighbours.

Table 8.8 Response of the
output layer PE

g1 g2 g3
0 0 0.076 � 0
0 1 0.908 � 1
1 0 0.908 � 1
1 1 0.999 � 1
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In Sect. 8.23 we will consider a number of methods that have been developed
over the years to bring the influence of neighbouring pixels—i.e., spatial context—
into a classification. The convolutional neural network (CNN) that forms the subject
of this section can also incorporate spatial context into a classification, by reason of
its fundamental topology.

Historically, convolutional neural networks were developed after many of the
procedures we will look at in Sect. 8.23. However, because the CNN is an
extension of the original artificial neural network we have just treated, it is more
logical to consider it first.53

1

0.5

10.5

Fig. 8.27 Illustration of how the first processing layer PEs transform the input data into a linearly
separable set, which is then separated by the output layer hyperplane

Table 8.9 Performance of the network of Fig. 8.25 on the test data of Fig. 8.28

Pattern x1 x2 z1 g1 z2 g2 z3 g3 Class
a −3.0 2.8 −17.036 0.000 −0.370 0.408 −0.539 0.368 1
b −3.0 2.0 −14.655 0.000 −2.752 0.056 −2.206 0.099 1
c −2.0 −1.0 −2.826 0.056 −8.781 0.000 −2.224 0.098 1
d −2.0 −1.94 −0.029 0.493 −11.579 0.000 −0.135 0.466 1
e −1.0 1.1 −6.175 0.002 0.373 0.592 0.350 0.587 2
f 1.0 2.0 −3.051 0.045 8.856 1.000 2.506 0.925 2
g −1.0 −2.0 3.051 0.955 −8.856 0.000 2.077 0.889 2
h 2.0 −2.0 11.754 1.000 −0.150 0.463 4.505 0.989 2

53 For a standard treatment of deep learning and CNNs see I. Goodfellow, Y. Bengio, and A
Courville, Deep Learning (Adaptive Computation and Machine Learning Series), The MIT Press,
Cambridge Mass., 2016.
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8.21.1 The Basic Topology of the Convolutional Neural
Network

In the neural networks of Sect. 8.20 the pixels of an image were fed one at a time
into the network and a label was, thereby, found pixel by pixel.

Suppose now we make the seemingly bold move of inputting all the pixels of an
image in one go as depicted in Fig. 8.29, so that we have to have enough input
nodes to accommodate the full set of spectral measurements for the full set of image
pixels. For a practical image that will be a very large number of inputs. We have
allowed for a number of hidden layers and, for the moment, the network is fully
connected in the manner of the ANN of the previous section. This means that the
output of every node or processing element in one layer is fed to all the nodes or
processing elements of the following layer. In this configuration there will be a
huge number of unknown weight vectors and offsets to be learned through training.

One immediately obvious problem with feeding the network in this manner is
that the spatial inter-relationships among the pixels appears to be lost. Even though
this is really just a problem of how the pixels are addressed, it is more meaningful to
arrange them as shown in Fig. 8.30. That doesn’t change anything about the net-
work, other than arranging the nodes (or processing elements) into an array rather
than column format. For convenience we have shown the hidden layers to be the
same size and shape as the input layer, but in general they could be any size. Note
the output layer is still one dimensional, since it represents a set of classes.

For the moment we will consider an image with just a single band of data, so that
each pixel in the input array is represented by a single scalar value. We will look at
multiband data later once we have understood the operation of the CNN.

With the arrangement of Fig. 8.30 the number of potential connections is
enormous. Consider the number of unknowns between just the input and the first
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Fig. 8.28 Location of the test
data, indicated by the lettered
crosses
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hidden layer. The input to each processing element in the hidden layer is of the form
z ¼ wTxþ h; where x represents the array of input pixels but expressed in vector
form and w is the corresponding vector of weights that connect each of the input
pixels to a processing element. Its dimensionality will be equal to the number of
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Fig. 8.29 Feeding every pixel into the neural network in one step

Fig. 8.30 Arranging the nodes of the neural network into image format
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elements in the input layer, which is N � N. There are as many weight vectors as
there are nodes in the hidden layer.

If we assume, for the sake of this calculation, that the hidden layer has the same
dimensions as the input layer, that means altogether we have N4 different weights,
values for which have to be found during training to make the network usable. In a
similar fashion there will be N2 values of h. If we had N = 100, which would be a
very small image in remote sensing, then there are more than 100 million
unknowns. That would require an extraordinarily large amount of training data.
Added to this is the fact that we have multiple bands, and images usually much
larger than 100 � 100.

Clearly, a simpler approach needs to be found, but one in which spatial
inter-relationships among the pixels are still represented. To make the rest of our
development simpler we remove the explicit input layer and let it be represented by
the image itself, perhaps with some scaling, as shown in Fig. 8.31. Again, we are
still considering a simple single-band image.

In order to avoid the massive number of weights involved with the fully con-
nected network of Fig. 8.31 we now explore what happens if we are selective in
how we connect the layers to each other. For example, in Fig. 8.32a we show a
group of only nine of the input pixels connected to a single node in the first hidden
layer.

Because of the geometry, the 3 � 3 group of nine pixels is centred on the one
which is in the second row and second column of the input. The PE element in the
hidden layer is also that in the (2, 2) position as seen.

In contrast to the need to determine N4 þN2 weights and offsets overall there are
now ten unknowns (9 weights wij and one offset h) to determine for each hidden
layer node. Altogether, therefore, there are 10N2 unknows to find, a considerable
reduction, but still a large number if N is large.

We do the same for the 3 � 3 group which is one column to the right as seen in
Fig. 8.32b. Now we take a decision that significantly reduces again the number of
unknowns to be found in training: rather than use a new set of weights and offsets,
we assume we can employ the same set as for Fig. 8.32a. This is called weight
re-use, and while that sounds like it will reduce substantially the power of the
network to learn complicated spatial patterns in the image, it gives surprisingly
good results in practice. There is also a rationale to this decision which we will see
soon.

Continuing in Fig. 8.32, we move to the next pixel group along the row, and
then for all rows until the whole image is covered. While this example suggests that
the actions happen sequentially, in fact all the operations are in parallel—they are
just sets of connections. This is important to keep in mind.

Clearly, there is a problem with the edge pixels. Given the large numbers of
pixels in an image we could ignore the edge problem. Sometimes an artificial
border of zeros is created so that the edge PEs in the hidden layer can receive inputs
and thus preserve dimensionality, if that is important. That is called padding.
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Fig. 8.31 Combining the representation of the image and the input layer for simplicity
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Fig. 8.32 Restricting the connections between layers; groups of just nine pixels in one layer feed
into a single node of the following layer
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Even though many of the connections of a fully connected neural network have
now been removed, it turns out we can still use back propagation to train this new,
sparser network.

8.21.2 Detecting Spatial Structure

Treating the connections between layers as shown in Fig. 8.32 is similar to the
process of convolution used to filter an image to detect spatial features as covered in
Sect. 5.2 and Fig. 5.3. In spatial convolution a window, called a kernel or template,
is moved over an image row by row and column by column. A new brightness value
is created for the pixel under the centre of the kernel by taking the products of pixel
brightness values and the kernel entries, and then summing the result. See (5.1).

That is exactly the same operation implemented by a processing element in the
hidden layer of the CNN just before the offset is added and the activation function is
applied. It is because of that similarity that the partially connected neural network
just described is called a convolutional neural network (CNN).

In the CNN the kernel is usually called a filter, and the set of input pixels
covered by the filter is called a local receptive field. Note that any size filter and
receptive field can be used. Also, because of the similarity to the convolution
operation, the hidden layers in a CNN are generally referred to as convolutional
layers.

In the CNN the kernel entries (i.e., the weights prior to the application of the
activation function) are initially chosen randomly. However, through training they
take on values that match the image features that are characterized by the spatial
nature of the training samples. If the training images strongly feature edges, it is
expected that the weights will tend towards those of an edge detecting filter. The
strength of the CNN is that with a sufficient number of convolutional layers it can
learn the spatial characteristics of an image. That is why it is a particularly
important tool for performing context classification and for picture processing in
general.

8.21.3 Stride

The “shift” in the filter position can be greater than a single pixel, as in Fig. 8.32. In
Fig. 8.33 it is shown as two pixels. That leads to the definition of stride, which is
the offset of the filter position (or receptive field) that provides input to each
successive node in the hidden layer. Note that a stride of 2 will approximately halve
the size of the hidden layer.
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8.21.4 Pooling or Down-Sampling

Another topological element that is often used in a CNN is to add after each
convolutional layer so-called pooling layers as seen in Fig. 8.34. This strengthens
the dependence on neighbourhood spatial information and reduces further the
number of parameters to be found though training, particularly when more than a
single convolutional (hidden) layer is used. Pooling is sometimes called
down-sampling. In pooling sets of (usually) four outputs from a convolutional layer
are grouped, either by averaging or by choosing the maximum among them, to use
in the pooled layer. The pooled layer values are fed to the next convolutional
(hidden) layer or to the output layer, depending on the network design chosen.

8.21.5 The ReLU Activation Function

In order to speed up training,54 it is of value to replace the sigmoid activation
function of Fig. 8.22, by what is called a Rectified Linear Unit—ReLU—whose
form is shown in Fig. 8.35. This improves the efficiency of the gradient descent
operation used in back propagation because of the exceptional simplification of the
derivative in (8.62a). Sometimes the ReLU is shown as a separate layer in a CNN.
In our treatment we have assumed it is incorporated into each of the processing
elements of the convolution layers.

stride=2 

Fig. 8.33 Defining stride by the pixel shift of the center of the filter in the receptive field

54 See A. Krizhevsky, I. Sutskever and G. Hinton, ImageNet classification with deep convolutional
neural networks, Proc. Advances in Neural Information Processing Systems, vol. 25, 2012,
pp. 1090–1098.
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8.21.6 Handling the Outputs of a CNN

The convolutional/pooling layer pair is a fundamental building block of a more
complex CNN. Often the output of the pooling layer is fed to the input of another
convolutional layer (hidden layer in the terminology of the ANN). The network
depth is defined by the number of convolutional layers—deep learning refers to the
analytical benefits obtained by having a number of cascaded convolutional (and
pooling) layers.

We now need to think about what to do with the outputs from the last convo-
lutional or pooling layer. There are several possibilities. The pooled layer outputs
can

image convolu�onal layer pooled layer

Fig. 8.34 Using a pooled layer to improve spatial properties and to reduce the number of weights
in the following layers

Fig. 8.35 The rectified linear
unit (ReLU) activation
function
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1. feed into another convolutional layer, to provide a deeper network
2. feed into a set of output layer PEs, which give the class labels of interest as in

Fig. 8.31
3. act as the inputs to a normal fully-connected neural network of the type of

Sect. 8.20 and Fig. 8.23, in which case the CNN acts as a feature selector for the
fully connected structure

4. generate a set of class probabilities.

The first two are straightforward and do not require further consideration, but
consider now options 3 and 4. As an example of 3, Fig. 8.36 shows a common
topology, in which the final output from the CNN is a set of processing elements
that are arranged in vector form. Since the network has been handling the data in
image form up to that point, rearranging the outputs into a vector is called
flattening.

Consider now option 4 above. If the signals from the flattening layer in Fig. 8.36
are represented by on; n ¼ 1 . . .N then we could compute a set of pseudo-
probabilities, called the softmax probabilities, according to

p onð Þ ¼ eonPN
n¼1 e

on

These have the probability-like properties that 0� p� 1 and
P
n
p ¼ 1.

8.21.7 Multiple Filters in the Convolution Layer

A very common extension of the CNN is to have several convolution pathways in
parallel as seen in Fig. 8.37, so that as much spatial information as possible can be
extracted, particularly at different spatial scales. The filters (and thus receptive
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pooling 

stuptuossalcreyal fla�ening

Fig. 8.36 Using the CNN as a feature selector for input to a fully connected neural network
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fields) can be of the same or different sizes. At some stage the outputs of the
different pathways will be combined, usually at the flattening step.

8.21.8 Simplified Representation of the CNN

We are now at the stage where we can introduce some simplification into the
diagrammatic representation of the CNN, using the properties described in the
previous sections. Although there is, as yet, no standard topological representation,
that shown in Fig. 8.38 is similar to the form used by most authors.

8.21.9 Multispectral and Hyperspectral Inputs to a CNN

For a three-dimensional image, such as the three colour primaries in a colour
photograph, the most common approach is to apply filters to each of the compo-
nents separately. The results are then summed, a single bias h is added, and the
activation function applied. The same can be done for simple multispectral images;
it must be remembered, though, that the number of unknown weights at the input
scale with the number of multispectral components.

For hyperspectral images several different approaches are possible. One is to
analyse the spectral information content alone. Another is to analyse the spatial
information content alone (spatial context). Another is to do both together. But
there is a processing challenge. We could, for example, treat hyperspectral imagery

input image pooling layer

5x5 filter

3x3 filter

convolu�on layer

Fig. 8.37 CNN with parallel convolution paths with different filters; the outputs can go on to
further convolutional layers, an output layer or a fully connected neural network
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by allocating one convolution filter (kernel) to each band, as for the three band
colour picture. For a 200 channel image that requires 200 times as many weights as
for a single band image. For an image with 200 bands, and 3 � 3 kernels, the total
number of unknowns (weights plus offsets) connecting just the input image to the
first convolutional layer is 2000, noting that the same weights are used in each filter
right across a particular band. This, of course, gets multiplied upwards if sets of
different filters are used in the convolutional layer.

If we are interested just in the spatial properties of a scene, we can reduce the
dimensionality of the data, say, by performing a principal components transform
and then keeping just the first or first few significant components. We would then
proceed as for a simple colour photograph. With such an arrangement it is feasible
to use all image pixels at the input to the CNN.

If we want to analyse hyperspectral data for spectral properties alone, we can use
the CNN to find a label for each pixel based just upon its spectrum, and thus
implicitly the correlations between bands. That is illustrated in Fig. 8.39, in which
the prospect of several parallel paths is used to extract different correlations in the
spectral domain.

Using the CNN to analyse both spatial and spectral content simultaneously for
pixel labelling can be done with separate pathways, as shown in Fig. 8.40. In the
spatial path a neighbourhood patch of pixels is defined around the pixel of interest.
That patch can have reduced spectral dimensionality as in the spatial example
referred to above or can have full spectral dimensionality. The outputs of the
separate pathways are then combined at the flattening step.

An alternative to separating spectral and spatial processing in the manner just
described is to apply three dimensional correlations to the image cube, again
restricting the spatial sub-domain to a relevant neighbourhood of pixels about the
pixel being labelled.

res

convolu�on and 
ac�va�on func�on pooling fla�ening

layer 1 layer 2

imageimage

pooling

filters filters

convolu�on and 
ac�va�on func�on

Fig. 8.38 A simplified representation of a CNN with several convolution paths in parallel: this
shows only two stages of convolution and pooling; there can be more, and some may or may not
use pooling; the flattened output can be used as is, or fed to a fully connected neural network
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Fig. 8.39 Using a CNN to analyse a pixel based just on its spectral properties
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Fig. 8.40 Using a CNN to find the correct class label for a pixel using both spectral and spatial
information; the neighbourhood patch about the pixel of interest is reduced in spectral
dimensionality by taking the principal components of the original spectral data or even by using
simple arithmetic averaging of the different spectral components for each pixel in the patch
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8.21.10 A Spectral-Spatial Example of the Use of the CNN

As an example of the use of the topology shown in Fig. 8.40, we show the exercise
of classifying the hyperspectral sample AVIRIS image of Salinas in California
undertaken by Yang et al.55 The image segment consists of 512 � 217 pixels, with
3.7 m spatial resolution. It has 224 recorded bands. The authors reduced those to
200 by removing channels with poor quality. There are 16 horticultural ground
cover types present in the image, as seen in the ground truth map in Fig. 8.41.

The authors chose to train the network using different percentages of the ground
truth pixels, but we show the results here for just for the training data being 25% of
the total labelled pixels. They used all the available ground truth pixels to test the
generalisation of the network—i.e., the classifier performance.

The CNN topology, or architecture, used by the authors consisted of a spectral
path at the top and a spatial path at the bottom as in Fig. 8.40, although they used
two convolution layers and one pooling layer per path. Each spatial path has 30
filters of size 3 � 3 for each convolution layer, with a 2 � 2 pooling filter. The
spectral path has 20 filters of size 16 � 1 for each convolution layer, with a 5 � 1
pooling filter.

The spatial layer is required to capture the neighbourhood (or spatial) properties
of a pixel. A patch of 21 � 21 pixels, centered on the pixel of interest, was used.
The patch was created by averaging over all the spectral channels in that
neighbourhood.

The outputs from the two paths are flattened, concatenated and then fed into a
fully connected neural network with two hidden layers, each with 400 nodes. Thus,
the two path CNN is acting as a feature selector to the neural network.

The output layer has 16 nodes, representing the 16 classes in the Salinas image.
The outputs are in the form of class conditional probabilities computed with the
softmax function.

The authors also used transfer learning. This is a technique based on the concept
that networks previously trained on different images, but with the same sensor, will
most likely perform acceptably on the image of interest. This is based on the
assumption that the spatial properties are similar from image to image with about
the same spatial resolution. The authors trained the CNN layers on a different
AVIRIS image, and then used the weights so found to initialize the CNN weights
for training on the Salinas scene. This is not necessary in general, but it is a useful
approach, based on the concept that we, as humans, adapt our learning from past
experience.

The results for the Salinas image are shown in Table 8.10 in which it is seen that
the best performance is given when both spectral and neighbourhood properties of

55 See J. Yang, Y-Q Zhao and J Cheung-Wai Chan, Learning and transferring deep joint spectral–
spatial features for hyperspectral classification, IEEE Transactions on Geoscience and Remote
Sensing, Volume 55, No 8, August 2017, pp. 4729–4742.
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the pixel are used as features. The spectral and spatial tests were carried out sep-
arately by removing the other path.

The authors ran extensive trials to find the best topology for the network—the
numbers of convolutions layers, the numbers of filters, the numbers of nodes in the
hidden layers, and so on, which indicates that the preparatory stages in using a CNN
can be quite extensive.

8.21.11 Avoiding Overfitting

We now come to an important practical consideration, similar to that we met with
the maximum likelihood classifier when considering the Hughes phenomenon in
Sect. 8.3.7. That is the problem of overfitting.
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Fig. 8.41 Salinas image ground truth map and numbers of training and testing pixels per class
used by Yang et al.56

Table 8.10 Results of CNN
classification of the Salinas
image

Configuration Testing set accuracy (%)
Spectral only 92.3
Spatial only 96.6
Both spectral and spatial 98.3

56 ibid.
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The concern arises because we have so many weights and offsets to be found
through training; it is the availability of training data that determines how effectively
those unknowns can be found. We must have sufficient training samples available to
get reliable estimates of the unknown parameters, otherwise the network will not
generalize well. In other words, it will not perform well on previously unseen pixels.

It is not sufficient to have a minimum of samples to estimate the unknowns,
otherwise over-fitting will occur. This is illustrated in the example from curve
fitting shown in Fig. 8.42. Fitting a high order curve through just three points, will
guarantee good fits for those points, but the behaviour between the points can be
way out in terms of being able to represent intervening points not used in generating
the curve. If many “training” samples are used then the function found interpolates
(generalizes) well.

Clearly, we need many more training pixels than the minimum to ensure we do
not strike the same problem when training the neural network. If enough training
data is not available so that overfitting may occur a number of procedures are
available for minimizing the effect. The most common is to implement dropouts,
which involves randomly dropping PEs during the training phase.57

Overfitting can also be controlled by regularization, as seen in the next section.

8.21.12 Variations

There is a greater deal of variability in how CNNs are implemented in practice,
more so than with most other classification techniques. Architectures and processes
vary widely. To quote Goodfellow et al.58

Research into convolutional network architectures proceeds so rapidly that a new best
architecture for a given benchmark is announced every few weeks to months, rendering it
impractical to describe in print the best architecture. Nonetheless, the best architectures
have consistently been composed of the building blocks described here.

One common variation for hyperspectral image analysis, instead of the two-path
approach of Fig. 8.40, is to use a three-dimensional convolution kernel (or filter)
which has two spatial dimensions and one spectral dimension.59 Again, the spatial
dimensions are generally limited to a user-chosen patch size. The three-dimensional
convolution filter is applied in each convolution layer, which could also contain
several filters in parallel.

57 See N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A
simple way to prevent neural networks from overfitting, Journal of Machine Learning Research,
vol. 15, 2014, pp. 1929–1958.
58 I. Goodfellow, et al., loc cit.
59 See, for example, Y. Chen, H. Jiang, C. Li, X. Jia and P. Ghamisi, Deep feature extraction and
classification of hyperspectral images based on convolutional neural networks, IEEE Transactions
on Geoscience and Remote Sensing, vol. 54, no. 10, 2016, pp. 6232–6251.
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Another variation is to use a different objective measure for training other than
the sum of squared error measure of (8.60) and (8.67). Error measures are more
generally called cost or objective functions. A common alternative to (8.60, 8.67)
is, at the output layer, to minimise the cross-entropy

E ¼ �
XN
n¼1

XM
m¼1

tmnlngmn ð8:68Þ

in which N is the number of training pixels and M is the number of classes; tmn is
the actual class for the nth training pixel and gmn is the class currently indicated at
the network output. Most often this measure, as with most error measures in CNN
training, is based on the use of mini-batches, particularly when the training data sets
are large.

As an alternative to using dropouts to control overfitting, regularisation can be
employed. That involves adding a constraint to the error measures of (8.67) or
(8.68) such that in the minimisation process the weights are reduced, if possible; the
expectation is that some will become so small that they are not influential in
classification. The most common constraint to add is the sum of weights squared, to
form a new error measure

L ¼ Eþ k
X

all weights

wk k2 ð8:69Þ

in which k is the regularisation parameter. Because (8.69) reduces the weights it is
known as weight decay.

training samples tes�ng samples

Fig. 8.42 Showing the problem with overfitting if not enough representative samples are used
during training

342 8 Supervised Classification Techniques



8.22 Recurrent Neural Networks

8.22.1 Multi-temporal Remote Sensing

From the very start analysts recognised that better discrimination of some cover
types was improved when image acquisitions at more than a single time were
employed. Crop analysis, particularly, can be facilitated if several images over the
growing season are used because their development with time can be an important
discriminator.

Recognition of the importance of the time evolution of cover types in producing
thematic maps is one thing but finding viable techniques for undertaking
multi-temporal image classification is another. The tasseled cap model of Sect. 6.5
was one attempt, based on producing images of soil brightness, greenness and
yellowness that could be tracked with time.

Another approach has been to take a so-called multi-temporal set of images and
concatenate their pixel vectors which are then fed into standard supervised classi-
fication procures. That is sometimes called sequence classification, characterised by
there being only one class for a pixel as the result of the analysis of the complete
multi-temporal sequence for that pixel. In some ways it can be looked on as a brute
force approach.

Possibly a more elegant technique is to use a recurrent neural network; we
develop that algorithm in this section. In preparation for that we need to understand
the importance of memory in making predictions. In this context remember that
classification is a process of prediction—the trained algorithm is used to predict the
correct class label for a previously unseen pixel.

8.22.2 Importance of Memory

To develop this concept, we will look at a simple example of text analysis, which is
explained very well, with a number of examples in different languages, in a book on
information theory now almost 60 years old.60

Suppose someone is spelling out words to you, one letter at a time, and you have
to predict what letter comes next. For the first letter, the best you can do is to be
guided by the frequency with which letters (and a space) occur in English. Suppose
we ignore spaces and just concentrate on letters. The most frequent letters in
English are, with their associated probabilities of occurrence: e (0.103), t (0.080),

60 N. Abramson, Information Theory and Coding, McGraw-Hill, N.Y., 1963.
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a (0.064), o (0.063), i (0.058), n (0.057) and s (0.051).61 So, the best letter to guess
is e. In the absence of any other information, you would also guess e for the second
letter. However, in reality you remember what the first letter actually was so when it
comes to predicting the second letter you use that “stored” knowledge.

If the first letter was t, then there are several possibilities for the second letter. In
order of decreasing likelihood in English, they are th, ti, te. Knowing that, and
remembering that the first letter was t, you would predict the second would be
h. That is a much better guess than choosing the second letter based just on the
simple frequency of occurrence of the letters. Your use of memory has allowed a
much better prediction for the second letter.

You can see that your prediction of the third letter should be much better still,
and so on, because you have memory of the previous letters.

We can transfer this idea to remote sensing image classification, and that is the
basis of the recurrent neural network.

8.22.3 The Recurrent Neural Network (RNN) Architecture

The recurrent neural network (RNN) has been developed principally for applica-
tions such as speech recognition and prediction where the signal to be analysed
consists of a time-series string of words. It can also be used to analyse sequences of
data such a co-registered multi-temporal image data sets, which is the perspective
we will follow in this treatment.

The RNN is effectively a simple ANN, such as that treated in Sect. 8.20.2, but
with the addition of memory in the hidden layer. Memory is created by feeding the
output of the hidden layer, computed from one member of the data set, into the
input of the hidden layer when the next member of the data set (sequence) is
presented to the hidden layer. Figure 8.43 depicts that diagrammatically. The loop
over the top of the hidden layer with a unit time delay, and the summing element, is
how memory is implemented. Essentially the network has access to the prior image
data in the sequence as it carries out its computation—that is it is recurrent in the
sense that as more images (actually individual pixels) are presented to the network
during training it has benefitted from all the previous presentations.

In this analysis we use time to indicate the different images in the multi-temporal
sequence, with t used to represent the current image in the set, t � 1 to represent the
previous image, and so on.

61 The well-known Morse code makes use of these probabilities to ensure an efficient and thus fast
code in English: for example, the letter e is given the shortest code of a dot, the letter t is then
coded as a dash, the letter a as a dot-dash, the letter o as a dash-dash-dash and the letter i as a
dot-dot. By contrast, the lesser occurring letters have longer codes: j is coded as
dot-dash-dash-dash, q as dash-dash-dot-dash and z as dash-dash-dot-dot.
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Equation (8.57) describes the operation of a processing element in the hidden
layer. The input to the processing element with an explicit time (i.e., sequence)
dependence is

y tð Þ ¼ wTx tð Þþ h

Recall that x tð Þ is the pixel vector from the previous layer in the network and w is
the set of weights in the hidden layer to be found through training, along with the
offset h.

The output of the hidden layer, represented by h tð Þ, involves the operation of the
activation function f ::½ 	 on the PE input

h tð Þ ¼ f y tð Þ½ 	

Collectively, the set of the outputs from all hidden layer PEs can be represented by
the column vector h tð Þ: If the previous outputs of the hidden layer PEs are fed back
to their inputs in combination with the next set of inputs, then the input to an
individual processing element in the hidden layer can be expressed

y tð Þ ¼ wTx tð Þþ uTh t � 1ð Þþ h

in which the vector u is a set of weights on each of the delayed PE outputs when
they are fed back. As with w, the elements in u have to be learnt during training.

input 
vector PE

PE

PE

PE

PE

PE

PE

PE
vector of all hidden 
layer outputs

hidden layer output vector from  
previous sample in the sequence 

input to hidden layer with memory

input to hidden layer without memory output from a PE in 
the hidden layer

class label 
output

Fig. 8.43 Showing the creation of a recurrent neural network through the use of delayed feedback
at the hidden layer to provide memory in a standard ANN
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The output from each PE in the final layer of the network is

g tð Þ ¼ wTh tð Þþ h

where in this case the w vector is the set of weights for that particular PE. It is the
collection of the g tð Þ that define the output class, just as in Sect. 8.20.3 (and
footnote 49). Since the outputs are a function of time (or sequence number in the
multi-temporal image set), we can generate an output label for a pixel at each
“time.” Usually, for multi-temporal thematic mapping we are not so much inter-
ested in the labels at each stage in the presentation of the sequence of image data,
but rather the label found by the network at the end, making use of the information
available at all dates.

There are some diagrammatic variations that have developed around RNNs.
Figure 8.44a shows how the network of Fig. 8.43 can be summarised in the simpler
form. In Fig. 8.44b that new form is rotated to the vertical. That representation
allows the adjacent so-called unfolded structure to be drawn, in which each repe-
tition of the fundamental network represents subsequent time steps. In that form the
delayed hidden layer outputs are seen explicitly to feed into the next time step.

8.22.4 Training the RNN

The recurrent neural network can be trained using backpropagation, but the process
has to propagate back through all the time steps. As a result, it is called back-
propagation through time (BPTT). However, a problem arises because of the
recurrent nature of the network and the fact that the weights are the same at each
time step. The problem is characterised as either a vanishing gradient or exploding
gradient problem, the details of which are beyond this introductory treatment, as are
their remedies, but can be found in a number of detailed treatments.62

8.23 Context Classification

8.23.1 The Concept of Spatial Context

Apart from the CNN of the previous section, the classifiers treated in the earlier
sections are often categorised as point, or pixel-specific, in that they label a pixel on

62 See I. Goodfellow, Y. Bengio, and A Courville, Deep Learning (Adaptive Computation and
Machine Learning Series) The MIT Press, Cambridge Mass., 2016, A. Graves, Supervised
Sequence Learning with Recurrent Neural Networks, Springer, Berlin, 2012 and R. Pascanu, T.
Mikolov and Y. Benigo, On the difficulty of training recurrent neural networks, Proc 30th Int.
Cong. Machine Learning, Atlanta, Georgia, 2013.
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the basis of its spectral properties alone. No account is taken of how their neigh-
bours might be labelled.

In any real image adjacent pixels are related or correlated because imaging
sensors acquire significant portions of energy from adjacent pixels63 and because
ground cover types generally occur over a region that is large compared with the
size of a pixel. Knowledge of neighbourhood relationships is a rich source of
information that is not exploited in simple, traditional classifiers.

In this section we consider further the importance of spatial relationships—
spatial context—and see the benefit of taking context into account when making
classification decisions. Not only is the inclusion of context important because it
exploits spatial properties, but sensitivity to the correct context for a pixel can
improve a thematic map by removing individual pixel labelling errors that might
result from noisy data, or from unusual classifier performance (see Problem 8.6).

Classification methods that take into account the labelling of neighbours when
seeking to determine the most appropriate class for a pixel are said to be context
sensitive and are called context classifiers. They attempt to develop a thematic map
that is consistent both spectrally and spatially.

The degree to which adjacent pixels are strongly correlated will depend on the
spatial resolution of the sensor and the scale of natural and cultural features on the
earth’s surface. Adjacent pixels over an agricultural region will be strongly corre-
lated, whereas for the same sensor, adjacent pixels over a busier, urban region

b

a

Fig. 8.44 a Developing a simpler representation of the basic RNN and b unfolding that simpler
representation to make the signal flow through time clearer; outputs at each time step are shown
greyed out since they are not normally used in remote sensing

63 This is known as the point spread function effect.
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usually would not show strong correlation except for very high spatial resolution
(VHR) imagery Likewise, for a given area, neighbouring Landsat MSS pixels,
being larger, may not demonstrate as much correlation as adjacent Worldview-2
multispectral pixels. In general terms, context classification techniques usually
warrant consideration when processing higher resolution imagery.

There are several approaches to context classification, the most common of
which are treated in the following sections.64

8.23.2 Context Classification by Image Pre-processing

Perhaps the simplest and one of the earliest methods for exploiting spatial context is
to process the image data before classification in order to modify or enhance its
spatial properties.65 A median filter (Sect. 5.3.2) will help in reducing salt and
pepper noise that would lead to inconsistent class labels with a point classifier, if
not removed first. The application of simple averaging filters, possibly with edge
preserving thresholds, can be used to impose a degree of homogeneity among the
brightness values of adjacent pixels, thereby increasing the chance that neigh-
bouring pixels may be given the same label.

An alternative is to generate a separate channel of data that associates spatial
properties with pixels. For example, a texture channel could be added and classi-
fication carried out on the combined spectral and texture channels. See Sect. 5.10.2.

One of the more interesting historical spatial pre-processing techniques is the
ECHO (Extraction and Classification of Homogeneous Objects) methodology66 in
which regions of similar spectral properties are “grown” before classification is
performed. Several region growing techniques are available, possibility the simplest
of which is to aggregate pixels into small regions by comparing their brightness
values in each channel; smaller regions are then combined into bigger regions in a
similar manner. When that is done ECHO classifies the regions as single objects. It
only resorts to point classification when it has to treat individual pixels that could
not be put into regions. ECHO is included in the Multispec image analysis software
package.67

64 Although now not often used, for statistical context methods see P.H. Swain, S.B. Varderman
and J.C. Tilton, Contextual classification of multispectral image data, Pattern Recognition, vol. 13,
1981, pp. 429–441, and N. Khazenie and M.M. Crawford, A spatial–temporal autocorrelation
model for contextual classification, IEEE Transactions on Geoscience and Remote Sensing, vol.
28, no. 4, July 1990, pp. 529–539.
65 See P. Atkinson, J.L. Cushine, J.R. Townshend and A. Wilson, Improving thematic map land
cover classification using filtered data, Int. J. Remote Sensing, vol. 6, 1985, pp. 955–961.
66 R.L. Kettig and D.A. Landgrebe, Classification of multispectral image data by extraction and
classification of homogeneous objects, IEEE Transactions on Geoscience Electronics, vol. GE-14,
no. 1, 1976, pp. 19–26.
67 https://engineering.purdue.edu/*biehl/MultiSpec/ accessed 2021.
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8.23.3 Post Classification Filtering

If a thematic map has been generated using a simple point classifier, a degree of
spatial context can be developed by logically filtering the map.68 If the map is
examined in, say, 3 � 3 windows, the label at the centre can be changed to that
most represented in the window. Clearly this must be done carefully, with the user
controlling the minimum size region of a given cover type that is acceptable in the
filtered image product.

8.23.4 Probabilistic Relaxation Labelling

Spatial consistency in a classified image product can also be improved using the
process of label relaxation. While it has little theoretical foundation and is more
complex than the methods outlined in the previous sections, it does allow the spatial
properties of a region to be carried into the classification process in a logical
manner.

8.23.4.1 The Algorithm

The process commences by assuming that a point classification has already been
carried out, based on spectral data alone. We then assume that, for each pixel, we
have a set of posterior probabilities available that describe the likelihoods that the
pixel belongs to each of the possible ground cover classes under consideration. That
set could be computed from (8.6) or (8.7) if maximum likelihood classification had
been used. If another classification method had been employed, some other
assignment process will be required, which could be as simple as allocating a high
probability to the most favoured class label and lower probabilities to the others. It
could also use the softmax approach covered in Sect. 8.21.6.

Although we should perhaps use the posterior probability notation p xijxð Þ in
what is to follow, for notational simplicity we instead adopt the following
expression for the set of label probabilities on a pixel m:

pm xið Þ i ¼ 1 . . .M ð8:70Þ

whereM is the total number of classes; pm xið Þ should be read as the probability that
xi is the correct class for pixel m. As posteriors, the full set of pm xið Þ for the pixel
sum to unity:

68 F.E. Townsend, The enhancement of computer classifications by logical smoothing,
Photogrammetric Engineering and Remote Sensing, vol. 52, 1986, pp. 213–221.
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X
i

pm xið Þ ¼ 1

Suppose now that a neighbourhood is defined surrounding pixel m. This can be of
any size and, in principle, should be large enough to ensure that all the pixels
considered to have any spatial correlation with m are included. For high resolution
imagery this is not practical and a simple neighbourhood such as that shown in
Fig. 8.45 is often adopted.

Now assume that a neighbourhood function Qm xið Þ can be found, by means to
be described below, through which the pixels in the prescribed neighbourhood can
influence the classification of pixel m. This influence is exerted by multiplying the
label probabilities in (8.70) by the Qm xið Þ. The results can be turned into a new set
of label probabilities for the pixel by dividing by their sum:

p
0
m xið Þ ¼ pm xið ÞQm xið ÞP

i pm xið ÞQm xið Þ ð8:71Þ

The modification is made to the set of label probabilities for all pixels. In the
following it will be seen that Qm xið Þ depends on the label probabilities of the
neighbouring pixels, so that if all pixel probabilities are modified in the manner just
described then the neighbours of any given pixel have also been altered.
Consequently (8.71) should be applied again to give newer estimates still of the
label probabilities. Indeed, (8.71) is applied as many times as necessary to ensure
that the p

0
m xið Þ have stabilised—i.e., that they do not change with further iteration.

It is assumed that the p
0
m xið Þ then represent the correct set of label probabilities for

the pixel, having taken account both of spectral data, in the initial determination of
label probabilities, and spatial context via the neighbourhood functions. Since the
process is iterative, (8.71) is usually written as an explicit iteration formula:

pkþ 1
m xið Þ ¼ pkm xið ÞQk

m xið ÞP
i p

k
m xið ÞQk

m xið Þ ð8:72Þ

where k is the iteration count. Depending on the size of the image and its spatial
complexity, the number of iterations required to stabilise the label probabilities may

pixel m

neighbour n

Fig. 8.45 A neighbourhood
about pixel m
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be quite large. However, most change in the probabilities occurs in the first few
iterations and there is good reason to believe that proceeding beyond say 5 to 10
iterations may not be necessary in most cases (see Sect. 8.23.4.4).

8.23.4.2 The Neighbourhood Function

Consider just one of the neighbours of pixel m in Fig. 8.45—call it pixel n. Suppose
there is available some measure of compatibility of the current labelling on pixel m
and its neighbouring pixel n. Let rmn xi;xj

� �
describe numerically how compatible

it is to have pixel m classified as xi and neighbouring pixel n classified as xj. It
would be expected, for example, that this measure would be high if the adjoining
pixels are both wheat in an agricultural region, but low if one of the neighbours was
snow. There are several ways these compatibility coefficients, as they are called, can
be defined. An intuitively appealing definition is based on conditional probabilities.
The compatibility measure pmnðxijxjÞ is the probability that xi is the correct label
for pixel m if xj is the correct label for pixel n. A small piece of evidence in favour
of xi being correct for pixel m is pmnðxijxjÞpn xj

� �
—i.e., the probability that xi is

correct for pixel m if xj is correct for pixel n multiplied by the probability that xj is
correct for pixel n. This is the joint probability of pixel m being labelled xi and
pixel n being labelled xj.

Since probabilities for all possible labels on pixel n are available (even though
some might be very small) the total evidence from pixel n in favour of xi being the
correct class for pixel m will be the sum of the contributions from all pixel n's
labelling possibilities. viz. X

j

pmnðxijxjÞpn xj
� �

Consider now the full neighbourhood of the pixel m. All the neighbours contribute
evidence in favour of labelling pixel m as belonging to class xi. These contributions
are added69 via the use of neighbour weights dn that recognise that some neighbours
may be more influential than others. Thus, at the kth iteration, the total neigh-
bourhood support for pixel m being classified as xi is:

Qk
m xið Þ ¼

X
n

dn
X
j

pmn xijxj
� �

pkn xj
� � ð8:73Þ

This is the definition of the neighbourhood function. In (8.72) and (8.73) it is
common to include pixel m in its own neighbourhood so that the modification
process is not entirely dominated by the neighbours, particularly if the number of

69 An alternative way of handling the full neighbourhood is to take the geometric mean of the
neighbourhood contributions.
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iterations is so large as to take the process quite a long way from its starting point.
Unless there is good reason to do otherwise the neighbour weights are generally
chosen all to be the same.

8.23.4.3 Determining the Compatibility Coefficients

Several methods are possible for determining values for the compatibility coeffi-
cients pmnðxijxjÞ. One is to have available a spatial model for the region under
consideration, derived from some other data source. In an agricultural area, for
example, some general idea of field sizes, along with a knowledge of the pixel size
of the sensor, should make it possible to estimate how often one particular class
occurs simultaneously with a given class on an adjacent pixel. Another approach is
to compute values for the compatibility coefficients from ground truth pixels,
although the ground truth needs to be in the form of training regions that contain
heterogeneous and spatially representative cover types.

8.23.4.4 Stopping the Process

While the relaxation process operates on label probabilities, the user is interested in
the actual labels themselves. At the completion of relaxation, or at any intervening
stage, each of the pixels can be classified according to the highest label probability.
Thought has to be given as to how and when the iterations should be terminated. As
suggested earlier, the process can be allowed to go to a natural completion at which
continued iteration leads to no further changes in the label probabilities for all
pixels. That however presents two difficulties. First, up to several hundred iterations
may be involved. Secondly, it is observed in practice that classification accuracy
improves in the first few iterations but often deteriorates later in the process.70 If the
procedure is not terminated, the thematic map, after a large number of iterations,
can be worse than before the technique was applied. To avoid those difficulties, a
stopping rule or some other controlling mechanism is needed. As seen in the
example following, stopping after just a few iterations may allow most of the
benefit to be drawn from the process. Alternatively, the labelling errors remaining at
each iteration can be checked against ground truth, if available, and the iterations
terminated when the labelling error is seen to be minimised.71

70 J.A. Richards, D.A. Landgrebe and P.H. Swain, On the accuracy of pixel relaxation labelling,
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-11, 1981, pp. 303–309.
71 P. Gong and P.J. Howarth, Performance analyses of probabilistic relaxation methods for
land-cover classification in remote sensing, Remote Sensing of Environment, vol. 30, 1989, pp. 33–
42.
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Another approach is to control the propagation of contextual information as
iteration proceeds.72 In the first iteration, only the immediate neighbours of a pixel
have an influence on its labelling. In the second iteration the neighbours two away
will now have an influence via the intermediary of the intervening pixels. As
iterations proceed, information from neighbours further out is propagated into the
pixel of interest to modify its label probabilities. If the user has a view of the
separation between neighbours at which the spatial correlation has dropped to
negligible levels, then the appropriate number of iterations should be able to be
estimated at which to terminate the process without unduly sacrificing any further
improvement in labelling accuracy. Noting also that the nearest neighbours should
be most influential, with those further out being less important, a useful variation is
to reduce the values of the neighbour weights dn as iteration proceeds so that after,
say, 5–10 iterations they have been brought to zero.73 Further iterations will have
no effect, and degradation in labelling accuracy cannot occur.

8.23.4.5 Examples

Figure 8.46 shows a simple application of relaxation labelling,74 in which a
hypothetical image of 100 pixels has been classified into just two classes—grey and
white. The ground truth for the region is shown, along with the thematic map
assumed to have been generated from a point classifier, such as the maximum
likelihood rule. That map functions as the “initial labelling.” The compatibility
coefficients are shown as conditional probabilities, computed from the ground truth
map. Label probabilities were assumed to be 0.9 for the favoured label in the initial
labelling and 0.1 for the less likely label. The initial labelling, by comparison with
the ground truth, can be seen to have an accuracy of 88%—there are 12 pixels in
error. The labelling at significant stages during iteration, selected on the basis of the
largest current label probability, is shown, illustrating the reduction in classification
error owing to the incorporation of spatial information into the process. After l5
iterations all initial labelling errors have been removed, leading to a thematic map
100% in agreement with the ground truth. In this case the relaxation process was
allowed to proceed to completion and there have been no ill effects. This is an
exception and stopping rules have to be applied in most cases.75

72 T. Lee, Multisource context classification methods in remote sensing, PhD Thesis, The
University of New South Wales, Kensington, Australia, 1984.
73 T. Lee and J.A. Richards, Pixel relaxation labelling using a diminishing neighbourhood effect,
Proc. Int. Geoscience and Remote Sensing Symposium, IGARSS89, Vancouver, 1989, pp. 634–
637.
74 Other simple examples will be found in Richards, Landgrebe and Swain, loc. cit.
75 ibid.
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As a second example, the leftmost 82 � 100 pixels of the agricultural image
shown in Fig. 5.11 have been chosen76 to demonstrate the benefit of diminishing the
neighbourhood contribution with iteration. A maximum likelihood classification of
the four Landsat multispectral scanner bands was carried out to label the image into 7
classes and to initialise the relaxation process. The accuracy achieved was 65.6%.

Instead of using conditional probabilities as compatibility coefficients the
slightly different mechanism proposed by Peleg and Rosenfeld was adopted.77 To
control the propagation of context information, and thereby avoid the deleterious
effect of allowing the relaxation process to proceed unconstrained, the neighbour-
hood weights were diminished with iteration count according to

dn kð Þ ¼ dn 1ð Þe�a k�1ð Þ

in which a controls how the neighbour weights change with iteration. If a ¼ 0 there
is no reduction and normal relaxation applies. For a large the weights drop quickly
with iteration The central pixel was not included in the neighbourhood definition in
this example.

Table 8.11 shows how the relaxation performance depends on a. Irrespective of
the value chosen the optimal result is achieved after about 4 iterations, giving an
accuracy of 72.2%. The table also shows the result achieved if relaxation is left to
run for more iterations (final result). As seen, without diminishing the neighbour

ini�al labelling

number of itera�ons of relaxa�on
5 11 14 15

ground truth
1= 2=

Fig. 8.46 Simple example of pixel relaxation labelling

76 Full details of this example will be found in T. Lee and J.A. Richards, loc. cit.
77 S. Peleg and A. Rosenfeld, A new probabilistic relaxation procedure, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-2, 1980, pp. 362–369.
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weights or without diminishing them sufficiently, the final result deteriorates. For
values of a, in the vicinity of 2 the result is fixed at 72.2% from iteration 4 onwards.

8.23.5 Handling Spatial Context by Markov Random Fields

Another method for incorporating the effect of spatial context is to use the construct
of the Markov Random Field (MRF). When developing this approach, it is useful to
commence by considering the whole image, rather than just a local neighbourhood.
We will restrict our attention to a neighbourhood once we have established some
fundamental concepts.

Suppose there is a total of M pixels in the image, with measurement vectors
xm;m ¼ 1 . . .M in which m ¼ i; jð Þ. We describe the full set of vectors by
X ¼ x1 . . . xMf g.

Let the labels on each of the M pixels, derived from a classification, be repre-
sented by the set X ¼ xc1 . . .xcMf g in which xcm is the label on pixel m, drawn
from a set of c ¼ 1 . . .C available classes. We refer to X as the scene labelling,
because it looks at the classification of every pixel in the scene.

We want to find the scene labelling that best matches the ground truth—the
actual classes of the pixels on the earth’s surface, which we represent by X
. There
will be a probability distribution p Xf g associated with a labelling X of the scene,
which describes the likelihood of finding that distribution of labels over the image.
X is sometimes referred to as a random field. In principle, what we want to do is
find the scene labelling X̂ that maximises the global posterior probability pðXjXÞ,
and thus that best matches X
. pðXjXÞ is the probability that X is the correct overall
scene labelling given that the full set of measurement vectors for the scene is X. By
using Bayes' theorem, we can express it as

X̂ ¼ argmax|fflfflffl{zfflfflffl}
X

p XjXð Þp Xð Þf g ð8:74Þ

in which the argmax function says that we choose the value of X that maximises its
argument. The distribution p Xð Þ is the prior probability of the scene labelling.

Table 8.11 Performance of
relaxation labelling with a
diminishing neighbourhood
influence

Optimal result Final result

a Accuracy At iteration Accuracy At iteration
0.0 72.2 4 70.6 32
1.0 72.2 4 71.4 17
1.8 72.2 4 72.1 10
2.0 72.2 4 72.2 9
2.2 72.2 4 72.2 8
2.5 72.2 5 72.2 7
3.0 72.2 4 72.2 6
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What we need to do now is to perform the maximisation in (8.74) recognising,
however, that the pixels are contextually dependent; in other words, noting that
there is spatial correlation among them. To render the problem tractable, we now
confine our attention to the neighbourhood immediately surrounding a pixel of
interest. Our task is to find the class c that maximises the conditional posterior
probability p xcmjxm;x@mð Þ, where x@m is the labelling on the pixels in the
neighbourhood of pixel m. A possible neighbourhood is that shown in Fig. 8.45,
although often the immediately diagonal neighbours about m are also included.
Now we note

p xcmjxm;x@mð Þ ¼ p xm;x@m;xcmð Þ=p xm;x@mð Þ
¼ p xmjx@m;xcmð Þp x@m;xcmð Þ=p xm;x@mð Þ
¼ p xmjx@m;xcmð Þp xcmjx@mð Þp x@mð Þ=p xm;x@mð Þ

The first term on the right-hand side is a class conditional distribution function,
conditional also on the labelling of the neighbouring pixels. While we do not know
that distribution, it is reasonable to assume that the probability of finding a pixel
with measurement vector xm from class xcm is not dependent on the class mem-
bership of spatially adjacent pixels so that p xmjx@m;xcmð Þ ¼ p xmjxcmð Þ, the simple
class conditional distribution function compiled for class xcm pixels from the
remote sensing measurements. We also assume that the measurement vector xm and
the neighbourhood labelling are independent, so that p xm;x@mð Þ ¼ p xmð Þp x@mð Þ.
Substituting these simplifications into the last expression above gives

p xcmjxm;x@mð Þ ¼ p xmjxcmð Þp xcmjx@mð Þp x@mð Þ=p xmð Þp x@mð Þ
¼ p xmjxcmð Þp xcmjx@mð Þ=p xmð Þ

Since p xmð Þ is not class dependent it does not contribute any discriminating
information so that the maximum posterior probability rule of (8.74) at the local
neighbourhood level becomes

x̂cm ¼ argmax|fflfflffl{zfflfflffl}
xcm

p xcmjxm;x@mð Þ

¼ argmax|fflfflffl{zfflfflffl}
xcm

p xmjxcmð Þp xcmjx@mð Þ

or, expressed in the form of a discriminant function for class m,

gcm xmð Þ ¼ ln p xmjxcmð Þþ ln p xcmjx@mð Þ ð8:75Þ

We now need to consider the meaning of the conditional probability p xcmjx@mð Þ. It
is the probability that the correct class is c for pixel m given the labelling of the
neighbouring pixels. It is analogous to the neighbourhood function in probabilistic
relaxation given in (8.73). Because it describes the labelling on pixel m, conditional
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on the neighbourhood labels, the random field of labels we are looking for is called
a Markov Random Field (MRF).

How do we determine a value for p xcmjx@mð Þ? It can be expressed in the form of
a Gibbs distribution78

p xcmjx@mð Þ ¼ 1
Z
exp �U xcmð Þf g ð8:76Þ

in which U xcmð Þ is called an energy function and Z is a normalising constant,
referred to as the partition function, which ensures that the sum of (8.76) over all
classes c on pixel m is unity. To this point we have said nothing special about the
style of the neighbourhood or how the individual neighbours enter into the com-
putation in (8.76). In relaxation labelling they entered through the compatibility
coefficients. In the MRF approach the neighbour influence is encapsulated in the
definition of sets of cliques of neighbours. The cliques of a given neighbourhood
are sets of adjacent pixels that are linked (or related in some sense of being cor-
related), as shown in Fig. 8.47 for the two neighbourhoods given.79

Once a neighbourhood definition has been chosen the energy function is eval-
uated as a sum of clique potentials VC xcmð Þ, each one of which refers to a particular
clique C in the neighbourhood:

U xcmð Þ ¼
X
C

VCðxcmÞ ð8:77Þ

The neighbourhood most often chosen is that of Fig. 8.45 for which the cliques are
just the neighbour pairs vertically and horizontally, and the pixel itself, as seen in
the left-hand side of Fig. 8.47. That leads to the so-called Ising model for which

VC xcmð Þ ¼ b 1� d xcm;xCmð Þ½ 	

where dðxcm;xCmÞ is the Kronecker delta; it is unity when the arguments are equal
and zero otherwise. xCm is the labelling on the member of the binary clique other
than the pixel m itself. b is a parameter to be chosen by the user, as below. Thus
U xcmð Þ is found by summing over the neighbourhood:

U xcmð Þ ¼
X
C

b 1� d xcm;xCmð Þ½ 	 ð8:78Þ

78 Although a little complex in view of the level of treatment here, see S. German and D. German,
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, 1984, pp. 721–
741.
79 For the simple first order (four neighbour) neighbourhood the concept of cliques is not
important, since there are only the four neighbourhood relationships.
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which is now substituted into (8.76) and (8.75) to give, assuming a multivariate
normal class model,

gcm xmð Þ
¼ �1=2 ln jCcj � 1=2 xm �mcð ÞTC�1

c xm �mcð Þ �
X
C

b 1� d xcm;xCmð Þ½ 	

ð8:79Þ

where the constant Z has been removed as non-discriminating. It is interesting to
understand the structure of this last equation. Whenever a neighbour has the same
label as the central pixel the spatial term is zero and thus the spectral evidence in
favour of the labelling on the central pixel, via the class conditional distribution
function, is unaffected. If a neighbour has a different label the discriminant function
for the currently favoured class on the central pixel is reduced, thus making that
class slightly less likely.

To use (8.79) there needs to be an allocation of classes over the scene before the
last term can be computed. Accordingly, an initial classification would be per-
formed, say with the maximum likelihood classifier of Sect. 8.3. Equation (8.79) is
then used to modify the labels on the individual pixels to incorporate the effect of

first order neighbourhood second order neighbourhood

Fig. 8.47 First and second order neighbourhoods and their cliques
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context. However, in so doing some (initially many) of the labels on the pixels will
be modified. The process is then run again, and indeed as many times presumably
until there are no further changes. This process is referred to as iterated conditional
modes.80

8.24 Bibliography on Supervised Classification
Techniques

The machine learning techniques that underpin thematic mapping in remote sensing
are covered in many texts at different levels of mathematical complexity. Although
it does not have a remote sensing focus, the standard first treatment for many
researchers, which covers the basis of much of the material treated in this chapter, is

R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons,
N.Y., 2001.

A comprehensive, and slightly more mathematical, coverage containing good
examples, but again without a remote sensing focus, is

C.M. Bishop, Pattern Recognition and Machine Learning, Springer Science + Business
Media, N.Y., 2006.

Although its treatment of the more standard procedures is not as easily assimilated
by those with a limited mathematical background, it is nevertheless an important
work, especially for some of the more advanced topics covered in this chapter.
A book at a comparable level of mathematical detail and which is a very good
complement to those above is

T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Springer
Science + Business Media, N.Y., 2009.

For a focus on the classification challenges of high dimensional (hyperspectral)
image data see

D.A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, John Wiley &
Sons, Hoboken, N.J., 2003.

This book is written for the remote sensing practitioner, student and researcher and
keeps its mathematical detail at the level needed for understanding algorithms and
techniques. It is a very practical guide on how high dimensional image analysis
should be performed.

80 See J. Besag, On the statistical analysis of dirty pictures, J. Royal Statistical Society B, vol. 48,
no. 3, 1986, pp. 259–302.
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Although now largely of historical interest

N.J. Nilsson, Learning Machines, McGraw-Hill, N.Y., 1965

and its successor

N.J. Nilsson, The Mathematical Foundations of Learning Machines, Morgan Kaufmann,
San Francisco, 1990.

are helpful to consult on the foundations of linear classifiers. Nilsson also has good
sections on the maximum likelihood rule and the committee (layered) classifier
concept.

One cannot escape the Hughes phenomenon when considering the classification of
remotely sensed data, also called the curse of dimensionality in machine learning
treatments. The original paper is

G. F. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Transactions
on Information Theory, vol. IT-14, no.1, 1968, pp. 55–63,

while Landgrebe above also contains a good general discussion of the topic. Its
influence on the support vector machine is examined in

M. Pal and G.F. Foody, Feature selection for classification of hyperspectral data for SVM,
IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 5, May 2010,
pp. 2297–2307.

The development of kernel transformation methods, and particularly their appli-
cation to remote sensing, has been rapid over the past two decades. The standard,
non-remote sensing treatment, which includes coverage of support vector machines,
is

B. Schölkopf and A. Smola, Learning with Kernels: Support Vector Machines,
Regularisation, Optimisation and Beyond, MIT Press, Cambridge, 2002.

For a concentration on remote sensing topics see

G. Camps-Valls and L. Bruzonne, Kernel Methods for Remote Sensing Data Analysis, John
Wiley & Sons, Chichester, U.K., 2009

A short review will be found in

L. Gómez-Chove, J Muñoz-Marí, V. Laparra, J. Malo-López and G. Camps-Valls, A
review of kernel methods in remote sensing data analysis, in S. Prasad, L.M. Bruce and
J. Chanussot, eds., Optical Remote Sensing: Advances in Signal Processing and
Exploitation Techniques, Springer, Berlin, 2011.

The formative paper for support vector machines in remote sensing is

J.A. Gualtieri and R.F. Cromp, Support vector machines for hyperspectral remote sensing
classification, Proc. SPIE, vol. 3584, 1998, pp. 221–232
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while a good tutorial treatment is

C.T.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining
and Knowledge Discovery, vol. 2, 1998, pp. 121–167.

Papers which demonstrate the application of kernel methods and support vector
classifiers to remote sensing problems are

F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with
support vector machines, IEEE Transactions on Geoscience and Remote Sensing, vol. 42,
no. 8., August 2004, pp. 1778–1790,

G. Camps-Valls and L. Bruzzone, Kernel-based methods for hyperspectral image classi-
fication, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6, June 2005,
pp. 1351–1362.

A review of the suitability of support vector classifiers in land cover classification is

C. Huang, L.S. Davis and J.R.G. Townshend, An assessment of support vector machines
for land cover classification, Int. J. Remote Sensing, vol. 23, no. 4, 2002, pp. 725–749,

while

G. Mountrakis, J. Im and C. Ogole, Support vector machines in remote sensing: a review,
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, 2011, pp. 247–259

is an extensive critical literature review, although with some omissions.

Neural networks are covered in many machine learning texts, including Duda et al.,
Bishop and Hastie et al., above. Other texts on neural networks which are very
readable, are

Y.H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, Reading,
Mass., 1989

R.D. Reed and R.J. Marks, Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks, MIT Press, Cambridge Mass., 1999.

A good introduction will be found in

R.P. Lippman, An introduction to computing with neural nets, IEEE ASSP Magazine, April
1987, pp. 4–22.

Readable accounts of the performance of artificial neural networks in remote
sensing image classification are found in

J.A. Benediktsson, P.H. Swain and O.K. Ersoy, Neural network approaches versus statis-
tical methods in classification of multisource remote sensing data, IEEE Transactions on
Geoscience and Remote Sensing, vol. 28, no. 4, July 1990, pp. 540–552,

J.D. Paola and R.A. Schowengerdt, A review and analysis of backpropagation neural
networks for classification of remotely sensed multispectral imagery, Int. J. Remote
Sensing, vol. 16, 1995, pp. 3033–3058, and
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J.D. Paola and R.A. Schowengerdt, A detailed comparison of backpropagation neural
network and maximum likelihood classifiers for urban land use classification, IEEE
Transactions on Geoscience and Remote Sensing, vol. 33, no. 4, July 1995, pp. 981–996.

A good theoretical and background coverage of convolutional neural networks is

I. Goodfellow, Y. Bengio, and A Courville, Deep Learning (Adaptive Computation and
Machine Learning series) The MIT Press, Cambridge Mass., 2016.

although the material relevant to the treatment here is distributed over several
chapters. Bishop (above) has sections on regularisation, cost functions and other
elemental aspects of CNN that are very readable, and a short section on CNNs
overall.

The formative paper for CNNs is

Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, vol. 521, 28 May 2015,
pp. 436–444

which is largely non-mathematical but very detailed, and with commentary on a
range of non remote sensing applications, and

A.Krizhevsky, I. Sutskever and G. Hinton, ImageNet classification with deep convolutional
neural networks, Proc. Advances in Neural Information Processing Systems, vol. 25, 2012,
pp. 1090–1098.

Reviews of the application of deep learning techniques to remotely sensed data will
be found in

L. Zhang, L. Zhang and B. Du, Deep learning for remote sensing data, IEEE Geoscience
and Remote Sensing Magazine, June 2016, pp. 22–39, and

X. Zhu, D. Tuia, L. Mou, G-S Xia, L. Zhang, F. Xu and F. Fraundorfer, Deep learning in
remote sensing, IEEE Geoscience and Remote Sensing Magazine, December 2017, pp. 8–
35.

The use of CNNs for hyperspectral image classification will be found in many
papers, including

H. Petersson, D. Gustafsson and D. Bergstrom, Hyperspetral image analysis using deep
learning—a review, Sixth Int. Conf. on Image Processing Theory, Tools and Applications,
Oulu Finland, 12–15 Dec 2016, https://doi.org/10.1109/IPTA.2016.7820963

S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi and J. Benediktsson, Deep learning for
hyperspectral imaeg classification: an overview, IEEE Transactions on Geoscience and
Remote Sensing, Vol. 57, No 9, September 2019, pp. 6690–6709

Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu, Deep learning-based classification of
hyperspectral data, IEEE Journal of Selected Topics in Applied Earth Observation and
Remote Sensing, vol. 7, June 2014, pp. 2094–2107,

Y. Li, H. Zhang and Q. Shen, Spectral-spatial classification of hyperspectral imagery with
3D convolutional neural network, Remote Sensing, vol. 9, 2017, 21 pages, https://doi.org/
10.3390/rs9010067,
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W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, Deep convolutional neural networks for
hyperspectral image classification, Journal of Sensors, Volume 2015, Article ID 258619,

J. Yang, Y-Q Zhao and J Chan, Learning and transferring deep joint spectral–spatial
features for hyperspectral classification, IEEE Transactions on Geoscience and Remote
Sensing, Vol. 55, No 8, August 2017, pp. 4729–4742.

The standard treatment on Recurrent Neural Networks is

A. Graves, Supervised Sequence Learning with Recurrent Neural Networks, Springer,
Berlin, 2012.

Material on Markov Random Fields (MRF) can be found in Bishop above, but the
fundamental papers, both of which are quite detailed, are

S. German and D. German, Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-6, no. 6, 1984, pp. 721–741, and

J. Besag, On the statistical analysis of dirty pictures, J. Royal Statistical Society B, vol. 48,
no. 3, 1986, pp. 259–302.

One of the earliest applications of the MRF in remote sensing is in

B. Jeon and D.A. Landgrebe, Classification with spatio-temporal interpixel class depen-
dency contexts, IEEE Transactions on Geoscience and Remote Sensing, vol. 30, 1992,
pp. 663–672.

Other remote sensing applications that could be consulted are

A.H.S. Solberg, T. Taxt and A.K. Jain, A Markov Random Field model for classification of
multisource satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.
34, no. 1, January 1996, pp. 100–113, and

Y. Jung and P.H. Swain, Bayesian contextual classification based on modelling
M-estimates and Markov Random Fields, IEEE Transactions on Geoscience and Remote
Sensing, vol. 34, no. 1, January 1996, pp. 67–75.

Development of the fundamental probabilistic label relaxation algorithm is given in

A. Rosenfeld, R. Hummel and S. Zuker, Scene labeling by relaxation algorithms, IEEE
Transactions on Systems, Man and Cybernetics, vol. SMC-6, 1976, pp. 420–433.

8.25 Problems

8:1 Suppose you have been given the training data in Table 8.12 for three
spectral classes, in which each pixel is characterised by only two spectral
components k1 and k2. Develop the discriminant functions for a maximum
likelihood classifier and use them to classify the patterns
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x1 ¼ 5
9


 �
x2 ¼ 9

8


 �
x3 ¼ 15

9


 �

under the assumption of equal prior probabilities.
8:2 Repeat Problem 8.1 but with the prior probabilities

p 1ð Þ ¼ 0:048

p 2ð Þ ¼ 0:042

P 3ð Þ ¼ 0:910

8:3 Using the data of Problem 8.1 develop the discriminant functions for a
minimum distance classifier and use them to classify the patterns x1, x2 and
x3.

8:4 Develop a parallelepiped classifier from the training data given in Problem
8.1 and compare its classifications with those of the maximum likelihood
classifier for the patterns x1, x2 and x3 and the new pattern

x4 ¼ 3
7


 �

At the conclusion of the tests in Problems 8.1, 8.3 and 8.4, it would be
worthwhile sketching a spectral space and locating in it the positions of the
training data. Use this to form a subjective impression of the performance of
each classifier in Problems 8.1, 8.3 and 8.4.

8:5 The training data in Table 8.13 represents a subset of that in problem 8.1 for
just two of the classes. Develop discriminant functions for both the maxi-
mum likelihood and minimum distance classifiers and use them to classify
the patterns

Table 8.12 Training data for three classes, each with two measurement dimensions (wavebands)

Class 1 Class 2 Class 3

k1 k2 k1 k2 k1 k2
16 13 8 8 19 6
18 13 9 7 19 3
20 13 6 7 17 8
11 12 8 6 17 1
17 12 5 5 16 4
8 11 7 5 14 5

14 11 4 4 13 8
10 10 6 3 13 1
4 9 4 2 11 6
7 9 3 2 11 3
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x5 ¼ 14
7


 �
x6 ¼ 20

13


 �

Also classify these patterns using the minimum distance and maximum
likelihood classifiers developed on the full training sets of problem 8.1 and
compare the results.

8:6 Suppose a particular scene consists of just water and soil, and that a clas-
sification into these cover types is to be carried out on the basis of near
infrared data using the maximum likelihood rule. When the thematic map is
produced it is noticed that some water pixels are erroneously labelled as soil.
How can that happen, and what steps could be taken to avoid it? It may help
to sketch some typical one-dimensional normal distributions to represent the
soil and water in infrared data, noting that soil would have a very large
variance while that for water would be small. Remember the mathematical
distribution functions extend to infinity.

8:7 Figure 8.48 shows 3 classes of data, that are linearly separable. Draw three
linear separating surfaces on the diagram, each of which separates just two of
the classes, in a maximum margin sense. Then demonstrate that the
one-against-one multiclass process in Sect. 8.17 will generate the correct
results. Extend the example to 4 and 5 classes.

8:8 Compare the properties of probabilistic relaxation and Markov Random
Fields based on iterated conditional modes, as methods for context classifi-
cation in remote sensing.

8:9 If you had to use a simple method for embedding spatial context would you
choose pre-classification filtering of the data or post-classification filtering of
the thematic map?

8:10 Compare the steps you would need to take to perform thematic mapping based
on the maximum likelihood rule, an artificial neural network (ANN), a con-
volutional neural network (CNN) and a support vector machine with kernel.

8:11 Would kernels be of value in minimum distance classification?
8:12 (This is a bit complex) With probabilistic relaxation treated in Sect. 8.23.4

the results can improve with early iterations and then deteriorate. That is
because processes such as simple averaging take over when relaxation nears
what is called a fixed point, at which individual labels are strongly favoured
for the pixels, but the iterations are then allowed to continue. See J.A.
Richards, P.H. Swain and D.A. Landgrebe, On the accuracy of pixel

Table 8.13 Training data for two classes, each with two measurement dimensions (wavebands)

Class 1 Class 3

k1 k2 k1 k2
11 12 17 8
10 10 16 4
14 11 14 5

13 1
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relaxation labelling, IEEE Transactions on Systems, Man and Cybernetics,
vol. SMC-11, 1981, pp. 303–309. Would you expect the same to happen
with the iterated conditional modes of the MRF approach?

8:13 In two dimensions the linear surface of (8.29) is written
w1x1 þw2x2 þw3 ¼ 0. Show that its perpendicular distance to the origin is
w3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þw2

2

p
. Can you generalise that expression to any number of

dimensions?
8:14 Explain from the point of view of spectral measurements why the covariance

matrix used with the maximum likelihood classifier is a symmetric matrix.
8:15 Without using mathematics describe how the back propagation method is

used to train a multi-layer Perceptron neural network.
8:16 What mechanisms are used in the convolutional neural network (CNN) to

reduce the numbers of connections between layers and thus the numbers of
unknowns that have to be found during training?

8:17 Discuss the role of the CNN as a feature selector when its output is fed into a
fully connected neural network (such as the multilayer Perceptron).

8:18 Why is the ReLU activation function in a convolutional neural network used
instead of the sigmoid and other functions used in the multi-layer
Perceptron? Is it because:

(a) It generates more accurate results?
(b) It allows faster convergence during training?
(c) It improves the multi-class capabilities of the algorithm?

8:19 What is the reason for including a pooling layer in a convolutional neural
network?

(a) Does it further reduce the number of connections and imbeds
spatial context?

(b) Do convolutional layers require a pooling layer as their
inter-connection?

(c) Does it remove the need for an activation function?

class A

class B
class C

Fig. 8.48 Three linearly
separable classes
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8:20 Why is the softmax function sometimes used with convolutional neural
networks?

8:21 Does the stride operation in a convolutional neural network

(a) Have any effect of the spatial properties to be learnt?
(b) Allow the number of connections and thus unknowns to be

reduced?

8:22 Compared with a fully connected neural network, can convolutional neural
nets

(a) Have more hidden layers because of the fewer connections
between nodes?

(b) Always perform better when spatial context is a consideration?
(c) Have fewer output nodes?

8:23 What is the purpose of flattening in a convolutional neural network?
8:24 In its fundamental operation (based on its underlying equations) is the neural

network most like

(a) The maximum likelihood classifier?
(b) The support vector machine?
(c) The minimum distance classifier?

8:25 Is the role of the kernel in the support vector machine to

(a) Allow the SVM to handle binary data sets that are not linearly
separable?

(b) Minimise errors caused by classes which overlap the linear
decision surface?

(c) Make it into a multi-class machine?

8:26 Is the fundamental support vector machine algorithm

(a) A multi-class classifier?
(b) A binary linear classifier?
(c) A binary non-linear classifier?
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Chapter 9
Clustering and Unsupervised
Classification

Abstract The analytical process of clustering is introduced as a means for dis-
covering the structure of remote sensing image data in the spectral domain. This is
done by placing pixel vectors into distinct spectral classes or clusters. Most of the
techniques covered are developed by example and include iterative and streaming
methods. Unsupervised classification, which is employed when training data is not
available, is based on clustering. Application of unsupervised methods is discussed,
including how clusters are associated with ground cover classes after clustering is
complete. Special attention is paid to procedures that can be applied to very large
data sets.

9.1 How Clustering is Used

The classification techniques treated in Chap. 8 all require the availability of
labelled training data with which the parameters of the respective class models are
estimated. As a result, they are called supervised techniques because, in a sense, the
analyst supervises an algorithm’s learning about those parameters. Sometimes la-
belled training data is not available and yet it would still be of interest to convert
remote sensing image data into a thematic map of labels. Such an approach is called
unsupervised classification since the analyst, in principle, takes no part in an
algorithm’s learning process. Several methods are available for unsupervised
learning. Perhaps the most common in remote sensing are based on the use of
clustering algorithms, which seek to identify pixels in an image that are spectrally
similar. That is one of the applications of clustering treated in this chapter.

Clustering techniques find other applications in remote sensing, particularly for
resolving sets of Gaussian modes (single multivariate normal distributions) in
image data before the Gaussian maximum likelihood classifier can be used suc-
cessfully. This is necessary since each class has to be modelled by a single normal
probability distribution, as discussed in Chap. 8. If a class happens to be multi-
modal, and that is not resolved, then the modelling will not be very effective. Users
of remotely sensed data can only specify the information classes. Occasionally it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. A. Richards, Remote Sensing Digital Image Analysis,
https://doi.org/10.1007/978-3-030-82327-6_9
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might be possible to guess the number of spectral classes in a given information
class but, in general, the user would have little idea of the number of distinct
unimodal groups into which the data falls in spectral space. Gaussian mixture
modelling can be used for that purpose (Sect. 8.4) but the complexity of estimating
simultaneously the number of Gaussian components, and their parameters, can
make that approach difficult to use. Clustering procedures are practical alternatives
and have been used in many fields to enable inherent data structures to be
determined.

There are many clustering methods with many variations within each method.1

In this chapter only those commonly employed with remote sensing data are
treated, including those which can be used with the increasing availability of very
large data sets.

9.2 Similarity Metrics and Clustering Criteria

In clustering we try to identify groups of pixels that are somehow similar to each
other. The only real attributes that we can use to check similarity are the spectral
measurements recorded by the sensor used to acquire the data.2 Here, therefore,
clustering will imply a grouping of pixels in the spectral domain. Pixels belonging
to a particular cluster will be spectrally similar. In order to quantify their spectral
proximity, it is necessary to devise a measure of similarity. Many similarity mea-
sures, or metrics, have been proposed but those used commonly in clustering
procedures are usually simple distance measures in spectral space. The most fre-
quently encountered are Euclidean distanceðL2Þ and the city block or Manhattan
ðL1Þ distance. If x1 and x2 are the measurement vectors of two pixels whose
similarity is to be checked then the Euclidean distance between them is

d x1; x2ð Þ, x1 � x2k k
¼ x1 � x2ð Þ � x1 � x2ð Þf g1=2

¼ x1 � x2ð ÞT x1 � x2ð Þ
n o1=2

¼
XN
n¼1

ðx1n � x2nÞ2
( )1=2

ð9:1Þ

where N is the number of spectral components.

1 See C.C. Aggarwal and C. K. Reddy, Data Clustering Algorithms and Applications, CRC Press,
Roca Baton 2014.
2 We might also decide that spatially neighbouring pixels are likely to belong to the same group;
some clustering algorithms use combined spectral and spatial similarity.
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The city block (L1) distance between the pixels is just the accumulated difference
along each spectral dimension, similar to walking between two locations in a city
laid out on a rectangular street grid. It is given by

dL1 x1; x2ð Þ ¼
XN
n¼1

x1n � x2nj j ð9:2Þ

Clearly the latter is faster to compute but questions must be raised as to how
spectrally similar all the pixels within a given L1 distance of each other will be.

The Euclidean and city block distance measures are two special cases of the
Minkowski Lp distance metric3

dLp x1; x2ð Þ ¼
XN
n¼1

x1n � x2nj jp
( )1=p

When p = 1 we have the city block distance, while when p = 2 we have Euclidean
distance.

By using a distance measure, it should be possible to determine clusters in data.
Often there can be several acceptable clusters assignments, as illustrated in Fig. 9.1,
so that once a candidate clustering has been identified it is desirable to have a means
by which the “quality” of that clustering can be measured. The availability of such a
measure should allow one cluster assignment of the data to be chosen over all
others.

A common clustering criterion, or quality indicator, is the sum of squared error
(SSE) measure; when based on Euclidean distance it is defined as

SSE ¼
X
Ci

X
x2Ci

x�mik k2 ¼
X
Ci

X
x2Ci

x�mið ÞT x�mið Þ ð9:3Þ

in which mi is the mean vector of the ith cluster and x 2 Ci is a pixel assigned to
that cluster. The inner sum is over all pixels in a cluster and the outer sum is taken
over all clusters. SSE will be small for tightly grouped clusters and large otherwise,
thereby allowing an assessment of the quality of clustering.

Note that SSE has a theoretical minimum of zero, which corresponds to all
clusters containing a single data point. As a result, if an iterative method is used to
seek the natural clusters or spectral classes in a set of data then it has a guaranteed
termination point, at least in principle. In practice it may be too expensive to allow
natural termination. Instead, iterative procedures are often stopped when an
acceptable degree of clustering has been achieved.

3 See J. Lattin, J. Douglas Carroll and P. E. Green, Analyzing Multivariate Data, Thompson,
Brooks/Cole, Canada, 2003.
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It is possible now to consider the implementation of an actual clustering algo-
rithm. While it should depend on finding the clustering that minimises SSE that is
impracticable since it requires the calculation of an enormous number of values of
SSE to evaluate all candidate clusterings. For example, there are approximately
CK=K! ways of placing K pixel vectors into C clusters4; that will be an enormous
number for any practical image size. Rather than embark on such a rigorous and
computationally expensive approach the heuristic procedure of the following sec-
tion is usually adopted in remote sensing practice unless the number of data points
is huge.

9.3 k Means Clustering

The k means clustering method, also called migrating means and iterative opti-
misation, is one of the most common approaches used in image analysis applica-
tions. With certain refinements it becomes the Isodata technique treated in the next
section. It also underpins the K Trees clustering technique for large data sets in
Sect. 9.13.1.

The k means approach requires an initial assignment of the available measure-
ment vectors into a user-specified number of clusters. That is done using an arbi-
trarily specified set of initial cluster centres or means; a very crude set of clusters is
generated by assigning the pixels to those arbitrary means. After that first assign-
ment the means are recomputed. The pixel vectors are then reassigned to the cluster

one possible cluster assignment

another possible cluster assignment

Fig. 9.1 Two apparently
acceptable cluster
assignments of a set of two
dimensional data

4 SeeR.O. Duda, P.E. Hart andD.G. Stork,Pattern Classification, 2nd ed., JohnWiley&Sons, N.Y.,
2001.
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with the closest mean, the means are again recomputed, and the pixels again
reassigned. The process is repeated as many times as necessary such that there is no
further movement of pixels between clusters. In practice, with large data sets, the
process is not run to completion and some other stopping rule is used, as discussed
in the following. However, the SSE measure progressively reduces with iteration as
we will see by example.

9.3.1 The k Means Algorithm

The k means or iterative optimisation algorithm is implemented in the following
steps.

1. Select a value for C, the number of clusters into which the pixels are to be
grouped.5 This requires some feel beforehand as to the number of clusters that
might naturally represent the image data set. Depending on the reason for using
clustering some guidelines are available (see Sect. 11.4.2).

2. Initialise cluster generation by selecting C points in spectral space to serve as
candidate cluster centres. Call these

m̂c c ¼ 1 . . .C

In principle the choice of the m̂c at this stage is arbitrary with the exception that
no two can be the same. To avoid anomalous cluster generation with unusual
data sets it is generally best to space the initial cluster centres uniformly over the
data (see Sect. 9.5). That can also aid convergence.

3. Assign each pixel vector x to the candidate cluster of the nearest mean using an
appropriate distance metric in the spectral domain between the pixel and the
cluster means. Euclidean distance is commonly used. That generates a cluster of
pixel vectors about each candidate cluster mean.

4. Compute a new set of cluster means from the groups formed in Step 3; call these

mc c ¼ 1 . . .C

5. If mc ¼ m̂c for all c then the procedure is complete. Otherwise, the m̂c are set to
the current values of mc and the procedure returns to step 3.

This process is illustrated with a simple two-dimensional data set in Fig. 9.2.

5 By its name the k means algorithm actually searches for k clusters; here however we use C for the
total number of clusters but retain the common name by which the method is known.
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9.4 Isodata Clustering

The Isodata clustering algorithm6 builds on the k means approach by introducing a
number of checks on the clusters formed, either during or at the end of the iterative
assignment process. Those checks relate to the number of pixels assigned to clusters
and their shapes in the spectral domain.
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Fig. 9.2 Illustration of clustering with the k means, or iterative optimisation, algorithm, showing a
progressive reduction in SSE; also shown is how the cluster means migrate during the process

6 G.H. Ball and D.J. Hall, A novel method of data analysis and pattern recognition, Stanford
Research Institute, Menlo Park, California, 1965.
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9.4.1 Merging and Deleting Clusters

At any suitable stage clusters can be examined to see whether:

(a) any contain so few points as to be meaningless; for example, if the statistical
distributions of pixels within clusters are important, as they might be when
clustering is used as a pre-processing operation for maximum likelihood clas-
sification (see Sect. 11.4.1), sufficient pixels per cluster must be available to
generate reliable estimates of the class means and covariance matrices;

(b) any are so close together that they represent an unnecessary or inappropriate
division of the data, in which case they should be merged.

In view of the material of Sect. 8.3.6 a guideline exists for (a). A cluster cannot
reliably be modelled by a multivariate normal distribution unless it contains about
10N members, where N is the number of spectral components.

Decisions in (b) about when to merge adjacent clusters can be made by assessing
how similar they are spectrally. Similarity can be assessed simply by the distance
between them in the spectral domain, although more sophisticated similarity
measures are available (see Chap. 10).

9.4.2 Splitting Elongated Clusters

Another test sometimes incorporated in the Isodata algorithm concerns the shapes
of clusters in spectral space. Clusters that are elongated can be split in two, if
required. Such a decision can be made on the basis of pre-specifying a standard
deviation in each spectral band beyond which a cluster should be halved.

9.5 Choosing the Initial Cluster Centres

Initialising the k means and Isodata procedures requires specification of the number
of clusters and their initial mean positions. In practice the actual or optimum
number of clusters to choose will not be known. Therefore, it is often chosen
conservatively high, having in mind that any spectrally similar clusters that result
can be consolidated after the process is completed, or at intervening iterations, if a
merging option is available.

The choice of the initial locations of the cluster centres is not critical, although it
can influence the time it takes to reach a final, acceptable clustering. In some
extreme cases it might influence the final set of clusters found. Several procedures
are in common practice. In one, the initial cluster centres are chosen uniformly
spaced along the multidimensional diagonal of the spectral space. That is a line
from the origin to the point corresponding to the maximum brightness value in each
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spectral component. The choice can be refined if the user has some idea of the
actual range of brightness values in each spectral component, say by having pre-
viously computed histograms. The cluster centres would then be initialised along a
diagonal through the actual multidimensional extremities of the data. An alterna-
tive, implemented as an option in the MultiSpec package,7 is to distribute the initial
centres uniformly along the first eigenvector (principal component) of the data.
Since most data exhibits a high degree of correlation, the eigenvector approach is
essentially a refined version of the first method.

The choice of the initial cluster locations using these methods is reasonable and
effective since they are then spread over a region of the spectral space in which
many classes occur, particularly for correlated data such as that for soils, rocks,
concretes, etc. A range of other approaches is available.8

9.6 Cost of k Means and Isodata Clustering

The need to check every pixel against all cluster centres at each iteration means that
the basic k means algorithm can be time consuming to operate, particularly for large
data sets. For C clusters and P pixels, P � C distances have to be computed at each
iteration, and the smallest found. For N band data, each Euclidean distance cal-
culation will require N multiplications and N additions, ignoring the square root
operation, since that need not be carried out. Thus for 20 classes and 10,000 pixels,
100 iterations of k means clustering requires 20 million multiplications per band of
data. When the number of bands is high, as in hyperspectral imagery, k means
clustering is very computationally intensive.

9.7 Unsupervised Classification

At the completion of clustering, pixels belonging to each cluster are usually given a
symbol or colour to indicate that they belong to the same group or spectral class.
Based on those symbols, a cluster map can be produced; that is a map corre-
sponding to the image which has been clustered, but in which the pixels are rep-
resented by their cluster symbol rather than by the original measurement vector.
Sometimes only part of an image is used to generate the clusters, but all pixels in
the image can be allocated to one of the clusters through, say, a minimum distance
assignment of pixels to clusters.

The availability of a cluster map allows a classification to be made. If some
pixels with a given label can be identified with a particular ground cover type

7 See www.engineering.purdue.edu/*biehl/MultiSpec/ accessed 2021.
8 See Aggarwal and Reddy, loc. cit., Sect. 4.3.2.1.
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(by means of maps, site visits or other forms of reference data) then all pixels with
the same label can be assumed to be from that same class. Cluster identification is
often aided by the spatial patterns evident; elongated features, such as roads and
rivers, are usually easily recognisable. This method of image classification,
depending as it does on a posteriori9 recognition of the classes, is as noted earlier,
called unsupervised classification since the analyst plays no part in class definition
until the computational aspects are complete.

Unsupervised classification can be used as a stand-alone technique, particularly
when reliable training data for supervised classification cannot be obtained or is too
expensive to acquire. However, it is also of value, as noted earlier, to determine the
spectral classes that should be considered in a subsequent supervised approach.
This is pursued in detail in Chap. 11. It also forms the basis of the cluster space
method for handling high dimensional data sets, treated in Sect. 9.14.

9.8 An Example of Clustering with the kMeans Algorithm

To illustrate the nature of the results produced by the k means algorithm consider
the segment of HyMap imagery in Fig. 9.3a, which shows a highway interchange
near the city of Perth in Western Australia. It was recorded in January 2010 and
consists of vegetation, roadway pavements, water and bare and semi-bare areas.
Figure 9.3b shows a scatter diagram for the image in which a near infrared channel
(29) is plotted against a visible red channel (15). This is a subspace of the five
channels used for the clustering, as summarised in Table 9.1.

The data was clustered using the k means (Isodata) procedure available in
MultiSpec. The algorithm was asked to determine six clusters, since a visual
inspection of the image showed that to be reasonable. No merging and splitting
options were employed, but any clusters with fewer than 125 pixels at the end of the
process were eliminated. The results shown in Fig. 9.3c were generated after 8
iterations. The cluster means are plotted in just two dimensions in Fig. 9.3d, while
Table 9.2 shows the full five-dimensional means which, as a pattern, exhibit the
spectral reflectance characteristics of the class names assigned to the clusters. The
class labels were able to be found in this exercise both because of the spatial
distributions of the clusters and the spectral dependences seen in Table 9.2.

It is important to realise that the results generated in this example are not unique
but depend on the clustering parameters chosen, and the starting number of clusters.

In practice the user may need to run the algorithm a number of times to generate
a segmentation that matches the needs of a particular analysis. Also, in this simple
case, each cluster is associated with a single information class; that is usually not
the case in more complex situations.

9 That is, after the event.
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9.9 A Single Pass Clustering Technique

Alternatives to the k means and Isodata algorithms have been proposed and are
widely implemented in software packages for remote sensing image analysis. One,
which requires only a single pass through the data, is described in the following.
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Fig. 9.3 a Segment of a HyMap image of Perth, Western Australia; b scatterplot of the image in a
near infrared–visible red subspace; c k means clustering result, searching for 6 clusters using the
channels specified in Table 9.1; d cluster means in the near infrared–visible red subspace

Table 9.1 HyMap channels used in the k means clustering example

Channel Band centre (nm) Band width (nm)
7 (visible green) 511.3 17.6
15 (visible red) 634.0 16.4
29 (near infrared) 846.7 16.3
80 (middle infrared) 1616.9 14.8
108 (middle infrared) 2152.7 30.2
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9.9.1 The Single Pass Algorithm

The single pass process was designed originally to be a faster alternative to iterative
procedures when the image data was only available in sequential format, such as on
a magnetic tape. Nevertheless, the method is still used in some remote sensing
image applications, particularly when the data sets are too large to accommodate
iteration. Single pass techniques are also called streaming methods and have the
added attraction that clustering can be refined as further samples become available.

A randomly selected set of samples is often chosen to generate the clusters,
rather than using the full image segment of interest. The samples are arranged into a
two-dimensional array. The first row of samples is employed to obtain a starting set
of cluster centres. This is initiated by adopting the first sample as the centre of the
first cluster. If the second sample in the first row is further away from the first
sample than a user-specified critical spectral distance, then it is used to form another
cluster centre. Otherwise, the two samples are said to belong to the same cluster and
their mean is computed as the new cluster centre. This procedure, which is illus-
trated in Fig. 9.4, is applied to all samples in the first row. Once that row has been
exhausted the multidimensional standard deviations of the clusters are computed.

Table 9.2 Cluster centres for the k means (Isodata) exercise in Fig. 9.3

Cluster mean vectors (on 16 bit scale)

Cluster Label Channel 7 Channel 15 Channel 29 Channel 80 Channel 108
1 Building 3511.9 3855.7 4243.7 4944.2 4931.6
2 Sparse veg 1509.6 1609.3 4579.5 3641.7 2267.0
3 Bare 1333.9 1570.7 2734.3 2715.1 2058.7
4 Trees 725.6 650.6 3282.4 1676.2 866.6
5 Road 952.3 1037.1 1503.7 1438.5 1202.3
6 Water 479.2 391.1 354.8 231.0 171.6
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pixel vectors
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computed cluster means

Fig. 9.4 Generation of
cluster centres using the first
row of samples
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Each sample in the second and subsequent rows is checked to see to which
cluster it is closest. It is assigned to that cluster if it lies within a user-prescribed
number of standard deviations; the cluster statistics are then recomputed.
Otherwise, that sample is used to form a new cluster centre (which is assigned a
nominal standard deviation), as shown in Fig. 9.5. In that manner all the samples
are clustered, and clusters with fewer than a prescribed number of pixels are
deleted. Should a cluster map be required then the original segment of image data is
scanned pixel by pixel and each pixel labelled according to the cluster to which it is
closest, on the basis usually of Euclidean distance. Should it be an outlying pixel, in
terms of the available cluster centres, it is not labelled.

9.9.2 Advantages and Limitations of the Single Pass
Algorithm

Apart from speed, a major advantage of this approach over the iterative Isodata and
k means procedures is its ability to create cluster centres as it proceeds. The user
does not need to specify the required number of clusters beforehand. However, the
method has limitations. First, the user has to have a feel for the necessary param-
eters. The critical distance parameter needs to be specified carefully to enable a
satisfactory set of initial cluster centres to be established. In addition, the user has to
know how many standard deviations to use when assigning pixels in the second and
subsequent lines of samples to existing clusters. With experience, those parameters
can be estimated reasonably.

Another limitation is the method’s dependence on the first line of samples to
initiate the clustering. Since it is only a one pass algorithm, and has no feedback
checking mechanism by way of iteration, the final set of cluster centres can depend
significantly on the character of the first line of samples.

2
used to start 
a new cluster

1
2

3

+1
included in exis ng cluster

Fig. 9.5 If later samples lie
within a set number of
standard deviations (dotted
circles) they are included in
existing clusters, otherwise
they start new clusters
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9.9.3 Strip Generation Parameter

Adjacent pixels along a line of image data frequently belong to the same cluster,
particularly for images of cultivated regions. A method for enhancing the speed of
clustering is to compare a pixel with its predecessor and immediately assign it to the
same cluster if it is similar. The similarity measure used can be straightforward,
consisting of a check of the brightness difference in each spectral band. The dif-
ference allowable for two pixels to be part of the same cluster is called the strip
generation parameter.

9.9.4 Variations on the Single Pass Algorithm

The single pass technique has a number of variations. For example, the initial
cluster centres can be specified by the analyst as an alternative to using the critical
distance parameter in Fig. 9.4. Also, rather than use a multiplier of standard
deviation for assigning pixels from the second and subsequent rows of samples,
some algorithms proceed exactly as for the first row, without employing standard
deviation. Some algorithms use the L1 metric of (9.2), rather than Euclidean dis-
tance, and some check inter-cluster distances and merge if desired; periodically
small clusters can also be eliminated. MultiSpec uses critical distance parameters
over the full range, although the user can specify a different critical distance for the
second and later rows of samples.

9.9.5 An Example of Clustering with the Single Pass
Algorithm

The single pass option available in MultiSpec was applied to the data set of
Fig. 9.3. The critical distances for the first and subsequent rows were chosen as
2500 and 2800 respectively. Those numbers are so large because the data we are
dealing with is 16 bit (on a scale of 0 to 65,535) and there are five bands involved.
The image was not sampled prior to clustering; all pixels were used. The results are
shown in Fig. 9.6 and Table 9.3.

Several points are important to note. First, the image and map as displayed were
rotated 90 degrees clockwise after clustering to bring them to a north–south ori-
entation from the east–west flight line recorded by the HyMap instrument for this
mission. (The same was the case for the data of Fig. 9.3). Therefore, the line of
pixels used to generate the original set of cluster centres is that down the right-hand
side of the image. Secondly, the clusters are different from those in Fig. 9.3, and a
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slightly different class naming has been adopted. Again, it was possible to assign
information class labels to the clusters because of the mean vector behaviour seen in
Table 9.3, and the spatial distribution of the clusters. In this case, compared with
Fig. 9.3, there are two spectral classes called “bare.”
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Fig. 9.6 a Segment of a HyMap image of Perth, Western Australia; b scatterplot of the image in a
near infrared–visible red subspace; c Single pass clustering result using the channels specified in
Table 9.1; d cluster means in the near infrared–visible red subspace

Table 9.3 Cluster centres for the single pass exercise in Fig. 9.6

Cluster mean vectors (on 16 bit scale)

Cluster Label Channel 7 Channel 15 Channel 29 Channel 80 Channel 108
1 Bare 1 2309.7 2632.9 3106.1 3713.2 3663.4
2 Building 3585.8 3901.5 4300.5 4880.7 4870.2
3 Road/trees 900.4 940.0 2307.6 1640.2 1143.4
4 Grassland 1441.3 1447.2 4798.6 3455.6 2028.6
5 Water 490.4 408.2 409.0 274.9 207.5
6 Bare 2 1372.7 1630.5 3105.7 3033.3 2214.8
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9.10 Hierarchical Clustering

Another approach that does not require the user to specify the number of classes
beforehand is hierarchical clustering. This method produces an output that allows
the user to decide on the set of natural groupings into which the data falls. There are
two types of hierarchical process. The first commences by assuming that all the
pixels individually are distinct clusters; it then systematically merges neighbouring
clusters by checking distances between means. That is continued until all pixels
have been grouped into one single, large cluster. The approach is known as
agglomerative hierarchical clustering. The second method, called divisive hierar-
chical clustering, starts by assuming all the pixels belong to one large, single
cluster, which is progressively subdivided until all pixels form individual clusters.
This is a computationally more expensive approach than the agglomerative method
and is not considered further here.

9.10.1 Agglomerative Hierarchical Clustering

In the agglomerative approach a history of the mergings, or fusions, is displayed on
a dendrogram. That is a diagram that shows at what distances between centres
particular clusters are merged. An example of hierarchical clustering, along with its
fusion dendrogram, is shown in Fig. 9.7. It uses the same two-dimensional data set
as in Fig. 9.2 but note that the ultimate cluster compositions are slightly different.
This demonstrates again that different algorithms can and do produce different
cluster results.

The fusion dendrogram of a particular hierarchical clustering exercise can be
inspected to determine the intrinsic number of clusters or spectral classes in the
data. Long vertical sections between fusions in the dendrogram indicate regions of
“stability” which reflect natural data groupings. In Fig. 9.7 the longest stretch on
the distance scale between fusions corresponds to two clusters in the data. One
could conclude therefore that this data falls most naturally into two groups. In the
example presented, similarity between clusters was judged on the basis of
Euclidean distance. Other similarity measures are sometimes used, as noted below.

9.11 Other Clustering Metrics

Clustering metrics other than simple distance measures exist. One derives a within
cluster scatter measure by computing the average covariance matrix over all the
clusters, and a between cluster scatter measure by looking at how the means of the
clusters scatter about the global mean of the data. Those two measures are
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combined into a single figure of merit10 based on minimising the within cluster
scatter while attempting to maximise the among cluster measure. It can be shown
that figures of merit such as those are similar to the sum of squared error criterion.
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Fig. 9.7 Agglomerative hierarchical clustering of the data in Fig. 9.2

10 See Duda, Hart and Stork, loc. cit., or G.B. Coleman and H.C. Andrews, Image segmentation by
clustering, Proc. IEEE, vol. 67, no. 5, 1979, pp. 773–785.
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Similarity metrics can incorporate measures other than spectral likeness. Spatial
proximity might be important in some applications as might properties that account
for categorical information. For example, clustering crop pixels might be guided by
all of spectral measurements, soil type and spatial contiguity.

9.12 Some Alternative Clustering Techniques

9.12.1 Histogram Peak Selection

From time-to-time some other clustering algorithms have been applied to remote
sensing image data, although with the increasing spectral dimensionality of imagery
some have fallen into disuse. If the dimensionality is small—say 3 or 4 data
channels—and the radiometric resolution is limited, clustering by histogram peak
selection is viable.11 That is the multidimensional form of histogram thresholding
often used to segment scenes in picture processing.12

9.12.2 Mountain Clustering

Not unlike histogram peak selection is the technique of mountain clustering. It seeks
to define cluster centres as local density maxima in the spectral domain. In its
original form the spectral space was overlaid with a grid; the grid intersections were
then chosen as sites for evaluating density.13 More recently, the density maxima
have been evaluated at each pixel site rather than at overlaid grid positions.14 The
method, which could be used as a clustering technique in its own right, or as a
process to initialise cluster centres for algorithms such as Isodata, sets up a function,
called a mountain function, that measures the local density about each pixel.
A typical mountain function for indicating density in the vicinity of pixel xi could be

m xið Þ ¼
X
j

exp �bd xj; xi
� �2h i

11 See P.A. Letts, Unsupervised classification in the Aries image analysis system, Proc. 5th
Canadian Symposium on Remote Sensing, 1978, pp. 61–71, or J.A. Richards and X. Jia, Remote
Sensing Digital Image Analysis, 4th ed., Springer, Berlin, 2006, Sect. 9.8.
12 See K.R. Castleman, Digital Image Processing, 2nd ed., Prentice-Hall, N.J., 1996.
13 R.R. Yager and D.P. Filev, Approximate clustering via the mountain method, IEEE
Transactions on Systems, Man Cybernetics, vol. 24, 1994, pp. 1279–1284.
14 S.L. Chiu, Fuzzy model identification based on cluster estimation, J Intelligent Fuzzy Systems,
vol. 2, 1994, pp. 267–278, and M-S. Yang and K-L Wu, A modified mountain clustering algo-
rithm, Pattern Analysis Applications, vol. 8, 2005, pp. 125–138.
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in which d xj; xi
� �

is the distance from that pixel to another pixel xj, and b is a
constant that effectively controls the region of neighbours. Once the largest m xið Þ
has been found, that density maximum is removed or de-emphasised and the next
highest density is found, and so on.

9.12.3 k Medians Clustering

In Sect. 5.3.2 median filtering of an image was seen as an alternative to mean value
smoothing in cases where there were outlying or atypical pixel brightness values. If
a data set to be clustered is suspected of having outlying samples then some authors,
for the same reason, adopt the use of the cluster medians in the k means algorithm
of Sect. 9.3 instead of the cluster means. Then called k medians clustering it has the
same algorithm of Sect. 9.3.1 but based on medians.

This approach requires the definition of a multidimensional median. As noted in
Sect. 5.3.2 the (one dimensional) median of a set of numbers is that member of the
set which sits in the middle. In effect, it is more similar to all the other members of
the set than any other member.

When we come to more than one dimension, there is no single definition of a
median in common use. One approach is to find the point in the multiple dimen-
sional space which is least different from every point in the set. That requires using
a measure, such as the sum of squared error criterion of (9.3), or even the sum of
Manhattan distances from a point to all members of the set, and then finding the
point at which that measure is a minimum. This can lead to a median position
(point) which is not one of the set members, which is acceptable under this defi-
nition. If we wish to restrict attention just to set members then that leads to the
concept of the medoid, in the next section.

Another method for computing a multidimensional median is to find the actual
single dimensional medians in each of the spectral axes, from which the multidi-
mensional median is set by using those marginal medians as its spectral
components.

9.12.4 k Medoids Clustering

More common than k medians clustering is k medoids. The medoid is that member
of a multidimensional set, which is most typical of the set. It more closely
resembles the concept of a median than the definitions given in the previous section.
Again, k medoids clustering can be advantageous when the data set has outlying or
atypical members.

There are several variations of the k medoids approach, but most operate along
the lines of the following algorithm (Fig. 9.8).
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1. Select a value for C, the number of clusters into which the pixels are to be
grouped.

2. Initialise cluster generation by selecting C points in spectral space to serve as
candidate medoids. Call these

m̂c c ¼ 1 . . .C

In principle the choice of the m̂c at this stage is arbitrary with the exception that
no two can be the same.

3. Assign each pixel vector x to the candidate cluster of the nearest medoid using
an appropriate distance metric in the spectral space. Manhattan distance is often
used with medoids, because of the ease of computation. That generates a cluster
of pixel vectors about each candidate medoid.
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Fig. 9.8 An example of the application of k medoids clustering using the data set of Fig. 9.2.
Interestingly, the same clusters are generated. The arrows shown as ✓ and ✗ indicate acceptable
and unacceptable reallocation of the medoids. The two separate numbers shown in the cost sum are
for cluster A and cluster B respectively; there is no further improvement beyond the bottom right
hand cluster assignment
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4. Compute a cost function for the current configuration, based on the accumulated
Manhattan distance of all pixel points from their medoid:

cost ¼
X
Cc

X
x2Cc

x�mcj j

The outer sum is over clusters while the inner sum is taken within the clusters.
5. Replace one of the medoids with a randomly selected pixel vector x�.

Recompute the cost of the configuration.
6. If the new cost is lower than the previous cost, keep the new configuration,

including the replacement of the old medoid by x�. Otherwise keep the old
configuration.

7. Repeat steps 5 and 6 until the configuration with the lowest cost has been
achieved.

This process is illustrated in Fig. 9.8 using the two dimensional data set from
Fig. 9.2.

The k medoids algorithm is time consuming to run because of the very large
number of replacements and comparisons required. As a result, it is not used with
large data sets unless modified—one such modification is called CLARA
(Clustering Large Applications).15

9.13 Clustering Large Data Sets

We now want to explore how to cluster image data sets that are very large, such that
iterative procedures like k means in their standard form present challenges.

Consider the time demand of the k means algorithm. For P pixels, C clusters and
I iterations, the k means algorithm requires PCI distance calculations. For N bands,
the distance calculations involve N multiplications each, giving a total of PCIN
multiplications to complete a k means clustering exercise. For a 1000 � 1000
image segment, involving 200 bands and searching for 15 clusters, if 100 iterations
were required then 30 � 1010 multiplications are needed! Further, all the data needs
to be held in memory to make the iterative process acceptable. Nevertheless,
because of its simplicity, the k means algorithm is still used with big data sets if:

• A more powerful processor can be employed.
From an operational point of view this can be a difficult choice since most
remote sensing practitioners would require access to readily available, and
not specialized, computer hardware.

• A careful method for initiating the cluster centres could be used to speed up
convergence by reducing the number of iterations needed.

15 C.C. Aggarwal and C. K. Reddy, Data Clustering Algorithms and Applications, CRC Press,
Roca Baton 2014. p. 94.
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• A multi-processor (multi-core) machine could be used to speed up the
computation.

This is a good approach when multi-core machines are available; however,
steps need to be taken to parallelise the k means algorithm which, because of
its iterative nature, requires some innovative approaches.16

• A more efficient version of the k means algorithm might be possible.
We will examine one such technique in the next section, which speeds up
significantly the time required to undertake clustering and to allocate a pixel
to a cluster class.

Some algorithms by their nature can handle larger data sets, such as those which
don’t iterate but stream the input data to the algorithm. The single pass method of
Sect. 9.9 is one such approach. Another is DBSCAN, which is outlined in
Sect. 9.13.2.

9.13.1 The K Trees Algorithm

As the name implies K trees is a tree-based approach to clustering. We met decision
trees in the context of the support vector machine, but now we want to look at them
again in a different setting. We start with some nomenclature, defined in Fig. 9.9,
which also sets up the basis of the K trees process.

root
node

internal
nodes

leaf
nodes

a decision to follow a particular branch is made in 
the in the node from which the branches emanate

pixels are fed in at the root 
node, in tree building and use

algorithm determines tree 
structure and node properties

the leaf nodes hold the 
clusters generated 

K trees operation

Fig. 9.9 Definitions for a decision tree and the structure of the K trees process

16 See for example X. Cui, P. Zhu, K. Li and C. Ji, Optimised big data K-means clustering using
MapReduce, J. Supercomputing, vol. 70, 2014, pp. 1249–1259, and A. Mohebi, S. Aghabozorgi,
T.Y. Wah, T. Herewan and R. Yahyapour, Iterative big data algorithms: a review, Software
Practice and Experience, vol. 46, 2016, pp. 107–129.
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Trees consist of nodes, linked by branches. The uppermost node is called the
root, and the lowermost nodes are called leaf nodes, curiously upside-down com-
pared with a physical tree. In between the root and leaf nodes there are internal
nodes. The nodes are arranged in layers, as shown. Progression of a pixel down the
tree is based on decisions at the nodes; those decisions direct the pixel into one of
the available branches.

In the K trees algorithm, we allocate leaf nodes to the individual clusters that we
are trying to find. Because the clusters consist of sets of pixels, some authors
allocate leaf nodes to the individual pixels, with the actual clusters being the
internal nodes in the layer directly above. That does not help in developing the
algorithm and just adds an additional, unnecessary complication and so is not used
here.

Most clustering algorithms require some user-specified parameters. For the
k means technique it is the number of clusters to be generated; for the single pass
algorithm they are the critical distance and standard deviation multiplier. For the K
trees method, it is the maximum population of the nodes. Called the tree order, m, it
specifies that any node cannot have more than that number of members. Full details
of the algorithm will be found in Geva.17 That treatment is a little hard to under-
stand in the remote sensing context since it is written in the language of computer
science; so, we will develop the algorithm by example, using a simple
two-dimensional set of data, and using remote sensing terminology.

Our example uses the set of eight vector samples shown in Fig. 9.10. A tree
order of 3 will be used. Specification of the order controls the structure of the tree,
as we will see.

As shown at the left of Fig. 9.11a the tree starts with a single root node and a
single leaf. We then feed in the first sample, say c: This is called insertion. Since we
have no other information, it simply flows down to the leaf node, as does the second
sample a. We now insert a third sample, say g; it can be accommodated, but it fills
the leaf node, since we have specified a tree order of 3. A fourth sample, say d,
cannot be accommodated in the current tree because the leaf node cannot contain
more than 3 samples by design. That leaf node has to be split. The K trees algorithm
does the split into two by doing a k means clustering of the four samples, as shown
in Fig. 9.12. The split is shown in Fig. 9.11b and the root node contains the mean
vectors of the (leaf) nodes directly below it.

The tree now has capacity to absorb more pixels, so a 5th sample f can be
inserted as shown in Fig. 9.11c. That pixel vector is checked against the two mean
vectors in the root node. It is closest to mcd so it is allocated to the left-hand leaf
node and the corresponding cluster mean is updated and used in the root node as
mcdf .

17 S. Geva, K-tree: a height balanced tree structured vector quantizer. Neural Networks for Signal
Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop, IEEE,
Sydney, 2000, pp. 271–280.
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Continuing in this manner of splitting nodes by k means clustering when they
become full, and using mean vectors in place of all the pixels which go down a
particular path, leads to the final K tree shown in Fig. 9.13. It has three layers, with
two internal nodes and four leaf nodes. Any pixel vector fed into the top of the tree
will make its way down to one of the clusters via the decisions (Euclidean distance

1 4 5 7 6 2 3 
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4 

ℎ

= 46

= 21= 73
= 13
= 44

= 43

Fig. 9.10 Samples to be used to demonstrate K trees clustering

first 
insertion

second
insertion

third
insertion 

fourth
insertion

,
root

leaf , , , , , !

root

,,
= 2.332.33

,, ,

a 

b c 

fifth= 2.53.0= 4.56.0

Fig. 9.11 a Initialisation and insertion of the first set of pixels, the fourth of which cannot be
accommodated in the leaf node; b splitting the leaf node by k means clustering as in Fig. 9.12; the
root is now populated with the mean vectors of the nodes below; c accommodating the fifth pixel,
following which the relevant mean vector in the root is updated
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comparisons) at the root and internal nodes. For example, the vector
3:0
3:0

� �
will

flow through into the cluster c; d.
Apart from how well they cluster, there are two things we want to know about

clustering algorithms. First, how long does it take to build the tree and, secondly,
especially with unsupervised classification in mind, how quick is it at allocating
unseen data to a cluster?

If we look at the speed of allocation first, we can do so by counting the number
of distance comparisons. In the simple example here, both the K trees and the
equivalent k means approach require the same number of comparisons. But what
about with bigger data sets?

If we take the simplest case of each node in the K tree requiring two distance
comparisons, the number of comparisons increases by 2 for each new layer added,
which in this case also doubles the number of clusters. By contrast, the number of
distance comparisons for the k means algorithm goes up as powers of 2. So, for
larger numbers of clusters the K trees algorithm is much faster when allocating an
unseen sample to an existing cluster.

1 4 5 7 6 2 3 
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6 

5 

4 

initial cluster centres

final cluster centres

We need to find two clusters using the k means 
algorithm, which for this simple case is trivial.

• Choose the two initial cluster centres

• Allocate the pixels to the clusters; one cluster is 
(c,d) and the other is (a,g) 

• Calculate the new means

• Reallocate the pixels—in this simple case the 
cluster memberships don’t change, so the means 
as calculated are the final values

• Call the means and , where 

Fig. 9.12 Using k means clustering to separate the four sample pixels in the leaf node of
Fig. 9.11a, allowing the node to be split as seen in Fig. 9.11b

= 2.252.25= 5.04.75
internal nodes

leaf nodes , ℎ, ,,

root node

Fig. 9.13 The final K trees
clustering of the samples in
Fig. 9.10
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Getting a meaningful comparison of the times to build the K tree and the k means
clusters is not straightforward. We can make comments on the number of nodes to
be built and the checks within them, but the complexity introduced by the effect of
different tree orders makes meaningful theoretical comparisons difficult. However, a
number of trials by Geva18 shows that the K trees method is significantly faster than
k means in developing the clusters, although he comments that the k means
approach performed slightly better.

A significant factor in favour of the K trees approach is that it can be adapted to
run on multi-core processors and does not require all samples to be held in core
memory during clustering.19

9.13.2 DBSCAN

The DBSCAN algorithm20 (Density Based Spatial Clustering of Applications with
Noise) is another approach that can be applied to large data sets. In some ways it is
similar to the single pass algorithm of Sect. 9.9 but, whereas the single pass
approach favours the generation of hyperspherical clusters because of its full reli-
ance on distance metrics, DBSCAN can grow elongated clusters if the data is so
distributed. It can also reject data points from any available cluster if they are not
strongly attached to a cluster. Those rejected points are called noise in the termi-
nology of the algorithm. Often they are outliers and should not be put into a cluster
in any case. The other algorithms we treated earlier incorporate them and they can,
therefore, distort the clusters.

As the name implies, DBSCAN relies on the assumption that clusters are dense
regions of spectral space.21 Characterisation of density is central to cluster devel-
opment; all acceptable clusters have to have a minimum density of data points. This
is controlled through the use of two parameters: the minimum number of points per
primitive cluster, usually called MinPts, and a radius defining a primitive cluster
size called Eps, or sometimes e. The term “primitive” here is taken to mean the
smallest possible, or starting cluster, size from which larger clusters can be grown.
DBSCAN encourages clusters to merge into elongated groups if the density of the
data points is more smeared out, as we will see in the following description of its

18 loc cit., Fig. 4.
19 A. Woodley, L-X Trang, S. Geva, R Nayak and T. Chappell, Parallel K Tree: A multicore,
multimode solution to extreme clustering, Future Generation Computing Systems, Vol 99, October
2019, pp. 333–345.
20 M. Ester, H-P. Kriegel, J. Sander and X. Xu A density-based algorithm for discovering clusters
in large spatial databases with noise, Proc Second Int Conf on Knowledge Discovery and Data
Mining, Aug. 1996, pp. 226–231.
21 The histogram peak selection and mountain clustering algorithms in Sect. 9.12 are also effec-
tively density-seeking techniques.

9.13 Clustering Large Data Sets 393



operation, and in the example in Fig. 9.14 which uses the same data set we adopted
to demonstrate K Trees.

The method proceeds as follows:

1. One of the points in the data set to be clustered is chosen randomly. Its spectral
neighbourhood, set by the density radius Eps, is searched to find other data
points in that neighbourhood. If the number of points found equals or exceeds
MinPts, then the selected point starts a cluster and is said to be a core point.
Members of the cluster are all the neighbours. This is what is meant by a
primitive cluster.

2. If the point selected in 1 does not have any neighbour within Eps it is called a
noise point. It is not assigned to any cluster, effectively removing it from the
process.

3. If the point selected in 1 is a core point, then each of its neighbours is checked to
see whether they are also core points: that is, they have more than MinPts
neighbours within Eps. If they are core, then their neighbours are added to those
found in step 1 to create a larger cluster still. As can be envisaged, while the
initial (primitive) cluster would be hyperspherical, growing the cluster using the
neighbours of the other core points makes possible the generation of very
elongated clusters.

4. If at step three the neighbours do not satisfy the requirements to be core points,
they are called border points and while regarded as members of the cluster they
cannot be used to find more neighbours because they are not part of a dense

1. Randomly choose b. Neighbours are a and c.
Therefore, b is core, and cluster 1 is initiated. 

2. Check a. It is a core sample with neighbours b and g.
Since a is directly density reachable from b its
neighbours are added to cluster 1.

3. Check neighbour c of b. The density test fails (Eps OK
but MinPts not). Thus, it is a border point.

4. Check neighbour g of a. The density test fails (Eps OK
but MinPts not). Thus, it is a border point.

5. We can go no further with the first cluster. Choose
randomly another point from the data set that has not
yet been considered, say d. It fails the density test
because there are not at least two samples within
distance 2 but it could be a border point.

6. Randomly choose another point from the data set that
has not yet been considered, say h. The density test is
satisfied, and it is thus a core point, used to start cluster
2. Point d now becomes confirmed as a border point.

7. Randomly choose another point from the data set that
has not yet been considered, say e. It fails the density
test and is not close enough to a cluster to be a border
point, so it is noise (an outlier)

8. Finally choose the last point from the data set f. It fails
the density test but is close enough to h to be another
border point of cluster 2
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ℎ

Fig. 9.14 Illustration of the operation of the DBSCAN algorithm. Here the parameter values
Eps = 2 and MinPts = 2 were used, along with Manhattan distance
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enough neighbourhood; instead, they seem to be on the edge or border of a
region of density.

There is some nomenclature that will be found in treatments of DBSCAN. Apart
from core point, border point and noise point defined above, the following terms
are also often used. Note that by referring to density they are just reminding us that
the fundamental approach is density-seeking.

A point q is directly density-reachable from another point p if p is in the
neighbourhood of q and q is a core point of its neighbourhood.

A point q is density-reachable from another point p if they can be linked via a
chain of directly density-reachable points.

Two points are density-connected if both are density reachable from another
common point.

9.14 Cluster Space Classification

Whereas the high dimensionality of hyperspectral data sets presents a processing
challenge to statistical supervised classifiers such as the maximum likelihood rule
(see Sect. 8.3.7), clustering and thus unsupervised classification with hyperspectral
imagery is less of a problem because there are no parameters to be estimated. As a
result, clustering can be used as a convenient bridge to assist in thematic mapping
with high dimensional data.

The cluster space technique now to be developed is based first on clustering
image data and then using reference data to link clusters with information classes.22

Importantly, the power of the method rests on the fact that there does not need to be
a one-to-one association of clusters (spectral classes) and information classes. That
has the benefit of allowing the analyst the flexibility of generating as many clusters
as needed to segment the spectral domain appropriately without worrying too much
about the precise class meanings of the clusters produced. The significance of that
lies in the fact that the spectral domain is rarely naturally composed of discrete
groups of pixels; rather it is generally more of the nature of a multidimensional
continuum, with a few density maxima that might be associated with spectrally
well-defined classes such as water.23

The method starts by assuming that we have clustered the spectral domain as
shown in the two-dimensional illustration of Fig. 9.15. Suppose, by the use of

22 See X. Jia and J.A. Richards, Cluster space representation for hyperspectral classification, IEEE
Transactions on Geoscience and Remote Sensing, vol. 40, no.3, March 2002, pp. 593–598. This
approach is a generalisation of that given by M.D. Fleming, J.S. Berkebile and R.M. Hofer,
Computer aided analysis of Landsat-1 MSS data: a comparison of three approaches, including a
modified clustering approach, Information Note 072,475, Laboratory for Applications of Remote
Sensing, Purdue University, West Lafayette, Indiana, 1979.
23 See J.A. Richards & D.J. Kelly, On the concept of spectral class, Remote Sensing Letters, vol 5,
1984, pp. 987–991.
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reference data, we are able to associate clusters with information classes, as shown
by the overlaid boundaries in the figure. An information class can include more than
one cluster and some clusters appear in more than one information class.

By counting the pixels in each cluster, we can estimate the set of cluster con-
ditional probabilities

p xjcð Þ c ¼ 1 . . .C

in which C is the total number of clusters. For convenience we might assume the
clusters are normally distributed so this cluster conditional density function is
represented by its mean and covariance, which can be estimated from the relevant
pixels if the dimensionality is acceptable. Clustering algorithms such as k means
and Isodata tend to generate hyperspherical clusters so we generally assume a
diagonal covariance matrix with identical elements, in which case there are many
fewer parameters to estimate.

From Bayes’ theorem we can find the posterior probability of a given cluster
being correct for a particular pixel measurement vector

p cjxð Þ ¼ p xjcð Þp cð Þ
p xð Þ c ¼ 1 . . .C ð9:4Þ

in which pðcÞ is the “prior” probability of the existence of cluster c. That can be
estimated from the relative populations of the clusters.

By examining the distribution of the information classes over the clusters we can
generate the class conditional probabilities

p cjxið Þ i ¼ 1 . . .M

whereM is the total number of information classes. Again, from Bayes’ theorem we
have

distribution of data

clusters (spectral classes)

information classes

Fig. 9.15 Relationship
between data, clusters and
information classes
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p xijcð Þ ¼ p cjxið Þp xið Þ
p cð Þ i ¼ 1 . . .M ð9:5Þ

We are interested in the likely information class for a given pixel, expressed in the
set of posterior probabilities p xijxð Þ i ¼ 1 . . .M. These can be written

p xijxð Þ ¼
XC
c¼1

p xijcð ÞpðcjxÞ i ¼ 1 . . .M

Substituting from (9.4) and (9.5) gives

p xijxð Þ ¼ 1
p xð Þ

XC
c¼1

p cjxið Þp xjcð Þp xið Þ i ¼ 1 . . .M ð9:6Þ

Since p xð Þ does not aid discrimination we can use the decision rule

x 2 xi if p0 xijxð Þ[ p0 xjjx
� �

for all j 6¼ i ð9:7Þ

to determine the correct class for the pixel at x, where p0 xijxð Þ = p(x)p xijxð Þ:
It is instructive now to consider a simple example to see how this method

works.24 For this we use the two-dimensional data in Fig. 9.16 which contains two
information classes A and B. For the clustering phase of the exercise the class labels
are not significant. Instead, the full set of training pixels, in this case 500 from each
class, is clustered using the k means algorithms. Here we have searched for just 4
clusters. The results for more clusters are given in Table 9.5. The resulting class
mean positions are seen in the figure. Although two appear among the pixels of
information class A and two among those for information class B that is simply the
result of the distribution of the training pixels and has nothing to do with the class
labels as such.

Using reference data (a knowledge of which pixels are class A and which are
class B) it is possible to determine the mapping between information classes and
clusters. Table 9.4 demonstrates that, both in terms of the number of pixels and the
resulting posterior probabilities pðcjxiÞ derived from a normalisation of the counts.
Also shown are the prior probabilities of the clusters.

From (9.6) and (9.7), and using the data in Table 9.4, we have (using c1 etc. to
represent the clusters)

p0 Ajxð Þ ¼ p c1jAð Þp xjc1ð Þp c1ð Þþ p c2jAð Þp xjc2ð Þp c2ð Þ
þ p c3jAð Þp xjc3ð Þp c3ð Þþ p c4jAð Þp xjc4ð Þp c4ð Þ

and

24 The computing for this example was carried out by Associate Professor Xiuping Jia.
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p0 Bjxð Þ ¼ p c1jBð Þp xjc1ð Þp c1ð Þþ p c2jBð Þp xjc2ð Þp c2ð Þ
þ p c3jBð Þp xjc3ð Þp c3ð Þþ p c4jBð Þp xjc4ð Þp c4ð Þ

The cluster conditional distribution functions p xjcð Þ; c 2 fc1; c2; c3; c4g are
obtained from the pixels in each cluster and, in this example, have been modelled
by spherical Gaussian distributions in which the diagonal covariances for each
cluster are assumed to be the same and equal to the average covariance over the four
clusters.
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Fig. 9.16 Two-dimensional data set used to illustrate the cluster space technique, and the four
cluster centres generated by applying the k means algorithm to the data

Table 9.4 Association of clusters and information classes

Number of pixels Cluster 1 Cluster 2 Cluster 3 Cluster 4
Class A 7 0 300 194
Class B 185 283 0 32

pðclusterjclassÞ Cluster 1 Cluster 2 Cluster 3 Cluster 4

Class A 0.014 0.000 0.600 0.386
Class B 0.370 0.566 0.000 0.064

pðclusterÞ 0.192 0.283 0.300 0.226

Table 9.5 Performance of the cluster space method as a function of the number of clusters

No. of clusters 2 3 4 5 6 10 14 18
On training set (%) 93.4 90.3 95.7 96.0 99.0 99.3 99.6 100
On testing set (%) 93.4 90.7 95.9 96.0 99.2 99.6 99.5 100
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Equation (9.7) can now be used to label the pixels. Based on the 1000 pixels of
training data used to generate the cluster space model, an overall accuracy of 95.7%
is obtained. Using a different testing set of 500 pixels from each class an accuracy
of 95.9% is obtained. Clearly, the performance of the method depends on how
effectively the data space is segmented during the clustering step. Table 9.5 shows
how the results depend on the numbers of clusters used.

9.15 Bibliography on Clustering and Unsupervised
Classification

Cluster analysis is a common tool in many fields that involve large amounts of data.
As a result, material on clustering algorithms will be found in the social and
physical sciences, and particularly fields such as numerical taxonomy. Because of
the enormous amounts of data used in remote sensing, the range of viable tech-
niques is limited so that some treatments contain methods not generally encoun-
tered in remote sensing. Standard texts on image processing and remote sensing
could be consulted. Perhaps the most comprehensive of these treatments is

R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons,
N.Y., 2001.

Other, more recent, coverages of clustering and unsupervised learning are in

C.C. Aggarwal and C. K. Reddy, Data Clustering Algorithms and Applications, CRC
Press, Roca Baton 2014.

T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference and Prediction, Springer Science + Business Media, N.Y., 2009.

H. Bangui, M. Ge and B. Buhnova, Exploring Big Data Clustering Algorithms for Internet
of Things Applications, Proc. 3rd Int. Conf. on Internet of Things, Big Data and Security
(IoTBDS 2018), 2019, pp. 269–276.

The seminal work on the Isodata algorithm is

G.H. Ball and D.J. Hall, A novel method of data analysis and pattern recognition, Stanford
Research Institute, Menlo Park, California, 1965.

Some more general treatments are

M.R. Andberg, Cluster Analysis for Applications, Academic, N.Y., 1973

B.S. Everitt, S. Landau, M. Leese and D. Stahl, Cluster Analysis, 5th ed., John Wiley and
Sons, N.Y., 2011

G. Gan, C. Ma and J. Wu, Data Clustering: Theory, Algorithms and Applications,
ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA,
Alexandria, Virginia, 2007

J.A. Hartigan, Clustering Algorithms, John Wiley & Sons, N.Y., 1975

J. van Ryzin, Classification and Clustering, Academic, N.Y., 1977.
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9.16 Problems

9:1 Find the Euclidean and city block distances between the following three
pixel vectors. which two are similar?

x1 ¼
4
4
4

2
4

3
5 x2 ¼

5
5
5

2
4

3
5 x3 ¼

4
4
7

2
4

3
5

9:2 Repeat the Exercise of Fig. 9.2 but with

(a) two initial cluster centres at (2, 3) and (5, 6),
(b) three initial cluster centres at (1, 1), (3, 3) and (5, 5), and
(c) three initial cluster centres at (2, 1), (4, 2) and (15, 15).

9:3 From a knowledge of how a particular clustering algorithm works it is
sometimes possible to infer the multidimensional spectral shapes of the
clusters generated. For example, methods that depend entirely on Euclidean
distance as a similarity metric would tend to produce hyperspheroidal clus-
ters. Comment on the cluster shapes you would expect to be generated by the
migrating means technique based on Euclidean distance, the single pass
procedure, also based on Euclidean distance, DBSCAN based on Manhattan
distance and DBSCAN based on Euclidean distance.

9:4 Suppose two different techniques have given two different cluster assign-
ments of a particular set of data and you wish to assess which of the two
segmentations is the better. One approach might be to evaluate the sum of
square errors measure treated in Sect. 9.2. Another could be based on
covariance matrices. For example, it is possible to define an “among clusters”
covariance matrix that describes how the clusters themselves are scattered
about the data space, and an average “within class” covariance matrix that
describes the average shape and size of the clusters. Let these matrices be
called CA and CB respectively. How could they be used together to assess the
quality of the two clustering results? (See G.R. Coleman and H.C. Andrews,
Image segmentation by clustering, Proc IEEE, vol. 67, 1979, pp. 773–785.)
Here you may wish to use measures of the “size” of a matrix, such as its trace
or determinant (see Appendix C).

9:5 Different clustering methods often produce quite different segmentations of
the same set of data, as illustrated in the examples of Figs. 9.3 and 9.6. Yet
the results generated for remote sensing applications are generally usable.
Why do you think that is the case? (Is it related to the number of clusters
generated?).

9:6 The Mahalanobis distance of (8.26) can be used as the similarity metric for a
clustering algorithm. Invent a possible clustering technique based on (8.26)
and comment on the nature of the clusters generated.
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9:7 Do you see value in having a two-stage clustering process in which a single
pass procedure is used to generate initial clusters and then an iterative
technique is used to refine them?

9:8 Recompute the agglomerative hierarchical clustering example of Fig. 9.7 but
use the L1 distance measure in (9.2) as a similarity metric.

9:9 Consider the two dimensional data shown in Fig. 9.2 and suppose the three
pixels at the upper right form one cluster and the remainder another cluster.
Such an assignment might have been generated by some clustering algorithm
other than the k means method. Calculate the sum of squared error for this
new assignment and compare with the value of 16 found in Fig. 9.2.

9:10 In the cluster space technique, how is (9.6) modified if there is uniquely only
one cluster per information class?

9:11 Is the K trees method for clustering preferable to the k means approach
because

(a) It finds a better set of clusters
(b) It is more accurate, or
(c) It is faster to train (find the clusters)?

9:12 Does the tree order parameter used with K trees clustering

(a) Specify the number of clusters to be found
(b) Specify the number of layers in the tree, or
(c) Set an upper limit on the population of each node?

9:13 How is a medoid different from a median? When are they always the same?
9:14 Clustering procedures are often used as the basis of unsupervised

classification

(a) Describe how
(b) Are the spectral classes (clusters) unique?
(c) How can the information classes be determined from the clusters

generated?

9:15 If you had undertaken clustering with the K trees method, based on a given
set of pixel vectors, and then another representative pixel became available
for training, how would insertion of that new pixel be handled by the tree; in
other words, how would the tree be modified? What would be the case if you
had used the k means approach instead?
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Chapter 10
Feature Reduction

Abstract Feature reduction is seen to be important for performing efficient and
effective classification, in that no more features than necessary should be used to
describe the pixel vectors. The range of commonly employed feature reduction
techniques are presented including those based on transforming the data before-
hand, those that exploit the correlations between near-neighbouring bands
(or features) and those based on measures that allow the least significant bands to be
identified. The principal components transform is shown to be suitable as the basis
of feature reduction in some circumstances, as is the transform based on canonical
analysis. The application of many of the procedures given is illustrated by
hand-worked examples.

10.1 The Need for Feature Reduction

Many remote sensing instruments record more channels or bands of data than are
usually needed for most applications. As a simple example, even though the
Hyperion sensor on EO-1 produces 220 channels of image data over the wavelength
range 0.4–2.4 lm, it is unlikely that channels beyond about 1.0 lm would be
relevant for water studies, unless the water were especially turbid. Furthermore,
unless the actual reflectance spectrum of the water was essential for the task at hand,
it may not even be necessary to use all the contiguous bands recorded in the range
0.4–1.0 lm; instead, a representative subset may be sufficient in most cases.

One of the first tasks facing an analyst is to determine whether all the available
bands need to be used in any particular study and, if not, how should a subset be
chosen that minimises any loss of information essential to the analysis. It is the
purpose of this chapter to consider methods for selecting acceptable subsets of
bands in the context of classification. We will also explore other means by which
the dimensionality of the data can be reduced. In this context the recorded bands are
called features, a term which has a more general meaning, as we will see soon.
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This raises an intriguing question. If we have to go to all the trouble of reducing
the feature subset for analysis, why not just record a smaller number of bands in the
first place? To answer that question, we need to examine the rationale behind
hyperspectral imaging.

Originally, hyperspectral imaging was referred to as imaging spectroscopy.
Spectroscopy means identifying a substance through the use of its spectral response
—or spectrum. Mass spectroscopy, visible spectroscopy and electron spectroscopy
are areas we are familiar with, in which an absorption or emission spectrum is used
to help us identify a substance.

Imaging spectroscopy is an application of the familiar field of (visible)
absorption spectroscopy at the pixel level. For each pixel we record the full
reflectance spectrum of the substance using reflected sunlight, usually over the
wavelength range of about 0.4–2.5 lm. What we are measuring is the sunlight
reflected to the sensor on a remote sensing platform after a component of the
sunlight has been absorbed by the surface material.

The reason the field is called imaging spectroscopy is because such a mea-
surement is done for every pixel in an image, as depicted in Fig. 10.1. For a
particular pixel, the large number of recorded bands represents samples of the
reflectance spectrum of the corresponding region on the ground. From those
samples we can reconstruct the reflectance spectrum of the pixel. Notice that the
reconstructed spectrum, if there are sufficient fine samples, shows various important
diagnostic features such as the dips corresponding to chlorophyll absorption in the
blue and red regions, and the water absorption bands. There are other finer
absorption features too, especially for soils and minerals. They do not show up on
this vegetation example.

One of the benefits of recording the full reflectance spectrum for a pixel is that
we can use scientific knowledge and spectral libraries to identify the pixel rather
than depend on supervised learning and machine classification. That is discussed in
Sect. 11.8.
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Fig. 10.1 Reconstructing a pixel spectrum from hyperspectral image data
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Although spectroscopic analysis is regularly applied in the earth sciences using
recorded hyperspectral image data, in many applications we still wish to use
machine learning methods for labelling a pixel. This approach is convenient and
does not rely on expert knowledge or recorded spectral libraries. But we then have
to face the problem that there are too many bands recorded to allow all of them to
be used as features in a supervised classification exercise. We need to find methods,
therefore, that will allow us to identify a subset of the recorded bands that is still
sufficient for the development of an accurate classifier.

In the early years of remote sensing image analysis, it was considered sensible
economically to ensure that no more features than necessary were utilised when
performing a classification, in order to contain computation costs.

That is now less important, and other factors drive the need for feature reduction.
Chief among these is the number of training pixels required to ensure that reliable
estimates of class signatures or classifier parameters can be generated. We have met
that problem under several names—the Hughes phenomenon, the curse of
dimensionality and over-fitting. See Sects. 8.3.7 and 8.21.11. The number of
training samples needed with most classification algorithms increases significantly
with the number of bands or channels. For high dimensional data, such as hyper-
spectral imagery, that requirement presents a particular challenge. Keeping the
number of informative features to as few as possible is especially important if
reliable results are to be expected when using affordable numbers of training pixels.

10.2 Approaches to Feature Reduction

We need to be clear on nomenclature. Features is the name given to the input data
to our various classification algorithms—most usually they are the recorded bands,
or some transformed version of the bands after, say, the application of the principal
components transform. In object detection they may be spatial descriptors. In some
applications the features sets may include both spectral and spatial descriptors.

In this chapter we are embarking on a search for methods to reduce the number
of features; this is called feature reduction in general, although some authors use the
term feature extraction. One approach to feature reduction is to select subsets of
bands, which still function effectively. That is called feature selection.

An enormous number of feature reduction techniques has been proposed over the
past few decades, particularly since the availability of hyperspectral image data.1

Some approaches are combined with the classification method being used by the

1 See D. Singh, S. Appavu and E. Leavline, Literature review on feature selection methods for
high-dimensional data, International Journal of Computer Applications (0975-8887) Vol. 136,
No. 1, February 2016, pp. 9–17 and B. Rasti, D. Hong, R. Hang, P. Ghasimi, X. Kang,
J. Chanussot and J. Benediktsson, Feature extraction for hyperspectral imagery, IEEE Geoscience
and Remote Sensing Magazine, December 2020, pp. 60–88.
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analyst, whereas others are independent of any specific machine learning algorithm.
Some of the methods transform the data sets so that feature selection is easier.

The methods we will look at can be put into three categories:

• Those that transform the data so that the least significant transformed bands can
be discarded

• Those that exploit the correlations among the recorded bands allowing them to
be treated in small groups

• Those that allow the least significant of the originally-recorded bands to be
discarded.

Irrespective of the approach used it is important that we do not cause classes in
the spectral domain to overlap by reducing features. Good classification results
depend on maintaining separation between the classes—in feature reduction, that
requirement is called separability. Later in this chapter we will introduce measures
of separability, but for now we will use the term generally.

10.3 Feature Reduction by Spectral Transforms

A popular means for carrying out feature reduction is to transform the data to a new
set of axes in which separability is higher in a subset of the transformed features
than in any subset of the original data. That allows the remaining transformed
features to be discarded. A number of different image transformations can be used
this. The most commonly encountered in remote sensing are the principal com-
ponents transform, the transformation associated with canonical analysis, and
versions of discriminant analysis, each of which is treated in the following sections.

10.3.1 Feature Reduction Using the Principal Components
Transform

The principal components transformation of Chap. 6 maps image data into a new,
uncorrelated coordinate system or vector space. In doing so, it produces a data
representation in which the most variance is along the first axis, the next largest
variance is along a second mutually orthogonal axis, and so on. The later principal
components would be expected, in general, to show little variance. They could be
regarded as contributing little to separability and thus could be ignored, thereby
reducing the essential dimensionality of the vector space, and leading to more
effective classification. That is only of value, however, if the spectral class structure
of the data is distributed substantially along the first few axes. Should that not be the
case, it is possible that feature reduction using transformed data may be no better
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than with the original data. In such a situation the technique of canonical analysis
may be better. Nevertheless, because of its simplicity the principal components
transformation is frequently used in practice.

As an illustration of a case in which the principal components transformation
does allow effective feature reduction, consider the two class, two dimensional data
set illustrated in Fig. 10.2. Assume that the classes are not separable in either of the
original data coordinates alone and that both dimensions are required for separa-
bility. Inspection of the data, however, suggests that the first component of a
principal components transform will separate the two classes. That is now
demonstrated mathematically by undertaking some manual calculations.

Notwithstanding the class structure of the data, the principal components
transformation makes use of the global mean and covariance. Using (6.1) and (6.3)
it can be shown that

m ¼ 4:50
4:25

� �
andC ¼ 2:57 1:86

1:86 6:21

� �

The eigenvalues of the covariance matrix are k1 ¼ 6:99 and k2 ¼ 1:79 so that the
first principal component will contain 79.6% of the variance. The normalised
eigenvectors corresponding to the eigenvalues are

g1 ¼ 0:387
0:922

� �
and g2 ¼ �0:922

0:387

� �
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Fig. 10.2 Two dimensional,
two class data set in which
feature reduction using the
principal components
transformation is possible
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so that the principal components transformation matrix is

G ¼ 0:387 0:922
�0:922 0:387

� �

The first principal component for each pixel vector is then found from

y1 ¼ 0:387x1 þ 0:922x2

The transformed pixel vectors are shown plotted in Fig. 10.3, in which it is seen
that the data is separable into the two classes in this single coordinate. Figure 10.3
also shows both principal axes relative to the original image axes, again demon-
strating separation in the first component but, for this example, significant class
overlap in the second component.
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components transformation of
the data in Fig. 10.2 showing
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10.3.2 Feature Reduction Using the Canonical Analysis
Transform

The principal components transformation is based on the global covariance matrix
of the full set of image data and is thus not sensitive to class structure. The reason it
often works well in remote sensing as a feature reduction tool is because classes are
frequently distributed in the direction of maximum data scatter. However, should
good separation not be given by the principal components transformation, derived
from the global covariance matrix, then a subset of image data could be selected
that contains the cover types of interest; that subset is then used to compute the
covariance matrix. The resulting transformation will have its first principal axis
oriented so that the cover types are well discriminated.

Another, more rigorous method for generating a transformed set of features, in
which class separation is optimised, is based on the procedure called canonical
analysis. To illustrate this approach, consider the two-dimensional, two class data
distributions shown in Fig. 10.4a. The classes can be seen not to be separable in
either of the original feature axes on their own. Nor will they be separable in only
one of the two principal component axes because of the nature of the global data
scatter compared with the scatter of data within the individual classes. It is clear,
however, that the data can be separated with a single feature if an axis rotation (an
image transformation) such as that shown in Fig. 10.4b is adopted. The primary
axis in this new transformation will be oriented so that the classes have the largest
possible separation between their means when projected onto that axis; at the same
time they appear as small as possible in their individual spreads. We characterise
the former by a measure r2A shown in the diagram, which we call the variance
among the classes. The spreads of data within the classes in the new axis are
characterised by r2W1 and r2W2. Our interest is in finding the new axis for which

r2A
r2W

¼ among class variance
within class variance

ð10:1Þ

is as large as possible; r2W is the average of r2W1 and r2W2 for this example.

10.3.2.1 Within-Class and Among-Class Covariance

To handle data with any number of dimensions it is necessary to define average data
scatter within the classes, and the manner in which the classes themselves scatter
about the multidimensional spectral domain. These properties are described by
covariance matrices. The average within-class covariance matrix is defined as
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CW ¼ 1
M

XM
i¼1

Ci ð10:2aÞ

in which Ci is the covariance matrix of the data in class i and where M is the total
number of classes. Equation (10.2a) applies only if the classes have equal popu-
lations. A better expression is

CW ¼ 1
N

XM
i¼1

ni � 1ð ÞCi ð10:2bÞ

where ni is the population of the ith class and N ¼ PM
i¼1 ni.

The among-class covariance is given by

CA ¼ E mi �moð Þ mi �moð ÞT
n o

ð10:3Þ

in which mi is the mean vector of the ith class and mo is the global mean, given by

mo ¼ 1
M

XM
i¼1

mi ð10:4aÞ

first principal axis

classes inseparable

axis along which
classes are separable

a b 

Fig. 10.4 a Two-dimensional, two class data set showing lack of separability in either of the
original axes or in either principal component, b demonstrating an axis along which the classes can
be separated
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when the classes have equal populations or, in general

mo ¼ 1
N

XM
i¼1

nimi ð10:4bÞ

10.3.2.2 A Separability Measure

Let y ¼ DTx be the required transform that generates a new set of axes y in which
the classes have optimal separation. By the same procedure that was used for the
principal components transformation in Sect. 6.3.2 it is possible to show that the
within-class and among-class covariance matrices in the new coordinate system are

CW ;y ¼ DTCW ;xD ð10:5aÞ

CA;y ¼ DTCA;xD ð10:5bÞ

where the subscripts x and y have been used to identify the matrices with their
respective coordinate systems. It is significant to understand here, unlike with the
case of principal components analysis, that the two new covariance matrices are not
necessarily diagonal. However, as with principal components, the row vectors of
DT define the axis directions in y space. Let dT be one particular vector, say that one
which defines the first axis along which the classes will be optimally separated.
Then the corresponding within class and among class variances will be

r2W ;y ¼ dTCW ;xd

r2A;y ¼ dTCA;xd

What we now want to do is to find the specific d, and ultimately the full trans-
formation matrix DT, that maximises

k ¼ r2A;y
r2W ;y

¼ dTCA;xd=dTCW ;xd ð10:6Þ

10.3.2.3 The Generalised Eigenvalue Equation

The ratio of variances in (10.6) is maximised by the value of d for which
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@k
@d

¼ 0

Noting the identity
@

@x
xTAx

� � ¼ 2Ax

then
@k
@d

¼ @

@d
dTCA;xd
� �

dTCW ;xd
� ��1

n o

¼ 2CA;xd dTCW ;xd
� ��1�2CW ;xd dTCA;xd

� �
dTCW ;xd
� ��2¼ 0

This reduces to CA;xd� CW ;xd dTCA;xd
� �

dTCW ;xd
� ��1¼ 0

which can be rewritten as ½CA;x � kCW ;x�d ¼ 0

ð10:7Þ

Equation (10.7) is called a generalised eigenvalue equation, which has to be solved
for the unknowns k and d. The first canonical axis will be in the direction of d,
while k will give the ratio of among-class to within-class variance along that axis.
Generalising (10.7) to incorporate all components we have

½CA;x � KCW ;x�D ¼ 0 ð10:8Þ

in which K is a diagonal matrix of the full set of ks and D is a matrix of the
vectors d.

The development to this stage is usually referred to as discriminant analysis. One
additional step is required in the case of canonical analysis. As with the equivalent
step in the principal components transformation, solution of (10.7) amounts to
finding the set of eigenvalues k and the corresponding eigenvectors d. While unique
values for the k can be determined, the components of d can only be found relative
to each other. In the case of principal components, we introduced the additional
requirement that the vectors have unit magnitude, thereby allowing them to be
determined uniquely. For canonical analysis, the additional constraint is

DTCW ;xD ¼ I ð10:9Þ

which says that the within-class covariance matrix after transformation must be the
identity matrix—a unit diagonal matrix. In other words, after transformation the
classes should appear spherical.

For M classes and N bands of data, if N[M � 1 there will only be M � 1
non-zero roots of (10.8) and thusM � 1 canonical axes.2 For this example, in which

2 See H. Seal, Multivariate Statistical Analysis for Biologists, Methuen, London, 1964, and N.
A. Campbell and W. R. Atchley, The geometry of canonical variate analysis, Systematic Zoology,
vol. 30, 1981, pp. 268–280.
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M and N are both 2, one of the eigenvalues of (10.7) will be zero and the corre-
sponding eigenvector will not exist. That implies that the dimensionality of the
transformed space will be less than that of the original data. In general, the classes
will have maximum separation along the first canonical axis, corresponding to the
largest k. The second axis, corresponding to the next largest k, will give the next
best degree of separation, and so on.

10.3.2.4 An Example

Consider the two dimensional, two category data shown in Fig. 10.5. Both of the
original features are required to discriminate between the two categories. We will
now perform a canonical analysis transformation on the data to show that the
categories can be discriminated in the first canonical axis.

The individual class covariance matrices are

CC ¼ 2:25 2:59
2:59 4:25

� �
andCD ¼ 4:25 3:00

3:00 6:67

� �

so that the within-class covariance is

CW ;x ¼ 1=2 CC þCDf g ¼ 3:25 2:80
2:80 5:46

� �

The among-class covariance matrix is

CA;x ¼ 8:00 5:50
5:50 3:78

� �

The canonical transformation matrix DT is given by the solution to (10.8) where D
is a matrix of column vectors. Recall that those vectors are the axes in the trans-
formed space, along the first of which the ratio of among-class variance to
within-class variance is greatest. On this axis there is most chance of separating the
classes. K is a diagonal matrix of scalar constants that are the eigenvalues of (10.8);
numerically they are the ratios of variances along each of the canonical axes.

Each k and the accompanying d can be found by considering the individual
component Eq. (10.7) rather than the more general form in (10.8). For (10.7) to
have a non-trivial solution it is necessary that

CA;x � kCW ;x

�� �� ¼ 0
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Using the values for CA;x and CW ;x above this is

8:00� 3:25k 5:50� 2:80k
5:50� 2:80k 3:78� 5:46k

����
���� ¼ 0

which gives k ¼ 2:54 or 0. Thus there is only one canonical axis, described by the
vector d which corresponds to k ¼ 2:54. This is found as the solution to

½CA;x � 2:54CW ;x�d ¼ 0

i.e:;
�0:26 �1:61
�1:61 �10:09

� �
d1
d2

� �
¼ 0

from which we find d1 ¼ �6:32d2. We now use (10.9), which for one vector
component of D; is

d1 d2½ � 3:25 2:80
2:80 5:46

� �
d1
d2

� �
¼ I

On expanding this gives 3:25d21 þ 5:60d1d2 þ 5:46d22 ¼ 1. Using d1 ¼ �6:32d2 we
see that d1 ¼ 0:63 and d2 ¼ �0:10 so that
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dimensional data, each
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d ¼ 0:63
�0:10

� �

which is shown plotted in Fig. 10.6. The projections of the pixel points onto the
axis defined by that vector show the classes to be separable. The brightness values
of the pixels along that axis are given by

y ¼ dTx ¼ 0:63x1 � 0:10x2

10.3.3 Discriminant Analysis Feature Extraction (DAFE)

A variation on the canonical analysis development of the previous section is to use
the Fisher criterion

J ¼ tr C�1
W ;yCA;y

n o
ð10:10Þ

instead of the measure of (10.6). Again, we want to find an axis transformation that
maximises J: Let that transformation be y ¼ DTx. Then (10.10) can be written

J ¼ tr DTCW ;xD
� ��1

DTCA;xD
� �n o

It can be shown3 that differentiating the last expression to find the transformation
matrix DT that maximises J leads to

C�1
W ;xCA;xD ¼ DC�1

W ;yCA;y ð10:11Þ

Consider now the transformation z ¼ BTy that diagonalises the transformed
among-class covariance CA;y, viz.

BTCA;yB ¼ M

in which M is diagonal. Thus CA;y ¼ BT
� ��1

MB�1 and (10.11) becomes

C�1
W ;xCA;xD ¼ DC�1

W ;y BT� ��1
MB�1 ð10:12Þ

3 See K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic, London, 1990.
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As with canonical analysis we now introduce the additional criterion that the
transformed within-class covariance matrix be unity after transformation to the z
space, so that the classes then appear hyperspherical. That requires4

BTCW;yB � B�1C�1
W ;y BT� ��1¼ I

so that C�1
W ;y BT� ��1¼ B

which, when substituted into (10.12) gives

C�1
W ;xCA;xD ¼ DBMB�1

and thus C�1
W ;xCA;xDB ¼ DBM

which is an eigenfunction equation, in which M is a diagonal matrix of the
eigenvalues of C�1

W ;xCA;x and DB is the matrix of eigenvectors of C�1
W ;xCA;x.

Eigenanalysis can be carried out by analysing C�1
W ;x and CA;x separately.

5 The axis
along which the classes have maximum separation corresponds to the largest
eigenvalue of C�1

W ;xCA;x, and so on.
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Fig. 10.6 The first canonical
axis for the two class data of
Fig. 10.9 showing that class
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4 If a matrix is equivalent to the identity matrix then so is its inverse. Further
½ABC��1 ¼ C�1B�1A�1:
5 See Fukunaga, loc. cit.

416 10 Feature Reduction



Deriving the transformed axes based on maximisation of (10.10) is called dis-
criminant analysis feature extraction (DAFE). As with canonical analysis, it requires
good estimates of the relevant covariance matrices. In the case of the within-class
matrices, that could be difficult when the dimensionality of the data is high.

10.3.4 Non-parametric Discriminant Analysis (NDA)

As depicted in Fig. 10.4 we have assumed with the previously treated
transformation-based methods that the spectral classes are clusters of similar pixel
vectors, so that within-class covariance adequately describes how they spread about
their mean positions, and among-class covariance, computed from the means,
makes sense. If discrete spectral classes have been found beforehand, that is
acceptable.

If, however, one or more of the classes were unusual in shape, such as an
unresolved class that might be made up of a set of similar cover types or
sub-classes, then feature reduction methods that depend on class means and
covariance matrices may not work well. A class distribution such as that depicted in
Fig. 10.7 is an example. Should such a case be suspected then it is better to avoid
separability measures that depend on class statistics and, instead, try to find a
method that is non-parametric. Non-parametric Discriminant Analysis (NDA) and
its extension to Decision Boundary Feature Extraction (DBFE) are two such
approaches. In this section we treat NDA while DBFE is the subject of Sect. 10.3.5.

In its simplest form NDA examines the relationship between the training pixels
of one class and their nearest neighbour training pixels from another class. For
example, let xj2s;NNi2r represent pixel j from class s that is the nearest neighbour of
pixel i from class r as shown in Fig. 10.8. We can describe the distribution of class
r pixels with respect to their nearest neighbours in class s by a covariance-like
calculation. However, because we are now not describing the distribution function
of pixels about a class mean (a parametric description), it is better to use a different
term than covariance matrix. To talk about the scatter of pixels with respect to each
other we use the term scatter matrix.

The scatter of all of the training pixels from class r about their nearest neigh-
bours from class s is defined by the scattering matrix

Sb1 ¼ E xi2r � xj2s;NNi2r
� �ðxi2r � xj2s;NNi2rÞTjxr

n o

where xi2r is the ith pixel from class r and the jxr conditionality reminds us that the
calculation is determined by pixels from class r.

We perform a similar calculation for the scatter of the training pixels from class s
about their class r nearest neighbours, and then average the two measures. Usually,
the average is weighted by the prior probabilities, or relative abundances, of the
classes:
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Sb ¼ Sb1 þ Sb2 ¼ p xrð ÞE xi2r � xj2s;NNi2r
� �

xi2r � xj2s;NNi2r
� �Tjxr

n o

þ p xsð ÞE xj2s � xi2r;NNj2s
� �

xj2s � xi2r;NNj2s
� �Tjxs

n o

Often NDA uses not just the nearest neighbour but instead a set of k class s training
pixels as a nearest neighbourhood for each class r training pixel. The local mean
over that neighbourhood is then used in the calculation of the between class scat-
tering matrix.

Let xl2s;kNNi2r be the lth member of the k nearest neighbours from class s of pixel
i in class r. Then the local class s mean is defined as

class 1

class 2

Fig. 10.7 A situation in
which the DAFE technique
would not perform well since
the mean of class 2 may not
be too different from that of
class 1, and the within class
covariance matrix would not
reflect the actual scatter of the
data in class 2

Fig. 10.8 Identification of
the pixels used in the
development of the between
class scatter matrix in
non-parametric discriminant
analysis
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ms;kNNi2r ¼ 1
k

Xk
l¼1

xl2s;kNNi2r ð10:13Þ

in which case the expression for the between-class scattering matrix becomes

Sb ¼ p xrð ÞE xi2r �ms;kNNi2r
� �

xi2r �ms;kNNi2r
� �Tjxr

n o

þ p xsð ÞE xj2s �mr;kNNj2s
� �

xj2s �mr;kNNj2s
� �Tjxs

n o ð10:14Þ

Note from (10.13) that if k, the size of the neighbourhood, is the same as the total
number of training pixels available in class s then the local mean becomes the class
mean, and the between class scatter matrices resemble covariance matrices,
although taken around the mean of the opposite class rather than the mean of their
own class.

Generalisation of (10.14) requires a little thought because there are as many
weighted means of the pixels “from the other class” as they are “other classes.” This
is illustrated in Fig. 10.9 for the case of three classes: r, s and t. It is easier to
express the expectations in (10.14) in algebraic form, so that for C total classes the
among-class matrix is

SA ¼
XC
r¼1

p xrð Þ
XC

c¼1;c 6¼r

1
Nr

XNr

i¼1

xi2r �mc;kNNi2r
� �

xi2r �mc;kNNi2r
� �T ð10:15Þ

in which the inner sum computes the expected scatter between the Nr training pixels
from class r and the mean of the nearest neighbours in class c (different for each
training pixel); the middle sum then changes the class (c), still relating to the

class r 

class s 

pixel j 

pixel i 

k nearest 
neighbours in 
class to pixel 
i in class 

class t 

k nearest 
neighbours in 
class t to pixel 
i in class r

Fig. 10.9 The k nearest
neighbours of the ith pixel in
class r in each of the other
two classes
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training pixels from class r; the outer sum changes the class (r) for which the
training pixels are being considered. The latter computation is weighted by the prior
probability for the class.

Having determined a non-parametric expression for the among-class scatter we
now need to consider within-class scatter properties, so that we can use a criterion
such as that in (10.10) to guide feature reduction.

The usual form of the within-class scatter matrix in (10.2a) can be used, although
a transformation that also maps it to the identity matrix should be employed.6 That
leads to the following NDA transformation that ranks the transformed features by
decreasing value of separability:

z ¼ WTK�1=2UTx

where W is the matrix of eigenvectors of SA, K is the diagonal eigenvalue matrix
and U is the eigenvector matrix of the within-class scatter matrix.

Alternative expressions for the within-class scatter matrix can be used.7 For
example, the mean vector can be based on the k nearest neighbours of the ith pixel
in class r from the same class

mr;kNNi2r ¼ 1
k

Xk
l¼1;l6¼i

xl2r;kNNi2r

so that the within-class scatter matrix in the two class case becomes

SW ¼ p xrð ÞE xi2r�mr;kNNi2r
� �

xi2r�mr;kNNi2r
� �Tjxr

n o

þ p xsð ÞE xj2s �ms;kNNj2s
� �

xj2s �ms;kNNj2s
� �Tjxs

n o

The procedures of Sect. 10.3.3 are then followed. This process could lead to a
better outcome if only those training pixels in the vicinity of the decision bound-
aries were used in the computation of the scatter matrices. Accordingly, the cal-
culations could be weighted to lessen the influence of neighbours further away from
the boundaries.

There are several limitations with the NDA approach, particularly given the need
to identify the neighbours to be used. By comparison, even though canonical
analysis is parametric in its basis, its computational demand is relatively
straightforward.

6 Fukunaga, ibid.
7 See B-C Kuo and D. A. Landgrebe, Nonparametric weighted feature extraction for classification,
IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 5, May 2004, pp. 1096–1105.
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10.3.5 Decision Boundary Feature Extraction (DBFE)

Another feature reduction procedure that uses training pixels only in the vicinity of
the decision boundary is Decision Boundary Feature Extraction (DBFE).8 It is
based on the idea that transformed feature vectors normal to decision boundaries are
discriminantly informative, whereas feature vectors that are parallel to decision
boundaries don’t help class separation. That is illustrated in Fig. 10.10 using a
two-dimensional, two class example. The problem is to find an effective repre-
sentation of the normals to the segment of the decision boundary in the vicinity of
the training data.

DBFE is a parametric procedure. It commences by estimating the class condi-
tional mean vectors and covariance matrices, which are then used to define the
actual decision surfaces and to classify the training pixels. Outlying pixels from
each class are removed using a Chi-squared test. A sample of each class in the
vicinity of the decision surface is selected by applying the Chi-squared test to the
pixels of the opposite class, using the statistics of the first class. From the sample
identified, the decision surface normals are estimated in the vicinity of the training
data, from which an effective decision boundary feature matrix is computed. While
the dimensionality of the matrix will be the same as the original feature space, its
rank may be smaller indicating the reduced number of discriminantly informative
features.

DBFE has a number of drawbacks including, again, the large number of cal-
culations required, along with the need to obtain reliable estimates of the original
class signatures and the decision boundary feature matrix. Those parametric

discriminantly informative feature

this feature does not 
aid discrimination

Fig. 10.10 Transformed axes
in which one of the new
features is of value in
separating the classes shown;
the other feature, being
parallel to the likely decision
boundary, does not assist
discrimination

8 See Sect. 6.6 of D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, John
Wiley & Sons, Hoboken N.J., 2003.
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estimates are not reliable if the dimensionality is high and the number of training
samples, particularly in the vicinity of the decision surface, is limited.

10.3.6 Non-parametric Weighted Feature Extraction
(NWFE)

NWFE is a variation on the weighted version of NDA treated in Sect. 10.3.4. It
weights the samples used in the calculations of the local means and uses slightly
different definitions of the among-class and within-class scattering matrices.

Consider the calculation of the mean for class r pixels in the vicinity of pixel r
from the same class. Rather than using a set of k nearest neighbours, all training
pixels are used but their influence on the computed value of the mean is diminished
by the distance they are from xi2r. Thus, the weighted r class mean about the ith
pixel in class r is

mr;i2r ¼
XNr

l¼1

wl2r;i2rxl2r

where Nr is the number of training pixels in class r, and the weight wl2r;i2r is
defined by

wl2r;i2r ¼ d�1 xi2r; xl2rð ÞPNr
l¼1 d

�1 xi2r; xl2rð Þ

where d�1 is the reciprocal of the distance between the pixel vectors in its argu-
ment. In a similar manner the local mean of class s pixels, as far as the ith pixel
from class r is concerned, is

ms;i2r ¼
XNs

l¼1

wl2s;i2rxl2s

where theweight is now wl2s;i2r ¼ d�1 xi2r; xl2sð ÞPNs
l¼1 d

�1 xi2r; xl2sð Þ

Using these new definitions of the means, the among-class and within-class
scattering matrices, for the multiclass case, are now

SA ¼
XC
r¼1

p xrð Þ
XC

c¼1;c 6¼r

1
Nr

XNr

i¼1

wi2r;cðxi2r �mc;i2rÞðxi2r �mc;i2rÞT ð10:16aÞ
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SW ¼
XC
r¼1

p xrð Þ 1
Nr

XNr

i¼1

wi2r;rðxi2r �mr;i2rÞðxi2r �mr;i2rÞT ð10:16bÞ

in which the weights are defined by wl2r;n ¼ d�1 xi2r ;mn;i2rð ÞPNr

l¼1
d�1 xi2r ;mn;i2rð Þ

with n ¼ c or r in (10.16a) and (10.16b) respectively. To avoid problems with
reliable estimation, or even singularity, the within-class scatter matrix of (10.16b) is
sometimes replaced with the approximate form9

S0W ¼ 0:5SW þ 0:5diagSW

Having established the form of the among class and within class scatter matrices,
the required features can be found from the eigenvectors corresponding to the
largest eigenvalues of

J ¼ S
0�1
W SA ð10:17Þ

This is equivalent to using (10.8) but with the newly defined scatter matrices.

10.4 Feature Reduction by Block Diagonalising
the Covariance Matrix

We have met the covariance matrix several times in the past. It is the starting point
for the principal components transformation and, along with the mean vector,
defines the class signature when we undertake maximum likelihood classification.

In the latter context we know that the accurate computation of the class
covariance matrix can be a problem for hyperspectral data if we do not have enough
training samples. Remember, we have to have enough independent training samples
in each class in order to estimate reliably the elements of the covariance matrix.
Generally, that is not a problem with the principal components transformation
because, then, the covariance matrix is computed using all of the available training
samples and not just those for an individual class.

So, it is feasible to examine the covariance matrix for the data as a whole; we
will do that now and note that it has some interesting structural properties. Rather
than the covariance matrix itself we will inspect the correlation matrix instead
which, remember, is derived from the elements of the covariance matrix. See
Eq. (6.4).

Figure 10.11 shows the correlation matrix for 192 bands of data recorded by the
AVIRIS instrument over Jasper Ridge. Rather than display the data in numerical

9 See Kuo and Landgrebe, loc. cit.
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form, which would be usual if the matrix dimension were not too high, it is
convenient and effective to show the matrix in the form of an image in which the
colour or grey scale indicates the magnitude of the matrix elements (in this case, the
degrees of correlation between corresponding band pairs). The coordinates of the
image correspond to the band numbers, starting with the first band at the top
left-hand corner, both horizontally and vertically.

In a grey scale representation, we usually choose black to indicate zero corre-
lation and white to indicate total positive or negative correlation. Thus in
Fig. 10.11, lighter entries indicate that the corresponding band pairs are highly
correlated, while darker entries indicate low correlations. Not surprisingly, spectral
regions of high correlation are scattered down the principal diagonal of the matrix,
indicating the high degree of redundancy that exists between the adjacent and near
neighbouring bands recorded with fine spectral resolution sensors.

The most striking feature of the correlation matrix is that high correlations exist
in blocks, the strongest of which are usually along the diagonal. That allows us to
make a useful assumption to simplify expressions which involve the covariance
matrix, such as the discriminant function in maximum likelihood classification11

and the eigen-analysis step in principal components transformation. If we assume
that we can neglect the off-diagonal correlations, the correlation matrix, and more

Fig. 10.11 Correlation
matrix for 196 bands of the
Jasper Ridge AVIRIS image
in which white represents
high correlation and black
represents zero correlation10

10 Overlapping bands, bands corresponding to significant water absorption, and bands with very
small means have been deleted from the original 224 band set.
11 See X. Jia, Classification Techniques for Hyperspectral Remote Sensing Image Data, Ph.D.
Thesis, The University of New South Wales, University College, Australian Defence Force
Academy, Canberra, 1996, and X. Jia and J. A. Richards Efficient maximum likelihood classifi-
cation for imaging spectrometer data sets, IEEE Transactions on Geoscience and Remote Sensing,
vol. 32, no. 2, March 1994.

424 10 Feature Reduction



importantly the associated covariance matrix, can be represented by a block diag-
onal approximation as illustrated in Fig. 10.12.

If we represent a block diagonal covariance matrix, with H diagonal blocks, as

C ¼
C1 0
0 C2

� � � 0

..

. . .
. ..

.

0 � � � CH

2
6664

3
7775 ð10:18Þ

it is readily shown that Cj j ¼ C1j j C2j j::: CHj j ð10:19aÞ

so that ln Cj j ¼ ln C1j j þ ln C2j j. . .þ ln CHj j ð10:19bÞ

and trC ¼ trC1 þ trC2. . .þ trCH ð10:19cÞ

also C�1 ¼
C�1

1 0
0 C�1

2
� � � 0

..

. . .
. ..

.

0 � � � C�1
H

2
6664

3
7775 ð10:19dÞ

Consider now a column vector z that has the same dimensions as the covariance
matrix C and which is partitioned into a set of sub-vectors, each of which corre-
sponds in dimensionality with the sub-matrices in the block diagonal covariance
matrix:

assumed zero 
correla on

assumed zero 
correla on

blocks of high 
correla on

Fig. 10.12 Block diagonal
approximation to the
correlation matrix of
Fig. 10.11
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z ¼
z1
z2
..
.

zH

2
6664

3
7775

then zTCz ¼
XH
h¼1

zThChzh

so that the discriminant function for maximum likelihood classification in (8.7)
becomes

gi xð Þ ¼ ln pðxiÞ � 1=2
XH
h¼1

ln Cihj j þ xh �mihð ÞTC�1
ih xh �mihð Þ

n o
ð10:20Þ

How does this affect the number of training pixels required for reliable training?
Recall that the number of training pixels needed per class is related to the
dimensionality of the covariance matrix and thus the need to estimate reliable
values for each of the elements of the matrix. When the class conditional covariance
is block diagonalised as above the component matrices are independent of each
other and the number of training pixels required per class is now set by the
dimensions of the largest of the component matrices down the diagonal. That
results in a reduced requirement for the numbers of labelled training pixels, par-
ticularly for the image data generated by hyperspectral sensors.

Although strictly not a feature reduction technique, the process of block diag-
onalising the covariance matrix achieves the same purpose of reducing the com-
putational demand when second order statistics are involved, and offsets the
influence of the Hughes phenomenon of Sect. 8.3.7.

While the actual blocks to use in the decomposition of (10.20) is guided by the
observed structure of the correlation and covariance matrices, such a data dependent
selection is not strictly necessary. In fact, because adjacent bands are generally
strongly correlated in high dimensional, high spectral resolution data sets it is
feasible to block diagonalise the covariance matrix by selecting equal size blocks
down the diagonal, of dimensions two or three for example. Although simple, such
a process has been shown to lead to good classifier performance.12

Consider now how block diagonalising the covariance matrix impacts on the
calculation of the principal components transformation, which entails finding the
eigenvalues and eigenvectors of the covariance matrix. The eigenvalues are solu-
tions to the characteristic equation

12 Jia, loc. cit.
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Cx � kIj j ¼ 0 ð10:21Þ

Since the original covariance matrix Cx is assumed to be block diagonal, then the
matrix Cx � kI is also block diagonal. From (10.19a) Eq. (10.21) can be expressed

Cx � kIj j ¼
YH
h¼1

Cxh � kIj j ¼ 0 ð10:22Þ

Thus, the roots and eigenvalues of (10.21) are the eigenvalues of the component
matrices of the block diagonal form. Therefore, in order to compute a principal
components transformation with data of high dimensionality we can introduce the
approximation of the block diagonal form of the covariance matrix and then find the
set of eigenvalues and eigenvectors, and thus the transformation matrix, by
applying eigen-analysis to the blocks individually.

Having blocked the principal components transform in this manner we can select
the most informative components from each transformed segment, group them and
transform again. The selection of components to retain in each block can be made
on the basis of variance, as is common with principal components, or by using some
other form of separability analysis. The process can be repeated by again identi-
fying the components that are highly correlated among the selected set, block
diagonalising the respective covariance matrix and transforming. Ultimately a large
data set, such as that generated by a hyperspectral sensor, can be reduced to a small
number of components with better compression than if a single, and
time-consuming principal components step were carried out. Such a segmented
principal components process can be used for effective colour display of hyper-
spectral data and as a feature reduction tool.13

The block diagonalisation idea can be extended to canonical analysis. The
complete set of bands is segmented into H groups and canonical analysis is applied
to each of the individual groups. Class statistics involving the complete set of bands
are no longer needed so that the difficulties presented by limited numbers of training
samples with high dimensionality data can be obviated.

Sometimes highly correlated blocks of bands will occur away from the principal
diagonal of the covariance matrix, as seen in Figs. 10.11 and 10.13. If required, they
can be moved onto the diagonal by reordering the bands before the matrix is
computed.14 Such an operation makes no difference to the matrix, or any subse-
quent analysis, but it does mean the bands are out of order.

13 X. Jia and J. A. Richards, Segmented principal components transformation for efficient
hyperspectral remote sensing image display and classification. IEEE Transactions on Geoscience
and Remote Sensing, vol. 37, no. 1 pt. 2, 1999, pp. 538–542.
14 See Jia, loc. cit.
15 https://engineering.purdue.edu/*biehl/MultiSpec/hyperspectral.html accessed 2021.
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The very broad major water absorption bands can mask some of the features in
the correlation matrices when displayed in image form. Those in Fig. 10.13 have
been produced after channels 102–109 and 148–162 were removed, which corre-
spond to the wavelengths of major water absorption. It is easier now to see the
correlation structure. Moreover, by showing the matrices in colour, interpretability
is enhanced, and both positive and negative correlations can be displayed as
indicated by the colour key on the figure.

mixed

woods

soybeans min

stone

grass pasture

wheat

hay windrowed
correlation key

-1 +10 

Fig. 10.13 Demonstration of the class dependence of the correlation matrix using the Indian Pines
data set available from Purdue University15 and computed using MultiSpec; although the soybean
and hay classes by name imply vegetation, they are only sparsely covered, as can be deduced from
the colours in the composite image which has been formed by displaying channel 40 (745 nm) as
red, channel 20 (577 nm) as green and channel 7 (449 nm) as blue
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10.5 Feature Selection

10.5.1 Measures of Separability

If we can identify features that do not aid discrimination, by contributing little to the
separability of spectral classes, we could discard them when training a classifier.
Subsetting features by removal of those that are least effective is, as we noted
earlier, referred to as feature selection, that being the simplest form of feature
reduction.

In some situations, knowing which features to discard is relatively easy. In
general, that is not the case and methods must be devised that allow the relative
value of features to be assessed in a quantitative and rigorous way. A measure
commonly used for this is to determine the mathematical separability of classes.
Feature reduction is performed by checking how separable various spectral classes
remain when reduced sets of features are used; provided separability is not lowered
unduly by the removal of features then those features can be considered to be of
little value. While this is a Gaussian-based measure which makes it more suited to
the maximum likelihood approach, the lessons we learn by examining it flow on to
a consideration of other techniques.

The material in this and the following sections has been based in part on Swain
and Davis.16 In order to assess whether a feature is important for discriminating
among spectral classes we could examine the extent to which spectral classes
overlap in that feature. Significant overlap needs to be avoided if we want the
classes to be separable. It is useful to examine the effect that removing a feature has
on the degree to which spectral classes overlap, and thus their separability, a
situation we now consider in some detail.

Consider a two-dimensional spectral space with two spectral classes as shown in
Fig. 10.14. Suppose we want to see whether the classes could be separated using
only one feature—either x1 or x2. Of course, it is not known beforehand which
feature is better. That is what has to be determined by a measure of separability.
Consider an assessment of x1. The spectral classes in the x1 subset or subspace are
shown in the figure in which some overlap of the single dimensional distributions is
observed. If the distributions are well separated in the x1 dimension, then the
overlap will be small, and a classifier would be unlikely to make an error in
discriminating between them on the basis of that feature alone. On the other hand,
for a large degree of overlap substantial classifier error would be expected. The
usefulness of the x1 feature subset can be assessed therefore in terms of the overlap
of the distributions in that dimension.

Consider now how to quantify the separation between a pair of probability
distributions (spectral classes) as an indication of their degree of overlap. The
distance between means is insufficient since overlap will also be influenced by the

16 P. H. Swain and S. M. Davis, eds., Remote Sensing: The Quantitative Approach, McGraw-Hill,
NY, 1978.
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standard deviations of the distributions. Instead, a combination of both the distance
between means and a measure of standard deviation is required. That must be a
vector-based measure in order to be applicable to multidimensional subspaces.
Several candidate measures of separability are available; only those commonly used
with remote sensing data are treated in this chapter. Others may be found in books
on statistics that treat similarities of probability distributions.

10.5.2 Divergence

10.5.2.1 Definition

Divergence is a measure of the separability of a pair of probability distributions that
has its basis in their degree of overlap. It uses the definition of the likelihood ratio

overlap region

Fig. 10.14 Two dimensional
spectral space, with two
spectral classes, and its
one-dimensional marginal
distribution; while the classes
are apparently separable in
two dimensions there is
significant overlap in one
dimension
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Lij xð Þ ¼ p xjxið Þ=p xjxj
� � ð10:23Þ

where p xjxið Þ and p xjxj
� �

are the values of the ith and jth spectral class probability
distributions at the position x in the spectral domain. The overlap region of
Fig. 10.14 is shown exaggerated in Fig. 10.15 from which it is seen that Lij xð Þ is a
measure of the overlap just at the point x. For very separable classes Lij xð Þ !
0 or1 for all x.

It is useful in what is to follow to take the logarithm of the likelihood ratio:

L0ij xð Þ ¼ lnp xjxið Þ � lnp xjxj
� �

We can also define a log likelihood ratio with the numerator and denominators
reversed in (10.23). We now define the divergence of the pair of class distributions
as the sum of conditional expected values of the two definitions of the log likeli-
hood ratio:

dij ¼ E L0ij xð Þjxi

n o
þE L0ji xð Þjxj

n o
ð10:24Þ

For continuous distributions the expectation operators are defined in terms of the
integral of the relevant quantity weighted by the respective probability distribution, i.e.

E L0ij xð Þjxi

n o
¼

Z
x

L0ij xð Þp xjxið Þdx

This is the expected value of the likelihood ratio with respect to all pixels in the ith
spectral class. Using this definition (10.24) becomes

dij ¼
Z
x

p xjxið Þ � p xjxj
� �� �

ln
p xjxið Þ
p xjxj
� � dx ð10:25Þ

from which the following properties of divergence can be established.

Fig. 10.15 The probabilities
used in the definition of the
likelihood ratio
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1. It is always positive
2. It is symmetric, dij ¼ dji
3. If p xjxið Þ ¼ p xjxj

� �
, dii ¼ 0; in other words, there is no divergence or differ-

ence between a probability distribution and itself

4. For statistically independent features x1; x2. . .xN , p xjxið Þ ¼ QN
n¼1

p xnjxið Þ so that

divergence becomes dij ¼
PN

n¼1 dij xnð Þ. Since divergence is never negative, it
follows that dij x1; ::xn; xnþ 1ð Þ� dij x1; ::xnð Þ; that is, divergence never decreases
as the number of features is increased.

10.5.2.2 Divergence of a Pair of Normal Distributions

Since spectral classes in remote sensing image data are often modelled by multi-
dimensional normal distributions it is of interest to have available the specific form
of (10.25) when p xjxið Þ and p xjxj

� �
are normal distributions with means and

covariances of mi and Ci, and mj and Cj, respectively. After substituting the full
expressions for the normal distributions, we find

dij ¼ 1=2tr
�
Ci � Cj

��
C�1

i � C�1
j

�n o

þ 1=2tr
�
C�1

i þC�1
j

��
mi �mj

��
mi �mj

�Tn o
¼ term 1þ term 2

ð10:26Þ

Note that term 1 involves only the covariance matrices, while term 2 is a squared
distance between the means of the distributions, normalised by the covariances.
Equation (10.26) is the divergence between a pair of normally distributed spectral
classes. Should there be more than two, which is generally the case in practice, all
pairwise divergences need to be checked when evaluating which features might be
discarded as relatively non-discriminative. An average indication of separability is
given by the average divergence

dave ¼
XM
i¼1

XM
j¼iþ 1

p
�
xi
�
p
�
xj
�
dij
�
x
� ð10:27Þ

where M is the number of spectral classes and p xið Þ and p
�
xj
�
are spectral class

prior probabilities.

10.5.2.3 Using Divergence for Feature Selection

Consider the need to select the best three discriminating channels for an image
recorded with four channels and in which three spectral classes exist. The pairwise

432 10 Feature Reduction



divergence between each pair of spectral classes would be computed for all com-
binations of three out of the four channels. The feature subset chosen would be that
which gives the highest average divergence.

In general, for M spectral classes, N total features, and a need to select the best
n feature subset, the following set of pairwise divergence calculations are necessary,
leaving aside the need finally to compute the average divergence for each subset.
First there are NCn, possible combinations of n features from the total N, and for
each combination there are MC2 pairwise divergence measures to be computed. For
a complete evaluation NCn � MC2 measures of pairwise divergence have to be
calculated. Thus, to assess the best 4 of 7 Landsat ETM+ bands for an image
involving 10 spectral classes7C4 � 10C2 = 1575 divergences have to be calculated.
Inspection of (10.26) shows each divergence calculation to be considerable. That,
together with the large number required in a typical problem, makes the use of
divergence to check separability expensive computationally.

10.5.2.4 A Problem with Divergence

As spectral classes become further separated in multispectral space, the probability
of being able to classify a particular pattern moves asymptotically to 1.0 as depicted
in Fig. 10.16a. If divergence is plotted it will be seen from its definition that it
increases quadratically with separation between spectral class means, as illustrated
in Fig. 10.16b. That behaviour is unfortunately misleading if divergence is to be
used as an indication of how successfully pixels in the corresponding spectral
classes could be mutually discriminated or classified. It implies, for example, that at
large separations, further small increases will lead to vastly better classification
accuracy whereas in practice that is not the case, as observed from the very slight
increase in probability of correct classification implied by Fig. 10.16a. Also, out-
lying, easily separable classes will weight average divergence upwards in a mis-
leading fashion to the extent that sub-optimal reduced feature subsets might be
indicated as best.17 This problem renders divergence, as it is presently defined, to be
unsatisfactory. The Jeffries-Matusita distance in the next section does not suffer that
drawback.

10.5.3 The Jeffries-Matusita (JM) Distance

10.5.3.1 Definition

The JM distance between a pair of probability distributions (spectral classes) is
defined as

17 See Swain and Davis, loc. cit.
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Jij ¼
Z
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxjxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxjxjÞ

pn o2
dx ð10:28Þ

which is a measure of the average distance between the two distributions.18 For
normally distributed classes it becomes

Jij ¼ 2 1� e�Bij
� � ð10:29Þ

in which

Bij ¼ 1
8
ðmi �mjÞT Ci þCj

2


 ��1

mi �mj
� �þ 1=2ln

ðCi þCjÞ=2
�� ��
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:

9=
; ð10:30Þ

which is referred to as the Bhattacharyya distance.19 The first term in B is like the
square of a normalised distance between the class means. That is counteracted by

Fig. 10.16 a Probability of
correct classification as a
function of class separation,
b divergence as a function of
class separation

18 See A. G. Wacker, The Minimum Distance Approach to Classification, Ph.D. Thesis, Purdue
University, West Lafayette, Indiana, 1971.
19 See T. Kailath, The divergence and Bhattacharyya distance measures in signal selection, IEEE
Transactions on Communications Theory, vol. COM-15, 1967, pp. 52–60.
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the exponential factor in (10.29) which gives an exponentially decreasing weight to
increasing separations between spectral classes. As seen in Fig. 10.17, if plotted as
a function of distance between class means, JM distance shows a saturating
behaviour not unlike that expected for the probability of correct classification.

Equation (10.29) is asymptotic to 2.0, so that a JM distance of 2.0 between two
spectral classes implies that a pixel could be placed into one of those classes with
100% accuracy. This saturating behaviour is highly desirable since it does not suffer
the difficulty experienced with divergence.

As with divergence, an average pairwise JM distance can be defined according to

Jave ¼
XM
i¼1

XM
j¼iþ 1

p
�
xi
�
p
�
xj
�
Jij
�
x
� ð10:31Þ

where M is the number of classes and p
�
xi
�
and p

�
xj
�
are the prior probabilities.

The block diagonal approximation of Sect. 10.4 can also be used to compute
separability measures such as divergence in (10.26) and the JM distance of (10.29)
and (10.30). In particular, the Bhattacharyya distance can be expressed

Bij ¼
XH
h¼1

1
8

mih �mjh
� �T Cih þCjh

2


 ��1

mih �mjh
� �þ 1=2ln

ðCih þCjhÞ=2
�� ��

CihCjh

�� ��1=2
8<
:

9=
;

2
4

3
5

10.5.3.2 Comparison of Divergence and JM Distance

JM distance performs better as a feature selection criterion for multivariate normal
classes than divergence for the reasons given above. However, it is computationally
more expensive to use, as can be seen from a comparison of (10.26) and (10.30).
Suppose a particular problem involves M spectral classes. Consider the cost of
computing all pairwise divergences and all pairwise JM distances. Costs can be
assessed largely on the basis of having to compute matrix inverses.

Fig. 10.17 Jeffries-Matusita
distance as a function of class
separation
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In the case of divergence, it is necessary to compute only M matrix inverses to
allow all the pairwise divergences to be found. However, for JM distance it is
necessary to compute MC2 þM equivalent matrix inverses, since the individual
class covariances appear as pairs which have to be added and then inverted. Note
that MC2 þM = ½ (M + 1) so that divergence is a factor of ½(M + 1) more
economical to use. When it is recalled how many feature subsets may need to be
checked in a feature selection exercise that is clearly an important consideration.
However, the unbound nature of divergence as discussed previously calls its use-
fulness into question.

10.5.4 Transformed Divergence

10.5.4.1 Definition

A useful modification to divergence can be generated by noting the algebraic
similarity of divergence and the parameter B in the JM distance expression in
(10.30). Since both involve terms which are functions of covariance alone, and
terms which appear as normalised distances between class means, a heuristic
transformed divergence measure can be defined20

dTij ¼ 2 1� e�dij=8
� 

ð10:32Þ

Because of its exponential character it will have a saturating behaviour with
increasing class separation, as does JM distance, and yet it is computationally easier
to generate. It been demonstrated to be almost as effective as JM distance in feature
selection, and considerably better than simple divergence, or simple Bhattacharyya
distance.21

10.5.4.2 Transformed Divergence and the Probability of Correct
Classification

The probability of making a classification error when placing a pattern into one of
two equal prior probability classes with a pairwise divergence dij is bound by22

20 See Swain and Davis, loc. cit.
21 See P. H. Swain and R. C. King, Two effective feature selection criteria for multispectral remote
sensing, Proc. 1st Int. Joint Conference on Pattern Recognition, November 1973, pp. 536–540,
and P. W. Maunsell, W. J. Kramber and J. K. Lee, Optimum band selection for supervised
classification of multispectral data, Photogrammetric Engineering and Remote Sensing, vol. 56,
1990, pp. 55–60.
22 Kailath, loc. cit.
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so that the probability of correct classification is bound by

pC\1� 1
8
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since from ð10:32Þ dij ¼ �8ln 1� 1=2dTij
h i

then pC\1� 1
8
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This bound on classification accuracy is shown plotted in Fig. 10.18. Also shown is
an empirical relationship between transformed divergence and probability of correct
(pairwise) classification. This figure has considerable value in establishing a priori
the upper bound on classification accuracy for an existing set of spectral classes.

10.5.4.3 Use of Transformed Divergence in Clustering

Clustering algorithms are the subject of Chap. 9. One of the last stages in clustering
is to evaluate the size and relative locations of the clusters produced. If clusters are
too close to each other in spectral space, they should be merged. The availability of
the information in Fig. 10.18 allows merging decisions to be based on a
pre-specified transformed divergence if cluster mean and covariance data is avail-
able. By establishing a desired accuracy level for the subsequent classification, from
which the corresponding value of transformed divergence can be specified, classes
with separabilities below that value should be merged.

10.5.5 Separability Measures for Minimum Distance
Classification

The separability measures of the previous section relate to spectral classes modelled
by multivariate normal distributions, which assumes that the classifier to be used is
based on the Gaussian maximum likelihood rule. Should another classifier be
chosen those measures are largely without meaning. If supervised classification is to
be carried out using the minimum distance to class means technique there is no
sense in using distribution-based separability measures, since distribution class
models are not employed. Instead, it is better to use a simple measure of distance
between the class means. Commonly, this is Euclidean distance. Consequently,
when a set of spectral classes has been determined in preparation for classification,
the complete set of pairwise Euclidean distances will provide an indication of class
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similarities. Unfortunately, this cannot be related to a classification error proba-
bility, but finds application as an indicator of what pairs of classes could be merged,
if so desired.

10.6 Distribution Free Feature Selection—ReliefF

The methods for feature selection treated in Sect. 10.5 make the assumption that the
individual classes in image data can be modelled by distribution functions, thereby
requiring knowledge of class parameters such as the mean vector and covariance
matrix. The application to high dimensional data is therefore limited.

We met some procedures that did not rely on distribution assumptions in
Sect. 10.3, but they were transformation based. In this section we examine a
method for selecting a reduced set of bands from those recorded, by making an
assessment of the relative importance of those original features, without transfor-
mation or the need to know class statistics. The method is called ReliefF, which is a
commonly used measure for feature selection.24

Fig. 10.18 Probability of
correct classification as a
function of pairwise
transformed divergence; the
empirical results were
determined from 2790 sets of
multivariate, normally
distributed, two class data23

23 Swain and King, loc. cit.
24 See K. Kira and L. A. Rendell, The feature selection problem: traditional methods and a new
algorithm, Proc 10th Int. Conf. on Artificial Intelligence, AAAI-92, 12–16 July 1992, San Jose,
pp. 129–134, and Z. Wang, Y. Zhang, Z. Chen, H. Yang, X. Sun, J. Kang, Y. Kang and X. Liang,
Application of ReliefF algorithm to selecting feature sets for classification of high resolution
remote sensing image, Proc IEEE Int. Geoscience and Remote Sensing Symposium, 10–15 July
2016, Beijing, pp. 755–758.
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ReliefF gives features a weight, which is adjusted as a measure of relevance by
reference to the classes of data being used. Those features with weights below a
user-specified threshold are discarded.

We will develop the process by reference to the two class, two dimensional data
set shown in Fig. 10.19. The classes have been drawn intentionally so that one
feature x1 does not aid separation while the other x2 does.

The process commences by selecting a pixel at random from one of the classes.
We then find its nearest neighbours in the same and the other class, as shown. We
now want to derive a measure that gives more weight to feature x2 than feature x1 in
this example with respect to those chosen pixels.

We define a quantitative weight for each feature that tells us how important it is
with regard to class separation. Call these weights x1 and x2 respectively. The
weights are initially set to zero and then updated using the pixel we have chosen
randomly. We will shortly choose further random pixels, to give us a better measure
of the weights, but for the moment just concentrate on the one in Fig. 10.19.

For the weight corresponding to the ith feature we use the updating rule:

xnew
i ¼ xold

i � d xi � xsi
� �þ d xi � xoi

� � ð10:34Þ

xi is the feature of the randomly chosen pixel, xsi is the corresponding feature of the
nearest neighbour from the same class and xoi is the corresponding feature of the
nearest neighbour from the other class; d is a distance measure.

Applying the updating rule to Fig. 10.19a we see that the adjustment will be
small and negative for feature x1 but large and positive for feature x2. That means
the weight for the second feature increases, indicating its relative importance, while
that for the first feature drops.

The same process is carried out several times, using a set of m randomly chosen
sample pixels, updating the weights each time. The distance values are normalised

class 2

class 1

pixel chosen at random, 
in this case from class 1

nearest neighbour
from the other class

nearest neighbour
from the same class

class 2

class 1

pixel chosen at random, 
in this case from class 1

nearest neighbours
from the other class

nearest neighbours
from the same class

a b 

Fig. 10.19 a Defining the nearest neighbours, b defining the nearest neighbourhoods
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by the number of samples m. If there is a reasonable distribution of pixels in each
class, a little thought will show that the weight for feature x2 will go on increasing
relative to that for x1.

A helpful modification is to use a set of the K nearest neighbours (in each class)
to the randomly chosen pixels, as indicated in Fig. 10.19b. In this case the updating
rule becomes as shown in (10.35), which indicates normalisation by both the
number of trials and the number of nearest neighbours.

xnew
i ¼ xold

i � 1
mK

XK
k¼1

d xi � xski
� �� d xi � xoki

� �� � ð10:35Þ

Again, the process is initialised with all weights xi set to zero. Each weight is then
updated by selecting m random samples (pixels) using the above rule. At the
completion of the process those features xi with weight values above a threshold are
kept for subsequent quantitative analysis (classification).

The reliefF method, as originally formulated, applies to two classes. It is readily
extended to the more usual multi-class situation by adding an “other class” term for
each of the classes other than that from which the random sample is taken, leading
to (10.36)

xnew
i ¼ xold

i � 1
mK

XK
k¼1

d xi � xski
� �þ 1

mK

X
o 6¼s

p oð Þ
1� p sð Þ

XK
k¼1

d xi � xoki
� � ð10:36Þ

The xoki are now the ith features of the kth nearest neighbours of the current random

sample in each of the other classes. The probability expression p oð Þ
1�p sð Þ weights the

contributions from the other classes in proportion to their (and the same class) prior
probabilities.

In all these formulas the distance measure can be any convenient metric.
Euclidean and city block distance are the most commonly used.

10.7 Improving Covariance Estimates Through
Regularisation

Some of the techniques we have considered in this chapter require the use of
covariance matrices, and yet there may not be enough data available to be com-
fortable that those estimates are reliable. In such cases it is sometimes helpful to use
reliable approximations.

Regularisation is a technique used in mathematics and statistics to constrain
estimates of parameters to within reasonable bounds. In the context of developing a
reliable estimate of a class covariance matrix in the face of limited training data,
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regularisation refers to the mixing of several estimates of covariance in order to
provide a more robust measure.

For example, let Ci, i = 1…M be estimates of the class covariance matrices
obtained from available training data for the classes xi; i ¼ 1. . .M. If sufficient
training samples are not available, the Ci will be poor estimates. Let CM be the
covariance matrix computed from the full set of training samples; in other words, it
will be a global covariance matrix which reflects the scatter of the complete set of
training data. Because it is based on a greater number of samples it is likely to be
more accurate, for what it is, than any of the set of Ci. A regularised approximation
that can be used for the class conditional covariance matrices is

Capprox
i ¼ aCi þ 1� að ÞCM ð10:37Þ

where a is a mixing parameter. Often diagonal versions of one of the constituent
matrices are be used in (10.37), particularly for the original class covariance esti-
mate. For example, the following approximations will be found in practice.

Capprox
i ¼ a diagCi þ 1� að ÞCM ð10:38aÞ

Capprox
i ¼ a trCiIþ 1� að ÞCM ð10:38bÞ

The value of the parameter a has to be determined to ensure that the approximation
is as good as possible. One way to do that is to vary a and see how well the
covariance estimate performs on a labelled set of data.

Another regularised covariance estimator is25

Capprox
i ¼ aCi þ 1� að ÞdiagCi 0� a� 1

¼ 2� að ÞCi þ a� 1ð ÞCM 1\a� 2

¼ 3� að ÞCM þ a� 2ð ÞdiagCM 2\a� 3

ð10:39Þ

Again, the optimum value for a would be found by checking performance with a
labelled set of pixels.

It is interesting to examine the nature of the estimate in (10.39) for specific
values of a, noting the nature of the class conditional distributions that result and
the likely forms of the discriminant functions. For example:

• For a ¼ 0;Capprox
i ¼ diagCi, meaning that each class is represented by the

diagonal elements of its class covariance matrix, and that cross correlations are
ignored. Consequently, the classes are assumed to be distributed hyperellipti-
cally with axes parallel the spectral axes. A linear decision surface will result.

• For a ¼ 1;Capprox
i ¼ Ci, meaning that each class is represented by its actual

class conditional covariance matrix, generating quadratic decision surfaces

25 See Landgrebe, 2003, loc. cit.
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between the classes. This will give the full multivariate, normal maximum
likelihood classification.

• For a ¼ 2;Capprox
i ¼ CM , meaning that all classes are assumed to have the same

covariance matrix, equivalent to the global covariance, again generating linear
decision surfaces.

• For a ¼ 3;Capprox
i ¼ diagCM , meaning again that all classes have the same

covariance matrix; in this case it consists just of the diagonal terms of the global
covariance matrix. All class covariances will be identically hyperelliptical with
axes parallel to the spectral axes, resulting in linear decision surfaces.

10.8 Bibliography on Feature Reduction
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10.9 Problems

10:1 It can be shown27 that the probability of making an error in labelling a
pattern as belonging to one of two classes with equal prior probabilities is
bound according to

1
16

ð2� JijÞ2 � pE � 1
4

2� Jij
� �

where Jij is the Jeffries-Matusita distance between the classes. Derive an
expression for, and plot, the upper and lower bounds on classification
accuracy for a two class problem, as a function of Jij. An empirical
relationship between classification accuracy and Jij is available in Swain
and King.28

27 See Kailath, loc. cit.
28 See P. H. Swain and R. C. King, Two effective feature selection criteria for multispectral remote
sensing, Proc. First Int. Joint Conf. on Pattern Recognition, November 1973, pp. 536–540.
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10:2 Consider the training data given in problem 8.1. Suppose we want to use
only one feature to characterise each spectral class. By computing pairwise
transformed divergence ascertain the best feature to retain if:

(a) only classes 1 and 2 are of interest,
(b) only classes 2 and 3 are of interest,
(c) all three classes are of interest.

In each case estimate the maximum possible classification accuracy.
10:3 Using the same data as in problem 10.2 perform feature reduction, if pos-

sible, using the principal components transformation when the covariance
matrix is generated using:

(a) only classes 1 and 2,
(b) only classes 2 and 3,
(c) all three classes.

10:4 Using the same data as in problem 10.2 compute a canonical analysis
transformation involving all three classes and see whether the classes have
better discrimination in the transformed axes compared with the original
axes.

10:5 A particular image covers an agricultural region with several cover types.
Suppose the mean vectors and covariance matrices have been found from
training data for each class. Because of the nature of the land use, the region
consists predominantly of fields that are large compared with the effective
ground dimensions of a pixel. Within each field there is a degree of simi-
larity among the pixels, owing to its use for a single crop type.
Suppose you delineate a field from the rest of the image and then compute
the mean vector and covariance matrix for the pixels in that particular field.
Describe how pairwise divergence, or Jeffries-Matusita distance, could be
used to classify the complete field of pixels into one of the training classes.

10:6 The application of rotational transforms such as the principal components
transformation and canonical analysis cannot improve intrinsic separability,
which is the separability possible in the original data with all dimensions
retained. Why?

10:7 The principal components transformation can be used for feature selection.
What advantages and disadvantages does it have compared with canonical
analysis?

10:8 Two classes of data have the statistics:

m1 ¼ 10
20

� �
C1 ¼ 1 0

0 1

� �

m2 ¼ 10
20

� �
C2 ¼ 5 0

0 5

� �
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(a) Will a minimum distance classifier work with this data?
(b) Calculate the JM distance between the classes. Are the classes

separable?
(c) Assuming equal prior probabilities, classify the pixel vector

x ¼ ½12 30�T.
10:9 Both training and testing data are required for developing a Gaussian

maximum likelihood classifier. What reason might there be for low clas-
sification accuracy on the training data? If the classification accuracy is high
on the training data but low on the testing data, what could be the reason?

10:10 When displayed in image format, the correlation matrix for a hyperspectral
image will show regions of high correlation existing in blocks, mostly down
the diagonal. Is that because:

(a) Adjacent bands of data are most likely to be highly correlated,
(b) The maximum likelihood classifier requires the correlation

matrix to look like that, or
(c) The hyperspectral sensor is designed to make that happen for all

images?

10:11 The block based maximum likelihood classifier characterised by (10.20)
requires decisions to be taken about what blocks to use. From your
knowledge of the spectral response of the three common ground cover types
of vegetation, soil and water, recommend an acceptable set of block
boundaries that might always be used with AVIRIS data.

10:12 Using the results of Problem 10.11, or otherwise, discuss how the canonical
analysis transformation might take advantage of partitioning the covariance
matrix into diagonal blocks.

10:13 Does partitioning the covariance matrix into blocks assist minimum dis-
tance classification?

10:14 A principal components transformation can be computed for the pixels in a
given class, rather than over a whole image. By examining the correlation
matrices in Fig. 10.13 which class would show the most compression of
variance by a transformation?

10:15 Explain the structural differences in the correlation matrices for the stone
and wheat classes in Fig. 10.13.

10:16 If you were to use the maximum likelihood classifier to produce a thematic
map from an image data set with 6 bands, and wanted to reduce the number
of features beforehand, would your chosen feature reduction method be

(a) ReliefF,
(b) The principal components transformation, or
(c) Canonical analysis?

10:17 If you were to use a support vector classifier to produce a thematic map
from an image data set with 200 bands, and wanted to reduce the number of
features beforehand, would your chosen feature reduction method be
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(a) ReliefF,
(b) The principal components transformation, or
(c) Canonical analysis

10:18 Which of the following is a distribution free feature reduction technique?

(a) Transformed divergence
(b) Canonical analysis
(c) Non-parametric discriminant analysis.

10:19 Explain the difference between distribution-based and distribution free
measures of separability. When can distribution-based separability measures
be used?
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Chapter 11
Image Classification in Practice

Abstract Embedding supervised and unsupervised classification algorithms in
methodologies is shown to be an effective way of producing reliable thematic maps
from remotely sensed data. Examples are presented. Guidance is given on the
selection of training and testing data, including how many pixels should be used in
each case. The concept of the accuracy of a thematic map, in contrast to the
performance of a classifier, is developed, noting that the two are the same only in
special circumstances. The error matrix is described, as are the notions of producers
and users accuracies and the Kappa coefficient. Decision tree classifiers are treated
in some detail, including CART (Classification and Regression Trees) and forest
classification. Hyperspectral image interpretation through library searching, and
end-members and un-mixing, are also commented on. The coverage is concluded
with a comparative assessment of maximum likelihood classification, the support
vector machine and the convolutional neural network.

11.1 Introduction

In the previous chapters we have derived techniques that can be used to classify an
image and create a thematic map. What we have to do now is to place those
techniques into methodologies that make the classification task more efficient and
accurate. Using an appropriate methodology is probably one of the most important
considerations in applying classification to data recorded by imaging sensors and is
often overlooked in practical image labelling. It is the role of this chapter to con-
sider these operational aspects of thematic mapping, including how the accuracy of
the final thematic map product can be assessed. We will consider accuracy deter-
mination in detail, including guidelines for choosing the number of samples needed
to measure map accuracy effectively.

It is important to distinguish between classification techniques developed in the
research laboratory and those applied in practice. While new algorithms evolve
regularly, in pursuit of machine learning and mapping goals, many can be difficult
to use in an operational sense, not because they don’t perform well, but because
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they have not reached operational maturity, or involve complex training processes.
That can put them beyond the reach of a typical operational image analyst faced
with a practical mapping task, who is more interested in outcomes than the novelty
of an algorithm. There will be occasions in remote sensing, particularly when the
number of bands is small, when classifiers as simple as the minimum distance rule
will do the job perfectly. So, don’t necessarily use a complicated classifier when a
simple one will do the job just as well.

Further, we can sometimes generate better results by mixing algorithms and
approaches; we demonstrate that in this chapter by illustrating a hybrid
supervised-unsupervised classification methodology used since the earliest days of
quantitative remote sensing.

Another classification methodology we will treat later in the chapter is the use of
decision trees. Those structures have many benefits, including the ability to parti-
tion features into subsets for efficient scene labelling. We will also consider col-
lections of decision trees (sometimes referred to as forest classifiers), to see how
they perform in enhancing classification results in the manner of committee clas-
sifiers and the AdaBoost process. We also examine how scientific knowledge can
be used in the classification of high spectral resolution data, and how sub-pixel class
mixtures can be handled.

11.2 An Overview of Classification

First, consider a summary of the essential aspects of supervised and unsupervised
classification as the foundations on which methodologies can be developed, and in
order to highlight some practical aspects of operational thematic mapping.

11.2.1 Supervised Classification

11.2.1.1 Selection of Training Data

The essence of supervised classification is that the analyst acquires beforehand a
labelled set of training pixels for the classes of interest. Often that entails the analyst
obtaining reference data such as aerial photographs, maps of the region of interest,
or even hard copy products of the image data, from which skilled photointerpre-
tation generates a set of acceptable training pixels. If the training data is to be taken
from a map it is important that the scales of the map and image data be comparable.
It is particularly useful if the image can be registered to the map beforehand so that
selected polygons from the map can be laid over the image to identify pixels of
given cover types for training.
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Often the identification of training pixels, or more commonly training fields, will
require field visits, which is an expensive component of the exercise, but one which
is often used in practice to ensure good classification outcomes.

It is necessary to collect training data at least for all classes of interest and,
preferably, for all apparent classes in the segment of image to be classified. In either
case, and particularly if the selection of training data is not exhaustive or fully
representative, it is prudent to use some form of threshold or limit on the classi-
fication so that pixels in the image that are not well represented in the training data
are excluded in a trial classification. Such a limit can be imposed in maximum
likelihood classification, for example, by the use of thresholds on the discriminant
functions.1 By limiting a classification in this way, pixels in the image that are not
well characterised by the training data will not be classified. That will identify
weaknesses in the selection of the training data which hopefully can be rectified; the
image can then be reclassified. Repeated refinement of the training data, and
reclassification, can be carried out using a representative portion of the image data.
That is important if the image requiring analysis is very large.

The training data is used to estimate the parameters or other constants required to
operate the chosen classification algorithm. If the algorithm involves explicit
parameters, such as the mean vector and covariance matrix for the multivariate
normal distribution, then the technique is called parametric. For algorithms which
do not involve sets of parameters of those types the term non-parametric is used
even though constants have to be estimated, such as the kernel parameters in the
support vector machine approach. Once the appropriate parameters or constants
have been estimated using the training data, the algorithm is then ready to be
employed on unseen (testing) pixels—it is then said to be trained.

As a proportion of the full image to be analysed, the amount of training data will
often be less than 1–5% of the image pixels. The learning phase, therefore, in which
the analyst plays an important part in the labelling of pixels beforehand, is per-
formed on a very small part of the image. Once trained on such a small image
segment, the classifier is then asked to attach labels to all the image pixels. That is
where a significant benefit occurs in thematic mapping.

11.2.1.2 Feature Selection

When undertaking a classification, it is sensible to use no more features than
necessary to get results at the level of accuracy required. There are two reasons for
this. First, the more features involved in a classification the more costly the exer-
cise. In the case of the maximum likelihood classifier, for example, cost increases
with the square of the number of features.

Secondly, and more importantly, the well-known Hughes effect or the overfitting
problem, alerts us to the drop in classifier performance that can be experienced

1 See Sect. 8.3.5.
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when there are not enough training samples available relative to the number of
features used in the classifier. Estimates of the maximum likelihood signatures in
training are severely compromised if the dimensionality of the mean vector and
covariance matrix is high compared with the number of pixels used. Clearly, this is
most critical when using sensors with large numbers of bands, such as imaging
spectrometers.

When considering the application of machine learning algorithms for thematic
mapping it makes little sense to contemplate using all the bands available. Some
exercises only require data in given regions of the spectrum. Moreover, adjacent
bands tend to be highly correlated because of overlaps of the bandpass filters that
define the individual band measurements, and also because of the spectral reflec-
tance behaviours of the cover types. That is not to say that considerable diagnostic
benefit is not available in the large numbers of bands from an imaging spectrometer,
but in a practical exercise a consequence of injudiciously using a large number of
bands, without some consideration beforehand of their relevance, is to prejudice the
performance of the classification. That is why any classification methodology will
include feature reduction as an early step. A range of procedures is presented in
Chap. 10.

When using a maximum likelihood rule, feature selection can be guided by the
application of separability measures such as those treated in Chap. 10. Those
metrics have another benefit when dealing with classes that are assumed to be
represented by multivariate normal distributions. By checking their statistical sep-
arability, we can assess whether any pair of classes are so similar in spectral space
that a significant misclassification error would occur if they were both used. If they
are too close, they should be merged.

11.2.1.3 Classifier Outputs and Accuracy Checking

The output from the supervised classification approach typically consists of a
thematic map of class labels, often accompanied by a table of area estimates and,
importantly, an error matrix which indicates by class the residual error, or accuracy,
of the final product. We look at the error matrix in detail in Sect. 11.6.2.

11.2.2 Unsupervised Classification

Unsupervised classification is an analytical procedure based, generally, on clus-
tering algorithms such as those treated in Chap. 9. Clustering partitions a sample of
the image data in spectral space into a number of distinct clusters or spectral classes.
It then labels all pixels of interest as belonging to one of those classes to produce a
cluster map, albeit with purely symbolic labels at this stage and not labels that
indicate ground cover types.
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In contrast to the prior use of analyst-provided information in supervised clas-
sification, unsupervised classification is a segmentation of the spectral space in the
absence of any information fed in by the analyst. Instead, analyst knowledge is used
afterwards to attach class labels to the map segments established by clustering,
often guided by the spatial distribution of the labels shown in the cluster map.
Clearly this is an advantage of unsupervised classification. However, by compar-
ison to most techniques for supervised classification, clustering is a time-consuming
process. This can be demonstrated, for example, by comparing the multiplication
requirements of the iterative clustering algorithm of Sect. 9.3 with the maximum
likelihood decision rule of Sect. 8.3.3.

Suppose a particular exercise involves N bands and C classes or clusters.
Maximum likelihood classification requires CPN Nþ 1ð Þ multiplications2 where P
is the number of pixels in the segment to be classified. Clustering the same dataset
requires PCI distance measures for I iterations. Each distance calculation requires N
multiplications, so that the total number of multiplications for clustering is PCIN:
Thus the speed comparison of the two approaches is approximately N þ 1ð Þ=I.

Clustering would, therefore, need to be completed within 7 iterations for a
6-band data set to be faster than maximum likelihood classification. Frequently
about 20 times this number of iterations is necessary to achieve an acceptable
clustering. Training the classifier adds a loading to its time demand; however, a
significant time loading should also be added to clustering to account for the
labelling step. Often that is done by associating pixels with the nearest cluster using
a Euclidean distance measure in the spectral space, including any pixels that were
not used in clustering.

Because of the time demand of clustering algorithms, unsupervised classification
is not often carried out with large image segments. Usually, a representative subset
of data is employed for the actual clustering phase in order to segment the spectral
space. That information is then used to assign all the image pixels to one of the
clusters to create the unsupervised thematic map using a minimum distance
assignment.

When comparing the time requirements of supervised and unsupervised classi-
fication it must be remembered that a large demand on the analyst’s time is required
for training the supervised procedure. That is necessary both for gathering reference
data and for identifying training pixels using that data. The corresponding step in
unsupervised classification is the labelling of clusters afterwards. While that still
requires user effort to gather labelled prototype data, not as much may be needed as
when training a supervised procedure. Data is only required for those classes of
interest. Also, often only a handful of labelled pixels is necessary to identify a given
class because we can use spatial cues to help in that process; for example, crop
fields will show as polygons, while roads and rivers will look as elongated and
sometimes straggly features.

2 See Sect. 8.5.6.
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By comparison, in supervised training sufficient training pixels for every class
are required to ensure that reliable estimates of class signatures are generated; and
the analyst has to be certain that those training pixels are as pure as possible.
Gathering sufficient samples of roads and river systems can sometimes be chal-
lenging, and mixture classes on boundaries are regularly overlooked. That can be a
particular problem with high dimensionality data such as that recorded by imaging
spectrometers.

A final point that must be taken into account when contemplating unsupervised
classification by clustering is that there is no facility for including prior probabilities
of class membership. By comparison, many supervised algorithms allow prior
knowledge to bias the result generated from spectral data alone.

Once classes have been generated for the purpose of unsupervised classification,
it is of value to use separability measures to see whether some clusters are suffi-
ciently similar spectrally that they should be combined. That is particularly the case
when the classes are generated on a sample of data; separability checking and
merging would be carried out before cluster maps are produced.

11.2.3 Semi-supervised Classification and Transfer
Learning

When insufficient labelled training samples are available it is still possible to use
supervised classification algorithms by employing one of a number of techniques
that use unlabelled data to supplement known training pixels.3 Most are known as
semi-supervised training procedures or semi-supervised learning; we do not treat
them any further in this coverage, but they feature strongly in the machine learning
community.4 Because of the potential for overfitting, they have become of signif-
icant interest for use in convolutional neural networks.5 The hybrid methodology
outlined in Sect. 11.4 is similar to semi-supervised learning in that hard to char-
acterise classes are able to be labelled via clustering. Mixing supervised and
unsupervised methods is one basis for semi-supervised approaches.

3 See J.A. Richards and X. Jia, Using suitable neighbours to augment the training set in hyper-
spectral maximum likelihood classification, IEEE Geoscience and Remote Sensing Letters, vol 5.
No. 4, October 2008, pp. 774–777 and R.G. Negri, S.J.S. Sant’Anna and L.V. Dutra,
Semi-supervised remote sensing image classification methods assessment, Proc. Int. Geoscience
and Remote Sensing Symposium, IGARSS2011, Vancouver, 24–29 July 2011, pp. 2939–2942.
4 See J.E. van Engelen and H.H. Hoos, A survey on semi-supervised learning, Machine Learning,
vol. 109, 2020, pp. 373–440, O. Chapelle, B. Schölkopf and A. Zien, eds., Semi-Supervised
Learning, MIT Press, Cambridge, Mass., 2006, and X. Zhu and A. Goldberg, Introduction to
Semi-Supervised Learning, Morgan and Claypool, CA, 2009.
5 See X. Dai, X. Wu, B. Wang and L. Zhang, Semi-supervised scene classification for remote
sensing images: A method based on convolutional neural networks and ensemble learning, IEEE
Geoscience and Remote Sensing Letters, vol 16, No. 6 June 2019, pp. 869–873.

452 11 Image Classification in Practice



Another approach to avoid over-fitting when training deep learning algorithms,
such as convolutional neural networks, has been to use transfer learning, in which
the weights of a CNN are initialised with values from another CNN previously
trained on a different data set.6

11.3 Effect of Resampling on Classification

It is much easier to work with image data that has been registered to a map grid
using the techniques of Sect. 2.18. That requires an interpolation method with
which to synthesise pixel values for placement on the map grid. The two most
common interpolation procedures are nearest neighbour resampling and resampling
by cubic convolution. In the former, the original image pixels are simply relocated
onto a geometrically correct map grid whereas, in the latter, new pixel brightness
values are created by interpolating over a group of 16 neighbouring pixels.

Clearly, it is also desirable to have thematic maps registered to a map base. That
can be done by rectifying the image before classification or by rectifying the
thematic map, in which case nearest neighbour resampling is the only interpolation
option available.

An advantage in correcting the image beforehand is that it is often easier to relate
reference data to the image if it is in correct geometric registration to a
map. However, a drawback with doing this prior to classification is that some of the
pixel brightness values may be changed by the interpolation process used. Since
cubic convolution fits an interpolating function over 16 neighbouring pixels, the
brightness values in the rectified product are not the original brightness values
recorded by the imaging sensor. As a result, some may not classify well. By
comparison, the brightness values of the pixels in a corrected image based on
nearest neighbour resampling are the original pixel brightness values, simply
relocated. In that case resampling cannot affect subsequent classification results.

The influence of resampling on classification accuracy has been considered since
the earliest days of remote sensing image processing. Cubic convolution interpo-
lation in particular, has been shown to have a major influence across boundaries such
as that between vegetation and water, leading to uncertainties in classification.7

6 D. Marmanis, M. Datcu, T. Esch and U. Stilla, Deep learning earth observation classification
using ImageNet pretrained networks, IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 1,
January 2016, pp. 105–109 and P. Vinayaraj, R. Sugimoto, R. Nakamura and Y. Yamaguchi,
Transfer learning with CNNs for segmentation of PALSAR-2 power decomposition components,
IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, vol. 13, 2020,
pp. 6352–6361.
7 See F.C. Billingsley, Modelling misregistration and related effects on multispectral classification,
Photogrammetric Engineering and Remote Sensing, vol. 48, 1982, pp. 421–430, B.C. Forster and
J.C. Trinder, An examination of the effects of resampling on classification accuracy, Proc. 3rd
Australasian Conf. on Remote Sensing (Landsat84), Queensland, 1984, pp. 106–115, and
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When images in a multitemporal sequence have to be classified to extract change
information it is necessary to perform image to image registration. Since registra-
tion cannot be avoided, again nearest neighbour resampling should be used if
classification is contemplated. It is most effective when the scales of the two
products to be registered are comparable.

11.4 A Hybrid Supervised/Unsupervised Methodology

11.4.1 Outline of the Method

The methodology now to be covered can be used with any supervised classifier, but
it was developed originally for the maximum likelihood rule. We will derive it from
that perspective but note, when appropriate, its application using other supervised
algorithms.

The strength of supervised classification based on the maximum likelihood
procedure is that it minimises classification error for classes that are distributed in a
multivariate normal fashion. It can also label data relatively quickly. Its major
limitation is that the information classes of interest to the user will generally not be
of that form; either the distribution of pixels in a given information class will be
smeared out in spectral space or will appear as sets of moderately distinct clusters.

In order to apply the maximum likelihood rule we need to resolve an information
class into acceptable sets of Gaussian modes. In the terminology of remote sensing
that means finding the constituent set of spectral classes that are needed to model
each information class so that good classifier performance will result. That is the
step most often overlooked when using Gaussian maximum likelihood classifica-
tion, as a consequence of which many users find that the maximum likelihood rule
does not work as well as might otherwise be expected.

Resolving information classes into constituent sets of unimodal spectral classes
is a task that can be handled by clustering on a representative subset of image data.
Used for this purpose, unsupervised classification performs the valuable function of
identifying the existence of all spectral classes, yet it is not expected to perform the
entire classification. Consequently, the rather logical hybrid classification procedure
outlined below has been shown to work well.8 It consists of five fundamental steps:

J. Verdin, Corrected vs uncorrected Landsat 4 MSS data, Landsat Data Users Notes, issue 27,
NOAA, Sioux Falls, June 4–8 1983.
8 This procedure is developed in M.D. Fleming, J.S. Berkebile and R.M. Hofer, Computer aided
analysis of Landsat 1 MSS data: a comparison of three approaches including a modified clustering
approach, Information Note 072475, Laboratory for Applications of Remote Sensing, Purdue
University, West Lafayette, Indiana, 1975. http://www.lars.purdue.edu/home/references/LTR_
072475.pdf.
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Step 1: Use clustering to determine the spectral classes into which the image
resolves. For reasons of economy this is performed on a representative
subset of data. Spectral class statistics are produced from this unsuper-
vised step.

Step 2: Using available reference data associate the spectral classes, or clusters,
from Step 1 with information classes. Frequently there will be more than
one spectral class for each information class.

Step 3: Perform a feature selection to see whether all features (bands or chan-
nels) need to be retained for reliable classification.

Step 4: Using the maximum likelihood algorithm, classify the entire image into
the set of spectral classes.

Step 5: Label each pixel in the classification with the information class corre-
sponding to its spectral class and use independent testing data to
determine the accuracy of the classified product.

We now consider some of the steps in detail and introduce some practical
aspects. The method depends for its accuracy, as do all classifications, on the skills
and experience of the analyst. Consequently, in practice it is not unusual to iterate
over sets of steps as experience is gained with the particular problem at hand.

11.4.2 Choosing the Image Segments to Cluster

Clustering is applied to a subset of the total image to find suitable spectral classes.
Although this will depend on experience, it is recommended that about 3–6 small
regions, called candidate clustering areas, be chosen for the purpose. They should
be well spaced over the image, located such that each one contains several of the
information classes of interest, and such that all information classes are represented
in the collection of clustering areas. An advantage of choosing heterogeneous
regions to cluster, as against the apparently homogeneous training areas that are
used for simple supervised classification, is that mixture pixels which lie on class
boundaries will be identified as legitimate spectral classes that represent mixed
information classes.

With most clustering procedures the analyst has to specify a set of parameters
that controls the number of clusters generated. About 2–3 spectral classes per
information class have been found to be useful in general; clustering parameters
should be selected with that in mind. The number of clusters could be chosen
conservatively high because unnecessary classes can be deleted or merged at a later
stage.

It is of value to cluster each region separately as that has been found to produce
cluster maps with more distinct boundaries than when all regions are pooled
beforehand.
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11.4.3 Rationalising the Number of Spectral Classes

When clustering is complete the spectral classes are then associated with infor-
mation classes using the available reference data. It is then necessary to see whether
any spectral classes can be discarded, or more importantly, whether sets of clusters
can be merged, thereby reducing the number. Decisions about merging can be made
on the basis of separability measures, such as those treated in Chap. 10.

During this rationalisation process it is useful to be able to visualise the locations
of the spectral classes. For this a bispectral plot (or biplot) can be constructed. The
bispectral plot is not unlike a two-dimensional scatter plot of the spectral space in
which the data appears. However, rather than displaying the individual pixels, class
means are shown by their spectral coordinates. The most significant pair of spectral
bands would be chosen in order to see the relative locations of the cluster centres.
Sometimes several biplots are produced using different band combinations.

11.4.4 An Example

We now present an example to illustrate some key features of the hybrid approach.
Because of the simplicity of this illustration not all the steps outlined earlier are
involved; but the example highlights the value of using unsupervised classification
as a means for identifying spectral classes and for generating signatures of classes
for which the acquisition of training data would be difficult.

Figure 11.1a shows a small image segment recorded by the HyVista HyMap
sensor over the city of Perth in Western Australia. It is centred on a golf course. The
obvious cover types are water, grass (fairways), trees, bare ground including
bunkers (sand traps), a clubhouse, tracks and roads. Apart from a few cases, the
distribution of cover types suggests that it might be hard to generate training fields
for all classes of interest.

With the direction in which the image was recorded, north is to the right. Shown
on the figure are three fields that were used as clustering regions. Inspection shows
that those fields among them cover all the obvious information classes.

Rather than cluster each field independently, which is generally preferable, the
three fields were aggregated and an Isodata clustering algorithm was applied to the
group with the requirement to generate 10 clusters.9 Because there were seven
information classes, and some are clearly very homogeneous, it was felt that 10
clusters would be adequate. Five bands were chosen for the exercise: band 7
(visible green), band 15 (visible red), band 29 (near infrared), band 80 (mid
infrared) and band 108 (mid infrared). The last two were chosen on the infrared
maxima of the vegetation and soil curves, midway between the water absorption

9 All processing for this example was carried out using the MultiSpec© package developed at
Purdue University, West Lafayette, Indiana.
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regions. It was felt that they would assist in discriminating among the bare ground
and roadway classes.

Figure 11.1b shows the cluster maps produced for each of the three fields out-
lined in Fig. 11.1a. Table 11.1 shows the mean vectors for each of the 10 clusters,
along with information class labels generated by observing the clusters against the
image,10 looking at their spatial orientation and distribution, and noting where they
fall in the bispectral plot seen in Fig. 11.2. Of particular note is the ease with which
signatures have been generated for the two elongated classes of tracks and roads.
Although only the mean vectors are shown here, the clustering processor in
MultiSpec generates the full covariance matrices that are used in the subsequent
classification step.

The infrared versus red bispectral plot in Fig. 11.2 shows information class
labels attached to the cluster means. As observed, there are two (spectral) classes of
grass, and two of sparse vegetation. There is also a thin border class of mixed
vegetation and water pixels; that often happens in practice and would not get picked

cluster 2

cluster 4

cluster 5

cluster 6

cluster 8

cluster 9

cluster 10

heterogeneous fields 
used for clustering

a
b

cluster 1

cluster 3

cluster 7

Fig. 11.1 a Image segment showing cluster regions, and b result of clustering those regions to
generate 10 clusters

10 Ordinarily these labels would be generated by using available reference data. In this case,
photointerpretation of the original image easily reveals the information classes. This can be
supplemented by other data for the region such as that available on Google Earth.
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up in a traditional supervised classification exercise. Here it will be attributed to the
water class.

Figure 11.3 shows the result of a maximum likelihood classification using the
full set of signatures for all 10 clusters. Implicitly, that means we are using two
spectral classes in the case of the grass information class and two spectral classes in
the case of the sparse vegetation information class. In the classification map they
have been coloured the same since the end user is not interested in the spectral class
structure.

Table 11.1 Cluster mean vectors and associated information class labels

Cluster Pixels Cluster mean vector elements Label

7
(0.511 lm)

15
(0.634 lm)

29
(0.847 lm)

80
(1.617 lm)

108
(2.153 lm)

1 1957 1516.7 1074.9 6772.0 3690.6 1762.8 Grass
2 1216 1889.3 2275.3 4827.2 4766.3 3304.4 Bare
3 1643 1301.7 984.6 6005.4 3299.1 1574.9 Grass
4 1282 1592.5 1535.5 5503.9 4006.1 2275.6 Sparse veg
5 668 1012.9 830.8 4884.3 2519.4 1230.0 Sparse veg
6 649 1496.5 1708.4 3813.4 3369.0 2332.9 Tracks
7 950 707.7 540.2 3938.0 1600.1 722.6 Trees
8 669 1397.3 1509.3 2368.0 2135.2 1745.9 Buildings/

roads
9 462 642.1 625.2 2239.5 1194.4 656.9 Water/veg
10 2628 438.4 376.7 469.7 276.0 182.0 Water
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Fig. 11.2 Near infrared versus visible red bispectral plot showing the cluster means and
information class labels; note that two information classes each consist of two spectral classes
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11.4.5 Hybrid Classification with Other Supervised
Algorithms

Although the method just demonstrated was devised for use with the maximum
likelihood algorithm it can be used with other supervised approaches as well, taking
advantage of the benefits derived from the unsupervised step—particularly the
generation of training samples for mixture classes and spatially elongated classes,
for which it might be difficult to extract meaningful training pixels. Here we show
another simple example, in this case using the minimum distance rule.

The exercise involves classifying an arid region near the township of Bourke,
Australia employed for growing cotton by the use of irrigation from a nearby
river.11 The task was to assess the area in hectares sown to cotton, as a surrogate for
the amount of water used. Field agronomists had assessed the hectarage of cotton
crops in the region but required corroborative evidence.

The image to be classified consists just of the visible red and the first of the two
near infrared bands of a Landsat multispectral scanner image, recorded in February
1981. Although the region is very dry at that time of the year, apart from the crops
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watersparse vegeta�on
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bare
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sparse vegeta�on
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water/vegeta�on mix

watersparse vegeta�on

Fig. 11.3 Thematic map produced by the maximum likelihood classifier using the 10 spectral
classes generated by clustering, and re-coloured into the set of 7 information classes

11 See G.E. Moreton and J.A. Richards, Irrigated crop inventory by classification of satellite image
data, Photogrammetric Engineering and Remote Sensing, vol. 50, 1984, pp. 729–737.
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there is a gallery (riparian) forest along the river, which provides another vegetation
class.

Figure 11.4 shows a near infrared image of the region to be analysed. A test
sub-image has been identified on which the results are to be evaluated. The Darling
River can be seen to the south-east of the image.

The cotton fields are mostly in the test area (white in the left-hand image,
indicating high IR response), along with an approximately triangular shaped crop in
the bottom south-eastern corner, and some other scattered fields.

The four rectangular selections in the right-hand image sub-set, along with a
sample of the lower triangular crop, were used to resolve the spectral space into
spectral classes by clustering. Here, the simple single pass clustering algorithm
(Sect. 9.9) was used and each of the five heterogenous regions was clustered
separately. The results of the clustering are shown in Fig. 11.5 using a bispectral
plot in terms of the means of the cluster centres found.

There were 34 clusters in total, which were then rationalised to the ten shown in
the figure. That was done by associating the clusters with information classes using
black and white and colour air photos, and photointerpretation of the image itself.
Those ten grouped spectral classes were considered adequate to differentiate the
image into its main cover types and thereby avoid any errors of commission which
might lead to poor estimates of the area of the cotton crops.

When the minimum distance classifier was applied to the test image, using the
ten rationalized spectral classes, it was found that the cotton crops accounted for
803 ha. The field agronomists had estimated 800 ha. It is not necessary to show a
thematic map since the important result was the area of cotton in the test region.
Nevertheless, one can be seen in Moreton and Richards.12

test image

Fig. 11.4 Near infrared Landsat MSS band of the region around the town of Bourke, NSW,
Australia in February 1981, along with an extracted test region in which cotton crops and the
Darling River can be seen; the green regions were chosen for clustering

12 ibid.
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11.5 Cluster Space Classification

Apart from the possibility of mixed pixel classes on information class boundaries,
an assumption in the hybrid classification methodology just treated is that the
spectral classes, by and large, map to single information classes. In other words, the
overlap of a single spectral class into several information classes is assumed not to
occur. When it is recalled that the spectral classes are a convenient segmentation of
data in the spectral space, most likely generated by an unsupervised approach such
as clustering, and that the information classes are simply user-defined labels that
refer to regions on the ground, it is possible that the spectral classes and information
classes might overlap substantially as illustrated in Fig. 9.15. Such a situation can
be handled statistically, as a generalisation of the hybrid approach of Sect. 11.4, as
shown in Sect. 9.14.
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Fig. 11.5 Near IR versus visible red bispectral plot, showing the original 34 cluster centres and
the 10 rationalised classes, with their information class labels
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11.6 Assessing Classification Accuracy

At the completion of a classification exercise the accuracy of the results obtained
needs to be checked. That is necessary to allow confidence to be attached to the
results and will serve to indicate whether the objectives of the analysis have been
achieved. There are several ways of assessing the accuracy of a thematic map, and
there are several measures available for expressing that accuracy. In this section we
consider the most common.

11.6.1 Use of a Testing Set of Pixels

The preferred approach for assessing map accuracy is to select an independent
random sample of pixels from the thematic map and check their labels against
actual ground classes determined from reference data.13 That presents practical
challenges because we then have to locate labelled ground reference data for those
pixels randomly selected from the thematic map.

More often the analyst has set aside labelled data to be used as a testing set after
the classification has been carried out. This is similar to the training set of pixels
used to generate the classifier in the first instance. In most cases, the analyst labels
as many pixels as practicable and then uses a subset for training and another subset
for assessing the accuracy of the final product.

In principle, the testing data should be composed of pixels selected at random in
order to avoid the interdependences of near neighbouring pixels. A difficulty that
can arise with random sampling in this manner is that it is area-weighted. That is,
large classes tend to be represented by a larger number of sample points than
smaller classes; it is possible that some small classes may not be represented at all.
To avoid the undesirable effect that that has on the assessment of accuracy of the
smaller classes, it is necessary to ensure that those classes are represented ade-
quately. An approach that is widely adopted is stratified random sampling in which
the user first decides on a set of strata into which the image is divided. Random
sampling is then carried out within each stratum. The strata could be any convenient
area segmentation of the thematic map, such as grid cells. However, the most
appropriate stratification to use is the actual thematic classes themselves. That
effectively reduces any area bias in the random sampling that could lead to inap-
propriate accuracy estimation for the smaller classes.

13 In the past, reference data was often called ground truth; that term is now less often used
because sampling and interpretation inaccuracies can lead to errors in what might otherwise be
regarded as a perfectly correct understanding of the ground labels. The term reference data is less
dogmatic although we still tend to assume it is exact, unless we have reasons to believe differently.
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11.6.2 The Error Matrix

Whichever of the approaches in Sect. 11.6.1 is used, it is common to express the
results in the form of an error matrix (sometimes in the past called a contingency
matrix or a confusion matrix) which lists the reference data classes by column and
the classes indicated on the thematic map by row, as shown in Table 11.2. The cells
in the table show the number of pixels that are common between a reference class
and a map class. In an ideal result the table or matrix will be diagonal, indicating
that for every reference class pixel the classifier has generated the correct label. For
a poor classification the off-diagonal terms will be larger indicating that the clas-
sifier has had trouble correctly labelling the pixels from the reference data.

The column sums in the error matrix represent the total number of labelled
reference pixels available per class. The row sums represent the total number of
pixels labelled by the classifier as coming from a particular class in the set of pixels
chosen to assess classification accuracy. Using those, we can define errors of
omission and errors of commission. Errors of omission correspond to those pixels
belonging to the reference class that the classifier has failed to recognise; they are
therefore the off-diagonal terms down the column for a particular reference class.
We can turn them into percentages by dividing the counts in those cells by the
column sum. Errors of commission correspond to those pixels belonging to other
reference classes that the classifier has placed in the class of interest; they are the
off-diagonal terms across the row for a particular thematic map class. They can be
turned into percentages by dividing the counts in those cells by the row sum.

reference data classes

thematic
map

classes

A B C sum
A 35 2 2 39
B 10 37 3 50
C 5 1 41 47

sum 50 40 46 136

overall accuracy = (35+37+41)/136 ≡ 83.1%

producer’s accuracies user’s accuracies
A 35/50 ≡ 70.0% A 35/39 ≡ 89.7%
B 37/40 ≡ 92.5% B 37/50 ≡ 74.0%
C 41/46 ≡ 89.1% C 41/47 ≡ 87.2%

Table 11.2 Using an error
matrix to summarise classifier
performance and map
accuracy, following the layout
of Congalton and Green14

14 R.G. Congalton and K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and
Practices, 2nd ed., CRC Press Taylor and Francis Group, Boca Raton Florida, 2009 and 3rd ed.,
2019.
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When interpreting an error matrix, it is important to understand that different
indications of accuracy will result according to whether the number of correct pixels
for a class (those on the diagonal) is divided by the total number of reference pixels
for that class (the column sum) or the total number of pixels that the classifier
attributes to the class (the row sum).

For example, consider class B in Table 11.2. As noted, 37 of the reference data
pixels have been correctly labelled. This represents 37/40 � 92.5% of the reference
data pixels for the class. This is the probability that the classifier has labelled a pixel
as class B given that the actual (reference data) class is B. It is often referred to as
producer’s accuracy15 and is an indication of classifier performance.

A user of a thematic map produced by a classifier is often more interested in the
likelihood that the actual class is B given at the pixel has been labelled B on the
thematic map by the classifier; this is an indication of map accuracy. It is called user’s
accuracy and, for this example, is 37/50 � 74.0%, indicating that only 74% of the
pixels labelled B on the thematic map are correct, even though the classifier correctly
handled almost 93% of the class B reference data. This distinction is important and
leads one to believe that user’s accuracy is thefigure that shouldmost often be adopted.
Producer’s and user’s accuracies for all of the classes are indicated in Table 11.2.

Often the results of a classification exercise are expressed as a single figure of
accuracy, independent of the class. In the case of the data in Table 11.2 we would
say that the result is 113/136 � 83.1% accurate. While that is an acceptable
summary of the situation, it masks the fact that the classifier may handle some
classes better than others. Knowing how the classifier performs on individual
classes is important if the analyst is going to iterate through the results in order to
refine the accuracy of the final product.

11.6.3 Quantifying the Error Matrix16

In Sect. 11.6.1 we noted two alternative methods that could be used to assess how a
classifier performs and how accurate a map might be. In the first, samples are taken
from the thematic map and checked against the ‘true’ labels on the ground. In the
second, samples are taken of ground gathered reference data (a testing set) and used
to check the classifier-generated map labels. The first checks the accuracy of the
map and the second checks the performance of the classifier—they are not the
same. The first is what the user wants but the second is easier in practice and
generally is what is available when constructing the error matrix. The latter is
equivalent to producer’s accuracy, but the former is only equivalent to actual map
accuracy when the distribution of testing pixels over the classes reflects the actual

15 ibid.
16 This section is based on J.A. Richards, Classifier performance and map accuracy, Remote
Sensing of Environment, vol. 57, 1996, pp. 161–166.
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class distributions on the ground, as the following analysis shows. This is not
widely appreciated.

Suppose we use the variates t, r and m to represent respectively the true label for
a pixel, its label in the reference data and its label on the thematic map; we will use
the symbols Y and Z to represent any of the available class labels, i.e.,
Y ; Z 2 A;B;Cf g.

If we sample the map and check the accuracy of those samples on the ground,
then effectively we are estimating the map accuracy probabilities:p t ¼ Zjm ¼ Zð Þ.
This is the likelihood that the actual label for a pixel is Z if the map shows it as Z,
which is what the user of the thematic map is interested in. More generally,
p t ¼ Y jm ¼ Zð Þ is the probability that Y is the correct class if the map shows Z.

If, instead, we select reference pixels and check the map labels generated by the
classifier then we are computing the classifier performance probabilities
p m ¼ Zjr ¼ Zð Þ, or in general p m ¼ Zjr ¼ Yð Þ, which is the likelihood that the
thematic map label is Z for a pixel labelled as Y in the reference data.

We have used the two different variates t and r to refer to the ground labels only
because, in the case of checking the map by sampling from it, there is strictly no
concept of reference data. We now assume they are the same, but that places an
important constraint on the reference data set—i.e., the testing set. Its labelled
pixels must be truly representative of the situation on the ground and, in particular,
the number of pixels per class must be representative of their proportions on the
region of the earth’s surface being imaged. Random selections from the testing set
will then yield a distribution by label which is the same as the prior probability of
occurrence of the labels on the ground. If we make that assumption, then we can put

p r ¼ Y jm ¼ Zð Þ � p t ¼ Y jm ¼ Zð Þ

and then use Bayes Theorem to relate the map accuracy and classifier performance
probabilities

p r ¼ Y jm ¼ Zð Þ ¼ p m ¼ Zjr ¼ Yð Þp r ¼ Yð Þ
p m ¼ Zð Þ

In this last expression the prior probability p r ¼ Yð Þ represents the likelihood that
class Y exists in the region being imaged; p m ¼ Zð Þ is the probability that class Z
appears on the thematic map, which can also be generated from

p m ¼ Zð Þ ¼
X

Y2 A;B;Cf g
p m ¼ Zjr ¼ Yð Þp r ¼ Yð Þ

To reiterate, the p r ¼ Y jm ¼ Zð Þ are what we are interested in because they tell us
how accurately the map classes represent what’s on the ground, but that requires the
rather impractical step of identifying samples selected at random from the map for
identification. In contrast, using previously labelled testing data we can find the
p m ¼ Zjr ¼ Yð Þ; but that doesn’t explicitly tell us about the accuracy of the map
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product. The concept of user’s accuracy in the previous section is meant to be a
surrogate, but that is only true if the testing set distribution reflects the relative
proportions of classes on the ground as we will now show by example, using the
data of Table 11.2.

Table 11.3 gives three sets of results for differing prior probability distributions
for the ground class labels; here the results are left in the form of probabilities and not
converted to percentages. In one, the distribution is the same as the proportion of
classes in the testing set; in another equal prior probabilities are assumed; and in the
third a distribution very different from the priors is used. As seen, the map accuracies
are only the same as the user’s accuracies when the testing set reflects the priors.

In Table 11.3 a number of average accuracies are reported. We need now to give
some thought as to how the average is computed. In its ideal form the class-wise
accuracy of a thematic map is expressed by the probabilities p r ¼ Zjm ¼ Zð Þ. As
above, these are found by sampling the thematic classes on the map and seeing how
many pixels correspond to the actual classes on the ground. Once those probabil-
ities have been determined the average accuracy of the map should be expressed as

map accuracy ¼
X

Z2 A;B;Cf g
p r ¼ Zjm ¼ Zð Þp m ¼ Zð Þ

in which the class-wise accuracies are weighted by the probability of occurrence of
those classes in the thematic map. That is important to ensure that the user of a map
is not misled by the disparity in the sizes of classes that might appear on a map. For
example, even though a class which has a small area is highly accurate, it will not
have a significant influence on the average accuracy, and certainly not as much
influence as the larger classes. Using the reciprocity of joint probabilities, we can
express the above formula for map accuracy in the form

Table 11.3 Comparison of classifier performance, user’s accuracies and map accuracies for
different combinations of prior probabilities; the first set of priors is computed from Table 11.2

Prior
probabilities

Classifier performance User’s
accuracies

Map accuracies

p Að Þ ¼ 0:368
p Bð Þ ¼ 0:294
p Cð Þ ¼ 0:338

p m ¼ Ajr ¼ Að Þ ¼ 0:700
p m ¼ Bjr ¼ Bð Þ ¼ 0:925
p m ¼ Cjr ¼ Cð Þ ¼ 0:891

Class A = 0.987
Class B = 0.740
Class C = 0.872

p r ¼ Ajm ¼ Að Þ ¼ 0:897
p r ¼ Bjm ¼ Bð Þ ¼ 0:740
p r ¼ Cjm ¼ Cð Þ ¼ 0:872

Average = 0.831 Average = 0.831

p Að Þ ¼ 0:333
p Bð Þ ¼ 0:333
p Cð Þ ¼ 0:333

p m ¼ Ajr ¼ Að Þ ¼ 0:700
p m ¼ Bjr ¼ Bð Þ ¼ 0:925
p m ¼ Cjr ¼ Cð Þ ¼ 0:891

Class A = 0.987
Class B = 0.740
Class C = 0.872

p r ¼ Ajm ¼ Að Þ ¼ 0:882
p r ¼ Bjm ¼ Bð Þ ¼ 0:777
p r ¼ Cjm ¼ Cð Þ ¼ 0:877

Average = 0.831 Average = 0.838

p Að Þ ¼ 0:900
p Bð Þ ¼ 0:050
p Cð Þ ¼ 0:050

p m ¼ Ajr ¼ Að Þ ¼ 0:700
p m ¼ Bjr ¼ Bð Þ ¼ 0:925
p m ¼ Cjr ¼ Cð Þ ¼ 0:891

Class A = 0.987
Class B = 0.740
Class C = 0.872

p r ¼ Ajm ¼ Að Þ ¼ 0:993
p r ¼ Bjm ¼ Bð Þ ¼ 0:202
p r ¼ Cjm ¼ Cð Þ ¼ 0:328

Average = 0.831 Average = 0.721
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map accuracy ¼
X

Z2 A;B;Cf g
p r ¼ Z;m ¼ Zð Þ

¼
X

Z2 A;B;Cf g
p m ¼ Z; r ¼ Zð Þ

¼
X

Z2 A;B;Cf g
p m ¼ Zjr ¼ Zð Þp r ¼ Zð Þ

This last expression tells us that the true average map accuracy can be obtained
from the classifier performance, provided the classifier probabilities are weighted by
the prior probabilities.

There is one final lesson we need to learn from the entries in Table 11.3. The last
example shows a case with extreme prior probabilities, which is indicative of a
situation where we may have one large class and two smaller classes. The way this
example has been set up is such that the classifier performs better on the smaller
classes than it does on the large class. When the map accuracies are computed it is
seen that the results for the two smaller classes are disappointingly low notwith-
standing that the classifier worked well on those classes. The reason is that the
errors the classifier made on the large class commit themselves to the smaller
classes thereby causing the confusion. In practice, therefore, even though one might
be interested in a set of smaller classes and be happy that a classifier performs well
on them, it is nevertheless important that any larger classes are also well recognised
by the classifier so that errors of commission do not distort the results for the
smaller classes.

11.6.4 The Kappa Coefficient

The Kappa Coefficient is a measure of classifier performance derived from the error
matrix but which, purportedly, is free of any bias resulting from chance agreement
between the classifier output and the reference data.17 It was proposed initially for
checking the chance agreement between the results of two independent classifiers.
In our case, we have only one classifier and a set of reference data but, nevertheless,
the reference data is also regarded as a sample of the true situation on the ground for
this purpose. Although, as discussed below, there is dispute over the efficacy of the
method, it is nevertheless widely used in remote sensing to report classification
results. We will demonstrate its use by reference to the error matrix in Table 11.2. If
we look at the classifier output in Table 11.2, we see that

17 The Kappa Coefficient is generally attributed to J. Cohen, A coefficient of agreement for
nominal scales, Educational and Psychological Measurement, vol. 20, no. 1, 1960, pp. 37–46,
although apparently its use has been traced back to the late 1800s. Its use in remote sensing is
covered extensively in R.G. Congalton and K. Green, loc. cit.
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The classifier places:
39/136 = 0.287 of the pixels in class A
50/136 = 0.368 of the pixels in class B
47/136 = 0.346 of the pixels in class C

The reference data places:
50/136 = 0.368 of the pixels in class A
40/136 = 0.294 of the pixels in class B
46/136 = 0.338 of the pixels in class C

The probability that they would both place a pixel at random in class A is
0.287 � 0.368 = 0.106; similarly, the probability that they would both place a
pixel in class B is 0.368 � 0.294 = 0.108, and in C is 0.346 � 0.338 = 0.117.
Overall, the probability that they place a pixel at random in the same class is the
sum of the three probabilities, viz. 0.106 + 0.108 + 0.117 = 0.331, which is the
random chance of their agreeing on the label for a pixel. On the other hand, the
probability of a correct classification determined from the agreement of the clas-
sifier output and the reference data is (35 + 37 + 41)/136 = 0.831.

Now, the Kappa Coefficient is defined, in words, as18

j ¼ probability of correct classification� probability of chance agreement
1� probability of chance agreement

which, for this example, is j = (0.831 − 0.331)/(1 − 0.331) = 0.747. We now need
to do two things: first, express the Kappa Coefficient directly in terms of the
elements of the error matrix and secondly gain some understanding of what certain
levels of Kappa Coefficient mean.

The commonly used measure of the probability of correct classification is given
by the sum of the diagonal elements of the error matrix divided by the global total.
If we represent an entry in the error matrix by nij, the total number of pixels by N,
and the number of classes by M then the probability of correct classification is

po ¼ 1
N

XM
i¼1

nii ð11:1Þ

If we now define the sum over the rows of the error matrix and the sum over the
columns, respectively, as

nþ i ¼
XM
k¼1

nki niþ ¼
XM
k¼1

nik ð11:2aÞ

then the probabilities that the reference data and classifier respectively place a pixel
at random into class i are

pþ i ¼ 1
N

XM
k¼1

nki piþ ¼ 1
N

XM
k¼1

nik ð11:2bÞ

18 See Cohen, loc. cit.
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so that the probability of their agreeing by chance on any of the available labels for
a pixel is

pc ¼
XM
i¼1

1
N

XM
k¼1

nki
1
N

XM
k¼1

nik

( )
ð11:2cÞ

By definition

j ¼ po � pc
1� pc

ð11:3aÞ

This is the ratio of (i) the agreement between the map and reference data, expressed
as classification accuracy, minus the chance agreement (sometimes called the
beyond-chance agreement) and (ii) the probability that there is no chance agreement
between the map and the reference data. Said another way, it is the proportion of
labels that are in agreement between the map and reference data after chance
agreement is excluded. Substituting (11.1) and (11.2a–11.2c) into (11.3a) and
multiplying throughout by N2 gives

j ¼ N
PM

i¼1 nii �
PM

i¼1

PM
k¼1 nki

PM
k¼1 nik

� �
N2 �PM

i¼1

PM
k¼1 nki

PM
k¼1 nik

� � ð11:3bÞ

which is sometimes written as

j ¼ N
PM

i¼1 nii �
PM

i¼1 nþ iniþ
N2 �PM

i¼1 nþ iniþ
ð11:3cÞ

We now turn our attention to the values of Kappa. How does the user of a thematic
map, with accuracy assessed on the basis of the Kappa Coefficient, know if the
result is good or not? That is not an easy question to answer in general and is one
reason why some analysts still prefer to use classification accuracy, or even a
presentation of the full error matrix, in favour of using Kappa. Based on empirical
results over several authors, the guidelines on Kappa in Table 11.4 have been
proposed, noting that its theoretical maximum is 1 (in the ideal case when there can
be no chance agreement and there are no off diagonal elements in the error matrix)

Table 11.4 Suggested ranges
for the Kappa coefficient

Kappa coefficient Classification can be regarded as
below 0.4 Poor
0.41–0.60 Moderate
0.61–0.75 Good
0.76–0.80 Excellent
0.81 and above Almost perfect
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and its minimum can be large and negative. The ranges in Table 11.4 are by no
means widely adopted. Three others are shown in Fig. 11.3 of Foody19 indicating
somewhat the arbitrariness of kappa as a map accuracy measure.

There is now significant concern that the Kappa Coefficient is a misleading
measure20 because (i) in an endeavour to be a single measure it masks
importantly-different sources of error, (ii) its dependence on a comparison with
chance agreement is not informative and (iii) being a ratio, similar values can be
generated by differing combinations of the numerator and denominator. A simple
illustration of this last point is shown in Fig. 11.6, which is a plot of (11.3a) for
ranges of p0 and pc. Note the different combinations that correspond to the same
value of Kappa, such as at 0.5.

As a result of these concerns a return to measures more directly related to the
entries in the error matrix has been advocated. Two are quantity disagreement and
allocation disagreement.21 To derive these measures, we note that the expressions
in (11.2b) can be written
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Fig. 11.6 Kappa coefficient as a function of the probability of correct classification (in the legend)
and probability of chance agreement

19 G.M. Foody, Explaining the unsuitability of the kappa coefficient in the assessment and com-
parison of the accuracy of thematic maps obtained by image classification, Remote Sensing of
Environment, vol. 239, 2020, pp. 1–11.
20 R. G. Pontius Jr and M. Millones, Death to Kappa: birth of quantity disagreement and allocation
disagreement for accuracy assessment, Int. J Remote Sensing, vol. 32, no. 15, 2011, pp. 4407–
4429 and G.M. Foody loc cit.
21 R. G. Pontius Jr and M. Millones loc cit.
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pþ i ¼
XM
k¼1

pki piþ ¼
XM
k¼1

pik

in which the pij are the error matrix entries expressed as proportions or probabilities;
pij is shorthand for the joint occurrence p m ¼ i; r ¼ jð Þ when the relative class
proportions in the reference data reflect the true proportions on the ground. Taking
the difference between pþ i and piþ is tantamount to the difference between the
number of class i pixels in the reference data and the number in the thematic map.
Summing the absolute difference over all classes gives the discrepancy in the
proportions of all classes between the reference data and the map22:

Q ¼ 1=2
XM
i¼1

pþ i � piþj j ð11:4aÞ

That is called the quantity disagreement. As another interpretation it effectively
measures the differences in the areas allocated to the classes in the reference data
and map—it is one error measure. A second error measure is the allocation dis-
agreement defined by23

A ¼
XM
i¼1

min pþ i � piið Þ; piþ � piið Þf g ð11:4bÞ

The first of the arguments in the minimum function is the proportion of class i
pixels in error in the map—the errors of commission, whereas the second is the
proportion indicated from the reference data as errors of omission. This measure is
intended to assess the aggregated misallocation of individual pixels for the same
level of quantity agreement. If there is a specific error of commission there is a
corresponding error of omission, which is recognised in the minimum operation of
(11.4b).

From (11.1) 1� po is the total error, or disagreement between the thematic map
and the reference data. Interestingly it can be shown that24

1� po ¼ AþQ ð11:4cÞ

indicating that the total disagreement can be disaggregated into quantity and allo-
cation disagreements.

22 The ½ is needed because operations involving both the row sums and columns sums will have a
maximum of 2N.
23 Pontius and Millones, loc. cit.
24 ibid.
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11.6.5 Number of Testing Samples Required for Assessing
Map Accuracy

We now turn to the question of how many testing pixels should be chosen to ensure
that the assessed accuracy of the thematic map is a reliable estimate of its real
accuracy. Clearly, choosing too few samples per class will lead to a poor estimate of
map accuracy. To illustrate this point, a single testing sample from a particular class
can only indicate an accuracy of 100% or 0% depending on its match, or otherwise,
to the reference data. A larger sample will clearly give a more realistic estimate.

The problem we have to consider is shown in Fig. 11.7. In Fig. 11.7a we have
the pixels in a thematic map indicated as correctly (white) and incorrectly (grey)

a thematic map labels; white represents
a correct label from any class, and grey 
an incorrect label from any class

b random distribution of testing pixels

c thematic map sampled by the testing 
pixels 

properties of thematic map labels 
described by:

properties of thematic map labels 
sampled by testing pixels described by:

total pixels in the map

total testing pixels

Fig. 11.7 Use of randomly distributed testing pixels for assessing thematic map accuracy
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labelled. Of course, we don’t know which are correct and incorrect a priori; that’s
what we have to find using the labelled testing data. Figure 11.7b shows the
locations of a random set of testing pixels, and Fig. 11.7c shows the testing pixels
sampling the map. Note that some pixels in error have been detected while others
have been missed. What we need to do is choose enough testing pixels so that the
correct and incorrect labels sampled on the map are sufficient to reveal the map’s
accuracy to the precision required by the user.

If we select a pixel at random from the thematic map it can only be correct or
incorrect. The chance of it being one or the other is described by a binomial
probability distribution with properties established by the numbers of correct and
incorrect labels in the map. The likelihood of our choosing a correctly labelled pixel
will be high if there are few pixels in error in the map, and vice-versa.

For the thematic map we let N be the total number of pixels, and yi; i ¼ 1. . .N be
a property of the ith pixel, which has the value 1 if the pixel is correctly labelled and
0 if it is incorrectly labelled. Thus, the sum

PN
i¼1 yi is the number of correctly

labelled pixels, while

P ¼ 1
N

XN
i¼1

yi ð11:5Þ

is the proportion of pixels that are correctly labelled. This is the overall accuracy of
the map,25 which is what we want to determine using the testing pixels. It is also the
mean of the binomial distribution describing the correct labels in the map.

For the testing set let n be the total number of pixels, and gj; j ¼ 1. . .n be the
property of the jth testing set pixel which has the value 1 if a correctly labelled pixel
is detected in the map and 0 if an incorrectly labelled pixel is found. Note n�N:
The sum

Pn
j¼1 gj is the number of correctly labelled pixels found by using the

testing set, while

p ¼ 1
n

Xn
j¼1

gj ð11:6Þ

is the proportion of pixels that are correctly labelled in the testing set and is thus an
estimate of the accuracy of the map. Our task is to find the value of n that makes p
in (11.6) an acceptable estimate of P in (11.5).

The sum of the binomial random variables in (11.6) is itself a variate, as is p.
Since the individual random variables come from the same underlying binomial
distribution it can be shown that their expected value is the mean of that distri-
bution, so that

25 Here the accuracy is described by a proportion between 0 and 1, rather than the more usual form
between 0 and 100%.
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E pð Þ ¼ P

The variate p also has a standard deviation that tells us the range about the mean P
within which the sample value p is likely to occur. Since we are sampling a set of n
pixels from a finite number of pixels N in the thematic map the variance of p about
its mean P is26

var pð Þ ¼ P 1� Pð Þ
n

N � nð Þ
N � 1ð Þ ð11:7Þ

If we want confidence in the value of P estimated from p then we need to ensure
that this variance is small. Before proceeding to do that, there are a couple of useful
observations we can make from (11.7). First, if we just use one testing pixel then
the variance is P 1� Pð Þ which is in the range (0, 0.25). We can conclude nothing
about the map from the outcome of the single test, unless the map were near perfect
(P � 1) or near imperfect (P � 0). That is the situation alluded to in the opening
paragraph of this section. Secondly, if n ¼ N, i.e., we test every pixel in the
thematic map, then the variance in the estimate p is zero, meaning that p is exactly
P, which is logical. Thirdly, if N � n, which is generally the case in remote sensing
—i.e., the number of testing pixels is generally a small part of the overall scene—
then (11.7) reduces to

var pð Þ ¼ r2 ¼ P 1� Pð Þ
n

ð11:8Þ

The factor N�nð Þ
N�1ð Þ between (11.7) and (11.8) is sometimes called the finite population

correction.
To a very good approximation27 the variate p can be assumed to be normally

distributed about its mean P, as illustrated in Fig. 11.8, which shows graphically the
range within which the estimate we generate from testing data is likely to occur.
Note that 95% of the time our estimate is within ±1.96, or approximately ±2,
standard deviations of the mean; so, with 95% confidence we can say the sampled
map accuracy is in that range. If we were happy with a lower precision, then we can
give a smaller range for the estimate of the map accuracy.

We are now in the position to use (11.8) to estimate the number of testing pixels
n needed to check the accuracy of a thematic map. We can be 95% confident it lies
within two standard deviations of its true value. We now have to consider what
range about the true value we are prepared to accept as an error, because that range
specifies the value of the standard deviation. Suppose we are happy for the estimate
to be within �e of what we think is the true map accuracy: i.e., p ¼ P� e. Then
from (11.8) we have at the 95% confidence level and for N � n

26 W.G. Cochran, Sampling Techniques, John Wiley & Sons, N.Y., 1961.
27 ibid.

474 11 Image Classification in Practice



2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 1� Pð Þ

n

r
¼ e

Rearranging gives as the minimum number of samples required

n ¼ 4P 1� Pð Þ
e2

ð11:9Þ

As an illustration, suppose we are happy for an estimate to be within ±0.04 of a true
proportion which is thought to be about 0.85 (i.e., we are happy if the map accuracy
estimated from the testing set is in the range 0.81–0.89) then from (11.9) at the 95%
confidence level n ¼ 319:

Thus, randomly selecting 319 testing pixels will allow a thematic map accuracy
of about 85% to be checked with an uncertainty of ±4% with 95% confidence. Note
that (11.7) and (11.8) can be used in percentage terms as well as proportions since
we obtain percentages by multiplying proportions by 100; that applies also to the
standard deviation, because it refers to a proportion or percentage as appropriate.
Table 11.5 gives further examples for a range of likely thematic map accuracies,
this time expressed in percentages.

We can make a couple of observations from (11.8) to help guide in the selection of
the number of testing pixels. First, more samples will narrow the variance about the
mean; however, since the variance is inversely proportional to n there is a diminishing
value in choosing many more samples than the minimum required. Secondly, the
term P 1� Pð Þ is largest in the vicinity of P ¼ 0:5. Thus, the error (variance) is
greatest when the accuracy of the map is poor, and correspondingly more testing
samples are required, than when the overall thematic map accuracy is high.

10

1.96σ 1.96σ

σ σ

the es mate will fall in 
this range 95% of the me

Fig. 11.8 Showing the distribution of the map accuracy estimate from the testing data, p, about
the true accuracy P of the thematic map
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The results given above, and summarised in Table 11.5, have been developed by
assuming that we are testing the overall accuracy of the thematic map, independent
of class. We have made no specific reference to class or otherwise in this devel-
opment, so the results apply equally at the category level if required. If there were a
large number of classes in a thematic map, then clearly the requirements of
Table 11.5 will lead to an excessively large number of testing pixels. Table 11.6
shows the number of testing pixels required for an individual class, in this case with
10% uncertainty in the accuracy of the class.28

11.6.6 Number of Testing Samples Required for Populating
the Error Matrix

The calculations of the previous section were focused on the need to establish a
sufficient number of testing pixels so that the overall accuracy of a thematic map
could be assessed. Those calculations had their foundation in binomial statistics
since, for each pixel in a thematic map, only two outcomes are possible—a cor-
rectly labelled pixel or an incorrectly labelled pixel. With reference to Table 11.2,
those results are sufficient for evaluating the sum of the diagonal entries compared
with the total number of testing pixels, but not sufficient for generating accurate
estimates of the individual entries in the error matrix simultaneously.

Table 11.5 Number of testing pixels required for evaluating thematic map accuracies, with an
error ±4% and with 95% confidence

Thematic map accuracy (%) Number of testing pixels required
70 525
75 469
80 400
85 319
90 225
95 119

Table 11.6 Number of testing pixels required for class level accuracies, with an error ±10% with
95% confidence

Thematic class accuracy (%) Number of testing pixels required
70 45
75 40
80 30
85 19

28 Taken from G.H. Rosenfield, K. Fitzpatrick-Lins and H.S. Ling, Sampling for thematic map
accuracy testing, Photogrammetric Engineering and Remote Sensing, vol. 48, 1982, pp. 131–137.
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When our interest is in the performance of a classifier when labelling a pixel into
each of the available classes, testing data needs to be used to estimate the pro-
portions of pixels by class. That means we need good estimates of all of the
elements of the error matrix and, as would be expected, this will require more
testing pixels overall.

Perhaps the simplest approach, particularly when stratified random sampling is
used to avoid area bias in the results, is to choose samples within each class, using
the guidelines in Table 11.6, although perhaps with a tighter error bound.

Another approach is to use the multinomial probability distribution to describe
the multiple outcomes possible with simple, as against stratified, random sampling
when using testing data to check the accuracy of the actual class to which a pixel is
allocated in the thematic map.29 The results parallel those of the binomial devel-
opment of the previous section. When the total number of pixels in the thematic
map is large, we obtain the following estimate of the necessary sample size, based
on the tolerable error and expected mean for the ith class for the pixel:

n ¼ BPi 1� Pið Þ
e2i

ð11:10Þ

Pi is the population proportion for the class, ei is the error we can tolerate in the
estimate of the accuracy of the proportion estimate for that class and B is the upper
b percentile for the v2 distribution with one degree of freedom, where b is the
overall precision needed, divided by the total number of classes.

A version of (11.10) can also be derived for cases when the number of pixels in
the thematic map is not large enough to ignore a finite population correction.30

To find a satisfactory value for n; (11.10) would be evaluated for each class and
the largest value of n selected for the required size of the testing set, in the sense
that that is the most demanding requirement. That number could then be divided by
the total number of classes to find how many testing pixels per class are needed,
noting that this is a simple and not stratified random sampling strategy, which
assumes implicitly that the classes are comparable in size (numbers of pixels).

Following our observations with the binomial approach we can see that the worst
case class in (11.10) would be one where the population proportion is 0.5. We can
therefore derive a conservatively high estimate for n by putting Pi ¼ 0:5 in (11.10)
to give the simple expression

n ¼ B
4e2

ð11:11Þ

in which we have also assumed the same tolerable error for each class.

29 See R.D. Tortora, A note on sample size estimation for multinomial populations, The American
Statistician, vol. 12, no. 3, August 1978, pp. 100–102.
30 ibid.
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As an example,31 suppose we require our estimates of the proportions of each of
8 classes in the thematic map to be within the range ±5% and that we want our
results to be at the 95% confidence level. Then b is the upper 0.05/8 = 0.00625
(0.625 percentile) of the distribution and has the value 7.568, giving

n ¼ 7:568

4 0:05ð Þ2 ¼ 757

Therefore, we need about 757 testing pixels in total, with slightly fewer than 100
per class to get good estimates of the elements of the error matrix at the precision
level specified. Although, based on simple random sampling we could assume
about 100 per class in general, unless it was known beforehand that some classes
are very different in size.

11.6.7 Placing Confidence Limits on Assessed Accuracy

Once accuracy has been estimated using testing data it is important to place some
confidence on the actual figures derived. If the number of testing pixels has been
determined using the guidance of the previous sections, then those limits have been
set in the process. If not, we can use straightforward statistics to express the interval
within which the true map accuracy lies, say, with 95% certainty. That interval can
be determined using the expression derived from the normal distribution32

�za=2\
x� nPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nP 1� Pð Þp \za=2

in which n is the number of testing pixels, as before, x � npð Þ is the number that
were correctly labelled, and P is the thematic map accuracy, which we are esti-
mating by p ¼ x=n; za=2 is the value of the normal distribution beyond which on
both tails a of the population is excluded. As in the previous examples, if we want
the normalised statistic x� nP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nP 1� Pð Þp

to lie in the 95% portion of the normal
curve, then za=2 ¼ �1:96 � �2ð Þ: Using this value, it is a relatively straightforward
matter to solve the two inequalities above to show that the extremes of P estimated
by p, at the 95% confidence level are

xþ 1:921� 1:960
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x n� xð Þ=nþ 0:960

p
nþ 3:842

ð11:12Þ

31 Taken from Congalton and Green, loc. cit.
32 See J.E. Freund, Mathematical Statistics, 5th ed., Prentice-Hall, Englewood Cliffs, N.J., 1992.
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which for n and x large, and for reasonable accuracies, is approximated by

x� 1:960
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x n� xð Þ=nþ 0:960

p
n

¼ p� 1:960
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x n� xð Þ=nþ 0:960

p

Choosing an example of 400 testing pixels from Table 11.5 to assess an accuracy of
80% we would expect to find 320 of those pixels in agreement with the map. From
(11.12) the bounds on the estimated map accuracy are P ¼ p� 0:039 or, in per-
centage terms, the map accuracy is between 76 and 84%.

11.6.8 Cross Validation Accuracy Assessment and the Leave
One Out Method

As an alternative to using a separate testing set of pixels, an effective method for
assessing accuracy is based on cross validation. This involves taking a single
labelled set of pixels and dividing it into k separate, equally sized, subsets. One
subset is put aside for accuracy testing and the classifier is trained on the pixels in
the remaining k � 1 sets. The process is repeated k times with each of the k subsets
excluded in rotation. At the end of those k trials, k different measures of classifi-
cation accuracy have been generated. The final classification accuracy is the
average of the k trial outcomes.

A variation of the cross validation method is when each subset consists of a
single pixel. In other words, one pixel from the training set is excluded and the
classifier trained on the remainder. The pixel which has been excluded is then
labelled. In this case there are as many trials as there are training pixels, in each case
with a separate pixel left out during training. The average classification accuracy is
then the average over the labelling of the pixels left out in each trial. Provided the
original training pixels are representative, this method produces an unbiased esti-
mate of classification accuracy.33 This is called the Leave One Out (LOO) method.

11.7 Decision Tree Classifiers

Classifiers such as the maximum likelihood rule and the support vector machine are
single stage processes. They make a single decision about a pixel when labelling it
as belonging to one of the available classes, or it is left unclassified. Multistage
classification techniques are also available, in which a series of decisions is taken to

33 See D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, John Wiley &
Sons, Hoboken, N. J., 2003.
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determine the most appropriate label for a pixel. The committee classifiers of
Sect. 8.19 are examples.

The most commonly encountered multistage classifier is the decision tree, such
as that shown in Fig. 11.9. Decision trees consist of a number of connected clas-
sifiers (called decision nodes in the terminology of trees) none of which is expected
to perform the complete segmentation of the image data set. Instead, each com-
ponent classifier only carries out part of the task as indicated. The simplest is the
binary decision tree in which each component classifier is expected to perform a
segmentation of the data into one of two possible classes or groups of classes. It is
the most commonly encountered tree in practice, and has the topologies shown in
Fig. 11.10.

nodes

terminal or leaf nodes, with class labels added;
the same class could appear in several leaf nodes

ω4

ω1

ω2 ω3 ω7

ω8

ω5 ω6

ω9

root node

branches or linkssplits

tree 
depth

decision rules
the set of all classes

, a subset of 

Fig. 11.9 The decision tree classifier in which a pixel is labelled into one of the available classes
by a sequence of decisions, each of which narrows down the possibilities for membership

ω4

ω1

ω2

ω3

ω1 ω2 ω8ω7ω3 ω4 ω5 ω6

Fig. 11.10 Two versions of a binary decision tree
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There is some ambiguity in the terminology of decision trees; in this treatment
we adopt:

Root node This is where the tree commences
Decision node Intermediate node (and the root node)
Terminal or leaf node Final node, which usually represents a single class
Link or branch Connection between nodes
Tree depth Number of layers from the root node to the most

distant leaf
Antecedent Node immediately above a node of interest;

sometimes called a parent node
Descendant Node immediately following a node of interest;

sometime called a child node
Split The result of a decision to create new descendent

nodes

The advantages of the decision tree approach are that:

• different sets of features can be used at each decision node; this allows

– feature subsets to be chosen that optimise segmentations
– reduced feature subsets at individual decisions, so that the Hughes phe-

nomenon might be avoided

• simpler segmentations than those needed when a decision has to be made among
all available labels for a pixel in a single decision

• different algorithms can be used at each decision node
• different data types can be used at each decision node.

Decision tree design is usually not straightforward.34 Sometimes the analyst can
design a tree intuitively. For example, near infrared data might be used to segment
between land and water bodies; subsequently, thermal infrared data might be used
to map temperature contours within the water.35 In principle, tree design involves
finding the structure of the tree, choosing the subset of features to be used at each
node, and selecting the decision rule to use at each node. If we restrict the range of
possibilities for the last two requirements some automated procedures are possible,
as developed in the following.

34 See S.R. Safavian and D.A. Landgrebe, A survey of decision tree classifier methodology, IEEE
Transactions on Systems, Man and Cybernetics, vol. 21, May 1991, pp. 660–674.
35 See P. H. Swain and H. Hauska, The decision tree classifier: design and potential, IEEE
Transactions on Geoscience Electronics, vol. GE-15, 1977, pp. 142–147.
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11.7.1 CART (Classification and Regression Trees)

The CART36 tree growing methodology is possibly the most commonly encoun-
tered because it restricts, and thus simplifies, the possible options for how the
decision nodes function. Only one feature is involved in each decision step and a
simple threshold rule is used in making that decision. As with other supervised
classification procedures it uses labelled training data to construct the tree. Once the
tree has been built it can then be used to label unseen data.

At each node in CART, including at the root node, a decision is made to split the
training samples into two groups; the aim is to produce sub-groups that are purer
class-wise than in the immediately preceding node.

The tree is developed in the following manner. All of the training data from all
classes is fed to the root node. We then evaluate all possible binary partitions of the
training pixels and choose that partition which minimises the class mixture in the
two groups produced. For example, if there were five separate classes in the training
set then we would expect the sub-groups to have pixels from fewer than five classes
and, in some cases, hope that one sub-group might have pixels from one class only.
We keep subdividing the groups as we go down the tree so that, ultimately, we end
up with groups containing pixels from only one class—i.e., “pure” groups. That
happens at the leaf nodes.

To be able to implement the process just described we have to have some way of
measuring how mixed the training classes are in a particular group. We do that by
using an impurity measure, several of which are used in practice. A common metric
is the Gini impurity, or Gini Index defined at the Nth node as

i Nð Þ ¼
X
j

Pxj 1� Pxj

� � ð11:13Þ

in which Pxj is the fraction of the training pixels at node N that are in class xj;
1� Pxj is the proportion not in class xj. If all the pixels at the node were from a
single class, then Pxj ¼ 1 so that i Nð Þ ¼ 0, indicating no impurity. If there were M
equally distributed classes in the training set then i Nð Þ is a maximum and equal to
1� 1=M, which is larger for larger M, as would be expected.

Another impurity measure is based on entropy, defined as

i Nð Þ ¼ �
X
j

Pxj log2Pxj ð11:14Þ

Again, this is zero if all the training pixels are from the same class and is large when
the group is mixed.

36 See R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons,
N.Y., 2001, and L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and
Regression Trees, Chapman and Hall/CRC, Roca Baton Florida, 1998.
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In splitting the training pixels as we go down the tree, we are interested in that
split which gives the greatest drop in impurity from the antecedent to the descen-
dent nodes—in other words, the split that generates the purest descendent groups.
We can measure the reduction in impurity by subtracting the impurities of the
descendent nodes from the impurity of their antecedent node, weighted by the
relative proportions of the training pixels in each of the descendent nodes. Let N
refer to a node and NL and NR refer to its left and right descendents; let PL be the
proportion of the training pixels from node N that end up in NL. Then the reduction
in impurity in splitting N into NL and NR is

Di Nð Þ ¼ i Nð Þ � PLi NLð Þ � 1� PLð Þi NRð Þ ð11:15Þ

To see how this is used in building a decision tree consider the training data shown
in Fig. 11.11. This consists of three classes, each of which is described by two
features (bands). The Gini impurity is used. Table 11.7 shows the original impurity
for the complete set of data and the subsequent drops in impurity with various
candidate splits. Not all possible splits are given because the number of combi-
nations is excessive; only those that are clearly the most favoured are shown. The
table is segmented by successive layers in the decision tree as it is built, showing
splits by layer until the leaf nodes are reached. There are several split options later
in the tree; only two are given to demonstrate that trees are often not unique but will
still segment the data as required. The resulting segmentations of the training set
and the corresponding decision trees are shown in Fig. 11.12.

One of the problems with splitting based on the simple thresholding of indi-
vidual features is that quite complicated trees can be generated compared with what
should be possible if more flexibility is introduced into the decision functions and
thus the decision boundaries in the spectral space. For example, inspection of
Fig. 11.11 suggests that the data could easily be split into the three classes by two
inclined linear surfaces, one between class A and B pixels, and the other between
class B and C pixels. While it is feasible to develop a tree design methodology that

Fig. 11.11 Two-dimensional
data with three classes used
for generating a binary
decision tree by the CART
procedure
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implements linear decisions of that nature at each node, it is sometimes simpler to
transform the data prior to tree growth.37 For example, if the data of Fig. 11.11 is
used to generate its principal components, the principal axes will provide a simpler
tree. Figure 11.13 shows the principal axes of the data from Fig. 11.11 along with a
decision tree generated with the CART methodology.

Once a tree has been grown it can be examined to see if it can be simplified by
pruning; that involves removing nodes or sets of nodes such that the tree is simpler
but still gives acceptable accuracy on a testing set of pixels, i.e., so that it still
generalises well. Several strategies for pruning exist,38 including just working
upwards through the tree by layers and noting the drop in generalisation accuracy.

Table 11.7 Impurity calculations and splits leading to the decision trees of Fig. 11.12 based on
the single feature shown in the left descendent column in each case; only the most likely splits are
shown to illustrate the process; shaded boxes highlight the greatest reduction in impurity and thus
the best splits, noting that two equally favourable splits are possible at the second stage leading to
different outcomes and thus illustrating that the resulting tree is not unique

Original unsplit training set

A1 A2 A3 B1 B2 B3 C1 C2 C3 0.667

First split candidates

left descendent right descendent

A1 A2 A3 B1 B2 B3 C1 C2 C3 (leaf node) 0.500 0 0.334

A2 A3 A1 B1 B2 B3 C1 C2 C3 0 0.612 0.191

C2 C3 C1 A1 A2 A3 B1 B2 B3 0 0.612 0.191

A1 A2 A3 B1 B2 B3 C1 C2 C3 0 0.656 0.084

Second split candidates from A1 A2 A3 B1 B2 B3 | C1 C2 C3 first split

B1 B2 A1 A2 A3 B3 0 0.375 0.250

A2 A3 A1 B1 B2 B3 0 0.375 0.250

A1 A2 A3 B1 B2 B3 0 0.480 0.100

Third split from B1 B2 | A1 A2 A3 B3 second split

A1 A3 A2 B3 0 0.500 0.125

Fourth split from A1 A3 | A2 B3 third split

A2 (leaf node) B3 0 0 0.500

Third split from A2 A3 | A1 B1 B2 B3 second split

A1 (leaf node) B1 B2 B3 (leaf node) 0 0 0.375

37 See Duda, Hart and Stork, loc. cit.
38 See L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and Regression
Trees, Chapman and Hall/CRC, Roca Baton Florida, 1998.
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11.7.2 Random Forests

In Sect. 8.19 we considered committee classifiers as typical of an ensemble
approach that led to strong classification decisions using component classifiers that
in themselves may not perform well. We can also form ensembles of decision trees
with the same goal in mind. One particularly successful decision tree committee is
the Random Forest.39 As its name implies it is a collection of trees (a “forest”) that
are somehow random in their construction.

In common with other supervised classifiers, we assume that we have available a
labelled set of training pixels. Those pixels are not used as a complete set as would
be the case with single stage supervised classifiers. Instead, bootstrapped samples
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Fig. 11.12 Two alternative tree segmentations of the training data in Fig. 11.11

39 See L. Breiman, Random forests, Machine Learning, vol 45, 2001, pp. 5–32, and T. Hastie, R.
Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and
Prediction, Springer Science + Business Media, N.Y., 2009.
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are used in the following manner.40 If there are K pixels in the training set, we
randomly select K with replacement. In other words, the first training pixel is
selected and then returned to the set; then a second pixel is selected, and so on. In
this manner it is possible for one or more training pixels to be replicated in the
bootstrapped sample chosen to train the first tree in the random forest. Using this
training set a CART style decision tree is developed. Before that can happen though
a decision has to be made as to the feature set that will be used to grow the tree. If
there are N features in the spectral domain a small number41 n 	 N is selected
randomly for the first tree. That small set is used at each node in the CART process.
Typically, the Gini impurity is employed to find the best split and the best one of
the n features to use in that split.

We then need to assess how well the (first) tree generalises. The classic approach
is to have a separate testing set of pixels which would be run through the tree to see
what errors are made. In the case of a random forest, however, those pixels in the
original training set that are not picked up in the bootstrapped sample used to
develop a particular tree can be used as testing pixels. It turns out that taking a
sample K with replacement from the available pixels, leaves out about one third of
the original set. They are the pixels that are used to check tree performance.

Clearly, the first tree, trained in this manner, would not be expected to perform
well. As a consequence, a second tree is grown using another bootstrapped sample
from the available training pixels along with a second random selection of features,
but with the same dimension n as used in the growth of the first tree. A third tree is
developed in the same manner. The newly grown trees are tested using the pixels
from the original training set left over after the bootstrapped samples were chosen
for training. We now have three trees capable of performing a classification on the
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Fig. 11.13 Simpler decision tree generation after principal components transformation of the data

40 See also Sect. 8.19.1.
41 A suggested value for n is

ffiffiffiffi
N

p
. For hyperspectral data sets this will most likely be too big.
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same data set. In order to combine their results, we use a majority vote logic, in that
the actual label allocated to an unknown pixel is given by the most favoured label
among the trees. Sometimes this is called modal logic.

The process just described is continued through the addition of as many ran-
domly generated trees as necessary in order to reduce classification error and thus
produce results with the desired accuracy. It would not be uncommon for several
hundreds to thousands of trees to be generated randomly in pursuit of such a goal.42

There are two requirements for the random forest methodology to work well.
First, the trees generated randomly have to be uncorrelated; the choice of the
bootstrapped training sets (with replacement) provides that. Secondly, the indi-
vidual trees should be strong classifiers. Generally, classifier strength will increase
with the number of features used at each decision node. However, that increases
substantially the complexity of tree growth so that the number of features is nev-
ertheless kept small and weak classifiers are generally used. A review including a
commentary on the application of random forests to high dimensional remote
sensing image data will be found in Belgiu and Dragut.43

11.7.3 Progressive Two-Class Decision Classifier

Another tree classifier is shown in Fig. 11.14. It makes sequential binary decisions,
operating similar to the one-against-one multiclass strategy of Sect. 8.17. As indi-
cated in the figure, at the first decision node a separation is made between classes 1
and 2; pixels from all other classes will not be separated and may appear in both
subsets. At the left-hand node in the second layer, class 2 pixels are not considered
any further since they were split off in the first decision; instead, a split is now made
between class 1 and another class, in this case class 3. In the right-hand node in the
second layer class 3 is also split off. Ultimately, all pixels will be split into the
constituent set of classes as a result of the progressive set of decisions, each based on
two of the training classes. In Fig. 11.14 the overbars indicate which classes are not
considered any further at any decision node, having been handled earlier.

Since pairs of classes are considered at each node, and not class subsets, the
algorithm to be used, and the set of features for separating that pair, can be chosen
optimally for those classes and could thus be different at each decision node.

42 See P.O. Gislason, J.A. Benediktsson and J.R. Sveinsson, Random forest classification of
multisource remote sensing and geographic data, Proc. Int. Geoscience and Remote Sensing
Symposium IGARSS2004, Alaska, 20–24 Sep 2004, pp. II: 1049–1052, and J.S. Ham, Y. Chen, M.
M. Crawford and J. Ghosh, Investigation of the random forest framework for classification of
hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, March
2005, pp. 492–501.
43 M. Belgiu and L. Dragut, Random forest in remote sensing: a review of applications and future
directions, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 114, 2016, pp. 24–31.
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The method has been tested on four difficult-to-separate classes, leading to an
overall accuracy of 72.5% when using the maximum likelihood classifier as the
decision rule, compared with a performance of 64.4% when the four classes are
treated in a single step.44

11.8 Image Interpretation Through Spectroscopy
and Spectral Library Searching

One of the great benefits of recording many, finely spaced spectral samples for a
pixel using an imaging spectrometer is that a scientific approach to interpretation
can be carried out, instead of the machine learning route to image understanding;
this was noted in Sect. 10.1. Effectively, the latter looks for separable patterns in the
data in spectral or feature space, whereas a scientific analysis seeks to associate
observed spectral features with known chemical characteristics. That is the basis of
spectroscopy used in many fields and is why hyperspectral sensors are known as
imaging spectrometers.

Absorption features in recorded spectra, seen as localised dips, usually provide
the information needed for identification, and are referred to as diagnostically
significant features. Characterisation and recognition of those features is of para-
mount importance when taking an expert spectroscopic approach to the analysis of
hyperspectral imagery. They are described by their locations along the spectrum,
and their relative depths and widths. Feature identification by the analysis of

1,3 split

1,2 split

1,4 split

2,3 split

2,4 split
3,4 split

Fig. 11.14 Example of a four layer progressive two class decision classifier

44 See X. Jia and J.A. Richards, Progressive two-class decision classifier for optimization of class
discrimination, Remote Sensing of Environment, vol. 63, 1998, pp. 289–297.
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spectral properties has been used in many remote sensing applications, particularly
for soils and rocks.45

The absorption features result from photon interaction with the atomic structure
of the chemicals that make up the material being imaged. To be able to quantify
them it is necessary, first, to separate them from the background continuum of the
spectrum that results from light transmission and scattering.

The importance of continuum removal is illustrated in Fig. 11.15. Often the
continuum will not be horizontal, which makes the measurement of the properties
of an absorption feature, especially its depth, difficult. If the continuum in the
vicinity of the feature is defined by a line of best fit between those parts of the
spectrum either side of the feature, then a reasonably consistent measure of band
depth results.

In such an approach to interpretation the spectrum is generally divided into
several spectral regions, usually under the guidance of a domain expert. Absorption
features are then detected in each of those regions. An unknown pixel is labelled
into a class for which its diagnostically significant features match those of prototype
spectra for that same class stored in a spectral feature library.

con nuum
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absorp on depth
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Fig. 11.15 Continuum removal to improve the characterisation of diagnostically significant
features

45 See Imaging Spectroscopy Special Issue, Remote Sensing of Environment, vol. 113, 2009 for
several examples which demonstrate the value of the spectroscopic approach; two more recent
studies which demonstrate the scientific approach with imaging spectroscopy are Y-Q Wan, Y-H
Fan, and M-S Jin, Application of hyperspectral remote sensing for supplementary investigation of
polymetallic deposits in Huaniushan ore region, northwestern China. Scientific Reports, vol. 11,
2021, pp. 40, http://doi.org/10.1038/s41598-020-79864-0, and G. E. Graham, R.F. Kokaly, K.D.
Kelley, T.M. Hoefen, M.R. Johnson and B.E. Hubbard, Application of imaging spectroscopy for
mineral exploration in Alaska: a study over porphyry Cu deposits in the Eastern Alaska Range,
Economic Geology, vol. 113, no. 2, 2018, pp. 489–510.
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The process can be complicated when pure substances are embedded in mix-
tures. Also, some materials have very similar absorption features. Those com-
plexities make the approach less than straightforward46 but quite sophisticated
techniques have been devised to make it practical.

Not all spectra have identifiable absorption characteristics so that the continuum
removal method outlined in Fig. 11.15 may lead to identification failures for some
cover types. Recent library searching methods have been based on features from
both continuum-included and continuum-removed spectra. Thematic mapping is
carried out by similarity matching recorded data, often on a field rather than pixel
basis, with library prototypes.47

11.9 End Members and Unmixing

A challenge that has faced image analysts throughout history of remote sensing has
been the need to handle mixed pixels.48 They represent a mixture of cover types or
information classes within the same pixel; they occur whenever there are indistinct
boundaries between cover types and whenever the classes of interest to the user
exist implicitly in mixtures, such as in the analysis of geological regions.

Early on, several efforts were directed to resolving the proportions of pure cover
types within mixed pixels by assuming that the measured radiance is a linear
combination of the radiances of the “pure” constituents in each of the imaging
wavebands used. With low spectral resolution data that approach generally did not
meet with a great deal of success because most cover types are not well differen-
tiated in the small number of wavebands of the instruments available in the 1980s
and 1990s. However, with hyperspectral data, the prospect for uniquely charac-
terising a vast number of cover types, and thus differentiating them from each other
spectroscopically, suggests that the mixing approach be revisited as a means for
establishing mixture proportions of pure cover types. This has particular relevance
in mineral studies where abundance maps for the minerals of interest could be
produced, based on the proportions determined for all the pixels in an image.

If we make the assumption that the total radiance recorded for a given pixel is a
linear combination of the radiances of its constituents, the process can be developed
mathematically in the following manner. This assumption is supportable if we
accept that the incident energy is scattered only once to the sensor from the land-
scape and does not undergo multiple scatterings from among, say, foliage

46 See R.N. Clark, G.A. Swayze, K.E. Livio, R.F. Kokaly S.J. Sutly, J.B. Dalton, R.R. McDougal
and C.A. Gent, Imaging spectroscopy: earth and planetary remote sensing with the USGS
Tetracorder and expert systems, J. Geophysical Research, vol. 108, E12, pp. 5.1–5.44, 2003.
47 See B.D. Bue, E. Merenyi and B. Csatho, Automated labeling of materials in hyperspectral
imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 11, November 2010,
pp. 4059–4070.
48 They were even referred to as “mixels” in some image processing systems.
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components. Clearly that assumption will be violated in some situations, in which
case the following simple approach may not work well.

Assume there are M pure cover types in the image of interest. In the nomen-
clature of mixing models these are referred to as end members. We assume they are
known to us, perhaps because of regions of pure cover in the image.

Let the proportions of the various end members in a pixel be represented by
fm; m ¼ 1. . .M. They are the unknowns in the process which we need to find, based
on observing the hyperspectral reflectance of the pixel.

Let rn; n ¼ 1. . .N; be the observed reflectance of the pixel in the nth band
recorded by the sensor, and amn be the spectral reflectance in the nth band for the
mth end member. Then, as above, we assume

rn ¼
XM
m¼1

fmamn þ nn

in which nn accounts for any errors in band n. This equation says that the observed
pixel reflectance in each hyperspectral band is the weighted sum of the reflectances
of the end members in that band. The extent to which it does not work exactly is
provided for in the error term. In matrix form the mixing equation can be expressed

r ¼ Af þ n

in which f is a column vector of mixing proportions, of size M. r is the spectral
reflectance vector and n is the error vector; they are column vectors of size N. A is
an N � M matrix of end member spectral responses, by column.

Spectral unmixing, as the process is called, involves finding a set of end member
proportions that minimise the error vector n. On the assumption that the correct set
of end members has been chosen, the problem is then one of solving the error free
equation

r ¼ Af

Normally there are more equations than unknowns so that simple inversion to find
the vector of mixing proportions is not possible. Instead, a least squares solution is
found by using the Moore–Penrose pseudo inverse

f ¼ ATA
� ��1

ATr

There are two constraints that the mixing proportions must satisfy, and that need to
be taken into account during the inversion process. The first is that the proportions
are all positive and less than one, and the second is that they must sum to unity:
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0� fm � 1 and
XM
m¼1

fm ¼ 1

In practice, these constraints are sometimes found to be violated, particularly if the
end members are derived from average cover type spectra or the end member
selection is poor.49

In this development we have assumed that the end member matrix A is known.
Sometimes that will not be the case and the unmixing process needs not only to find
the mixing proportions but an acceptable set of end members as well. There are
several methods by which that can be approached, including the adoption of
independent component analysis or independent factor analysis50 and use of the
Gaussian mixture model approach of Sect. 8.4.

11.10 Is There a Best Classifier?

This question has been in the minds of image analysts ever since alternative clas-
sifiers became available. It drives research in classifier design to find so-called
better algorithms, in which comparative results are often quoted to demonstrate how
new algorithms perform better than their predecessors. Is it conceivable that newer
algorithms and methodologies will always be better51 particularly if algorithms are
compared in fair, unbiased trials? In this section we consider that question and draw
the conclusion that, provided a particular algorithm does not suffer any theoretical
deficiencies, if properly applied it should deliver results almost as good as any other
classifier. Outcomes are driven more by how the algorithm is used—i.e., by
methodologies—rather than by any inherent superiority of the algorithm itself.

11.10.1 Segmenting the Spectral Space

As noted in Sect. 3.3 classification is a mapping from measurement space to a set of
labels in the form of a thematic map. Most algorithms perform this mapping using

49 See H.N. Gross and J.R. Schott, Application of spectral mixture analysis and image fusion
techniques for image sharpening, Remote Sensing of Environment, vol. 63, 1998, pp. 85–94.
50 See J.M.P. Nascimento and J.M.B Dias, Unmixing hyperspectral data: independent and
dependent component analysis, in C-I Chang, ed., Hyperspectral Data Exploitation, John Wiley &
Sons, Hoboken, N.J., 2007, which also contains an excellent overview of unmixing in general.
51 See G. Wilkinson, Results and implications of a study of fifteen years of satellite image clas-
sification experiments, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, 2005,
pp. 433–440 for an interesting demonstration that, in general, performance had not materially
improved to 2004 despite new algorithms and methodologies becoming available.
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the measurement attributes of the pixels, although some processes exploit context
information as well, as we saw in Sect. 8.23. Here we will not add that compli-
cation and focus just on the pixel-specific classification task.

How large is the measurement (i.e., spectral) space? For a sensor with C
channels and a radiometric resolution of b bits per measurement there are 2bC cells
or individual sites in the discrete spectral space. That can be an enormous number,
but for the moment suppose we had an instrument with just two bands, and one bit
of radiometric resolution (allowing two levels of brightness). The measurement
space then consists of just four cells. Conceivably, based on training data or some
other form of reference information, we could attach a label to each of those four
cells so that any subsequent measurement could be classified by reference into
which cell in the spectral space the measurement fell. That is the basis of the table
look up classifier of Sect. 8.9.

It could be argued that the ideal classifier is one that is able to attach a label
uniquely to each of the cells in the spectral space. Clearly, the huge size of that
space for most modern instruments, along with the fact that many cells are unoc-
cupied, means that labelling at the individual cell level is totally impracticable. As a
consequence, we use algorithms that segment the space rather than label each of its
cells. The suitability of a classifier is then very much related to how well the
spectral space is segmented.

In the very early days of pattern recognition the linear discriminant function was
a common algorithm. The available training data was used to locate a hyperplane
between the training classes thereby segmenting the measurement space into
regions that were associated with the training classes. Whether that classifier then
generalised well, by performing accurately on testing data, depended on how good
the location of the hyperplane was. By comparison to labelling each of the indi-
vidual cells in the measurement space, we can see that there is a trade-off between
ease of training (finding a hyperplane rather than trying to label every cell) and
performance. More generally, we can describe the trade-off as between how easily a
classifier can be trained and used, and the performance it delivers. Such trade-offs
are important in operational thematic mapping.

Clearly, the basic hyperplane of the previous paragraph would not be used now,
except in the simplest of circumstances, because it only implements linear deci-
sions. Modern classifiers segment the data space into much more flexible regions so
that good generalisation is possible. The neural network uses many linear decisions
in such a way that very complex piecewise-linear hyper-surfaces are implemented.
The Gaussian maximum likelihood approach sets up quadratic hyper-surfaces
which, on first sight, would suggest their power of generalisation might be quite
limited compared with neural networks, for example. But when information classes
are represented by sums of Gaussian spectral classes quite flexible separating
boundaries emerge as illustrated in Fig. 11.16; that is why the hybrid method of
Sect. 11.4 works well. The support vector machine, while still implementing simple
linear separating hyper-surfaces, performs well because it projects the data into a
higher dimensional space in which linear separation is possible.
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11.10.2 Comparing the Classifiers

From the above perspective we could infer that each of those well-recognised
approaches, when used properly, performs acceptably and that, on the basis of
generalisation accuracy, one would probably not be preferred over any other.
However, there are other comparators that we should take into account, particularly
from an operational perspective. To consider those we will continue commenting
on the maximum likelihood rule, the support vector machine and the convolutional
neural network, examining the methodologies that would be employed in practice
with each algorithm. We commence that process by summarising in Table 11.8 the
key consideration in using each method.

Against this outline, Table 11.9 summarises the practical considerations in each
case. As is to be expected there are always trade-offs. Where one approach excels,
the others may have limitations. Nonetheless, it is important in comparative studies
that the methodologies summarised Table 11.8 are used for each procedure. Too
often, one sees comparisons that conclude that certain approaches are superior to
others and yet care has not been taken to ensure that the algorithmic methodologies
have been properly applied. The very reason for placing an algorithm within its
operational methodology is to ensure that the measurement space is segmented in
such a manner as to ensure that the algorithm performs as well as possible. Even
moderately primitive algorithms such as the parallelepiped classifier can be made to
perform well provided the data space is appropriately segmented.

class 1: single Gaussian class 2: single Gaussian class 1: three Gaussians
(spectral classes)

class 2: two Gaussians
(spectral classes)

flexible decision boundaryquadra c decision boundary

Fig. 11.16 Showing the decision boundary between a two information classes each with one
spectral class and b two information classes, one of which has three and the other two spectral
classes; for clarity, the distributions for the second class are shown plotted negatively, but that does
not affect the separating boundary. See J. A. Richards and N. G. Kingsbury, Is there a preferred
classifier for operational thematic mapping? IEEE Transactions on Geoscience and Remote
Sensing, 52, no 2, May 2014, pp. 2715–2725
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Table 11.8 Methodological comparison of three supervised classifiers

Approach Methodology
Gaussian maximum

likelihood
1. Obtain labelled training data
2. Apply feature reduction. This will be necessary to avoid poor

generalisation if the Hughes phenomenon is encountered. With
hyperspectral data that can be a non-trivial task, but mechanisms
such as the block diagonalisation approach of Sect. 10.4 can render
the maximum likelihood rule viable for high dimensional data sets

3. Resolve multimodality (using unsupervised clustering).
Information classes have now been resolved into several (spectral)
sub-classes

4. Compute the statistics (mean vector and covariance matrix) for
each spectral class

5. Apply the discriminant function of (8.7) to perform multiclass
labelling into the spectral classes

6. Label unseen pixels (generalisation) on the basis of posterior
probabilities. Prior probabilities can be incorporated at this step

7. Generate a thematic map by mapping information classes to
spectral classes

Support vector
machine

1. Obtained labelled training data
2. Determine the multiclass strategy to be used
3. Determine the kernel function to be used
4. Possibly use feature selection, although the SVM can handle data

of hyperspectral dimensions
5. Train the machine through optimisation, while also optimising the

kernel parameter(s) and the regularisation parameter. This may
require many trials using grid searching to find the best parameters.
This step can be time consuming

6. Generate the thematic map, via a tree of binary decisions

Convolutional neural
network

1. Obtain labelled training data
2. Choose a topology; this may not be evident at the start and many

trials may be required to find the one best suited to the problem at
hand; transfer learning can help expedite this step. The choices
here relate to the kernel sizes to use, the number of filters to
employ, whether pooling layers will be incorporated and how deep
the network should be

3. Train the network iteratively
4. Refine the network through pruning unwanted hidden layer nodes
5. Generate the (multiclass) thematic map
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Table 11.9 Qualitative comparison of the three common classifier types

Maximum likelihood
classifier

Support vector
machine

Convolutional neural
network

Training Simple, although sets
of normal
distributions may
need to be found
per information
class for good
results

Grid search procedures
are needed to
determine kernel
and regularisation
parameters

Extensive trial and
error may be
needed to find
best network
topology,
although transfer
learning can
shorten the task

Training time Fast Can be long Can be very long;
depends on the
number of
weights and
offsets to be found

Classification
time

Good but depends
quadratically on
dimensionality

Fast; depends linearly
on dimensionality

Fast; depends linearly
on dimensionality

Multiclass Is a multiclass
classifier

Sets of binary SVMs
need to be
embedded in a
decision tree for
multiclass
operation

Is a multiclass
classifier

Hyperspectral Challenge with high
dimensional data
because of the
need to estimate
second order
parameters;
requires a feature
reduction
approach

Handles hyperspectral
data because it is
based on linear
decisions

Handles
hyperspectral data
because it is based
on linear
decisions

Context
classification

Is a point classifier
and requires post
processors like
label relaxation to
embed context
information

Is a point classifier, and
doesn’t easily
interface to other
post-processing
statistical
techniques

Spatial context
sensitivity is a key
feature because of
the convolutional
basis of the
algorithm

Posterior
probabilities

The algorithm
generates class
posterior
probabilities prior
to maximum
selection

Hard classifier, so
posterior
probabilities
unavailable

Surrogate posterior
probabilities can
be generated with
the softmax
operation
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There is some very sobering guidance provided by the No Free Lunch Theorem
from the field of machine learning,52 which we state as

If the goal is to obtain good generalisation performance, there are no context-independent
or usage-independent reason to favour one learning or classification method over another. If
one classification algorithm seems to outperform another in a particular situation, it is a
consequence of its fit to the particular pattern recognition problem, not the general supe-
riority of the algorithm.

This does not imply that there are no poor classifiers, but it reminds us that the
classifiers we have come to consider as our benchmarks in remote sensing do not
inherently perform well—they perform well when the analyst has used them
properly in a given task, which is the central message of this section. Overall, there
is probably no best classifier.

There is a final point that is material in some circumstances. If classifier results
are to be incorporated into some other statistical process, such as a multisource
statistical analysis procedure, a Markov random field model or post classification
processing like relaxation labelling, then the posterior probabilities generated from
the maximum likelihood rule are already in the form required for use in those other
techniques. Also, the set of posterior probabilities can be used before the maximum
selection step in the maximum likelihood rule to give measures of relative likeli-
hoods of the less favoured classes. By contrast, the outputs from the support vector
and neural network approaches do not interface well with those other procedures,
nor do they naturally provide relative measures of likelihood, unless mechanisms
such as Softmax are used (see Sect. 8.21.6).
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11.12 Problems

11:1 What is the difference between an information class and a spectral class?
The notion of spectral class has more relevance to optical and thermal
remote sensing imagery than to other data types such as radar. When
analysing co-registered data sets it is often necessary to determine the class
structures for each data set independently, before they are combined into the
information classes of interest to the user. In such cases the term data class
may be more relevant than spectral class; see Sect. 12.3.1.

11:2 Four analysts use different qualitative methodologies for interpreting
spectral imagery. They are summarised below. Comment on the merits and
shortcomings of each approach and indicate which one you think is most
effective.

Analyst 1

1. Chooses training data from homogeneous regions for each cover type.
2. Develops statistics for a maximum likelihood classifier.
3. Classifies the image.

Analyst 2

1. Performs a clustering of the whole image and attaches labels to each
cluster type afterwards.

Analyst 3

1. Chooses several regions within the image, each of which includes more
than one cover type.

2. Clusters each region and identifies the cluster types.
3. Uses statistics from the clustering step to perform a maximum likelihood

classification of the whole image.

Analyst 4

1. Chooses training fields within apparently homogeneous regions for each
cover type.

2. Clusters those regions to identify spectral classes.
3. Uses statistics from the clustering step to perform a maximum likelihood

classification of the whole image.

11:3 For the method you have identified as preferable in Prob. 11.2 comment on
how separability measures would be used to advantage. What if the data
were of hyperspectral dimensions?

11:4 The spectral classes used with the maximum likelihood decision rule in
supervised classification are assumed to be representable by single multi-
variate normal probability distributions. Geometrically, this implies that
they will have hyperellipsoidal distributions in the spectral domain. Do you
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think that clustering by the iterative moving means algorithm will generate
spectral classes of that nature? Given this observation, how might you best
generate spectral classes for maximum likelihood classification, the mini-
mum distance classifier and parallelepiped classification?

11:5 How can thresholds be used to help in the identification of spectral classes
when using the maximum likelihood decision rule?

11:6 Is there a preferred kernel for use with the support vector machine when
classifying high dimensional remote sensing image data?

11:7 Just before the labelling step when generating a thematic map using a
classifier, each pixel has associated with it a set of measures that guide the
allocation of the preferred label. For example, in the case of maximum
likelihood classification it is the posterior probability. What measures of
typicality would apply in the case of the support vector machine and the
neural network?

11:8 Suppose a particular image contains just two cover types—vegetation and
soil. A pixel identification exercise is carried out to label each pixel as either
soil or vegetation and thus generate an estimate of the proportion of veg-
etation in the region being imaged. For homogeneous regions the labelling
exercise is straightforward. However, the image will also contain a number
of mixed pixels so that end member analysis would be considered as a
means for resolving their soil/vegetation proportions. Is the additional work
warranted if the approximate proportion of vegetation to soil is 1:100,
50:50, or 100:1?

11:9 This question relates to the effect on classification accuracy of resampling
that might be used to correct imagery before analysis. For simplicity,
consider a single line of infrared image data over a region that is vegetated
to the left and water to the right. Imagine the vegetation/water boundary is
sharp. Resample your line of data onto a grid with the same centres as the
original, using both nearest neighbour and cubic convolution interpolation.
Clearly, in the latter case the interpolation is just along the line, rather than
over a neighbourhood of 16 surrounding pixels. Comment on the results of
classifying each of the resampled pixels given that a classifier would have
been trained on classes that include those with responses between vegeta-
tion and water.

11:10 Sometimes the spectral domain for a particular sensor and scene consists of
a set of distinct clusters. An example would be a near infrared versus red
spectral domain of an image in which there are regions of just water, sand
and vegetation. The spectral domain would then have three distinct groups
of pixels. More often than not, particularly for images of natural vegetation
and soil, the spectral domain will be a continuum because of the differing
degrees of mixing of the various cover types that occur in nature. One is
then led to question the distinctness and uniqueness, not only of spectral
classes, but information classes as well. Comment on the issues involved in
the classification of natural regions both in terms of the definition of the set
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of information classes and how spectral classes might be identified to assist
in training.

11:11 Manually design a simple decision tree that could be used efficiently with
ETM+ data for classification into deep water, shallow water, green vege-
tation and soil.

11:12 A particular study requires the mapping of water temperature in the effluent
from an industrial complex located on the side of a river. There is no interest
in the land itself. Using ETM+ data design a strategy, most likely using a
decision tree that, first, separates the soil and water and then maps the
temperature variation within the water.

11:13 The error matrix is a very comprehensive summary of the accuracy of the
classes on a map produced from a classification exercise. Perhaps its only
drawback is the number of elements it contains, particularly for a large
number of classes. That is why in many cases we turn to single measures
such as total classification accuracy and Kappa coefficient. Discuss the
benefits and disadvantages of single metrics as against retaining the com-
plete error matrix.

11:14 Generate a CART decision tree for the two class data shown in Fig. 10.5.
Then perform a principal components transformation and repeat the
exercise.

11:15 To determine the accuracy of a thematic map, is it better to check the map
labels against available reference (ground truth) data or check the perfor-
mance of the classifier used to produce the map against the available ref-
erence data. Why?

11:16 Is imaging spectroscopy

(a) a method where images are examined for spectral content in a
laboratory,

(b) a technique for recording sampled pixel spectra in image format,
or

(c) imaging with two completely different image types—such as
radar and thermal data?

11:17 Does the principal components transformation improve the intrinsic sepa-
rability of an image data set?

11:18 How might you obtain training data for use with a support vector classifier
for a mixed vegetation/water class boundary, and for a river with dimen-
sions of about 2–3 pixels wide?
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Chapter 12
Multisource Image Analysis

Abstract Noting that more information about the landscape can generally be found
by using a range of remote sensing data types together, techniques are covered for
so-called multisource image analysis. They include those methods which have a
statistical basis, those based on the Theory of Evidence and those which adopt an
expert systems approach. Combined optical and radar imagery is used as an
example of the value of processing disparate data types together. A discussion then
follows on how to operationalise multisource analysis to maximum benefit, noting
that the different data types may have different qualities, they may not be available
at the same time and they each may have their own optimal methods for analysis.
Rather than data fusion, fusion at the label (information class) level is suggested as
the most effective methodology.

12.1 Introduction

Many applications in remote sensing can be handled using a single source of image
data and, for years, simple multispectral imagery was seen to be sufficient for
straightforward applications. However, the ability to interpret what is on the ground
is often enhanced considerably when more than one type of spatial data is
employed. For example, a combination of multispectral or hyperspectral data with
radar imagery has been shown to be a particularly valuable data set.

The reason that multiple sources are of value is that each typically measures
different things about the earth’s surface. Multispectral measurements tend to be
dominated by properties such as plant pigmentation and soil mineralisation, by
moisture content and by microscopic physical properties such as the cellular
structure of plants and the scattering properties of suspensions in water. On the
other hand, hyperspectral data is much more sensitive to fine spectral detail such as
the resonant absorptions and other spectroscopic properties of matter that can be
detected in the wavelength range of the sensor; typically, that allows a more
detailed biochemical understanding of the plant, soil or other surface cover being
imaged.
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The surface properties that affect radar imagery are quite different. Radar
reflectivity is typically dominated by gross geometric detail such as the smoothness
or roughness of a surface, or the adjacency of reflecting faces, and by the complex
dielectric constant of the surface material—which, in turn, is established by bulk
water content.

It is because different properties are sensed by different imaging modalities that
multisource data in combination often gives superior results when seeking to
describe the surface cover types being imaged.

When undertaking multisource analysis, we have to be mindful of the fact that
each data type has its own preferred means for analysis, a characteristic often
overlooked in multisource, or multisensor, applications. For example, hyperspectral
imagery can be interpreted very effectively using library searching methods in which
recorded single pixel spectra are compared against prototype laboratory measure-
ments. Multispectral imagery has been interpreted successfully for many years using
standard supervised classification techniques. Radar imagery is not handled well by
those procedures. Instead, because of the different surface properties being imaged,
and the complexity of the radar signal, analytical procedures unique to radar have
been devised.1 They include modelling the interaction between the incident micro-
wave radiation and the landscape, a form of maximum likelihood classification that is
matched to the complexity of the radar signal, and methods based on a mathematical
decomposition of the received radar signal into components that can be associated
with fundamental scattering behaviours. We return to this in Sect. 12.6.

It is the purpose of this chapter to present some of the more common techniques
used for addressing the multisource analysis task quantitatively. Sometimes they are
numerically based but at other times they involve the manipulation of data in the
form of labels. Such a case occurs when an existing map forms one of the sources.

Analysis of multisource data by photointerpretation is also possible but depends
on the human analyst being skilled in the visual interpretation of all the different
data types available. We do not treat that approach here.

Clearly the data sets to be analysed must first be geometrically registered. If that
has not been done, then the procedures of Chap. 2 need to be employed. A word of
caution is in order here: the accuracy that can be achieved from the analysis of
multisource data can be influenced by the accuracy of the registration process
almost as much as by the effectiveness of the analytical procedures employed.

12.2 Stacked Vector Analysis

A straightforward, but not very satisfactory, way to classify mixed data is to form
extended pixel vectors by stacking together the individual vectors that describe the
separate data sources. This stacked vector will be of the form

1 See J.A. Richards, Remote Sensing with Imaging Radar, Springer, Berlin, 2009.
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X ¼ xT1 ; x
T
2 ; . . .x

T
s

� �T ð12:1Þ

where S is the total number of individual data sources with corresponding data
(column) vectors x1; x2; . . .xS. The stacked vector X can, in principle, be analysed
using any of the standard classification techniques. That presents a number of
difficulties, particularly if statistical methods are to be used, including the incom-
patible statistics of the different data types. Secondly, as alluded to in Sect. 12.1,
this approach does not take advantage of the fact that different data types have their
own preferred methods for analysis. At best, the stacked vector technique could be
regarded as a simple yet not necessarily very effective approach. At worst, it will
not take full advantage of the information offered in the different sets of
measurements.

12.3 Statistical Multisource Methods

If the different datasets are technically not too different from each other, such as sets
of spectral measurements from complementary sensors, then a statistical approach
can be considered. Several of the more common statistical methods are presented in
the following.

12.3.1 Joint Statistical Decision Rules

The single data source decision rule in (8.1) can be restated for the multisource data
described in (12.1) as

X 2 xi if p xijXð Þ[ p xjjX
� �

for all j 6¼ i ð12:2Þ

As with a single source analysis we can apply Bayes’ theorem to give

X 2 xi if p Xjxið Þp xið Þ[ p Xjxj
� �

p xj
� �

for all j 6¼ i

To proceed further we need to find or estimate the class conditional joint source
probabilities p Xjxið Þ ¼ p x1; x2; . . .xSjxið Þ. To make that possible we assume sta-
tistical independence among the sources so that

p Xjxið Þ ¼ p x1jxið Þp x2jxið Þ. . .p xSjxið Þ ¼
YS

s¼1

p xsjxið Þ
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in which the p xsjxið Þ are the class conditional distribution functions for each of the
data sources individually. They could be called source specific class conditional
distribution functions.

It is unlikely that the assumption of independence is valid, but it is usually
necessary in order to perform multisource statistical classification, allowing the
multisource decision rule to be written

X 2 xi if p xið Þ
YS

s¼1

p xsjxið Þ[ p xj
� �YS

s¼1

p xsjxj
� �

for all j 6¼ i ð12:3Þ

An important consideration when classifying multiple data sources is whether each
of the available sources has the same quality; in other words, the analyst has to trust
each data source equally if the above decision rule is to be used. In practice it is
likely that some sources will be less reliable than others and should be weighted
down in a joint decision-making process. That can be achieved by adding powers to
the source specific class conditional probabilities to give the decision rule

X 2 xi if p xið Þ
YS

s¼1

p xsjxið Þas [ p xj
� �YS

s¼1

p xsjxj
� �as for all j 6¼ i

where the as are a set of weights chosen to enhance the influence of some sources
(those most trusted) and to diminish the influence of other, perhaps noisy sources.

There are several problems with the joint statistical approach, in common with
the stacked vector method of the previous section. First, the class conditional
distribution function for each source must be obtainable. Secondly, all the sources
have to be available at the same time in order to apply the decision rule.

Finally, in (12.3) the information classes must be consistent over the sources—in
other words, the set of information classes appropriate to one source must be the
same as those for the other sources. For example, we would not ordinarily use the
joint statistical approach if one of the sources were radar and another multispectral
because it is then highly unlikely that the information classes would be the same.
Even if the sources are compatible—all optical, for example—the spectral classes
(the individual Gaussian modes for maximum likelihood) must be the same for each
source in the way (12.3) is expressed, which would be highly unlikely.

It is possible to modify (12.3) to allow for differences in spectral classes. It is
useful in this case to call the spectral classes source-specific data classes. Using
Bayes’ theorem in (12.3) we get, after removing non-discriminating terms,

X 2 xi if p xið Þ1�S
YS

s¼1

p xijxsð Þ[ p xj
� �1�S YS

s¼1

p xjjxs
� �

for all j 6¼ i ð12:4Þ

Suppose by clustering or some other means we have identified Ms data classes
dsm;m ¼ 1. . .Ms for data source s. The source specific posterior probabilities in
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(12.4) can be derived in the following manner. Note that the joint probability of an
information class and a data vector in source s can be expressed as the sum over the
joint occurrence of the data classes in the source with the information class and data
vector:

p xi; xsð Þ ¼
XMs

m¼1

p xi; dsm; xsð Þ

so that

p xijxsð Þp xsð Þ ¼
XMs

m¼1

p xi; dsm; xsð Þ

¼
XMs

m¼1

p xsjdsm;xið Þp dsm;xið Þ

giving

p xijxsð Þ ¼
XMs

m¼1

p xsjdsm;xið Þp dsmjxiÞp xið Þ=pðxsð Þ ð12:5Þ

After p xsð Þ has been removed as non-discriminating, (12.5) can be substituted into
(12.4) to provide a decision rule that allows for the possibility of different data
(spectral) class sets for different data sources. Note that (12.5) depends on the
bridge between the data classes and information classes via the second term inside
the summation, and the distribution function for the measurement vectors within the
data classes of the information class of interest. Both of those terms can be gen-
erated once the data classes have been identified in the source-specific measurement
data. This form of decomposition into data classes, which conceivably could
overlap information class boundaries, is not unlike the technique of cluster space
classification.2

12.3.2 Committee Classifiers

Although they do not need necessarily to have a statistical basis, it is helpful at this
stage to consider the concept of committee classifiers because some further mul-
tisource statistical methods depend on that concept.

We met committees of classifiers in Sect. 8.19. For convenience we reproduce in
Fig. 12.1 two versions of the generic committee structure. In one case the same data

2 See Sect. 9.14.
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is provided to all individual classifiers in the committee whereas, in the other,
individual data sources are handled by their own classifiers. In the first case the
committee is used to obtain a better estimate for the label using a single data source
and is not unlike the boosting technique of Sect. 8.19.2. Of course, that configu-
ration could also be used for multisource classification if the single input vector
were the stacked vector of (12.1). More often, though, the form of committee used
for multisource analysis is that shown in Fig. 12.1b. In principle, each classifier
could be optimised for handling one particular data type.

It is a feature of committee classifiers that there is a chairman or decision-maker,
whose role it is to consider the outputs of the individual classifiers and make a
decision about the most appropriate class label for a pixel.

As noted in Sect. 8.19 the decision-maker can use one of several logics in
coming to a decision:

• majority vote logic in which the decision-maker chooses the class most rec-
ommended by the committee members.

• veto logic in which all classifiers have to agree about the class membership of a
pixel before the decision-maker will label it.

• seniority logic in which the decision-maker consults one particular classifier first
(the most senior). If that classifier is able to allocate a class label to a pixel, then
the decision-maker chooses that label. Otherwise, the decision-maker consults
the next most senior classifier, and so on, until the pixel can be labelled.

12.3.3 Opinion Pools and Consensus Theory

Closely related to the committee classifier concept is the use of opinion pools. They
depend on finding the single source posterior probabilities and then combining
them arithmetically or geometrically (logarithmically). The linear opinion pool
computes a group membership function, similar to a joint posterior probability, of
the form

a b 

xx
classifier 1

classifier 2

classifier 3

decision 
maker

x1 
x2 ..

classifier 1

classifier 2

classifier S

decision 
maker

Fig. 12.1 a A committee of classifiers in which all data is fed to each classifier; b a committee of
classifiers in which each classifier handles a separate data source
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f xijXð Þ ¼
XS

s¼1

asp xijxsð Þ

in which the as are a set of weighting constants that sum to unity. They control the
relative influences of each source in the final value of the group membership
function, and thus in the labelling of a pixel. A limitation of this rule—known
generically as a consensus rule—is that one data source tends to dominate
decision-making.3 Another consensus rule which doesn't suffer that limitation is the
multiplicative version

f xijXð Þ ¼
YS

s¼1

p xijxsð Þas

Note that if one source posterior probability is zero then the membership function is
zero and, irrespective of the recommendation from any of the other sources, the
group recommendation is zero for that class-pixel combination. In other words, one
very weak source can veto a decision.

Taking the logarithm of the multiplicative rule gives the logarithmic opinion
pool consensus rule

log f xijXð Þf g ¼
XS

s¼1

aslog p xijxsð Þf g

12.3.4 Use of Prior Probabilities

In the decision rule of (8.3) and the discriminant function of (8.4) the prior prob-
ability term tells us the probability with which the class membership could be
assessed based on any information we have about a pixel prior to considering the
available remotely sensed information. In its simplest form we assume that the prior
probabilities represent the relative abundances of ground cover types in the scene
being analysed. Prior class membership can be obtained from other sources of
information as well. In the case of the Markov Random Field approach to incor-
porating spatial context, developed in Sect. 8.23.5, the prior term is a neighbour-
hood conditional prior probability.

3 See J.A. Benediktsson, J.R. Sveinsson and P.H. Swain, Hybrid consensus theoretic classification,
IEEE Transactions on Geoscience and Remote Sensing, vol. 25, no. 4, July 1997, pp. 833–843.
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We could also use the prior probability to incorporate the effect of another data
source, such as topography, when carrying out classification based on spectral data.4

12.3.5 Supervised Label Relaxation

The probabilistic label relaxation algorithm of Sect. 8.23.4 can also be used to
refine the results of a spectrally-based classification by bringing in the effect of
another data source while developing spatial neighbourhood consistency. The
updating rule in (8.72) can be modified for this purpose. Although heuristic, it has
been seen to perform well when embedding topographic data into a classification.5

Known as supervised relaxation, the updating rule at the kth iteration for checking
that the correct class is xi on pixel m is

pkþ 1
m xið Þ� ¼ pkm xið ÞQk

m xið Þ for embedding spatial context

pkþ 1
m xið Þ ¼ pkþ 1

m xið Þ�/m xið Þ for incorporating another data source

where /m xið Þ is the probability that xi is the correct class for pixel m from the
additional data source. After the application of these two equations the rule in (8.72)
is used.

12.4 The Theory of Evidence

The mathematical Theory of Evidence6 is an interesting heuristic technique devised
to allow sets of inferences about a particular labelling proposition to be merged. It is
attractive in multisource image analysis because it does not require the original data
variables necessarily to be in numerical form; as a result, map-like data can be one
of the sources of evidence considered. More importantly, it allows the user to
ascribe degrees of trust or uncertainty to each data type when the combination is
carried out. That is particularly attractive when the analyst has differing degrees of
confidence in the data sets available for analysis. Although the original data does
not necessarily need to be numerical, the combination step involves numerical

4 See A.H. Strahler, The use of prior probabilities in maximum likelihood classification of
remotely sensed data, Remote Sensing of Environment, vol. 10, 1980, pp. 135–163, and L.
Bruzzone, C. Conese, F. Maselli and F. Aoli, Multisource classification of complex rural areas by
statistical and neural network approaches, Photogrammetric Engineering and Remote Sensing, vol.
63, 1997, pp. 523–533.
5 See J.A. Richards, P.H. Swain and D.A. Landgrebe, A means of utilising ancillary information in
multispectral classification, Remote Sensing of Environment, vol. 12, 1982, pp. 463–477.
6 The fundamental reference is G. Shafer, A Mathematical Theory of Evidence, Princeton UP, N.J.,
1976.

510 12 Multisource Image Analysis



manipulation of quantitative measures of evidence. The bridge between those
measures and the original data is left largely to the user. Accordingly, there is
substantial room for the user to choose how to represent the data; that flexibility is
one of the criticisms of the technique, since it appears to lack a firm analytical basis.

12.4.1 The Concept of Evidential Mass

The foundation of the technique involves assigning belief, represented by a
so-called mass of evidence, to various labelling propositions for a pixel following
the analysis of a given source of remotely sensed data. The total mass of evidence
available for allocation over the set of possible labels for the pixel is unity. To this
extent, it seems to be similar to the distribution of probabilities. There is, however, a
significant difference in that mass can also be allocated to uncertainty about the
labelling, as we will see shortly.

To see how mass might be distributed consider a classification from a single
source of image data that has led to a labelling into one of three classes
x1;x2;x3f g. It is a requirement that the set of classes be exhaustive, in that they

cover all possibilities. Suppose that the classification algorithm employed tells us
that the three labels for a given pixel have likelihoods in the ratios 2:1:1. Suppose,
also, that we are a little uncertain about the classification, either as a result of the
quality of the data used, or perhaps our concern about the effectiveness of the
classification algorithm. Owing to this uncertainty, suppose we are only willing to
commit ourselves to classify the pixel with about 80% confidence. In other words,
we are 20% uncertain about the labelling, even though we are reasonably happy
with the relative likelihoods. Using the symbolism of the Theory of Evidence the
distribution of the unit mass of evidence over the three possible labels, and our
uncertainty about the labelling, is expressed:

m hx1;x2;x3; hið Þ ¼ h0:40; 0:20; 0:20; 0:20i ð12:6Þ

where the symbol h is used to signify the uncertainty. Effectively, uncertainty
represents the set of all possible labels; the mass associated with uncertainty has to
be allocated somewhere so it is allocated to the set as a whole. Equation (12.6) tells
us that the mass of evidence assigned to label x1 as being the correct one for the
pixel is 0.4, etc.7

We now define two further evidential measures. The support for a labelling
proposition is the sum of the mass assigned to the proposition and any of its subsets.
Subsets are considered later. The plausibility of the proposition is one minus the
total support for any contradictory propositions. Support is considered to be the

7 This is in contrast to the probability 0.5 that x1 is the correct class for the pixel as result of the
classification step, in the absence of uncertainty.
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minimum amount of evidence in favour of a particular labelling for a pixel whereas
plausibility is the maximum possible evidence in favour of the labelling. The
difference between the measures of plausibility and support is called the evidential
interval. The true likelihood that the label under consideration is correct for the
pixel is assumed to lie somewhere between the support and plausibility. For the
above example, the supports, plausibilities and evidential intervals are:

In this simple case the evidential intervals for all labelling propositions are the same
and equal to the mass allocated to uncertainty in the process or data as discussed
above, i.e., m hð Þ ¼ 0:20. We have used the symbol to represent plausibility in
order to avoid confusion with probability.

Consider another example involving four possible spectral classes, one of which
represents our belief that the pixel is in either of two classes. This will demonstrate
that, in general, the evidential interval is different from the mass allocated to
uncertainty. In this case suppose the mass distribution is:

m hx1;x2;x1 _ x2;x3; hið Þ ¼ h0:35; 0:15; 0:05; 0:30; 0:15i

where x1 _ x2 represents ambiguity in that, for the pixel under consideration, while
we are prepared to allocate 0.35 mass to the proposition that it belongs class x1 and
0.15 mass that it belongs to class x2, we are prepared also to allocate some
additional mass to the fact that it could belong to either of those two classes and not
to any others.

For this example, the support for x1 is 0.35 (being the mass attributed to the
label) whereas the plausibility of x1 being the correct class for the pixel is one
minus the support for the set of contradictory propositions. There are two—x2 and
x3. Therefore, the plausibility for the correct label being x1 is 0.55, and the
evidential interval is 0.2 (different now from the mass attributed to uncertainty).
Support given to the mixture class x1 _ x2 is 0.55, being the sum of the masses
attributed to that class and its subsets.

To see how the Theory of Evidence works with multisource data return now to
the simple example given by the mass distribution in (12.6). Suppose there is
available a second source which can also be labelled into the same set of classes.
Again, there will be some uncertainty in the labelling process. For a particular pixel
suppose the mass distribution after analysing the second data source is

l hx1;x2;x3; hið Þ ¼ h0:20; 0:45; 0:30; 0:05i ð12:7Þ

This shows that the second source of remotely sensed data, after analysis, favours
x2 as the correct label for the pixel, whereas analysis of the first data source favours
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x1. To resolve this problem the Theory of Evidence allows the two mass distri-
butions to be merged in order to combine the evidences and thus come up with a
label which is jointly preferred. At the same time overall uncertainty should be
reduced because more evidence is available. This is done through the mechanism of
the orthogonal sum in the next section.

12.4.2 Combining Evidence with the Orthogonal Sum

The orthogonal sum is illustrated graphically in Fig. 12.2. Also called Dempster’s
orthogonal sum, it is performed by constructing a unit square and partitioning it
vertically in proportion to the mass distribution from one source and horizontally in
proportion to the mass distribution from the other source. The areas of the rect-
angles so formed are calculated. One rectangle is formed from the masses attributed
to uncertainty hð Þ in both sources; that is considered to be the remaining uncertainty
in the labelling after the evidences from both sources have been combined.
Rectangles formed from the masses attributed to the same class have their resultant
area (mass) assigned to the class. Rectangles formed from the product of mass
assigned to a particular class in one source and mass assigned to uncertainty in the
other source have their resultant mass attributed to the specific class. Similarly,
rectangles formed from the product of a specific class, say x2; and an ambiguity,
say x1 _ x2; are allocated to the specific class. Rectangles formed from different
classes in the two sources are contradictory and are not used in computing merged
evidence. In order that the resulting mass distribution sums to unity a normalising
denominator is computed as the sum of the areas of all the rectangles that are not
contradictory. For the current example this factor is 0.47.

After the orthogonal sum has been computed, the resultant merged mass dis-
tributions are:

m x1ð Þ ¼ 0:08þ 0:02þ 0:04ð Þ=0:47 ¼ 0:298

m x2ð Þ ¼ 0:09þ 0:01þ 0:09ð Þ=0:47 ¼ 0:404

m x3ð Þ ¼ 0:06þ 0:01þ 0:06ð Þ=0:47 ¼ 0:277

m hð Þ ¼ 0:01=0:47 ¼ 0:021

We conclude that class two is recommended jointly. The reason is that source two
favours class two and had less uncertainty; although source one favoured class one,
its higher level of uncertainty meant that it was not as significant in influencing the
outcome.
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The orthogonal sum can also be expressed in algebraic form.8 If two mass
distributions are denoted m1 and m2 then their orthogonal sum is:

m12 zð Þ ¼ H
X

x\ y¼z

m1 xð Þm2 yð Þ

where

H�1 ¼
X

x\ y 6¼/

m1 xð Þm2 yð Þ

in which / is the null set. When applying these formulas, it is important to
recognise that

x _ yð Þ \ y ¼ y and h\ y ¼ y

Formore than two sources of data, the orthogonal sum can be applied repetitively since
the expression is both commutative (the order in which the sources are considered is
not important) and associative (it can be applied to any pair sources and then a third
source, or equivalently can be applied to a different pair and then the third source).
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0.20

0.20

0.20

0.40
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1 11
1
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2 2
3

3

3
3

1 2 3

Fig. 12.2 Graphical
illustration of the Dempster
orthogonal sum for merging
evidences from two data
sources; the shaded squares
represent contradictory and
thus unused evidence, while
the evidences from the white
squares (their areas) are
allocated to the classes
indicated

8 See T. D. Garvey, J.D. Lowrance and M.A. Fisher, An inference technique for integrating
knowledge from disparate sources, Proc. 7th Int. Conf. Artificial Intelligence, Vancouver, 1981,
pp. 319–325, and T. Lee, J.A. Richards and P.H. Swain, Probabilistic and evidential approaches
for multisource data analysis, IEEE Transactions on Geoscience and Remote Sensing, vol. GE-25,
no. 3, May 1987, pp. 283–293.
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12.4.3 Decision Rules

After the orthogonal sum has been applied the user can compute the joint support
and plausibility for each possible class for a pixel. Maps could then be produced
showing the distribution of supports or plausibilities for each category. This might
be particularly appropriate in a situation where classes are not well-resolved and the
user is interested in the relative likelihoods of each class.9

More often, the analyst will be interested in producing a thematic map in the
same manner as when traditional statistical or numerical classification techniques
are applied. That requires a decision rule. There are several candidates including a
comparison for each pixel of supports, a comparison of the plausibilities, or both.10

Generally, a maximum support decision rule would be used, although if the plau-
sibility of the second most favoured class is higher than the support for the preferred
label, the decision might be regarded as having a degree of risk.

12.5 Knowledge-Based Image Analysis

The statistical and evidential multisource techniques treated above have their limi-
tations. Most are restricted to data that is inherently in numerical form, such as that
from optical and radar sensors, along with quantifiable terrain data like digital ele-
vation maps. Yet often we need to incorporate into a multisource analysis spatial
data types that are non-numerical. These include geological, soil and planning maps,
and even prior thematic maps of the same region. The Theory of Evidence can
incorporate non-numerical image data, but it still requires the data to be expressed in
a quantifiable form so that the numerical manipulation of evidence is possible.

Clearly a different approach is needed when one wishes to contemplate analysis
using combinations of numerical and non-numerical imagery, or maps. Knowledge-
based methods offer promise in this regard. In this section we outline some of the
fundamental aspects of expert systems as knowledge-based processing tools. There
are many knowledge processing systems available; we focus here on the expert
system approach because it is easily related to general concepts in remote sensing.11

It will become clear during this treatment that the technique allows a more
general treatment of the concept of information class than the statistical and evi-
dential methods covered above. In particular, we can allow for different information

9 For a geological example see W.L. Moon, Integration of geophysical and geological data using
evidential belief function, IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 4,
July 1990, pp. 711–720.
10 See Lee et al., 1987, loc. cit.
11 Much of the research on expert systems as a method for knowledge processing was carried out
during the 1980s and early 1990s. Readable references that go further than the material presented
here include N. Bryant,Managing Expert Systems, John Wiley & Sons, Chichester, 1998, and E.C.
Payne and R.C. McArthur, Developing Expert Systems, John Wiley & Sons, N.Y., 1990.
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class types for each data set and can even allow for a final set of information classes
that are not definable from any individual data type on its own. That concept will be
elaborated towards the end of this treatment.

12.5.1 Emulating Photointerpretation to Understand
Knowledge Processing

Todevelop an appreciation of a knowledge-based approach it is of value to return to the
comparison of the attributes of photointerpretation and quantitative analysis given in
Table 3.1. However, rather than making the comparison solely on the basis of a single
source of data, consider now that the data to be analysed consists of three subsets: an
optical image, a radar image of the same region and a soil map. Standard methods for
quantitative analysis are not effective in drawing inferences about cover types using
two quite different numerical sources such as optical and radar data because those
sources, as noted earlier, sense different properties of the earth’s surface.

Consider now how a skilled photointerpreter might approach the problem,
making the assumption that the same person is an expert at interpreting optical data
and radar data, a case not always found in practice. The photointerpreter would not
work at the individual pixel level but, more likely, would concentrate on regions.
Suppose a particular region was seen to be predominantly pink on a standard false
colour composite print of the optical data, leading the photointerpreter to infer
initially that the region is vegetated. Whether it is grassland, a crop or a forested
region is not yet clear. The photointerpreter might now refer to the radar imagery. If
the tone of that region is dark, then the analyst would assume that the area is almost
smooth at the radar wavelength being used. Combining this understanding with the
inference from the optical data source, the photointerpreter is then led to think that
the region is either grassland or a low-level crop. The analyst might then note that
the soil type is not that normally associated with agriculture; he or she would then
conclude that the region is some form of natural grassland.

In practice the process may not be so straightforward and the photointerpreter
may need to refer backwards and forwards over the data sets in order to finalise an
interpretation, particularly if the optical and radar tones were not uniform over the
region. For example, some spots on the radar imagery might be very bright; the
photointerpreter would probably regard those as indicating shrubs or trees, con-
sistent with the overall region being labelled as natural grassland. The photoint-
erpreter can also easily account for differences in data quality when making a
decision about the most likely label for a pixel by placing more reliance on the data
sources that are seen to be most accurate or relevant to the particular exercise.
Unreliable or marginally relevant data would weigh less in the mind of the analyst
during the decision-making process.

The question we should ask at this stage is how the photointerpreter is able to
form those inferences so readily. Even apart from the ease with which the analyst
can undertake spatial processing, involving the use of cues such a shape and tex-
ture, the key to the analyst's success lies in his or her knowledge of how to interpret
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the various data types. For example, the analyst’s knowledge of spectral reflectance
characteristics allows the interpretation of optical data while knowledge of radar
response is crucial to how the analyst views radar imagery. The analyst also makes
composite qualitative judgements, as in the above example, by noting that pink on
optical data and dark on radar imagery implies a low-level vegetation type.

We are led therefore to consider whether the knowledge possessed by an expert,
such as a skilled photointerpreter, can be given to and used by a machine that
emulates how the photointerpreter thinks and deduces facts about the landscape. If
we can emulate the photointerpreter’s approach we would have available an
automated analytical procedure capable of handling mixed data types and, unlike
the human analyst, able to work repeatedly at the pixel level if necessary.
Fundamental to this approach, of course, is capturing the knowledge possessed by
the expert. In the classical expert system approach that is done through the tool of
the production rule considered in Sect. 12.5.3.

Although we will pursue this approach to demonstrate the value of qualitative
(human) reasoning in image analysis, and the effectiveness of properly captured
photointerpretative knowledge, the ultimate value of such an approach is limited by
the difficulty in recording effectively the thought processes used by an analyst, since
analysts may not always be able to express verbally how they come to certain
analytical decisions. This has led recently to a focus on cognitive task analysis as a
means for capturing an expert’s reasoning skills.12

12.5.2 The Structure of a Knowledge-Based Image
Analysis System

We could represent the structure of a traditional supervised classification approach
to the analysis of image data in the manner shown in Fig. 12.3a. The data to be
analysed is fed to a processor which is also supplied with the algorithms (maximum
likelihood rule, support vector machine, CNN, etc.) In addition, the machine is
given training data from which it can generate the parameters required by the
chosen algorithm. The algorithm is then applied pixel-by-pixel to produce labels
dependent only on the class signatures and the characteristics of the data. While
some expert knowledge has been supplied by the user concerning the choice of the
algorithm and the selection of reference data with which to train the classifier, that
has been limited by comparison to the sort of expert knowledge that is a major
feature of knowledge-based processing system.

The comparable diagram for a knowledge-based approach is shown in
Fig. 12.3b. Again, the data to be analysed is fed to the processor, but so is a detailed
set of rules which captures the knowledge from experts in the field of the analysis.
That knowledge is central to the analysis of the data and is processed in what is

12 See A.R. White, Human expertise in the interpretation of remote sensing data: a cognitive task
analysis of forest disturbance, Int. J. of Earth Observation Geoinformation, vol. 74, 2019, pp. 37–44.
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called an inference engine which not only applies the knowledge but also keeps
track of decisions being made about the class memberships of pixels. That entails
resolving conflicts when knowledge elements are in dispute and incorporates
mechanisms for strengthening decisions made about particular pixels if new
knowledge comes to hand during analysis.

12.5.3 Representing Knowledge in a Knowledge-Based
Image Analysis System

We need a mechanism for capturing the knowledge held in the minds of experts.
There are several ways that can be done, the simplest and perhaps most common of
which is to use what are called production rules, or simply rules. They are
developed by interviewing an expert, and typically take the form

if condition then inference

What we have shown here as condition is also called the antecedent because it is
the expression which precedes the decision step. Sometimes the inference is called
the consequent.

Some simple examples of this type of production rule, generally but not nec-
essarily applied at the pixel level, are

1. if visible red response < near infrared response then green vegetation
2. if radar tone is black then shadow
3. if near infrared response < visible green response then water

inference engine

classifier

knowledge base

algorithm

thematic
map

thematic
map

image
data

image
data

a

b 

Fig. 12.3 a Traditional image analysis system, and b knowledge-based image analysis system
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As seen in these illustrations, “condition” is a logical expression (sometimes
referred to as a clause) which can be either true or false. If it is true, then the
inference is assumed to be correct or justified. Otherwise, the rule provides no
information for or against the correct label for a pixel or region being assessed.
Apart from a simple logical expression the condition can be a compound logical
statement in which several components are linked through the logical or and and
operations. In their simplest form these compound statements are

if condition 1 and condition 2
then inference is justified only if both conditions are true

if condition 1 or condition 2
then inference is justified if either condition is true

In both cases more than two conditions can appear in the antecedent. Expert sys-
tems can also use the logical not operation, defined by

not condition is true if condition is false, and vice versa.

Each single rule can be thought of as providing one item of knowledge about the
region or pixel being considered. Some rules are not totally conclusive, such as the
first in the set of examples above, even though it is acceptable from a knowledge of
the spectral reflectance characteristics of vegetation. The same is true for the third
example. The second example, concerning a radar shadow, is more conclusive and
an analyst might be quite justified in assuming black regions are shadows in radar
imagery without appealing to any other source of information or knowledge. In
contrast, the first and third rules would probably not be used on their own; while
they are indicative of the cover type, the final decision would probably need some
form of corroborative information.

A knowledge base in such an analysis system might contain many hundreds of
rules of these types, obtained from experts in particular fields. When image data is
presented to the inference engine for analysis, the engine goes through the rule base
and applies those rules which are relevant in a particular exercise. It checks support
for or against various labelling propositions. Some rules will offer strong support
while others will be weak. Several classes for a particular pixel might be supported
among the rules; procedures are then needed for resolving among them. That is
taken up below.

An example of a simple rule base for segmenting optical imagery into just
vegetation, water and “other” cover types is

if near infrared response/visible red response > threshold then vegetation
if near infrared response/visible green response < 1 then water
if not water and not vegetation then other

In the first rule above a parameter is used—the threshold. That requires a
numerical value which almost certainly will be scene dependent. It could be pro-
vided before the analysis starts by the user entering it manually or, alternatively, a
small training region of vegetation could be used from which the value could be
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estimated. Many of the rules encountered in remote sensing image analysis will
require parameters such as these.

The rules illustrated here rely on spectral or radar pixel-specific knowledge. In
many expert systems spatial constraints are also used13 as a source of knowledge,
and appropriate rules are developed. Even spectrally-derived rules might not just
rely on simple expressions and comparisons of bands. Spectral contrasts, such as
the brightness in a given band compared to the total image brightness have also
been used.14

One of the real strengths of the rule-based approach is that it facilitates
multi-source decisions by merging interpretations from individual data sources. As
an example, the following set of rules allows a simple integration of radar and
optical image data, and information from a soil type map. It is based on optical data
having been classified beforehand into the three cover types of vegetation, water,
and soil. It is assumed that three classes of soil are shown on the soil map: loam,
sand, clay. We also assume that the radar data has been previously differentiated
into specular (mirror-like) surfaces, diffuse (moderately rough) surfaces, volume
scatterers (vegetation canopies in this case) and corner reflectors. The last are strong
reflectors given by the double reflection mechanism of a vertical surface, such as
wall, standing on a horizontal surface, such as the ground. The rule set is:

if soil and specular surface then bare ground
if soil and corner reflector effect then urban
if vegetation and specular surface then low-level vegetation
if vegetation and diffuse surface or volume then trees or shrubs
if low-level vegetation and loam then crops
if low-level vegetation and sand then grassland
if low-level vegetation and clay then grassland
if water and specular surface then lake
if water and diffuse surface then open water

12.5.4 Processing Knowledge—The Inference Engine

The inference engine can be simple if the expert system is specific to a particular
application. More often it is complex if a powerful and general knowledge pro-
cessing system is required. In the simple example of the previous section all the
mechanism has to do is check which of the rules gives a positive response for a pixel
and then label the pixel accordingly. More generally, when large rule sets are used,

13 See J. Ton, J. Sticken and A.K. Jain, Knowledge-based segmentation of Landsat images, IEEE
Transactions on Geoscience and Remote Sensing, vol. 29, no. 2, March 1991, pp. 222–232.
14 See S.W. Wharton, A spectral knowledge based approach for urban land cover discrimination,
IEEE Transactions on Geoscience and Remote Sensing, vol. 25, no. 3, May 1987, pp. 272–282.
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the inference engine has to keep track of all those that infer a particular cover type
and those which contradict that inference. Similarly, rules that recommend other
cover types for the pixel have to be processed. Finally, the inference engine has to
make a decision about the correct class by weighting all the evidence from the rules.
It also has to account for redundant reasoning and circular arguments, and has to
assess whether long reasoning chains carry as much weight in decision-making as
inferences involving only a single decision step. In addition, uncertainties and data
quality, missing data and missing rules need to be accommodated in the inference
process. We provide in the next section some insight into how such an inference
engine is constructed, although the general case is quite complex.15

12.5.5 Rules as Justifiers of a Labelling Proposition

Production rules are sometimes referred to as justifiers since they provide a degree
of justification or evidence in favour of a particular labelling proposition.
Categorising decision rules in this manner is the basis of several qualitative rea-
soning systems.16 Rules can be placed into one of four types of varying strength of
justification, illustrated by the examples given in the following.

Conclusive
rule

In this rule if the condition (antecedent) is true then the justification
for the inference is absolute (conclusive). For example
if radar tone is black then shadow

Prima facie
rule

In this rule if the condition (antecedent) is true then there is reason
to believe that the inference is true, although if the condition is
false it cannot be concluded that the inference is false. For example
if near infrared response/visible red response > 2 then
vegetation

Contingent
rule

In this rule if the condition (antecedent) is true then support is
provided to other prima facie reasons to believe that the inference
is true. These types of rule are not sufficient in themselves to justify
the inference. For example
if near infrared response > visible red response then vegetation

(continued)

15 See A. Srinivasan, An artificial intelligence approach to the analysis of multiple information
sources in remote sensing. Ph.D. Thesis, The University of New South Wales, Kensington,
Australia, 1990, and A. Srinivasan and J.A. Richards, Analysis of GIS spatial data using
knowledge-based methods, Int. J. Geographic Information Systems, vol. 7, no. 6, 1993, pp. 479–
500.
16 Srinivasan, loc. cit.
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(continued)
Criterion This is a special prima facie justifier for which a false condition

provides prima facie justification to disbelieve the inference. For
example

if near infrared response < visible green response then water
noting that

if near infrared response > visible green response then definitely
not water

Such a structuring of justifications is not unlike the strengths of reasoning used
by photointerpreters. In some cases, evidence would be so overwhelming that the
cover type must be from a particular class. In other cases, the evidence might be so
slight as simply to suggest what the cover type might be; indeed, the photointer-
preter might withhold making a decision in such a case until some further evidence
is available.

12.5.6 Endorsing a Labelling Proposition

Once the rules, or justifiers, have been applied the inference engine has to make a
decision about whether a particular labelling proposition is supported or not. That is
the role of the endorsement, which is the final level of justification for an inference.

Given a set of justifiers for and against a particular inference, the following are a
set of endorsements that could be used in coming to a final decision.

The inference is definitely true if there is at least one conclusive justifier
in support

The inference is likely to be true if there is some net prima facie evidence
in support

The inference is indicated if, in the absence of prima facie
justification, there are some net
contingent justifiers in support

A labelling proposition is null if all justifiers for the proposition are
balanced by those against the proposition

A proposition is contradicted if the proposition has conclusive justifiers
for and against it

A labelling proposition is unknown if nothing is known about the proposition

If an endorsement falls into any of the last three categories, the pixel would be left
unclassified. Complements of these endorsements also exist.

After all the relevant rules in the knowledge base have been applied to a pixel
under consideration, each of the possible labels for the pixel will have some level of
endorsement. That with the strongest endorsement is chosen as the label most
appropriate for the pixel. Endorsements for other labels, although weak, may still
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have value. For example, two endorsements that “grassland is likely to be true” and
“soil is indicated” are fully consistent; the cover type may in fact be sparse
grassland, which the analyst would infer from the pair of endorsements.

12.5.7 An Example

Figure 12.4 shows Landsat Multispectral Scanner visible red and near infrared
image data along with an L band SIR-B synthetic aperture radar image for a small
urban area in Sydney's north-western suburbs. The Landsat data is unable to dis-
tinguish between urban areas and areas cleared for development. On the other hand,
the radar data provides structural information, but no information on the actual
cover type. Using a knowledge-based approach17 we are able to analyse the images
jointly and develop a cover type map that resolves classes which are confused in
either the Landsat or radar data alone.

The expert system uses the rules in Table 12.1. The conditions tested in the
combination rules are endorsements from the single source knowledge-base anal-
yses. When applied, the rules yield the thematic map of Fig. 12.5; Table 12.2

a b 

c 

Fig. 12.4 a Landsat MSS visible red band, b Landsat MSS near infrared band, and c SIR-B radar
image of a small area in Sydney

17 Srinivasan and Richards, loc. cit., and Srinivasan, loc. cit.
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Table 12.1 Rule base for analysing the data of Fig. 12.4; in the single source analyses the rules
need to be trained to establish what is meant by low, moderate and high

For the Landsat multispectral scanner data source
if near infrared/visible red �1 then contingent support for urban

and contingent support for soil
if near infrared/visible red is moderate then contingent support for urban

and contingent support for vegetation
if near infrared/visible red is high then prima facie support for vegetation

For the SIR-B radar data source
if radar response is low then prima facie support specular behaviour
if radar response is moderate then prima facie support volume scattering
if radar response is high then prima facie support corner reflector

To combine the data sources
if vegetation is likely to be true
and corner reflector is likely to be true

then prima facie support for woody vegetation

if vegetation is likely to be true
and volume scattering is likely to be true

then prima facie support for vegetation

if vegetation is likely to be true
and specular behaviour is likely to be true

then prima facie support for grassland

if soil is likely to be true
and specular behaviour is likely to be true

then prima facie support for cleared land

if vegetation is indicated
and corner reflector is likely to be true

then prima facie support for residential

if vegetation is indicated
and volume scattering is likely to be true

then prima facie support for residential

if urban is likely to be true
and corner reflector is likely to be true

then prima facie support for buildings

if vegetation is indicated
and vegetation is not likely to be true
and specular behaviour

then contingent support for grassland

Fig. 12.5 Thematic map
produced by
knowledge-based analysis of
the data in Fig. 12.4. Classes
are: black = soil, dark
grey = grassland, light
grey = woody vegetation,
white = urban (cleared land,
buildings, residential)
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summarises the results quantitatively for which a careful photointerpretation of the
data, and local knowledge, provided the necessary ground truth. Figure 12.5 shows
that the classifier is able to distinguish between grassland and woody vegetation
owing to the structural information present in the radar image data. Note also that
not all bright regions in the radar image are classified as urban. Some are actually
rows of trees; the confusion has been resolved using the land-cover information
present in the Landsat image.

Although simple, this example demonstrates how readily multisource data can
be handled using a knowledge-based approach to analysis and interpretation.

12.6 Operational Multisource Analysis18

Given the ready availability of data types now available, and the fact that the user
generally acquires spatial data over a network, there are a number of fundamental
requirements that an operational thematic mapping schema should satisfy. Apart
from being able to cope with interpreting disparate data types, which could include
existing maps and prior thematic maps, we should also

• account for relative data quality
• allow for each data source to be analysed separately, in time and location
• accept that the thematic classes from a combined data set might be different from

the classes achievable with any data set on its own, and
• recognise that many image data types have their own preferred methods for

analysis.

Table 12.2 Results of combined optical and radar analysis

Classes from rule-based
classification (%)

Ground classes

Cleared
land

Grassland Woody
vegetation

Urban

Cleared land 82.5 2.5 0.0 0.0
Grassland (likely) 2.5 57.2 6.6 0.8
Grassland (indicated) 5.0 20.8 0.0 3.5
Woody vegetation 2.5 16.1 88.1 13.5
Residential 0.0 2.1 5.2 70.6
Buildings 0.0 0.7 0.0 10.7
Soil 7.5 0.0 0.0 0.9
Overall accuracy = 77.35%, area weighted 81.5%

18 This section is based in part on J.A. Richards, Analysis of remotely sensed data: the formative
decades and the future, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3,
March 2005, pp. 422–432.

12.5 Knowledge-Based Image Analysis 525



Meeting these conditions can be difficult when using any (fusion) technique that
depends on combining data prior to analysis since the data sources would all have
to be available simultaneously, the class definitions would need to be consistent
over the sources and the analysis techniques would need to be common over the
data types.

Consider the last two requirements. Depending on the preferences of the analyst,
optical data can be classified with a high degree of accuracy with well-known
supervised methods. When the data is of hyperspectral dimension those same
techniques could still be used, with appropriate feature reduction techniques applied
beforehand, but that ignores the scientific spectroscopic information available with
high spectral resolution data. Hyperspectral imagery is often better analysed using
spectroscopic knowledge and library searching techniques, including those which
seek to identify and name specific absorption features.

Radar imagery, on the other hand, does not respond well to the sorts of clas-
sifiers regularly applied to optical remote sensing data partly, but not fully, because
of the overlaid speckle present in radar imagery. Instead, radar data is best analysed
by techniques designed specifically to identify the types of radar response found in
practice. Those techniques include Wishart-based classifiers, eigenvalue decom-
position methods, and their derivatives.19

When undertaking multisource analysis by combining the data sets beforehand
we deny the application of analysis techniques that are optimal to given data types
and thus we potentially prejudice the quality of the outcome by forcing some
information class labels relevant to one particular data type on to a data set for
which those labels have no meaning. For example, turbid water is a label that could
be attached to an optical pixel but not to a radar pixel.

That leads to a consideration of the differences in the thematic classes from one
data type to the next, and the consequent fact that the information classes able to be
identified from multisource data, properly analysed, could even be different from
the information classes found with any single data type on its own. These points are
illustrated in Fig. 12.6 for optical and radar data. While simple, it nevertheless
serves to illustrate the point that some class labels are effectively only achievable
after the data sources have been processed separately, and the results combined; that
is, some outcomes are more readily achieved if we process labels, rather than data.
Effectively that is label or knowledge fusion rather than data fusion.

As result of these types of consideration, the decompositional analysis
methodology presented in Fig. 12.7 is important. It can meet all the requirements in
the dot points above and allows the analysis technique to be applied to a given data
source to be one that is optimal for that data type. Importantly, after analysis, the
results are all available in a common vocabulary—labels rather than numerical
measurements. The combination module then only has to process label-like data
rather than mixtures of data types that are often incommensurate. It can jointly
process labels using the knowledge-based methods of the previous section. An

19 See J.A. Richards, Remote Sensing with Imaging Radar, Springer, Berlin, 2009.
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Fig. 12.6 Simple illustration of how more complex information classes can result from the fusion
of simpler information classes generated from single sources of remote sensing image data
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Fig. 12.7 A multisource analysis methodology based on label fusion
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associated advantage of this approach is that map data, including previous thematic
maps, can easily be joined into the combination process as depicted in figure.

A practical implication of decomposing the analyses as shown in Fig. 12.7 is
that each data type can be interpreted by separate experts, if necessary at different
places and at different times. Such a model opens up the possibility of a knowledge
broker who would source the individual analyses, having understood beforehand
the requirements of a client; the broker would then combine those separate analyses
into the product required by the client. The computational framework for this model
is also fully compatible with web-based data serving.

One matter that has to be addressed when handling multiple data sources in the
manner just described is where in the process spatial context should be embedded.
There are two options. Perhaps the better is to apply spatial context algorithms at
the individual data source level because the degrees to which spatial context will be
important vary from data type to data type. Although such individual spatial pro-
cessing might be preferable, the simpler approach would be to embed spatial
consistency among the labels in the final fused thematic map output.

12.7 Bibliography on Multisource Image Analysis

Multisource analysis has been of interest ever since the early days of thematic
mapping from remotely sensed image data even though many of the earlier ana-
lytical procedures tended to be ad hoc or problem specific. The foundations of
statistical multisource processing will be found in

T. Lee, Multisource Context Classification Methods in Remote Sensing, Ph.D. Thesis, The
University of New South Wales, Kensington, Australia, 1986,

T. Lee, J.A. Richards and P.H. Swain, Probabilistic and evidential approaches for multi-
source data analysis, IEEE Transactions on Geoscience and Remote Sensing, vol. GE-25,
no. 3, May 1987, pp. 283–293,

J.A. Benediktsson, P.H. Swain and O.K. Ersoy, Neural network approaches versus statis-
tical classification of multisource remote sensing data, IEEE Transactions on Geoscience
and Remote Sensing, vol. 28, no. 4, July 1990, pp. 540–552

the last of which also introduces consensus theoretic methods, which are refined in

J.A. Benediktsson and P.H. Swain, Consensus theoretic classification methods, IEEE
Transactions on Systems, Man and Cybernetics, vol. 22, 1992, pp. 688–704.

The thesis above by Lee was also one of the first treatments of evidential theory as a
multisource analysis procedure in remote sensing. The standard evidential theory
book is

G. Shafer, A Mathematical Theory of Evidence, Princeton UP, N.J., 1976.

Application-specific treatments using evidential methods for multisource analysis
are
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W. Moon, Integration of geophysical and geological data using evidential belief function,
IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 4, July 1990, pp. 711–
720,

P. Gong, Integrated analysis of spatial data from multiple sources using evidential rea-
soning and artificial neural network techniques for geologic mapping, Photogrammetric
Engineering and Remote Sensing, vol. 62, 1996, pp. 513–523.

Evidential reasoning has also been used as an approach to spatial context classi-
fication, by treating the spatial information as a separate data source:

J.A. Richards and X. Jia, A Dempster-Shafer approach to context classification. IEEE
Transactions on Geoscience and Remote Sensing, vol. 45, no. 5 pt. 2, May 2007, pp. 1422–
1431.

The foundations of expert systems and reasoning are covered in a number of key
texts, including

N. Bryant, Managing Expert Systems, John Wiley & Sons, Chichester, 1998,

E.C. Payne and R.C. McArthur, Developing Expert Systems, John Wiley & Sons, N.Y.,
1990,

R. Frost, Introduction to Knowledge Base Systems, McGraw-Hill, N.Y., 1986,

J.L. Pollack, Knowledge and Justification, Princeton UP., N.J., 1974,

D. Nute, Defeasible Reasoning: A Philosophical Analysis in Prolog, in J.H. Fetzwer ed.,
Aspects of Artificial Intelligence, Kluwer, Dordrecht, 1988.

The first application of defeasible reasoning as the basis for an expert system in
remote sensing image analysis is in

A. Srinivasan, An Artificial Intelligence Approach to the Analysis of Multiple Information
Sources in Remote Sensing. Ph.D. Thesis, The University of New South Wales,
Kensington, Australia, 1990, and

A. Srinivasan and J.A. Richards, Analysis of GIS spatial data using knowledge-based
methods, Int. J. Geographic Information Systems, vol. 7, no. 6, 1993, pp. 479–500.

Application of various expert system approaches are given in

J. Ton, J. Sticken and A.K. Jain, Knowledge-based segmentation of Landsat images, IEEE
Transactions on Geoscience and Remote Sensing, vol. 29, no. 2, March 1991, pp. 222–232,

S.W. Wharton, A spectral knowledge based approach for urban land cover discrimination,
IEEE Transactions on Geoscience and Remote Sensing, vol. 25, no. 3, May 1987, pp. 272–
282,

R.A. Schowengerdt, A general purpose expert system for image processing,
Photogrammetric Engineering and Remote Sensing, vol. 55, 1989, pp. 1277–1284.

E. Binaghi, I. Gallo, P. Madella and A. Rampini, Approximate reasoning and multistrategy
learning for multisource remote sensing data interpretation, in C.H. Chen, ed., Information
Processing for Remote Sensing, World Scientific, Singapore, 1999.
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Because of the importance of the multisource analysis problem several special
issues have appeared in the past. These include

Special Issue on Data Fusion, IEEE Transactions on Geoscience and Remote Sensing, vol.
46, no. 5, May 2008, which includes a good definition of important terms in its editorial,

Special Issue on Data Fusion, IEEE Transactions on Geoscience and Remote Sensing, vol.
37, no. 3, May 1999,

Special Issue on the Workshop on Analytical Methods in Remote Sensing for Geographic
Information Systems, IEEE Transactions on Geoscience and Remote Sensing, vol. GE-25,
no. 3 May 1987.

Not unexpectedly, multisource image processing features in fields apart from
remote sensing. For an overview see

R.S. Blum and Z. Liu, Multi-Sensor Image Fusion and Its Applications, CRC Taylor and
Francis., Boca Raton, Florida, 1996.

12.8 Problems

12:1 Suppose you have been asked to produce a thematic map for a given region
of natural vegetation in which is embedded a number of crop fields. You
have been told that you have both optical and radar image data available for
the task. The client has asked you to recommend whether you would choose
to use a stacked vector method with a traditional classifier algorithm, or
whether you would use a knowledge-based approach. Outline the consid-
erations that you would include in your report to the client.

12:2 Develop a set of production rules that might be used to smooth a thematic
map. The rules are to be applied to the central labelled pixel in a 3 � 3
window. Assume the map has five classes and that map segments with fewer
than 4 pixels are unacceptable to the user.

12:3 Assume you have two optical image data sources available, but with different
spatial resolutions. After geometric registration the pixels in one image are
nine times the size of the pixels in the other. Suppose both images have been
classified into the same set of spectral classes. Outline how you might write a
set of production rules to fuse the two data sets, noting that the high reso-
lution data is less reliable than the low resolution data.

12:4 Develop a set of production rules that might be applied to Landsat ETM+
imagery to create a thematic map with five classes: vegetation, deep clear
water, shallow or muddy water, dry soils and wet soils. To do this you may
need to refer to a source of information on the spectral reflectance charac-
teristics of those cover types in the ranges of the thematic mapper bands.

12:5 Compare the relative attributes and disadvantages of the following methods
for multisource image interpretation:
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multisource statistical analysis
consensus theoretical analysis
evidential reasoning
expert systems analysis

12:6 Suppose a future remote sensing program consists of 100 microsatellites
orbiting the earth with substantial overlap of coverage either simultaneously,
or with time, as the satellites pass over a given region of the earth’s surface.
If the satellites were designed for thematic mapping, there are two possible
means by which the data recorded can be used. One is to down link the data
from each satellite, which is then processed in ground-based facilities; the
other is to undertake thematic mapping on the satellites and then downlink
the results. Compare the two methods. Consider also the desirability, or
otherwise, of the satellites communicating thematic information among
themselves in order to map the landscape better.

12:7 When using the Theory of Evidence as a multisource analysis tool the analyst
needs to generate mass distributions from each available source. If one
source is optical, a method for getting an effective mass distribution, prior to
the attribution of uncertainty, is by a statistical analysis of the source.
Suppose that analysis is carried out by the maximum likelihood rule. If you
were to generate the mass distribution would you use the prior probabilities,
the class conditional posterior probabilities, or the class conditional distri-
bution functions to generate the mass distributions?

12:8 What is the difference between theoretical, heuristic and ad hoc? The sta-
tistical multisource technique of Sect. 12.3.1 is regarded as having a theo-
retical basis. The Theory of Evidence is generally thought of as a heuristic
method. Does that make it any less valuable as a technique?

12:9 This is a variation on Problem 12.3. A rule-based analysis system is a very
effective way of handling multi-resolution image data. For example, rules
could be applied first to the pixels of the low resolution data to see whether
there is a strong endorsement for any of the available labels. If so, the high
spatial resolution data source need not be consulted, and data processing effort
is saved. If, however, the rule-based system can only give weak support to any
of the available labels on the basis of the low resolution data, then it could
consult the high resolution source to see whether the smaller pixels can be
labelled with a higher degree of confidence. That could be the case in urban
regions where some low resolution pixels may be difficult to classify because
they are a mixture of vegetation and concrete. High-resolution imagery may
be able to resolve those classes. In some other urban regions, such as golf
courses which are large areas of vegetation, the low resolution data might be
quite adequate. Using the techniques of Sect. 12.5 develop a set of rules for
such a multi-resolution problem. Your solution should not go beyond the low
resolution data source if a pixel has likely or definite endorsement.
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Appendices

Abstract Material on satellite altitudes and orbits, the binary number system and
vector and matrix algebra are presented in three appendices. The last summarises
the range of matrix and vector operations that are routinely encountered in quan-
titative remote sensing image analysis. Two final appendices summarise some
fundamental statistical concepts of importance in remote sensing, including the
normal or Gaussian distribution, and a more theoretically sound, but less often used,
derivation of maximum likelihood classification than that developed in Chap. 8.
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Appendix A
Satellite Altitudes and Periods

Remote sensing satellites are generally launched into circular, or near circular,
orbits. By equating centripetal acceleration in a circular orbit with the acceleration
resulting from earth’s gravity it can be shown that the orbital period at an orbital
radius r is given by1

T ¼ 2p
ffiffiffiffiffiffiffiffiffi
r3=l

p
s ðA:1Þ

where l is the earth gravitational constant2 of 3.986 � 1014 m3s−2. The corre-
sponding orbital angular velocity is

xo ¼
ffiffiffiffiffiffiffiffiffi
l=r3

p
rad s�1 ðA:2Þ

The orbital radius r is the sum of the earth radius re and the altitude of the satellite
above the earth h

r ¼ re þ h

in which re ¼ 6:378Mm. This gives the effective forward velocity of a satellite in
orbit as

v ¼ rxo ¼ re þ hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l= re þ hð Þ3

q
m s�1 ðA:3aÞ

while its velocity over the ground (sub-nadir), ignoring earth rotation, is given by
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v ¼ rexo ¼ re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l= re þ hð Þ3

q
m s�1 ðA:3bÞ

The actual velocity over the earth’s surface, taking into account the earth rotation,
depends on the orbit’s inclination and the latitude at which the velocity is of
interest. The orbital inclination is measured as an angle i anticlockwise from the
equator on an ascending pass—called the ascending node—or clockwise on a
descending pass. If the earth rotational velocity at the equator is ve in the easterly
direction, and the latitude is u; then the surface velocity of a point on the earth
directly under the satellite will be ve cosu cos i. That will add or subtract to the
surface velocity of the satellite to give the equivalent ground track velocity

vs ¼ re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l= re þ hð Þ3

q
� ve cosu cos i m s�1 ðA:4Þ

The positive sign applies when the component of earth rotation opposes the satellite
motion (on descending nodes for inclinations less than 90° or for ascending nodes
with inclinations greater than 90°); otherwise, the negative sign is used.

Provided the assumptions of circular orbits and a spherical earth are acceptable
the equations above can be used to derive some numbers of significance in remote
sensing.

Table A.1 shows orbital period as a function of altitude for a number of satellite
programs; included are comparable calculations for the moon and for a geosta-
tionary satellite. A geostationary orbit is one that has a period of 24 h such that if
the satellite were placed above the equator travelling in the same direction as earth
rotation it would appear stationary above the nadir point. Telecommunications
satellites and some weather satellites occupy geostationary orbits.

Consider now the calculation of the time taken for the Landsat 3 satellite to
acquire a 185 km frame of image data. That can be found by determining the local
velocity. The orbital inclination of the Landsat satellite is approximately 99° and its
altitude is 920 km. At Sydney, Australia the latitude is 33.8° S. From (A.4) this
gives vs ¼ 6:393 km s�1, so that the 185 km frame requires 28.9 s to record.

Table A.1 Altitudes and periods of some typical satellites

Satellite h (km) T (min) T (h) T (day)
Landsat 1,2,3 920 103.4 1.72 0.072
Landsat 4,5,7,8 705 98.9 1.65 0.069
SPOT 1,2,3 832 101.5 1.69 0.071
SPOT 7 695 98.8 1.65 0.067
Sentinel 2 786 100.0 1.67 0.069
WorldView 4 617 97.0 1.61 0.067
Geostationary 35,786 1436.1 23.93 0.997
Moon 377,612a 39,467.5 657.79 27.408
a The lunar altitude in these calculations was determined by subtracting the earth radius from the
average of the apogee and perigee of the lunar orbit

536 Appendix A: Satellite Altitudes and Periods



Appendix B
Binary Representation of Decimal
Numbers

In digital data handling we refer to numbers in binary format, because computers
represent data in that form. In the binary system numbers are arranged in columns
that represent powers of 2, while in the decimal system numbers are arranged in
columns that are powers of 10. Whereas we can count up to 9 in each column in the
decimal system, we can only count up to 1 in each binary column. From the right,
the columns are called 20, 21, 22, etc., indicating the highest decimal number that
can be represented by each column, so that the decimal numbers between 0 and 7
have the binary versions:

Decimal Binary

22 21 20

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1 i.e., 2 + 1
4 1 0 0
5 1 0 1 i.e., 4 + 1
6 1 1 0 i.e., 4 + 2
7 1 1 1 i.e.,

4 + 2 + 1

Digits in the binary system are referred to as bits. In the example above it can be
seen that eight different decimal values (0…7) can be represented with three bits,
but it is not possible to represent decimal numbers beyond 7. To represent the 16
decimal numbers 0–15 it is necessary to have a binary word with 4 bits; in that case
1111 is equivalent to decimal 15. The numbers of decimal values that can be
represented by different numbers of bits, up to levels that can be encountered in
remote sensing imagery, are:
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Bits Decimal levels Ranges Bits Decimal levels Ranges

1 2 0,1 9 512 0…511
2 4 0…3 10 1024 0…1023
3 8 0…7 11 2048 0…2047
4 16 0…15 12 4096 0…4095
5 32 0…31 13 8192 0…8191
6 64 0…63 14 16,384 0…16,383
7 128 0…127 15 32,768 0…32,767
8 256 0…255 16 65,536 0…65,635

Eight bits are referred to as a byte, which is a fundamental data unit used in
computers.
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Appendix C
Essential Results from Vector and Matrix
Algebra

C.1 Matrices and Vectors, and Matrix Arithmetic

As noted in Sect. 3.5 the pixels in an image can be plotted in a rectangular coor-
dinate system according to the brightness values in each of the recorded bands of
data. A vegetation pixel would appear as shown in Fig. C.1 if visible red and near
infrared measurements were available. The pixel can then be described by its
coordinates (10, 40). The coordinate space is referred to as the spectral domain or
as a spectral space, and it will have as many dimensions as there are bands of data.
For multispectral measurements the dimensionality would be less than 10 whereas
for hyperspectral measurements the dimensionality would be around 200 or more.

Mathematically we can represent the set of measurements for a pixel in the form
of a column vector, in which the entries are the individual pixel brightness values
arranged down the column in ascending order of band

x ¼
x1
x2
..
.

xN

2
6664

3
7775 ðC:1Þ

x is the symbol for a column vector and N is the dimensionality of the spectral
domain—the number of bands. The vector is said to be N � 1 dimensional. For the
simple example of Fig. C.1, we have the 2 � 1 vector

x ¼ 10
40

� �

Sometimes we might want to create a new vector y from the existing vector x. That
can be done by way of linear combinations of the original vector elements which, in
the two-dimensional case, is written

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2022
J. A. Richards, Remote Sensing Digital Image Analysis,
https://doi.org/10.1007/978-3-030-82327-6

539

https://doi.org/10.1007/978-3-030-82327-6


y1 ¼ m11x1 þm12x2
y2 ¼ m21x1 þm22x2

These are summarised as

y1
y2

� �
¼ m11 m12

m21 m22

� �
x1
x2

� �

or symbolically

y ¼ Mx

in which M is called a matrix of the numbers m11, etc. For this example, the matrix
has dimensionality of 2 � 2. Movement between the matrix–vector form and the
original set of equations requires an understanding of how vectors and matrices are
multiplied. The result of the multiplication is obtained by multiplying the column
entries of the vector, one by one, with the row entries of the matrix and adding the
products, one row at a time. The result of each of those operations is a new vector
element. That is illustrated in Fig. C.2, along with the multiplication of two
matrices, which follows the same pattern.

Figure C.2 introduces the row vector. Column vectors have their elements
arranged down a column, whereas row vectors have their elements arranged across
a row. The difference is important because row vectors enter into multiplication in a
different way, as illustrated.
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Fig. C.1 a Spectral reflectance characteristic of vegetation, and b typical response plotted in the
near IR, visible red spectral domain
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The product of a row vector and a column vector will also be different depending
on the order in which they appear. If the row vector is on the left-hand side the
result is a simple scalar; if it is on the right-hand side the result is a matrix, as seen
in the following

4 �3½ � 9
7

� �
¼ 15 ðC:2aÞ

9
7

� �
4 �3½ � ¼ 36 �27

28 �21

� �
ðC:2bÞ

The order in which matrices are multiplied is also important. AB will give a
different result from BA, except in special circumstances. We say that
A “pre-multiplies” B in AB whereas B “post-multiplies” A. Although the above
examples were computed with 2 dimensional vectors and matrices, the patterns are
the same for any order so long as the dimensionality of the vector matches the
relevant dimension of the matrix. For example, a 3 � 12 matrix (3 rows and 12
columns) can only be post-multiplied by a 12 element column vector and can be
pre-multiplied by a 3 element row vector.

b

a c

Fig. C.2 Illustrating the steps involved in matrix multiplication: a two matrices, b a column
vector post-multiplying a matrix and c a row vector pre-multiplying a matrix
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We use a double subscript notation to describe the elements of a matrix, in which
the first refers to the row to which the element belongs and the second to its column:

M ¼
m11 m12

m21 m22

m13 . . .
m23 . . .

m31 m32

..

. ..
.

m33 . . .

..

. . .
.

2
664

3
775

The elements, referred to generically as mij, can be real or complex. In optical
remote sensing, only real elements are usually encountered, while complex entries
occur often in radar remote sensing. The dots in this expression simply mean the
matrix can be of any size, as determined by the problem being considered. If the
matrix has as many rows as columns, then it is called a square matrix.

Elements that lie on the same row and column, mii, are called diagonal elements
and together define the diagonal, or principal diagonal, of the matrix. All the other
elements are referred to as off-diagonal elements.

If M and N are two matrices then their addition and subtraction is given by
adding or subtracting their elements, as shown in the following 2 � 2 examples:

For M ¼ m11 m12

m21 m22

� �
and N ¼ n11 n12

n21 n22

� �
; then

M� N ¼ m11 � n11 m12 � n12
m21 � n21 m22 � n22

� �

C.2 The Trace of a Matrix

The trace of a matrix is the sum of its diagonal terms, which for an N � N square
matrix is expressed:

traceM ¼ trM ¼
XN
i¼1

mii ðC:3Þ

C.3 The Transpose of a Matrix or a Vector

If the elements of a matrix are rotated about the diagonal, the transpose of the
matrix results. The transpose is represented by a superscript T (or sometimes t), so
that if
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M ¼
m11 m12 m13

m21 m22 m23

m31 m32 m33

2
4

3
5

MT ¼
m11 m21 m31

m12 m22 m32

m13 m23 m33

2
4

3
5

Vectors can also be transposed by rotating around their first element thus trans-
forming a row vector into a column vector and vice versa. If

g ¼
g1
g2
g3

2
4

3
5

Then gT ¼ g1 g2 g3½ �
Note that gTg ¼ g21 þ g22 þ g23 ¼ gj j2

In other words that operation gives the square of the magnitude of the vector. How
can vectors have magnitude? To illustrate: the vector g could be the set of spectral
measurements for a pixel in three dimensional spectral space. Its magnitude is its
overall brightness, or the length of the vector drawn from the origin to the point in
the three dimensional space using the vector elements as coordinates. That can be
seen by applying Pythagoras’ Theorem to the simple example in Fig. C.1b.

Note that for two column vectors g ¼ 4
�3

� �
and h ¼ 9

7

� �

then gTh ¼ 15 ¼ scalar

while hgT ¼ 36 �27
28 �21

� �

The vector transpose can be used to evaluate the dot product of two vectors:

g:h ¼ gTh ¼ hTg
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C.4 The Identity Matrix

The identity matrix is a square matrix which is zero everywhere except down its
diagonal, on which each element is 1. Multiplication of a vector by the identity
matrix, which has the symbol I, leaves the vector unchanged. Thus

1 0 0
0 1 0
0 0 1

2
4

3
5 g1

g2
g3

2
4

3
5 ¼

g1
g2
g3

2
4

3
5 and g1 g2 g3½ �

1 0 0
0 1 0
0 0 1

2
4

3
5 ¼ g1 g2 g3½ �

or symbolically Ig ¼ g and gTI ¼ gT as appropriate. Similarly, multiplication of
any matrix by the identity matrix leaves the matrix unchanged. Thus

MI ¼ M

The identity matrix is the matrix equivalent of the real number “1”.

C.5 The Determinant

The determinant of the square matrix M is expressed

Mj j ¼ detM ¼
m11 m12

m21 m22

m13 . . .
m23 . . .

m31 m32

..

. ..
.

m33 . . .

..

. . .
.

��������

��������
It is a scalar quantity that, in principle, can be computed in the following manner. In
all but the simplest cases, this approach is not efficient.

First, we define the cofactor of a matrix element. The cofactor of the element mij

is the determinant of the matrix formed by removing the ith row and jth column
from M and multiplying the result by (–)i+j. Thus, the cofactor of m21 is

M21 ¼ �
m12 m13

m32 m33

m14 . . .
m34 . . .

m42 m43

..

. ..
.

m44 . . .

..

. . .
.

��������

��������
The classical method for evaluating the determinant is to express it in terms of the
cofactors of its first row (or of any row or column). For a square matrix of size N �
N this expansion is
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Mj j ¼
XN
j¼1

m1jM1j

The cofactors in this expression can be expanded in terms of their cofactors, and so
on until the solution is found. The case of a 2 � 2 matrix is simple:

detM ¼ m11 m12

m21 m22

����
���� ¼ m11m22 � m12m21

For matrices of larger dimensions this method for evaluating the determinant is
grossly inefficient computationally and numerical methods are adopted.

If the determinant of a matrix is zero, the matrix is called singular.

C.6 The Matrix Inverse

A matrix multiplied by its inverse gives the identity matrix. The inverse is repre-
sented by adding the superscript −1 to the matrix symbol. Thus

M�1M ¼ I ðC:4Þ

The solution to the simultaneous equations summarised in matrix form as Mg ¼ c
can be found by pre-multiplying both sides by M−1 to give

g ¼ M�1c

provided the inverse matrix can be found. As with determinants, finding inverses is
not a trivial task and approximations and numerical methods are generally used.
However, also like determinants, there are theoretical expressions for the matrix
inverse. It can be defined in terms of the adjoint (more recently called the adjugate)
of the matrix, which is the transposed matrix of cofactors:

adjM ¼
M11 M12

M21 M22

M13 . . .
M23 . . .

M31 M32

..

. ..
.

M33 . . .

..

. . .
.

2
664

3
775
T

¼
M11 M21

M12 M22

M31 . . .
M32 . . .

M13 M23

..

. ..
.

M33 . . .

..

. . .
.

2
664

3
775

with which the inverse of M is

M�1 ¼ adjM
Mj j ðC:5Þ
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From this we see that the matrix must be non-singular to have an inverse—i.e., its
determinant must not be zero.

C.7 The Eigenvalues and Eigenvectors of a Matrix

The equation Mg ¼ c can be interpreted as the transformation of the column vector
g by the matrix M to form a new column vector c. We now ask ourselves whether
there is any particular vector, say g1, for which multiplication by a scalar will
produce the same transformation as multiplication by the matrix. In other words,
can we find a g1 such that

kg1 ¼ Mg1 ðC:6Þ

where k is a constant, which is sometimes complex.3 We can introduce the identity
matrix into this equation without changing its meaning:

kIg1 ¼ Mg1

so that we can then re-arrange the equation to read

M� kIð Þg1 ¼ 0 ðC:7Þ

Equation (C.7) is actually a short hand version of the set of homogeneous simul-
taneous equations in the unknown components4 of g1

m11 � kð Þg11 þm12g21 þm13g31. . . ¼ 0

m21g11 þ m22 � kð Þg21 þm23g31. . . ¼ 0

For a set of homogeneous simultaneous equations to have a non-trivial solution the
determinant of the coefficients of the unknowns must be zero, viz.

M� kIj j ¼ 0 ðC:8Þ

This is called the characteristic equation of the matrix M. It consists of a set of
equations in the unknown k. By solving (C.8) the values of k can be found. They
can then be substituted into (C.7) to find the corresponding vectors g1. The k are
referred to as the eigenvalues (or sometimes proper values or latent roots) of the

3This has nothing to do with wavelength, which conventionally has the same symbol.
4Note that we have indexed the components of the vector using a double subscript notation in
which the first subscript refers to the component and the second refers to the vector itself, in this
case g1. Later we will have a g2, etc.
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matrix M and the corresponding vectors g1 are called the eigenvectors (proper
vectors or latent vectors) of M. As a simple example consider the matrix

M ¼ 6 3
4 9

� �

Substituting into (C.8) gives

6� k 3
4 9� k

����
���� ¼ 0

i.e. 6� kð Þ 9� kð Þ � 12 ¼ 0

or k2 � 15kþ 42 ¼ 0 ðC:9Þ

which has the roots 11.275 and 3.725. In (C.9) it is interesting to note that the
coefficient of k is the trace of M and the constant term is its determinant.
Substituting the first eigenvalue into (C.7) gives

�5:275g11 þ 3g21 ¼ 0

so that

g11 ¼ 0:569g21 ðC:10aÞ

That result was obtained using the first row equation in (C.7). If we used the second
equation we would get

4g11 � 2:275g21 ¼ 0

which again gives

g11 ¼ 0:569g21

In other words, the two equations represented by (C.7) for this two dimensional
example are not independent.

Substituting the second eigenvalue into either equation in (C.7) shows

4g12 þ 5:275g22 ¼ 0

so that
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g12 ¼ �1:319g22 ðC:10bÞ

Note that the eigenvectors are not completely specified; only the ratio of the ele-
ments is known. This is consistent with the fact that a non-trivial solution to a set of
homogeneous equations will not be unique.

The eigenvalues for this example are both (all) real. A matrix for which all the
eigenvalues are real is called a positive definite matrix. If they could also be zero,
the matrix is called positive semi-definite. In optical remote sensing the eigenvalues
are generally all real.

Even though we commenced this analysis based on matrices that transform
vectors, the concept of the eigenvalues and eigenvectors of a matrix is more general
and finds widespread use in science and engineering.

C.8 Diagonalisation of a Matrix

If we compute all the eigenvalues of a matrix M and construct the diagonal matrix

K ¼
k1 0 0 . . .
0 k2 0 . . .
0 0 k3 . . .

..

. ..
. ..

. . .
.

2
6664

3
7775

then (C.6) can be generalised to

GK ¼ MG ðC:11Þ

in which G is a matrix formed from the set of eigenvectors of M:

G ¼ g1 g2 g3 . . .½ �

Provided G is non-singular, which it will be if the eigenvalues of M are all distinct,
then (C.11) can be written

K ¼ G�1MG ðC:12Þ

which is called the diagonal form of M. Alternatively

M ¼ GKG�1 ðC:13Þ

This last expression is very useful for computing certain functions of matrices. For
example, consider M raised to the power p:
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Mp ¼ GKG�1:GKG�1:GKG�1. . .GKG�1 ¼ GKpG�1

The advantage of this approach is that the diagonal matrix K raised to the power
p simply requires each of its elements to be raised to that power.
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Appendix D
Some Fundamental Material
from Probability and Statistics

D.1 Conditional Probability and Bayes’ Theorem

In this appendix we outline some of the fundamental statistical concepts commonly
used in remote sensing. Remote sensing terminology is used, and it is assumed that
the variables involved are discrete rather than continuous.

Along with vector and matrix analysis, and calculus, a sound understanding of
probability and statistics is important in developing a high degree of skill in
quantitative remote sensing. This is necessary, not only to appreciate algorithm
development and use, but also because of the role of statistical techniques in dealing
with sampled data. The depth of treatment here is sufficient for a first level
appreciation of quantitative methods. A more detailed treatment can be obtained
from standard statistical texts.5

The expression p xð Þ is interpreted as the probability that the event x occurs. In
the case of remote sensing, if x is a pixel vector, p xð Þ is the probability that a pixel
can be found at position x in the spectral domain.

Often, we will want to know the probability that an event occurs conditional on
some other event or circumstance. That is written as p xjyð Þ which is interpreted as a
probability that x occurs given that y, regarded as a condition, is specified previously
or is already known. For example, p xjxið Þ is the probability of finding a pixel at
position x in the spectral domain, given that we are only interested in those from class
xi; in other words, it is the probability that a pixel from class xi exists at position x.
The p xjyð Þ are referred to as conditional probabilities. The available conditions y
form a complete set. In the case of remote sensingxi; i ¼ 1. . .M is the complete set of
classes used to describe the image data in a given classification exercise.

5See J.E. Freund,Mathematical Statistics, 5th ed., Prentice Hall, Englewood Cliffs, N.J., 1992, and
C.M. Bishop, Pattern Recognition and Machine Learning, Springer Science + Business Media, N.
Y., 2006.
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If we know the set of p xjxið Þ, which are called class conditional probabilities,
we can determine p xð Þ in the following manner. Consider the product p xjxið Þp xið Þ
in which p xið Þ is the probability that class xi pixels occur in the image6; it is the
probability that a pixel selected at random will come from class xi. The product is
the probability that a pixel at position x in the spectral domain is an xi pixel,
because it describes the probability of a pixel at that position as coming from class
xi, multiplied by the probability that class xi exists. The probability that a pixel
from any class can be found at position x is the sum of the probabilities that pixels
would be found there from all of the available classes. In other words

p xð Þ ¼
XM
i¼1

p xjxið Þp xið Þ ðD:1Þ

The product p xjxið Þp xið Þ is called the joint probability of the “events” x and xi. It
is interpreted as the probability that a pixel occurs at position x and that the class is
xi. This is different from the probability that a pixel occurs at position x from class
xi because it also takes into account the likelihood that class xi pixels actually
occur in the image.

The joint probability is written

p x;xið Þ ¼ p xjxið Þp xið Þ ðD:2aÞ

We can also write

p xi; xð Þ ¼ p xijxð Þp xð Þ ðD:2bÞ

where p xijxð Þ, is the conditional probability that expresses the likelihood that the
class is xi given that we are examining a pixel at position x in the spectral domain.
That is referred to as the posterior probability because it describes the likelihood of
finding a pixel from class xi given that we have used all information available to us,
in this case the remote sensing measurements.

Because the order of two events occurring simultaneously is irrelevant (D.2a)
and (D.2b) are equivalent so that, after rearrangement, we have

p xijxð Þ ¼ p xjxið Þp xið Þ
p xð Þ ðD:3Þ

which is known as Bayes’ theorem.

6p xið Þ is called the prior probability because, in principle, it is the probability with which we
could guess class membership in the absence of any information, other than a knowledge of the
priors.
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D.2 The Normal Probability Distribution

D.2.1 The One Dimensional Case

The class conditional probabilities p xjxið Þ are frequently modelled in remote
sensing by a normal probability distribution. In the case of a one dimensional
spectral space this is described by

p xjxið Þ ¼ 2pð Þ�1=2r�1
i exp �1=2 x� mið Þ2=r2i

n o
ðD:4Þ

in which x is the single spectral variable, mi is the mean value of the measurements
x from class xi and ri is their standard deviation, which describes the scatter of the
values of x about the mean. The square of the standard deviation is called the
variance of the distribution. The mean is also referred to as the expected value of x
since, on the average, it is the value of x that would be observed in many trials.

The variance of the normal distribution is found as the expected value of the
squared difference of x from its mean. A simple average of the squared difference
gives a biased estimate; an unbiased estimate for class xi pixels is given by

r2i ¼
1

qi � 1

Xqi
j¼1

xj � mi
� �2 ðD:5Þ

where qi is the number of pixels from class xi used to compute the variance and xj
is the jth of those pixels.

D.2.2 The Multidimensional Case

The one-dimensional case just outlined is seldom encountered in remote sensing,
but it serves as a basis for inducing the nature of the multidimensional, or multi-
variate, normal probability distribution without the need for detailed theoretical
development. Sometimes the bivariate case—that in which x is two-dimensional—
is used as an illustration of how the multivariate case appears.7

Let us now examine (D.4) and see how it can be modified to accommodate a
multidimensional x. First x must be replaced by its vector counterpart x. Similarly,
the one dimensional mean mi must be replaced by its multivariate vector coun-
terpart mi. The variance r2i in (D.4) must be modified, not only to take account of

7See P.H. Swain and S.M. Davis, eds., Remote Sensing: The Quantitative Approach,
McGraw-Hill, N.Y., 1978.
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multidimensionality, but also to include the effect of correlations among the spectral
bands. That role is filled by the covariance matrix Ci is defined by8

Ci ¼ E x�mið Þ x�mið ÞT
n o

ðD:6aÞ

where E is the expectation operator and the superscript T is the vector transpose
operation. As in the one dimensional case an unbiased estimator for the covariance
matrix for class xi is

Ci ¼ 1
qi � 1

Xqi
j¼1

xj �mi
� �

xj �mi
� �T ðD:6bÞ

Inside the exponent in (D.4) the variance r2i appears in the denominator. In its
multivariate extension the covariance matrix is inverted and inserted into the
numerator of the exponent. Also, the squared difference between x and mi is written
using the vector transpose expression x�mið ÞT x�mið Þ. Together, these allow the
exponent to be recast as �1=2 x�mið ÞTC�1

i x�mið Þ.
We now turn our attention to the pre-exponential term. First, we need to obtain a

multivariate form for the reciprocal of the standard deviation. That is achieved first
by using the determinant of the covariance matrix as a measure of its size, giving a
single number measure of variance, and then taking its square root. Finally, the term

2pð Þ�1
2 is replaced by 2pð Þ�N

2 , leading to the complete form of the multivariate
normal distribution for N spectral dimensions

p xjxið Þ ¼ 2pð Þ�N=2 Cij j�0:5exp �1=2 x�mið ÞTC�1
i x�mið Þ

n o
ðD:7Þ

8Sometimes the covariance matrix is represented by R; however, that often causes confusion with
the sum operation, and so is avoided in this treatment.
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Appendix E
Penalty Function Derivation
of the Maximum Likelihood Decision Rule

E.1 Loss Function and Conditional Average Loss

The derivation of maximum likelihood classification followed in Sect. 8.3 is gen-
erally regarded as acceptable for remote sensing applications and is used widely.
However, it is based on the understanding that misclassifying a pixel into any class is
no better or worse than misclassifying it into any other class. The more general
approach presented here allows the user to specify the importance of some labelling
errors compared with others.9 For example, in a crop classification involving two
sub-classes of wheat it would probably be less of a problem if a wheat pixel were
wrongly classified into the other sub-class than it would if it were classified as water.

To develop the general method we introduce the penalty, or loss, function

k ijkð Þ k ¼ 1. . .M ðE:1Þ

where M is the number of classes. This is a measure of the penalty or loss incurred
when a classifier erroneously labels a pixel as belonging to class xi when in reality
the pixel is from class xk. It is reasonable to expect that k ijið Þ ¼ 0 for all i: in other
words, there is no penalty in a correct classification. There can beM2 distinct values
of k ijkð Þ.

The penalty incurred by erroneously labelling a pixel at position x in the spectral
domain into class xi, when in fact the true class is xk , is

k ijkð Þp xkjxð Þ:

9See N.J. Nilsson, Learning Machines, McGraw-Hill., N.Y., 1965, R.O. Duda, P.E. Hart and R.G.
Stork, Pattern Classification, 2nd ed., John Wiley & Sons, N.Y., 2001, P.H. Swain and S.M.
Davis, eds., Remote Sensing: The Quantitative Approach, McGraw-Hill, N.Y., 1978.
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p xkjxð Þ is the posterior probability that xk is the correct class for pixels at x.
Averaging this over all possible xk we have the average loss, called the conditional
average loss, incurred when labelling a pixel incorrectly as coming from class xi:

Lx xið Þ ¼
XM
k¼1

k ijkð Þp xkjxð Þ ðE:2Þ

This is a measure of the accumulated penalty incurred given that the pixel could
have belonged to any of the available classes, and that we have penalty functions
relating all the classes to the wrong choice, xi.

A suitable decision rule for deciding the correct class for a pixel is that corre-
sponding to the smallest conditional average loss:

x 2 xi if Lx xið Þ\Lx xj
� �

for all j 6¼ i ðE:3Þ

Implementation of (E.3) is referred to as the Bayes’ optimal algorithm.
Because the posterior probabilities p xkjxð Þ are generally not known we use

Bayes’ theorem in (E.2) to give

Lx xið Þ ¼ lx xið Þ=p xð Þ

in which

lx xið Þ ¼
XM
k¼1

k ijkð Þp xjxkð Þp xkð Þ ðE:4Þ

Since p xð Þ is common to all classes, class membership depends on lx xið Þ alone.

E.2 A Particular Loss Function

Suppose k ijkð Þ ¼ 1� Uik with Uii ¼ 1 and Uik k 6¼ ið Þ to be defined. Then (E.4) can
be expressed

lx xið Þ ¼
XM
k¼1

p xjxkð Þp xkð Þ �
XM
k¼1

Uikp xjxkð Þp xkð Þ

¼ p xð Þ � gi xð Þ

with

gi xð Þ ¼
XM
k¼1

Uikp xjxkð Þp xkð Þ ðE:5Þ
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Again p xð Þ does not aid discrimination and can be removed from the conditional
average loss expression, leaving lx xið Þ ¼ �gi xð Þ. Because of the minus sign in this
expression, we can decide the least cost labelling of a pixel at position x on the
basis of maximising the discriminant function gi xð Þ:

x 2 xi if gi xð Þ[ gj xð Þ for all j 6¼ i ðE:6Þ

As a special case we adopt the Kronecker delta function for Uik, i.e. Uik ¼ dik where

dik ¼ 1 for k ¼ i

¼ 0 for k 6¼ i

Thus, the penalty for misclassification is not class dependent, and (E.5) becomes

gi xð Þ ¼ p xjxið Þp xið Þ

The decision rule in (E.6) then reduces to

x 2 xi if p xjxið Þp xið Þ[ p xjxj
� �

p xj
� �

for all j 6¼ i ðE:7Þ

which is the classification rule of (8.3), called the unconditional maximum likeli-
hood decision rule.
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pseudo inverse, 491
raised to a power, 548, 549
singular, 273, 545
square, 542, 544
subtraction, 542
trace, 181, 400, 542, 547
transpose, 182, 204

Maximum likelihood classifier. See Classifier
Mean vector, 98–100, 105, 171, 174, 176, 178,

179, 205, 269, 273, 276–280, 284, 290,
295, 371, 379, 382, 390, 391, 411, 420,
421, 423, 439, 444, 445, 449, 450, 457,
458, 495

Mercer condition, 303, 304
Minimum distance classifier. See Classifier
Morphology

boundary extraction, 164, 165
closing, 163, 165
dilation, 162
erosion, 161
opening, 163, 165
structuring element, 160–162, 164, 169

Mosaicing, 24, 107, 122, 124, 132
Multinomial distribution, 477
Multispectral data, 174, 437

N
Neogeography, 22
Neural network. See Classifier

activation function, 366

backpropagation, 317, 318, 346, 361, 362
backpropagation through time, 346
batch adjustment, 322
convolutional neural network. See

Classifier, 362
hidden layer, 317, 320, 323, 328–330, 332,

334, 339, 340, 344–346, 367, 495
input layer, 317, 323, 328, 330, 331
learning rate, 320, 324
local receptive field, 332
mini-batch gradient descent, 323
momentum, 321
output layer, 317, 319–321, 323, 326–328,

333, 335, 336, 339, 342
padding, 330
pooling, 333, 334, 337, 339, 366, 495
processing element (PE), 316–319, 323,

328, 329, 332, 333, 335, 345
rectified linear unit (ReLU), 317, 333, 334,

366
recurrent neural network. See Classifier
Softmax, 335, 339, 349, 367, 496, 497
stride, 332, 333, 367
threshold logic unit (TLU), 315, 316
weight re-use, 330

No free lunch theorem, 497
Noise adjusted principal components

transformation, 198, 200
Noise fraction, 199
Non-parametric Discriminant Analysis (NDA),

417–422, 446
Non-parametric Weighted Feature Extraction

(NWFE), 422
Normalised Difference Vegetation Index

(NDVI), 173–175
Normalised Difference Water Index (NDWI),

173
Normal probability distribution, 369, 500, 553
Nyquist rate, 235, 250

O
Object recognition, 166–168
Opinion pool

linear, 508
logarithmic, 509

Orbit
geostationary, 536
near-polar, 28
sun synchronous, 6

Orbital period, 28, 535, 536
Orthogonal functions, 245
Orthogonal sum, 513–515
Overfitting, 263, 340–342, 449, 452
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Pan sharpening, 147, 171, 210, 211
Passive remote sensing, 4
Pattern space, 96, 98, 324, 326
Pattern vector, 96
Periodic function, 222, 224, 226, 227, 229
Photointerpretation, 83, 87–91, 93, 94, 104,

107, 122, 134, 188, 192, 265, 448, 457,
460, 504, 516, 525

Pixel
mixed, 461, 490, 501
vector, 87, 94, 96, 105, 169, 171, 172, 176,

177, 192, 207, 265, 273, 291–293, 296,
300, 303, 323, 343, 345, 369, 372, 373,
387, 388, 390, 391, 400, 401, 403, 408,
417, 422, 445, 504, 551

Planck’s law, 3, 14, 37
Point spread function, 152, 153, 169, 347
Polarisation, 11, 17, 18
Posterior probability, 268, 280–284, 349, 355,

356, 396, 397, 495–497, 501, 506, 508,
509, 531, 552, 556

Principal components transform
change detection, 194, 211
feature reduction, 198, 205, 403, 405–407,

409, 423, 444, 446
image compression, 193
image display, 189
image enhancement, 187
kernel, 205, 208, 211
noise adjusted, 198, 200
origin shift, 176, 184, 185
redundancy reduction, 194
segmented, 427

Probability
class conditional, 267, 270, 279, 339, 396,

506, 552, 553
conditional, 155, 267, 268, 351, 353, 354,

356, 396, 551, 552
joint, 351, 466, 507, 552
posterior, 268, 280–284, 349, 355, 356,

396, 397, 495–497, 501, 506, 508, 509,
531, 552, 556

prior, 268, 269, 273, 279, 280, 287–289,
355, 364, 397, 418, 420, 433, 435, 437,
441, 444, 445, 452, 465–467, 495, 509,
510, 531, 552

Processing Element (PE). See Neural network
Producer’s accuracy, 464
Production rules, 517, 518, 521, 530
Pseudocolouring, 127, 128

Q
Qualitative reasoning, 521
Quantitative analysis, 87, 91–94, 104, 167,

198, 263, 440, 516
Quantity disagreement, 470, 471, 498

R
Radar scattering, 17, 18, 88
Radiance

path, 41–45, 47, 48, 50, 51
spectral, 38

Radiometric correction
infilling, 35
in-painting, 35
instrumentation errors, 32

Radiometric distortion, 32, 53, 79
Radiometric resolution, 5, 28, 42, 93, 94, 105,

291, 311, 385, 493
Random forests. See Classification
Rectified Linear Unit (ReLU). See Neural

network
Recurrent Neural Network. See Neural network
Reflectance

apparent, 45
real, 45
scaled, 45, 53

Reflector
corner, 16–18, 520, 524
diffuse, 15
specular, 15

Registration
image to image, 73, 75, 76, 454
sequential similarity detection algorithm,

74, 76
to a map grid, 68, 453

Regularisation parameter, 300, 306, 308, 309,
342, 495, 496

Relaxation labelling
compatibility coefficient, 351–354, 357
fixed point, 365
neighbourhood function, 350, 351, 356
stopping rule, 352, 353, 373
supervised, 510

ReliefF, 439, 440, 446
Resampling

bilinear interpolation, 65, 66
cubic convolution, 69, 70, 78, 85
effect on classification, 501
nearest neighbour, 65, 85, 453, 454

Rotational transform, 179, 183, 445
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Sampling theorem, 235
Sampling theory, 66, 83, 138, 152, 217, 218,

228, 233
Satellite orbit, 6, 27, 28, 533, 535
Satellite orbital velocity, 56
Scale changing, 32, 78
Scaling, 79, 118, 123, 147, 239, 241, 246,

247, 251, 252, 255–257, 309, 317, 323,
330

Scanner
CCD, 7
mechanical line, 61
push broom, 34, 82

Scattering
diffuse, 18, 41

Scatter matrix
among-class, 420
between-class, 419
within-class, 420, 422, 423

Scatterplot, 378, 382
Semivariogram

nuggett variance, 156
range, 156
sill, 156

Separability
divergence, 431, 433, 438
in minimum distance classification, 365
Jeffries-Matusita distance, 433, 435, 444,

445
transformed divergence, 436–438, 443,

444, 446
Sequence classification, 343
Shape recognition, 166
Sharpening, 135, 140, 143, 147, 149, 151, 160,

208, 210, 211, 241, 492
Slack variables, 300–302
Smoothing

box car, 139
mean value, 138, 140–142, 145, 168, 386
median, 168
modal, 140

Softmax. See Neural network
Solar radiation curve

compensation, 37
measured, 37

Space
measurement, 192, 264, 492–494
spectral, 27, 87, 93, 94, 96, 97, 176, 369,

403
Spatial context, 326, 327, 336, 346–350, 355,

365–367, 496, 509, 528, 529
Spatial data sources, 18, 20, 21
Spatial derivative, 145

Spatial frequency, 83, 84, 135, 139, 140, 143,
144, 147, 148, 151, 153, 154, 217,
237–239, 241, 260, 261

Spatial gradient, 141, 143, 217
Speckle, 18, 526
Spectral domain, 27, 28, 81, 96–99, 134, 171,

172, 205, 208, 211, 263, 275, 285, 288,
290–292, 337, 369, 370, 373–375, 385,
395, 406, 409, 431, 486, 500, 501, 539,
540, 551, 552, 555

Spectral library searching, 488
Spectral reflectance characteristics, 13, 25,

88–90, 104, 173, 196, 202, 276, 377,
517, 519, 530, 540

Spectroscopic interpretation, 488
Spectrum

amplitude, 230, 239–241
phase, 224, 225, 230

Spot detection, 150
Stacked vector, 504–506, 508, 530
Standard deviation, 34, 35, 81, 99, 105, 112,

126, 131, 132, 286, 375, 379–381, 390,
430, 474, 475, 553, 554

Stratified random sampling, 462, 477
Support vector machine. See Classifier
Support vectors, 98, 101, 211, 263, 291, 295,

298–300, 302, 303, 306–311, 360, 361,
365, 367, 389, 446, 447, 449, 479,
493–497, 501, 502, 517

Synthetic aperture radar, 10, 90, 523
System function, 152, 153, 249

T
Table look up classifier. See Classifier
Tasseled cap transform, 171, 172, 201, 203,

204
Testing data, 266, 274, 275, 445, 447, 455,

462, 465, 473–475, 477, 478, 493
Testing pixels

number required, 433
Texture

energy, 159
entropy, 159
grey level co-occurrence matrix (GLCM),

157–159
Thematic map, 87, 92, 99, 103, 264, 276, 278,

310, 343, 347–349, 352, 353, 365, 369,
446, 447, 450, 451, 453, 459, 460,
462–466, 469–478, 492, 495, 498, 501,
502, 515, 523–525, 528, 530

Thematic mapping, 21, 92, 102, 194, 195, 197,
212, 270, 303, 307, 313, 317, 323, 346,
359, 365, 395, 447–450, 490, 493, 494,
525, 528, 531
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Theory of Evidence, 503, 510–512, 515, 528,
531

Thermal emissivity, 1, 14
Thermal infrared, 3, 4, 14, 15, 89, 481
Threshold

maximum likelihood classifier, 286
minimum distance classifier, 286
smoothing, 139, 140, 169

Threshold Logic Unit (TLU). See Neural
network

Training data, 98, 100, 105, 265, 266, 268,
270, 271, 273, 275, 276, 284, 285, 288,
291, 292, 297, 299, 308, 310, 314, 317,
319, 322, 326, 330, 339, 341, 342,
363–365, 369, 377, 399, 421, 441, 444,
445, 448, 449, 456, 482, 483, 485, 493,
495, 500, 502, 517

Training field, 265, 276, 449, 456, 500
Training pixels

number required, 278, 409, 427
Transfer characteristic of a detector, 33
Transfer function, 151, 249, 251, 252
Transfer learning, 339, 452, 453, 495, 496
Transformed divergence

in clustering, 437

U
Unit step function, 221
Unmixing, 490–492, 499
User’s accuracy, 464, 466

V
Variance, 99, 156, 171, 180–182, 185, 187,

192–194, 196, 198–200, 204, 213, 276,
287, 311, 365, 406, 407, 409, 411–413,
427, 446, 474, 475, 553, 554

Variogram, 156
Vector

column, 491, 539–541, 543, 546
dot product, 206, 285, 287, 543
inner product, 245, 246
row, 294, 411, 540, 541, 543
scalar product, 168, 206, 207, 303, 305
transpose, 176, 206, 294, 542, 543, 545,

554
unit, 183, 184, 204, 219

Vegetation index, 172, 173
Volume scattering, 16, 17, 524

W
Water absorption bands, 12, 404, 428
Wavelet

admissibility criterion, 248, 262
Daubechies, 255
dilation equation, 255
dyadic, 247
equation, 255
Haar, 255, 256, 258
mother, 246, 251, 255
scaling equation, 255
scaling function, 252, 255, 256
scaling vector, 252

Wavelet transform
of an image, 256, 258

Weight decay, 342
Weight re-use. See Neural networks
Weight vector, 293, 294, 296, 301, 317, 318,

328, 330
Window functions, 243, 261

Z
Zooming, 32, 78, 79
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